101
|
Baliban SM, Curtis B, Toema D, Tennant SM, Levine MM, Pasetti MF, Simon R. Immunogenicity and efficacy following sequential parenterally-administered doses of Salmonella Enteritidis COPS:FliC glycoconjugates in infant and adult mice. PLoS Negl Trop Dis 2018; 12:e0006522. [PMID: 29791435 PMCID: PMC6002111 DOI: 10.1371/journal.pntd.0006522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/14/2018] [Accepted: 05/13/2018] [Indexed: 11/18/2022] Open
Abstract
In sub-Saharan Africa, invasive nontyphoidal Salmonella (iNTS) infections with serovars S. Enteritidis, S. Typhimurium and I 4,[5],12:i:- are widespread in children < 5 years old. Development of an efficacious vaccine would provide an important public health tool to prevent iNTS disease in this population. Glycoconjugates of S. Enteritidis core and O-polysaccharide (COPS) coupled to the homologous serovar phase 1 flagellin protein (FliC) were previously shown to be immunogenic and protected adult mice against death following challenge with a virulent Malian S. Enteritidis blood isolate. This study extends these observations to immunization of mice in early life and also assesses protection with partial and full regimens. Anti-COPS and anti-FliC serum IgG titers were assessed in infant and adult mice after immunization with 1, 2 or 3 doses of S. Enteritidis COPS:FliC alone or co-formulated with aluminum hydroxide or monophosphoryl lipid A (MPL) adjuvants. S. Enteritidis COPS:FliC was immunogenic in both age groups, although the immune responses were quantitatively lower in infants. Kinetics of antibody production were similar for the native and adjuvanted formulations after three doses; conjugates formulated with MPL elicited significantly increased anti-COPS IgG titers in adult but not infant mice. Nevertheless, robust protection against S. Enteritidis challenge was seen for all three formulations when three doses were given either during infancy or as adults. We further found that significant protection could be achieved with two COPS:FliC doses, despite elicitation of modest serum anti-COPS IgG antibody titers. These findings guide potential immunization strategies that may be translated to develop a human pediatric iNTS vaccine for sub-Saharan Africa. Non-typhoidal Salmonella enterica (NTS) serovars Enteritidis and Typhimurium (including monophasic variant I 4,[5],12:i:-) are significant causes of invasive bacterial disease amongst infants and toddlers in sub-Saharan Africa, and currently, there are no approved NTS vaccines. We have demonstrated previously that immunization with S. Enteritidis core and O-polysaccharide (COPS) conjugated to the flagellin protein (FliC) from the homologous serovar protected adult mice from fatal infection with a Malian S. Enteritidis blood isolate. The target population for iNTS vaccines in sub-Saharan Africa, however, are young infants. In the current study, we evaluated S. Enteritidis COPS:FliC vaccination during murine infancy or adulthood. We found that COPS:FliC was immunogenic in both adult and infant mice and that co-formulation with adjuvant impacted the magnitude and quality of the immune response. Despite these differences, all vaccine formulations protected against experimental challenge in both age groups. Furthermore, robust efficacy was attainable after only two COPS:FliC doses, coinciding with the appearance of COPS-specific antibodies. The results from this study suggest that S. Enteritidis COPS:FliC is a promising pediatric vaccine candidate for use in sub-Saharan Africa and may help inform potential immunization strategies for iNTS COPS:FliC conjugate vaccines.
Collapse
Affiliation(s)
- Scott M. Baliban
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Brittany Curtis
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Deanna Toema
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Raphael Simon
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
102
|
Tsay GJ, Zouali M. The Interplay Between Innate-Like B Cells and Other Cell Types in Autoimmunity. Front Immunol 2018; 9:1064. [PMID: 29868023 PMCID: PMC5964140 DOI: 10.3389/fimmu.2018.01064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Studies performed in animal models and in humans indicate that the innate arm of the immune system provides an essential role in the initial protection against potential insults and in maintaining tolerance to self-antigens. In the B cell compartment, several subsets engage in both adaptive and innate functions. Whereas B cell subsets are recognized to play important roles in autoimmune diseases, understanding the intricacies of their effector functions remains challenging. In addition to B-1a cells and marginal zone B cells, the B cell compartment comprises other B cells with innate-like functions, including innate response activator B cells, T-bet positive B cells, natural killer-like B cells, IL-17-producing B cells, and human self-reactive VH4-34-expressing B cells. Herein, we summarize the functions of recently described B cell populations that can exert innate-like roles in both animal models and humans. We also highlight the importance of the cross talk between innate-like B cells and other adaptive and innate branches of the immune system in various autoimmune and inflammatory diseases. In as much as innate immunity seems to be important in resolving inflammation, it is possible that targeting certain innate-like B cell subsets could represent a novel therapeutic approach for inducing resolution of inflammation of autoimmune and inflammatory responses.
Collapse
Affiliation(s)
- Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Moncef Zouali
- INSERM, U1132, Paris, France.,Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
103
|
Balkhi MY, Willette-Brown J, Wittmann G, Hu Y. IKKα deficiency disrupts the development of marginal zone and follicular B cells. Genes Immun 2018; 20:224-233. [PMID: 29740197 DOI: 10.1038/s41435-018-0025-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023]
Abstract
Only few genes have been confidently identified to be involved in the Follicular (FO) and Marginal Zone (MZ) B cell differentiation, migration, and retention in the periphery. Our group previously observed that IKKα kinase inactive mutant mice IKKαK44A/K44A have significantly lower number of MZ B cells whereas FO B cell numbers appeared relatively normal. Because kinase dead IKKα can retain some of its biological functions that may interfere in revealing its actual role in the MZ and FO B cell differentiation. Therefore, in the current study, we genetically deleted IKKα from the pro-B cell lineage that revealed novel functions of IKKα in the MZ and FO B lymphocyte development. The loss of IKKα produces a significant decline in the percentage of immature B lymphocytes, mature marginal zone B cells, and follicular B cells along with a severe disruption of splenic architecture of marginal and follicular zones. IKKα deficiency affect the recirculation of mature B cells through bone marrow. A transplant of IKKα knockout fetal liver cells into Rag-/- mice shows a significant reduction compared to control in the B cells recirculating through bone marrow. To reveal the genes important in the B cell migration, a high throughput gene expression analysis was performed on the IKKα deficient recirculating mature B cells (B220+IgMhi). That revealed significant changes in the expression of genes involved in the B lymphocyte survival, homing and migration. And several among those genes identified belong to G protein family. Taken together, this study demonstrates that IKKα forms a vial axis controlling the genes involved in MZ and FO B cell differentiation and migration.
Collapse
Affiliation(s)
- Mumtaz Y Balkhi
- Division of Hematology/Oncology, Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.
| | - Jami Willette-Brown
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, USA
| | - Gabor Wittmann
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, USA
| |
Collapse
|
104
|
Khass M, Blackburn T, Elgavish A, Burrows PD, Schroeder HW. In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Repertoire by Enriching for CDR-H3 Y101. Front Immunol 2018; 9:120. [PMID: 29472919 PMCID: PMC5810287 DOI: 10.3389/fimmu.2018.00120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/15/2018] [Indexed: 01/13/2023] Open
Abstract
Sequential developmental checkpoints are used to “optimize” the B cell antigen receptor repertoire by minimizing production of autoreactive or useless immunoglobulins and enriching for potentially protective antibodies. The first and apparently most impactful checkpoint requires μHC to form a functional pre-B cell receptor (preBCR) by associating with surrogate light chain, which is composed of VpreB and λ5. Absence of any of the preBCR components causes a block in B cell development that is characterized by severe immature B cell lymphopenia. Previously, we showed that preBCR controls the amino acid content of the third complementary determining region of the H chain (CDR-H3) by using a VpreB amino acid motif (RDR) to select for tyrosine at CDR-H3 position 101 (Y101). In antibodies bound to antigen, Y101 is commonly in direct contact with the antigen, thus preBCR selection impacts the antigen binding characteristics of the repertoire. In this work, we sought to determine the forces that shape the peripheral B cell repertoire when it is denied preBCR selection. Using bromodeoxyuridine incorporation and evaluation of apoptosis, we found that in the absence of preBCR there is increased turnover of B cells due to increased apoptosis. CDR-H3 sequencing revealed that this is accompanied by adjustments to DH identity, DH reading frame, JH, and CDR-H3 amino acid content. These adjustments in the periphery led to wild-type levels of CDR-H3 Y101 content among transitional (T1), mature recirculating, and marginal zone B cells. However, peripheral selection proved incomplete, with failure to restore Y101 levels in follicular B cells and increased production of dsDNA-binding IgM antibodies.
Collapse
Affiliation(s)
- Mohamed Khass
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt
| | - Tessa Blackburn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ada Elgavish
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harry W Schroeder
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
105
|
Liu J, Zhu H, Qian J, Xiong E, Zhang L, Wang YQ, Chu Y, Kubagawa H, Tsubata T, Wang JY. Fcµ Receptor Promotes the Survival and Activation of Marginal Zone B Cells and Protects Mice against Bacterial Sepsis. Front Immunol 2018; 9:160. [PMID: 29459869 PMCID: PMC5807594 DOI: 10.3389/fimmu.2018.00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/18/2018] [Indexed: 11/14/2022] Open
Abstract
The marginal zone B cells (MZB) are located at the interface between the circulation and lymphoid tissue and as a gatekeeper play important roles in both innate and adaptive immune responses. We have previously found that MZB are significantly reduced in mice deficient in the IgM Fc receptor (FcμR) but how FcμR regulates the development and function of MZB remains unknown. In this study, we found that both marginal zone precursor (MZP) and MZB were decreased in FcμR−/− mice. The reduction of MZP and MZB was not due to impaired proliferation of these cells but rather due to their increased death. Further analysis revealed that FcμR−/− MZB had reduced tonic BCR signal, as evidenced by their decreased levels of phosphorylated SYK and AKT relative to WT MZB. MZB in FcμR−/− mice responded poorly to LPS in vivo when compared with MZB in WT mice. Consistent with the reduced proportion of MZB and their impaired response to LPS, antibody production against the type 1 T-independent Ag, NP-LPS, was significantly reduced in FcμR−/− mice. Moreover, FcμR−/− mice were highly susceptible to Citrobacter rodentium-induced sepsis. These results reveal a critical role for FcμR in the survival and activation of MZB and in protection against acute bacterial infection.
Collapse
Affiliation(s)
- Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hanying Zhu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiawen Qian
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ermeng Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lumin Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
106
|
Ádori M, Pedersen GK, Ádori C, Erikson E, Khoenkhoen S, Stark JM, Choi JH, Dosenovic P, Karlsson MCI, Beutler B, Karlsson Hedestam GB. Altered Marginal Zone B Cell Selection in the Absence of IκBNS. THE JOURNAL OF IMMUNOLOGY 2018; 200:775-787. [PMID: 29222168 DOI: 10.4049/jimmunol.1700791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Marginal zone (MZ) B cells reside in the splenic MZ and play important roles in T cell-independent humoral immune responses against blood-borne pathogens. IκBNS-deficient bumble mice exhibit a severe reduction in the MZ B compartment but regain an MZ B population with age and, thus, represent a valuable model to examine the biology of MZ B cells. In this article, we characterized the MZ B cell defect in further detail and investigated the nature of the B cells that appear in the MZ of aged bumble mice. Flow cytometry analysis of the splenic transitional B cell subsets demonstrated that MZ B cell development was blocked at the transitional-1 to transitional-2-MZ precursor stage in the absence of functional IκBNS. Immunohistochemical analysis of spleen sections from wild-type and bumble mice revealed no alteration in the cellular MZ microenvironment, and analysis of bone marrow chimeras indicated that the MZ B cell development defect in bumble mice was B cell intrinsic. Further, we demonstrate that the B cells that repopulate the MZ in aged bumble mice were distinct from age-matched wild-type MZ B cells. Specifically, the expression of surface markers characteristic for MZ B cells was altered and the L chain Igλ+ repertoire was reduced in bumble mice. Finally, plasma cell differentiation of sorted LPS-stimulated MZ B cells was impaired, and aged bumble mice were unable to respond to NP-Ficoll immunization. These results demonstrate that IκBNS is required for an intact MZ B cell compartment in C57BL/6 mice.
Collapse
Affiliation(s)
- Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Csaba Ádori
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden; and
| | - Elina Erikson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX 75390-8505
| | - Pia Dosenovic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Bruce Beutler
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX 75390-8505
| | | |
Collapse
|
107
|
Ramos CA. Marginal Zone Lymphomas (Extranodal/Malt, Splenic, and Nodal). Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
108
|
Sintes J, Gentile M, Zhang S, Garcia-Carmona Y, Magri G, Cassis L, Segura-Garzón D, Ciociola A, Grasset EK, Bascones S, Comerma L, Pybus M, Lligé D, Puga I, Gutzeit C, He B, DuBois W, Crespo M, Pascual J, Mensa A, Aróstegui JI, Juan M, Yagüe J, Serrano S, Lloreta J, Meffre E, Hahne M, Cunningham-Rundles C, Mock BA, Cerutti A. mTOR intersects antibody-inducing signals from TACI in marginal zone B cells. Nat Commun 2017; 8:1462. [PMID: 29133782 PMCID: PMC5684130 DOI: 10.1038/s41467-017-01602-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) enhances immunity in addition to orchestrating metabolism. Here we show that mTOR coordinates immunometabolic reconfiguration of marginal zone (MZ) B cells, a pre-activated lymphocyte subset that mounts antibody responses to T-cell-independent antigens through a Toll-like receptor (TLR)-amplified pathway involving transmembrane activator and CAML interactor (TACI). This receptor interacts with mTOR via the TLR adapter MyD88. The resulting mTOR activation instigates MZ B-cell proliferation, immunoglobulin G (IgG) class switching, and plasmablast differentiation through a rapamycin-sensitive pathway that integrates metabolic and antibody-inducing transcription programs, including NF-κB. Disruption of TACI-mTOR interaction by rapamycin, truncation of the MyD88-binding domain of TACI, or B-cell-conditional mTOR deficiency interrupts TACI signaling via NF-κB and cooperation with TLRs, thereby hampering IgG production to T-cell-independent antigens but not B-cell survival. Thus, mTOR drives innate-like antibody responses by linking proximal TACI signaling events with distal immunometabolic transcription programs.
Collapse
Affiliation(s)
- Jordi Sintes
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain.
| | - Maurizio Gentile
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yolanda Garcia-Carmona
- Department of Medicine and Pediatrics, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Giuliana Magri
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Linda Cassis
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Daniel Segura-Garzón
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Alessandra Ciociola
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Emilie K Grasset
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institutet, Stockholm, 171 76, Sweden
| | - Sabrina Bascones
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Laura Comerma
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Marc Pybus
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - David Lligé
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Irene Puga
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Cindy Gutzeit
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bing He
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wendy DuBois
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marta Crespo
- Department of Nephrology, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Julio Pascual
- Department of Nephrology, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Anna Mensa
- Immunology Service, Hospital Clínic of Barcelona, Barcelona, 08036, Spain
| | | | - Manel Juan
- Immunology Service, Hospital Clínic of Barcelona, Barcelona, 08036, Spain
| | - Jordi Yagüe
- Immunology Service, Hospital Clínic of Barcelona, Barcelona, 08036, Spain
| | - Sergi Serrano
- Department of Pathology, Hospital del Mar, Barcelona, 08003, Spain
- Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Josep Lloreta
- Department of Pathology, Hospital del Mar, Barcelona, 08003, Spain
- Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Eric Meffre
- Department of Immunobiology, Yale University, New Haven, CT, 06511, USA
| | - Michael Hahne
- Molecular Genetics Institute of Montpellier, Montpellier, 34293, France
| | - Charlotte Cunningham-Rundles
- Department of Medicine and Pediatrics, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Cerutti
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain.
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, 08003, Spain.
| |
Collapse
|
109
|
Phenotyping of autoreactive B cells with labeled nucleosomes in 56R transgenic mice. Sci Rep 2017; 7:13232. [PMID: 29038433 PMCID: PMC5643551 DOI: 10.1038/s41598-017-13422-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/21/2017] [Indexed: 01/22/2023] Open
Abstract
The phenotypic characterization of self-reactive B cells producing autoantibodies is one of the challenges to get further insight in the physiopathology of autoimmune diseases. We took advantage of our previously developed flow cytometry method, using labeled nucleosomes, prominent autoantigens in systemic lupus erythematosus, to analyze the phenotype of self-reactive B cells in the anti-DNA B6.56R mouse model. We showed that splenic anti-nucleosome B cells express mostly kappa light chains and harbor a marginal zone phenotype. Moreover, these autoreactive B cells fail to acquire a germinal center phenotype and are less abundant in the transitional T3 compartment. In conclusion, the direct detection of autoreactive B cells helped determine their phenotypic characteristics and provided a more direct insight into the B cell tolerance process in B6.56R mice. This method constitutes an interesting new tool to study the mechanisms of B cell tolerance breakdown in B6.56R mice crossed with autoimmune prone models.
Collapse
|
110
|
Marginal zone B cells are critical to factor VIII inhibitor formation in mice with hemophilia A. Blood 2017; 130:2559-2568. [PMID: 28978569 DOI: 10.1182/blood-2017-05-782912] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
Although factor VIII (FVIII) replacement therapy can be lifesaving for patients with hemophilia A, neutralizing alloantibodies to FVIII, known as inhibitors, develop in a significant number of patients and actively block FVIII activity, making bleeding difficult to control and prevent. Although a variety of downstream immune factors likely regulate inhibitor formation, the identification and subsequent targeting of key initiators in inhibitor development may provide an attractive approach to prevent inhibitor formation before amplification of the FVIII immune response occurs. As the initial steps in FVIII inhibitor development remain incompletely understood, we sought to define early regulators of FVIII inhibitor formation. Our results demonstrate that FVIII localizes in the marginal sinus of the spleen of FVIII-deficient mice shortly after injection, with significant colocalization with marginal zone (MZ) B cells. FVIII not only colocalizes with MZ B cells, but specific removal of MZ B cells also completely prevented inhibitor development following FVIII infusion. Subsequent rechallenge with FVIII following MZ B-cell reconstitution resulted in a primary antibody response, demonstrating that MZ B-cell depletion did not result in FVIII tolerance. Although recipient exposure to the viral-like adjuvant polyinosinic:polycytidylic acid enhanced anti-FVIII antibody formation, MZ B-cell depletion continued to display similar effectiveness in preventing inhibitor formation following FVIII infusion in this inflammatory setting. These data strongly suggest that MZ B cells play a critical role in initiating FVIII inhibitor formation and suggest a potential strategy to prevent anti-FVIII alloantibody formation in patients with hemophilia A.
Collapse
|
111
|
Bednar KJ, Shanina E, Ballet R, Connors EP, Duan S, Juan J, Arlian BM, Kulis MD, Butcher EC, Fung-Leung WP, Rao TS, Paulson JC, Macauley MS. Human CD22 Inhibits Murine B Cell Receptor Activation in a Human CD22 Transgenic Mouse Model. THE JOURNAL OF IMMUNOLOGY 2017; 199:3116-3128. [PMID: 28972089 DOI: 10.4049/jimmunol.1700898] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/28/2017] [Indexed: 01/12/2023]
Abstract
CD22, a sialic acid-binding Ig-type lectin (Siglec) family member, is an inhibitory coreceptor of the BCR with established roles in health and disease. The restricted expression pattern of CD22 on B cells and most B cell lymphomas has made CD22 a therapeutic target for B cell-mediated diseases. Models to better understand how in vivo targeting of CD22 translates to human disease are needed. In this article, we report the development of a transgenic mouse expressing human CD22 (hCD22) in B cells and assess its ability to functionally substitute for murine CD22 (mCD22) for regulation of BCR signaling, Ab responses, homing, and tolerance. Expression of hCD22 on transgenic murine B cells is comparable to expression on human primary B cells, and it colocalizes with mCD22 on the cell surface. Murine B cells expressing only hCD22 have identical calcium (Ca2+) flux responses to anti-IgM as mCD22-expressing wild-type B cells. Furthermore, hCD22 transgenic mice on an mCD22-/- background have restored levels of marginal zone B cells and Ab responses compared with deficiencies observed in CD22-/- mice. Consistent with these observations, hCD22 transgenic mice develop normal humoral responses in a peanut allergy oral sensitization model. Homing of B cells to Peyer's patches was partially rescued by expression of hCD22 compared with CD22-/- B cells, although not to wild-type levels. Notably, Siglec-engaging antigenic liposomes formulated with an hCD22 ligand were shown to prevent B cell activation, increase cell death, and induce tolerance in vivo. This hCD22 transgenic mouse will be a valuable model for investigating the function of hCD22 and preclinical studies targeting hCD22.
Collapse
Affiliation(s)
- Kyle J Bednar
- Immunology Team, Janssen Research and Development, LLC, Raritan, NJ 08869.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Elena Shanina
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Romain Ballet
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305.,Palo Alto Veterans Institute for Research, Palo Alto, CA 94304.,The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Edward P Connors
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Shiteng Duan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037.,Department of Immunology and Microbial Sciences, The Scripps Research Institute; La Jolla, CA 92037; and
| | - Joana Juan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Britni M Arlian
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037.,Department of Immunology and Microbial Sciences, The Scripps Research Institute; La Jolla, CA 92037; and
| | - Michael D Kulis
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305.,Palo Alto Veterans Institute for Research, Palo Alto, CA 94304.,The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | | | - Tadimeti S Rao
- Immunology Team, Janssen Research and Development, LLC, Raritan, NJ 08869
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037; .,Department of Immunology and Microbial Sciences, The Scripps Research Institute; La Jolla, CA 92037; and
| | - Matthew S Macauley
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
112
|
Zhang Y, Zhu G, Xiao H, Liu X, Han G, Chen G, Hou C, Shen B, Li Y, Ma N, Wang R. CD19 regulates ADAM28-mediated Notch2 cleavage to control the differentiation of marginal zone precursors to MZ B cells. J Cell Mol Med 2017; 21:3658-3669. [PMID: 28707394 PMCID: PMC5706524 DOI: 10.1111/jcmm.13276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/15/2017] [Indexed: 12/19/2022] Open
Abstract
As the first line of defence, marginal zone (MZ) B cells play principal roles in clearing blood‐borne pathogens during infection and are over‐primed in autoimmune diseases. However, the basic mechanisms underlying MZ B‐cell development are still unclear. We found here that CD19 deficiency blocked the differentiation of marginal zone precursors (MZP) to MZ B cells, whereas CD19 expression in CD19‐deficient MZP rescues MZ B‐cell generation. Furthermore, CD19 regulates Notch2 cleavage by up‐regulating ADAM28 expression in MZP. Finally, we found that CD19 suppressed Foxo1 expression to promote ADAM28 expression in MZP. These results suggest that CD19 controls the differentiation of MZP to MZ B cells by regulating ADAM28‐mediated Notch2 cleavage. Thus, we demonstrated the basic mechanisms underlying the differentiation of MZP to MZ B cells.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,College of Pharmacy, Henan University, Kaifeng, China
| | - Gaizhi Zhu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan, China
| | - He Xiao
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoling Liu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Department of Nephrology, The 307th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Guojiang Chen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Beifen Shen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yan Li
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Ning Ma
- Department of Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
113
|
Matsuda Y, Imamura R, Takahara S. Evaluation of Antigen-Specific IgM and IgG Production during an In Vitro Peripheral Blood Mononuclear Cell Culture Assay. Front Immunol 2017; 8:794. [PMID: 28740496 PMCID: PMC5502262 DOI: 10.3389/fimmu.2017.00794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022] Open
Abstract
The recent attention given to diseases associated with memory B-cell (mBC)-produced antibodies (Abs) suggests the need for a similar in vitro assay to evaluate the functions of mBCs. Here, we cultured peripheral blood mononuclear cells (PBMCs) with the intent to collect mBC-derived Abs in vitro and maintain their cell–cell contact-dependent interactions with helper T-cells. PBMCs were cultured with interleukin (IL)-21, CpG-oligodeoxynucleotides (ODN), phorbol myristate acetate (PMA), and phytohemagglutinin/leucoagglutinin (PHA-L) in 24-well flat-bottom plates (5 × 105 cells/well). A culture supernatant analysis of PBMCs from healthy donors (n = 10) indicated that antigen-specific IgM Ab levels in a PBMC culture supernatant might be better able to demonstrate the antigen sensitization status in a smaller peripheral blood sample, compared to IgG because Epstein–Barr virus-specific IgM mBCs circulate peripherally at a significantly higher frequency once antiviral humoral immunity has stabilized. Thus, our in vitro assay demonstrated the potential significance of antigen-specific IgM Ab production in the culture supernatants. Furthermore, an analysis of cultured PBMCs from allograft kidney recipients (n = 16) sensitized with de novo donor-specific human leukocyte antigen (HLA)-specific Abs (DSAs) showed that IgM-type HLA-specific Abs were detected mainly from the culture supernatants from PBMCs of patients with stable graft function, whereas IgG isotype HLA Abs were detectable only from patients with biopsy-proven antibody-mediated rejection. In other words, these IgG isotype Abs also represented an activated humoral immune response in vivo. Additionally, IgM- and IgG-expressing mBCs from healthy donors (n = 5) were cultured with IL-21, CpG-ODN, and a supernatant produced by stimulating CD19+ B-cell-depleted PBMCs with PHA-L and PMA in 24-well flat-bottom plates (1 × 105 cells/well), and the resulting in vitro analysis provided some information regarding the biological processes of IgG and IgM mBCs in peripheral blood. Taken together, our findings suggest that antigen-specific Ab subtype analyses of supernatants from cultured PBMCs might more effectively and accurately reflect a patient’s Ab-associated pathological condition vs. than serum IgG and IgM levels.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Department of Advanced Technology for Transplantation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryoichi Imamura
- Department of Urology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shiro Takahara
- Department of Advanced Technology for Transplantation, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
114
|
Newman R, Ahlfors H, Saveliev A, Galloway A, Hodson DJ, Williams R, Besra GS, Cook CN, Cunningham AF, Bell SE, Turner M. Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1. Nat Immunol 2017; 18:683-693. [PMID: 28394372 PMCID: PMC5438597 DOI: 10.1038/ni.3724] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU-rich elements in the 3' untranslated region and promoting mRNA decay. Here we identified an indispensable role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal-zone B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene-expression program related to signaling, cell adhesion and locomotion; it achieved this in part by limiting expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RNA-binding proteins for maintaining cellular identity among closely related cell types.
Collapse
Affiliation(s)
- Rebecca Newman
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
- Immune Receptor Activation Laboratory, The Francis Crick Institute,
1 Midland Road, London, NW1 1AT, United Kingdom
| | - Helena Ahlfors
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Alexander Saveliev
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Alison Galloway
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Daniel J Hodson
- Department of Haematology, University of Cambridge, The Clifford
Allbutt Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH,
United Kingdom
| | - Robert Williams
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Birmingham, B15
2TT, United Kingdom
| | - Charlotte N Cook
- MRC Centre for Immune Regulation, School of Immunity and Infection,
University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Adam F Cunningham
- MRC Centre for Immune Regulation, School of Immunity and Infection,
University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Sarah E Bell
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
115
|
Tubman VN, Makani J. Turf wars: exploring splenomegaly in sickle cell disease in malaria-endemic regions. Br J Haematol 2017; 177:938-946. [PMID: 28493472 DOI: 10.1111/bjh.14592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sickle cell disease (SCD) is a group of recessively inherited disorders of erythrocyte function that presents an ongoing threat to reducing childhood and adult morbidity and mortality around the world. While decades of research have led to improved survival for SCD patients in wealthy countries, survival remains dismal in low- and middle-income countries. Much of the early mortality associated with SCD is attributed to increased risk of infections due to early loss of splenic function. In the West, bacterial infections with encapsulated organisms are a primary concern. In sub-Saharan Africa, where the majority of infants with SCD are born, the same is true. However malaria presents an additional threat to survival. The search for factors that define variability in sickle cell phenotypes should include environmental modifiers, such as malaria. Further exploration of this relationship could lead to novel strategies to reduce morbidity and mortality attributable to infections. In this review, we explore the interactions between SCD, malaria and the spleen to better understand how splenomegaly and splenic (dys)function may co-exist in patients with SCD living in malaria-endemic areas.
Collapse
Affiliation(s)
- Venée N Tubman
- Texas Children's Cancer and Hematology Centers, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Julie Makani
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar-es-salaam, Tanzania
| |
Collapse
|
116
|
Positive selection of type II collagen-reactive CD80 high marginal zone B cells in DBA/1 mice. Clin Immunol 2017; 178:64-73. [DOI: 10.1016/j.clim.2017.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/23/2022]
|
117
|
Meng QH, White HN. CD21 int CD23 + follicular B cells express antigen-specific secretory IgM mRNA as primary and memory responses. Immunology 2017; 151:211-218. [PMID: 28190261 PMCID: PMC5418461 DOI: 10.1111/imm.12724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/18/2017] [Accepted: 02/07/2017] [Indexed: 11/28/2022] Open
Abstract
CD21int CD23+ IgM+ mouse follicular B cells comprise the bulk of the mature B-cell compartment, but it is not known whether these cells contribute to the humoral antibody response. We show using a direct RT-PCR method for antigen-specific VH, that FACS-sorted mouse CD21int CD23+ B cells express specific secretory IgM VH transcripts in response to immunization and also exhibit a memory response. The secretory IgM expressed is distinct from the IgG expressed by cells of this phenotype, which we also analyse here, having a distinct broader distribution of CDR-H3 sequences and zero or low levels of somatic mutation in the region analysed. These results imply that cells of the CD21int CD23+ phenotype have distinct IgM+ and IgG+ populations that contribute directly to the humoral antibody and memory responses by expressing antigen-specific secretory immunoglobulin. We also argue that the more diverse CDR-H3 sequences expressed by antigen-experienced IgM+ CD21int CD23+ follicular B cells would place them at the bottom of a recently hypothesized memory B-cell hierarchy.
Collapse
Affiliation(s)
- Qing-Hai Meng
- Molecular Immunology Unit, Institute of Child Health, University College London, London, UK
| | - Harry N White
- Department of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
118
|
Villa M, Gialitakis M, Tolaini M, Ahlfors H, Henderson CJ, Wolf CR, Brink R, Stockinger B. Aryl hydrocarbon receptor is required for optimal B-cell proliferation. EMBO J 2017; 36:116-128. [PMID: 27875245 PMCID: PMC5210087 DOI: 10.15252/embj.201695027] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a transcription factor known for mediating xenobiotic toxicity, is expressed in B cells, which are known targets for environmental pollutants. However, it is unclear what the physiological functions of AhR in B cells are. We show here that expression of Ahr in B cells is up-regulated upon B-cell receptor (BCR) engagement and IL-4 treatment. Addition of a natural ligand of AhR, FICZ, induces AhR translocation to the nucleus and transcription of the AhR target gene Cyp1a1, showing that the AhR pathway is functional in B cells. AhR-deficient (Ahr-/-) B cells proliferate less than AhR-sufficient (Ahr+/+) cells following in vitro BCR stimulation and in vivo adoptive transfer models confirmed that Ahr-/- B cells are outcompeted by Ahr+/+ cells. Transcriptome comparison of AhR-deficient and AhR-sufficient B cells identified cyclin O (Ccno), a direct target of AhR, as a top candidate affected by AhR deficiency.
Collapse
Affiliation(s)
- Matteo Villa
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | | | - Mauro Tolaini
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Helena Ahlfors
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Colin J Henderson
- Division of Cancer Research, University of Dundee Ninewells Hospital and Medical School, Dundee, UK
| | - C Roland Wolf
- Division of Cancer Research, University of Dundee Ninewells Hospital and Medical School, Dundee, UK
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | |
Collapse
|
119
|
Verkoczy L. Humanized Immunoglobulin Mice: Models for HIV Vaccine Testing and Studying the Broadly Neutralizing Antibody Problem. Adv Immunol 2017; 134:235-352. [PMID: 28413022 PMCID: PMC5914178 DOI: 10.1016/bs.ai.2017.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A vaccine that can effectively prevent HIV-1 transmission remains paramount to ending the HIV pandemic, but to do so, will likely need to induce broadly neutralizing antibody (bnAb) responses. A major technical hurdle toward achieving this goal has been a shortage of animal models with the ability to systematically pinpoint roadblocks to bnAb induction and to rank vaccine strategies based on their ability to stimulate bnAb development. Over the past 6 years, immunoglobulin (Ig) knock-in (KI) technology has been leveraged to express bnAbs in mice, an approach that has enabled elucidation of various B-cell tolerance mechanisms limiting bnAb production and evaluation of strategies to circumvent such processes. From these studies, in conjunction with the wealth of information recently obtained regarding the evolutionary pathways and paratopes/epitopes of multiple bnAbs, it has become clear that the very features of bnAbs desired for their function will be problematic to elicit by traditional vaccine paradigms, necessitating more iterative testing of new vaccine concepts. To meet this need, novel bnAb KI models have now been engineered to express either inferred prerearranged V(D)J exons (or unrearranged germline V, D, or J segments that can be assembled into functional rearranged V(D)J exons) encoding predecessors of mature bnAbs. One encouraging approach that has materialized from studies using such newer models is sequential administration of immunogens designed to bind progressively more mature bnAb predecessors. In this review, insights into the regulation and induction of bnAbs based on the use of KI models will be discussed, as will new Ig KI approaches for higher-throughput production and/or altering expression of bnAbs in vivo, so as to further enable vaccine-guided bnAb induction studies.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
120
|
Park S, Ahn S, Hong M, Ko YH. Increased plasmacytic differentiation in gastric mucosa–associated lymphoid tissue lymphomas: Helicobacter pylori eradication response and IgG4+ plasma cell association. Hum Pathol 2017; 59:113-119. [DOI: 10.1016/j.humpath.2016.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/22/2016] [Accepted: 09/16/2016] [Indexed: 01/29/2023]
|
121
|
Lobo PI. Role of Natural IgM Autoantibodies (IgM-NAA) and IgM Anti-Leukocyte Antibodies (IgM-ALA) in Regulating Inflammation. Curr Top Microbiol Immunol 2017; 408:89-117. [PMID: 28698955 DOI: 10.1007/82_2017_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Natural IgM autoantibodies (IgM-NAA) are rapidly produced to inhibit pathogens and abrogate inflammation mediated by invading microorganisms and host neoantigens. IgM-NAA achieve this difficult task by being polyreactive with low binding affinity but with high avidity, characteristics that allow these antibodies to bind antigenic determinants shared by pathogens and neoantigens. Hence the same clones of natural IgM can bind and mask host neoantigens as well as inhibit microorganisms. In addition, IgM-NAA regulate the inflammatory response via mechanisms involving binding of IgM to apoptotic cells to enhance their removal and binding of IgM to live leukocytes to regulate their function. Secondly, we review how natural IgM prevents autoimmune disorders arising from pathogenic IgG autoantibodies as well as by autoreactive B and T cells that have escaped tolerance mechanisms. Thirdly, using IgM knockout mice, we show that regulatory B and T cells require IgM to effectively regulate inflammation mediated by innate, adaptive and autoimmune mechanisms. It is therefore not surprising why the host positively selects such autoreactive B1 cells that generate protective IgM-NAA, which are also evolutionarily conserved. Fourthly, we show that IgM anti-leukocyte autoantibodies (IgM-ALA) levels and their repertoire can vary in normal humans and disease states and this variation may partly explain the observed differences in the inflammatory response after infection, ischemic injury or after a transplant. Finally we also show how protective IgM-NAA can be rendered pathogenic under non-physiological conditions. IgM-NAA have therapeutic potential. Polyclonal IgM infusions can be used to abrogate ongoing inflammation. Additionally, inflammation arising after ischemic kidney injury, e.g., during high-risk elective cardiac surgery or after allograft transplantation, can be prevented by pre-emptively infusing polyclonal IgM, or DC pretreated ex vivo with IgM, or by increasing in vivo IgM with a vaccine approach. Cell therapy with IgM pretreated cells, is appealing as less IgM will be required.
Collapse
Affiliation(s)
- Peter I Lobo
- Department of Internal Medicine, Division of Nephrology, Center of Immunology, Inflammation and Regenerative Medicine, University of Virginia Health Center, Charlottesville, VA, USA.
| |
Collapse
|
122
|
von Muenchow L, Tsapogas P, Albertí-Servera L, Capoferri G, Doelz M, Rolink H, Bosco N, Ceredig R, Rolink AG. Pro-B cells propagated in stromal cell-free cultures reconstitute functional B-cell compartments in immunodeficient mice. Eur J Immunol 2016; 47:394-405. [PMID: 27925658 DOI: 10.1002/eji.201646638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/20/2016] [Accepted: 12/02/2016] [Indexed: 01/04/2023]
Abstract
Up to now long-term in vitro growth of pro-B cells was thought to require stromal cells. However, here we show that fetal liver (FL) and bone marrow (BM) derived pro-B cells can be propagated long-term in stromal cell-free cultures supplemented with IL-7, stem cell factor and FLT3 ligand. Within a week, most cells expressed surface CD19, CD79A, λ5, and VpreB antigens and had rearranged immunoglobulin D-J heavy chain genes. Both FL and BM pro-B cells reconstituted the B-cell compartments of immuno-incompetent Rag2-deficient mice, with FL pro-B cells generating follicular, marginal zone (MZB) and B1a B cells, and BM pro-B cells giving rise mainly to MZB cells. Reconstituted Rag2-deficient mice generated significant levels of IgM and IgG antibodies to a type II T-independent antigen; mice reconstituted with FL pro-B cells generated surprisingly high IgG1 titers. Finally, we show for the first time that mice reconstituted with mixtures of pro-B and pro-T cells propagated in stromal cell-free in vitro cultures mounted a T-cell-dependent antibody response. This novel stromal cell-free culture system facilitates our understanding of B-cell development and might be applied clinically.
Collapse
Affiliation(s)
- Lilly von Muenchow
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Llucia Albertí-Servera
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Giuseppina Capoferri
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Doelz
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Molecular Immune Regulation, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Hannie Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nabil Bosco
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Rhodri Ceredig
- Discipline of Physiology, National University of Ireland, Galway
| | - Antonius G Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
123
|
Patel P, Kearney JF. Immunological Outcomes of Antibody Binding to Glycans Shared between Microorganisms and Mammals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4201-4209. [PMID: 27864551 PMCID: PMC5119654 DOI: 10.4049/jimmunol.1600872] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
Glycans constitute basic cellular components of living organisms across biological kingdoms, and glycan-binding Abs participate in many cellular interactions during immune defense against pathogenic organisms. Glycan epitopes are expressed as carbohydrate-only entities or as oligomers or polymers on proteins and lipids. Such epitopes on glycoproteins may be formed by posttranslational modifications or neoepitopes resulting from metabolic-catabolic processes and can be altered during inflammation. Pathogenic organisms can display host-like glycans to evade the host immune response. However, Abs to glycans, shared between microorganisms and the host, exist naturally. These Abs are able to not only protect against infectious disease, but also are involved in host housekeeping functions and can suppress allergic disease. Despite the reactivity of these Abs to glycans shared between microorganisms and host, diverse tolerance-inducing mechanisms permit the B cell precursors of these Ab-secreting cells to exist within the normal B cell repertoire.
Collapse
Affiliation(s)
- Preeyam Patel
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
124
|
Chen TT, Tsai MH, Kung JT, Lin KI, Decker T, Lee CK. STAT1 regulates marginal zone B cell differentiation in response to inflammation and infection with blood-borne bacteria. J Exp Med 2016; 213:3025-3039. [PMID: 27849553 PMCID: PMC5154933 DOI: 10.1084/jem.20151620] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 08/24/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
Chen et al. show that STAT1 positively regulates TLR- and S. pneumoniae–induced IgM responses of MZ B cells through up-regulation of Prdm1 expression, and STAT1 is crucial for MZ B cell–mediated clearance of blood-borne S. pneumoniae infection. Marginal zone B (MZ B) cells can rapidly produce antibody in response to infection with blood-borne encapsulated pathogens. Although TLR-mediated activation of MZ B is known to trigger humoral immune response, the signal cascade directing this response remains undefined. Here, we demonstrate that STAT1 plays an essential role in TLR-mediated antibody response of MZ B cells. Further, the TLR-induced IgM response is impaired in a type I and type II IFN-independent manner. Although activation, proliferation, and apoptosis are not affected, both differentiation into plasma cells and IgM production are impaired in Stat1−/− MZ B cells. Interestingly, STAT1 directly regulates the expression of Prdm1 (encodes BLIMP-1) by binding to its promoter, and Prdm1 expression is reduced in Stat1−/− MZ B cells. Restoration of BLIMP-1 to cells rescues TLR-induced IgM response. Moreover, Stat1−/− mice are more susceptible to S. pneumoniae infection, which can be rescued by the serum of bacteria-primed WT mice. The increased susceptibility to S. pneumoniae infection in Stat1−/− mice is also intrinsic to STAT1 requirement in MZ B cells. Collectively, these results define a differential regulation of TLR-mediated activation and differentiation of MZ B cells by STAT1 and reveal a STAT1-dependent, but IFN-independent, antibody response during infection and inflammation.
Collapse
Affiliation(s)
- Ting-Ting Chen
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ming-Hsun Tsai
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - John T Kung
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| |
Collapse
|
125
|
Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia 2016; 31:282-291. [PMID: 27811850 DOI: 10.1038/leu.2016.322] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023]
Abstract
The discovery of almost identical or 'stereotyped' B-cell receptor immunoglobulins (BcR IG) among unrelated patients with chronic lymphocytic leukemia (CLL) cemented the idea of antigen selection in disease ontogeny and evolution. The systematic analysis of the stereotypy phenomenon in CLL revealed that around one-third of CLL patients may be grouped into subsets based on shared sequence motifs within the variable heavy complementarity determining region 3. Stereotyped subsets display a strikingly similar biology of the leukemic clones, referring to many different levels, from the immunogenetic and genetic and extending to the epigenetic and functional levels. Even more importantly, the homogeneity of stereotyped subsets has clinical consequences as patients assigned to the same stereotyped subset generally exhibit an overall similar disease course and outcome. In other words, stereotypy-based patient classification of CLL has already provided a more compartmentalized view of this otherwise heterogeneous disease and can assist in refining prognostication models. While this is relevant only for the one-third of cases expressing stereotyped BcR IG; in principle, however, the findings from further analysis of the stereotyped subsets may also contribute towards improved understanding of the remaining non-stereotyped fraction of CLL patients.
Collapse
|
126
|
Tsai F, Perlman H, Cuda CM. The contribution of the programmed cell death machinery in innate immune cells to lupus nephritis. Clin Immunol 2016; 185:74-85. [PMID: 27780774 DOI: 10.1016/j.clim.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/15/2016] [Accepted: 10/20/2016] [Indexed: 12/24/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-factorial autoimmune disease initiated by genetic and environmental factors, which in combination trigger disease onset in susceptible individuals. Damage to the kidney as a consequence of lupus nephritis (LN) is one of the most prevalent and severe outcomes, as LN affects up to 60% of SLE patients and accounts for much of SLE-associated morbidity and mortality. As remarkable strides have been made in unlocking new inflammatory mechanisms associated with signaling molecules of programmed cell death pathways, this review explores the available evidence implicating the action of these pathways specifically within dendritic cells and macrophages in the control of kidney disease. Although advancements into the underlying mechanisms responsible for inducing cell death inflammatory pathways have been made, there still exist areas of unmet need. By understanding the molecular mechanisms by which dendritic cells and macrophages contribute to LN pathogenesis, we can improve their viability as potential therapeutic targets to promote remission.
Collapse
Affiliation(s)
- FuNien Tsai
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| | - Harris Perlman
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| | - Carla M Cuda
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| |
Collapse
|
127
|
Chen L, Ishigami T, Nakashima-Sasaki R, Kino T, Doi H, Minegishi S, Umemura S. Commensal Microbe-specific Activation of B2 Cell Subsets Contributes to Atherosclerosis Development Independently of Lipid Metabolism. EBioMedicine 2016; 13:237-247. [PMID: 27810309 PMCID: PMC5264349 DOI: 10.1016/j.ebiom.2016.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 01/11/2023] Open
Abstract
The relation between B2 cells and commensal microbes during atherosclerosis remains largely unexplored. Here we show that under hyperlipidemic conditions intestinal microbiota resulted in recruitment and ectopic activation of B2 cells in perivascular adipose tissue, followed by an increase in circulating IgG, promoting disease development. In contrast, disruption of the intestinal microbiota by a broad-spectrum antibiotic cocktail (AVNM) led to the attenuation of atherosclerosis by suppressing B2 cells, despite the persistence of serum lipid abnormalities. Furthermore, pharmacological depletion of B2 cells with an anti-B2-cell surface CD23 antibody also attenuated commensal microbe-induced atherosclerosis. Moreover, expression analysis of TLR-signaling-related genes in the activated B2 cell subsets, assessed using the Toll-Like Receptor Signaling Pathway RT2 Profiler PCR Array, confirmed activation of the B2-cell autoantibody-production axis, which was associated with an increased capacity of B2 cells to bind to intestinal microbiota. Together, our findings reveal the critical role of commensal microbe-specific activation of B2 cells in the development of atherogenesis through lipid metabolism-independent mechanisms.
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Tomoaki Ishigami
- Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan.
| | - Rie Nakashima-Sasaki
- Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Tabito Kino
- Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Hiroshi Doi
- Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Shintaro Minegishi
- Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Satoshi Umemura
- Department of Medical Science and Cardio-Renal Medicine, Yokohama City University, Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
128
|
Pizzi M, Fuligni F, Santoro L, Sabattini E, Ichino M, De Vito R, Zucchetta P, Colombatti R, Sainati L, Gamba P, Alaggio R. Spleen histology in children with sickle cell disease and hereditary spherocytosis: hints on the disease pathophysiology. Hum Pathol 2016; 60:95-103. [PMID: 27771375 DOI: 10.1016/j.humpath.2016.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 01/31/2023]
Abstract
Hereditary spherocytosis (HS) and sickle cell disease (SCD) are associated with splenomegaly and spleen dysfunction in pediatric patients. Scant data exist on possible correlations between spleen morphology and function in HS and SCD. This study aimed to assess the histologic and morphometric features of HS and SCD spleens, to get possible correlations with disease pathophysiology. In a large series of spleens from SCD, HS, and control patients, the following parameters were considered: (i) macroscopic features, (ii) lymphoid follicle (LF) density, (iii) presence of perifollicular marginal zones, (iv) presence of Gamna-Gandy bodies, (v) density of CD8-positive sinusoids, (vi) density of CD34-positive microvessels, (vii) presence/distribution of fibrosis and smooth muscle actin (SMA)-positive myoid cells, and (viii) density of CD68-positive macrophages. SCD and HS spleens had similar macroscopic features. SCD spleens had lower LF density and fewer marginal zones than did HS spleens and controls. SCD also showed lower CD8-positive sinusoid density, increased CD34-positive microvessel density and SMA-positive myoid cells, and higher prevalence of fibrosis and Gamna-Gandy bodies. HS had lower LF and CD8-positive sinusoid density than did controls. No significant differences were noted in red pulp macrophages. By multivariate analysis, most HS spleens clustered with controls, whereas SCD grouped separately. A multiparametric score could predict the degree of spleen changes irrespective of the underlying disease. In conclusion, SCD spleens display greater histologic effacement than HS, and SCD-related changes suggest impaired function due to vascular damage. These observations may contribute to guide the clinical management of patients.
Collapse
Affiliation(s)
- Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, 35121 Padova, Italy
| | - Fabio Fuligni
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, M5G 1X8 Ontario, Canada
| | - Luisa Santoro
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, 35121 Padova, Italy
| | - Elena Sabattini
- Hematopathology Unit, Sant'Orsola/Malpighi Hospital, 40138 Bologna, Italy
| | - Martina Ichino
- Pediatric Surgery Unit, Department of Woman and Child Health, University of Padova, 35128 Padova, Italy
| | - Rita De Vito
- Department of Pathology, Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Pietro Zucchetta
- Nuclear Medicine Service, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy
| | - Raffaella Colombatti
- Clinic of Pediatric Hematology/Oncology, Department of Woman and Child Health, University of Padova, 35128 Padova, Italy
| | - Laura Sainati
- Clinic of Pediatric Hematology/Oncology, Department of Woman and Child Health, University of Padova, 35128 Padova, Italy
| | - Piergiorgio Gamba
- Pediatric Surgery Unit, Department of Woman and Child Health, University of Padova, 35128 Padova, Italy
| | - Rita Alaggio
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, 35121 Padova, Italy.
| |
Collapse
|
129
|
Selvaraj UM, Poinsatte K, Torres V, Ortega SB, Stowe AM. Heterogeneity of B Cell Functions in Stroke-Related Risk, Prevention, Injury, and Repair. Neurotherapeutics 2016; 13:729-747. [PMID: 27492770 PMCID: PMC5081124 DOI: 10.1007/s13311-016-0460-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well established that post-stroke inflammation contributes to neurovascular injury, blood-brain barrier disruption, and poor functional recovery in both animal and clinical studies. However, recent studies also suggest that several leukocyte subsets, activated during the post-stroke immune response, can exhibit both pro-injury and pro-recovery phenotypes. In accordance with these findings, B lymphocytes, or B cells, play a heterogeneous role in the adaptive immune response to stroke. This review highlights what is currently understood about the various roles of B cells, with an emphasis on stroke risk factors, as well as post-stroke injury and repair. This includes an overview of B cell functions, such as antibody production, cytokine secretion, and contribution to the immune response as antigen presenting cells. Next, evidence for B cell-mediated mechanisms in stroke-related risk factors, including hypertension, diabetes, and atherosclerosis, is outlined, followed by studies that focus on B cells during endogenous protection from stroke. Subsequently, animal studies that investigate the role of B cells in post-stroke injury and repair are summarized, and the final section describes current B cell-related clinical trials for stroke, as well as other central nervous system diseases. This review reveals the complex role of B cells in stroke, with a focus on areas for potential clinical intervention for a disease that affects millions of people globally each year.
Collapse
Affiliation(s)
- Uma Maheswari Selvaraj
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Katherine Poinsatte
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Vanessa Torres
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Sterling B Ortega
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA.
| |
Collapse
|
130
|
Shibuya A, Honda SI. Immune regulation by Fcα/μ receptor (CD351) on marginal zone B cells and follicular dendritic cells. Immunol Rev 2016; 268:288-95. [PMID: 26497528 DOI: 10.1111/imr.12345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although both Fcα/μ receptor (Fcα/μR) and polymeric Ig receptor (poly-IgR) are Fc receptors for IgA and IgM and are functionally and genetically related, the expression profile of Fcα/μR is unique. Unlike poly-IgR, Fcα/μR is expressed on marginal zone (MZ) B cells and follicular dendritic cells, suggesting that Fcα/μR plays an important role in humoral immune responses. Fcα/μR mediates endocytosis of the IgM immune complex (IC). Recent research demonstrated that Fcα/μR downregulated retention of the IgM IC with a T-independent (TI) antigen on MZ B cells and follicular dendritic cells due to endocytosis of the IgM IC, suppressing germinal center formation, affinity maturation, and memory B-cell generation in response to TI antigen challenge. In addition, Fcα/μR physically associates with Toll-like receptor 4 (TLR4) and augments TLR4 oligomerization and signaling in MZ B cells upon lipopolysaccharide (LPS) challenge, leading to increased proinflammatory cytokine production by MZ B cells. Thus, Fcα/μR is a unique Fc receptor that is involved in humoral immune responses and inflammation.
Collapse
Affiliation(s)
- Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Immunology, Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, Japan.,Department of Immunology, Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), University of Tsukuba, Ibaraki, Japan
| | - Shin-ichiro Honda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
131
|
Kanda M, Tanaka C, Kobayashi D, Tanaka H, Shimizu D, Shibata M, Takami H, Hayashi M, Iwata N, Niwa Y, Yamada S, Fujii T, Nakayama G, Fujiwara M, Kodera Y. Epigenetic suppression of the immunoregulator MZB1 is associated with the malignant phenotype of gastric cancer. Int J Cancer 2016; 139:2290-8. [PMID: 27459504 DOI: 10.1002/ijc.30286] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022]
Abstract
Prediction of tumor recurrence after curative resection is critical for determining the prognosis of patients with gastric cancer (GC). The initiation and progression of GC are associated with inappropriate immune responses caused by chronic inflammation of the gastric mucosa. To identify immunoregulatory molecules involved in GC progression, GC cell lines and 200 pairs of tumor and normal tissues from patients with GC were analyzed for gene expression, amplification and methylation as well as function of a differentially expressed gene. The transcriptome analysis revealed that marginal zone B and B1 cell specific protein (MZB1) was expressed at significantly decreased levels in primary GC tissues when compared with the corresponding normal gastric mucosa. PCR array analysis exploring genes expressed cooperatively with MZB1 revealed that differential expression of MZB1 mRNA in GC cell lines correlated positively with the levels of the mRNAs encoding estrogen receptor 1 and desumoylating isopeptidase 1. Hypermethylation of the MZB1 promoter was frequent in cell lines with decreased levels of MZB1 mRNA. siRNA-mediated knockdown of MZB1 significantly increased proliferation, invasion and migration of GC cell lines. Low MZB1 expression was an independent prognostic factor for recurrence after curative gastrectomy and was associated significantly with increased hematogenous recurrence. MZB1 acts as a suppressor of GC. Low MZB1 expression in the primary GC tissue is predictive of recurrence after curative resection.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Shibata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Iwata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukiko Niwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
132
|
Huber K, Sármay G, Kövesdi D. MZ B cells migrate in a T-bet dependent manner and might contribute to the remission of collagen-induced arthritis by the secretion of IL-10. Eur J Immunol 2016; 46:2239-46. [PMID: 27343199 DOI: 10.1002/eji.201546248] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/19/2016] [Accepted: 06/20/2016] [Indexed: 12/14/2022]
Abstract
In mice, marginal zone (MZ) B cells are found principally in the MZ of the spleen and characterized as CD23-negative cells, primarily express polyreactive BCRs, high levels of complement receptor-2 and TLRs. Collagen-induced arthritis (CIA) is a commonly used animal model of human rheumatoid arthritis, considered as a Th1-mediated disease. Although the importance of MZ B cells in the initiation of CIA is well established, their role in remission is unexplored. Besides, playing a central role in Th1 cell development, T-box transcription factor (T-bet) has important functions in B cells. T-bet is regulated by IFN-γ and through the BCR and TLR9, the signals that have an impact on regulatory IL-10 production. In this work, we aimed to analyze the contribution of T-bet to the function of IL-10-positive MZ B cells. We demonstrate that during the remission phase of CIA, MZ B cells express an elevated level of T-bet and confirm the existence of IL-10/T-bet coexpressing cells. Moreover, we show that T-bet-expressing MZ B cells migrate toward CXCR3 ligand and secrete IL-10 by inflammatory stimuli. Our data suggest that T-bet might contribute to the remission of CIA by facilitating the regulatory potential of IL-10-positive MZ B cells.
Collapse
Affiliation(s)
- Krisztina Huber
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Sármay
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
133
|
CD47 Plays a Role as a Negative Regulator in Inducing Protective Immune Responses to Vaccination against Influenza Virus. J Virol 2016; 90:6746-6758. [PMID: 27194758 DOI: 10.1128/jvi.00605-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED An integrin-associated protein CD47, which is a ligand for the inhibitory receptor signal regulatory protein α, is expressed on B and T cells, as well as on most innate immune cells. However, the roles of CD47 in the immune responses to viral infection or vaccination remain unknown. We investigated the role of CD47 in inducing humoral immune responses after intranasal infection with virus or immunization with influenza virus-like particles (VLPs). Virus infection or vaccination with VLPs containing hemagglutinin from A/PR8/34 influenza virus induced higher levels of antigen-specific IgG2c isotype dominant antibodies in CD47-deficient (CD47KO) mice than in wild-type (WT) mice. CD47KO mice with vaccination showed greater protective efficacy against lethal challenge, as evidenced by no loss in body weight and reduced lung viral titers compared to WT mice. In addition, inflammatory responses which include cytokine production, leukocyte infiltrates, and gamma interferon-producing CD4(+) T cells, as well as an anti-inflammatory cytokine (interleukin-10), were reduced in the lungs of vaccinated CD47KO mice after challenge with influenza virus. Analysis of lymphocytes indicated that GL7(+) germinal center B cells were induced at higher levels in the draining lymph nodes of CD47KO mice compared to those in WT mice. Notably, CD47KO mice exhibited significant increases in the numbers of antigen-specific memory B cells in spleens and plasma cells in bone marrow despite their lower levels of background IgG antibodies. These results suggest that CD47 plays a role as a negative regulator in inducing protective immune responses to influenza vaccination. IMPORTANCE Molecular mechanisms that control B cell activation to produce protective antibodies upon viral vaccination remain poorly understood. The CD47 molecule is known to be a ligand for the inhibitory receptor signal regulatory protein α and expressed on the surfaces of most immune cell types. CD47 was previously demonstrated to play an important role in modulating the migration of monocytes, neutrophils, polymorphonuclear neutrophils, and dendritic cells into the inflamed tissues. The results of this study demonstrate new roles of CD47 in negatively regulating the induction of protective IgG antibodies, germinal center B cells, and plasma cells secreting antigen-specific antibodies, as well as macrophages, upon influenza vaccination and challenge. As a consequence, vaccinated CD47-deficient mice demonstrated better control of influenza viral infection and enhanced protection. This study provides insights into understanding the regulatory functions of CD47 in inducing adaptive immunity to vaccination.
Collapse
|
134
|
Hayakawa K, Formica AM, Colombo MJ, Shinton SA, Brill-Dashoff J, Morse HC, Li YS, Hardy RR. Loss of a chromosomal region with synteny to human 13q14 occurs in mouse chronic lymphocytic leukemia that originates from early-generated B-1 B cells. Leukemia 2016; 30:1510-9. [PMID: 27055869 PMCID: PMC4979312 DOI: 10.1038/leu.2016.61] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 01/01/2023]
Abstract
A common feature of B-cell chronic lymphocytic leukemia (CLL) is chromosomal loss of 13q14, containing the miR15a/16-1 locus controlling B-cell proliferation. However, CLL etiology remains unclear. CLL is an adult leukemia with an incidence that increases with advancing age. A unique feature of CLL is biased B-cell antigen receptor (BCR) usage, autoreactivity with polyreactivity and CD5 expression, all suggest a role for the BCR in driving CLL pathogenesis. Among human CLLs, BCRs autoreactive with non-muscle myosin IIA (AMyIIA) are recurrent. Here we identify an unmutated AMyIIA BCR in mouse, with distinctive CDR3 segments capable of promoting leukemogenesis. B cells with this AMyIIA BCR are generated by BCR-dependent signaling during B-1 fetal/neonatal development with CD5 induction, but not in adults. These early-generated AMyIIA B-1 B cells self-renew, increase during aging and can progress to become monoclonal B-cell lymphocytosis, followed by aggressive CLL in aged mice, often with the loss of a chromosomal region containing the miR15a/16-1 locus of varying length, as in human CLL. Thus, the ability to generate this defined autoreactive BCR by B-1 B cells is a key predisposing step in mice, promoting progression to chronic leukemia.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/pathology
- Cell Self Renewal
- Chromosome Deletion
- Chromosome Disorders
- Chromosomes, Human, Pair 13
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Nonmuscle Myosin Type IIA/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Synteny
Collapse
Affiliation(s)
- Kyoko Hayakawa
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | - Herbert C. Morse
- Laboratory of Immunogenetics, National Institute of Allergy and
Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852,
USA
| | - Yue-Sheng Li
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
135
|
Benhamou D, Labi V, Novak R, Dai I, Shafir-Alon S, Weiss A, Gaujoux R, Arnold R, Shen-Orr SS, Rajewsky K, Melamed D. A c-Myc/miR17-92/Pten Axis Controls PI3K-Mediated Positive and Negative Selection in B Cell Development and Reconstitutes CD19 Deficiency. Cell Rep 2016; 16:419-431. [DOI: 10.1016/j.celrep.2016.05.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/14/2016] [Accepted: 05/19/2016] [Indexed: 01/13/2023] Open
|
136
|
Balogh P, Horváth G, Szakal AK. Immunoarchitecture of Distinct Reticular Fibroblastic Domains in the White Pulp of Mouse Spleen. J Histochem Cytochem 2016; 52:1287-98. [PMID: 15385575 DOI: 10.1177/002215540405201005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The development of peripheral lymphoid tissues requires a series of cognate interactions between hemopoietic and stromal cell populations, including reticular fibroblasts, which form the mesenchymal scaffolding of distinct tissue compartments. Here we describe the formation of different fibroblastic domains in the mouse spleen white pulp by using two new rat monoclonal antibodies (MAbs). In the white pulp, MAb IBL-10 labels both T- and B-cell zone reticular elements at various intensities. The IBL-10hi subset was found primarily at the edge between the peripheral part of the PALS and follicles, and the IBL-10lo compartment was distributed evenly within the white pulp. The IBL-10hi subset appeared during the first 2 postnatal weeks and was absent in SCID mice. The white pulp fibroblast subset identified with MAb IBL-11 had a different tissue distribution and kinetics of ontogeny, with an appearance overwhelmingly restricted to the PALS and a narrow rim at the edge of the follicular border area toward the marginal zone. The appearance of IBL-11–positive reticular cells was delayed compared with that of the IBL-10lo–positive subset. The formation was independent of the influence of antigen receptor–bearing lymphocytes, as evidenced by the presence of IBL-11–positive fibroblasts in SCID mice. By transferring various lymphocyte subsets into SCID mice, partial compartmentalization of the white pulp fibroblasts could be induced, indicating that these mesenchymal fibroblast precursors retain their ability to differentiate upon encountering mature T- or B-cells.
Collapse
Affiliation(s)
- Péter Balogh
- Department of Immunology, University of Pécs, Szigeti út 12, 7643 Pécs, Hungary.
| | | | | |
Collapse
|
137
|
Palm AKE, Friedrich HC, Kleinau S. Nodal marginal zone B cells in mice: a novel subset with dormant self-reactivity. Sci Rep 2016; 6:27687. [PMID: 27277419 PMCID: PMC4899733 DOI: 10.1038/srep27687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/03/2016] [Indexed: 01/15/2023] Open
Abstract
Marginal zone (MZ) B cells, representing a distinct subset of innate-like B cells, mount rapid T-independent responses to blood-borne antigens. They express low-affinity polyreactive antigen receptors that recognize both foreign and self-structures. The spleen is considered the exclusive site for murine MZ B cells. However, we have here identified B cells with a MZ B-cell phenotype in the subcapsular sinuses of mouse lymph nodes. The nodal MZ (nMZ) B cells display high levels of IgM, costimulators and TLRs, and are represented by naïve and memory cells. The frequency of nMZ B cells is about 1–6% of nodal B cells depending on mouse strain, with higher numbers in older mice and a trend of increased numbers in females. There is a significant expansion of nMZ B cells following immunization with an autoantigen, but not after likewise immunization with a control protein or with the adjuvant alone. The nMZ B cells secrete autoantibodies upon activation and can efficiently present autoantigen to cognate T cells in vitro, inducing T-cell proliferation. The existence of self-reactive MZ B cells in lymph nodes may be a source of autoantigen-presenting cells that in an unfortunate environment may activate T cells leading to autoimmunity.
Collapse
Affiliation(s)
- Anna-Karin E Palm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Heike C Friedrich
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
138
|
Lobo PI. Role of Natural Autoantibodies and Natural IgM Anti-Leucocyte Autoantibodies in Health and Disease. Front Immunol 2016; 7:198. [PMID: 27375614 PMCID: PMC4893492 DOI: 10.3389/fimmu.2016.00198] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
We review how polyreactive natural IgM autoantibodies (IgM-NAA) protect the host from invading micro-organisms and host neo-antigens that are constantly being produced by oxidation mechanisms and cell apoptosis. Second, we discuss how IgM-NAA and IgM anti-leukocyte antibodies (IgM-ALA) inhibits autoimmune inflammation by anti-idiotypic mechanisms, enhancing removal of apoptotic cells, masking neo-antigens, and regulating the function of dendritic cells (DC) and effector cells. Third, we review how natural IgM prevents autoimmune disorders arising from pathogenic IgG autoantibodies, triggered by genetic mechanisms (e.g., SLE) or micro-organisms, as well as by autoreactive B and T cells that have escaped tolerance mechanisms. Studies in IgM knockout mice have clearly demonstrated that regulatory B and T cells require IgM to effectively regulate inflammation mediated by innate, adaptive, and autoimmune mechanisms. It is, therefore, not surprising why the host positively selects such autoreactive B1 cells that generate IgM-NAA, which are also evolutionarily conserved. Fourth, we show that IgM-ALA levels and their repertoire can vary in normal humans and disease states and this variation may partly explain the observed differences in the inflammatory response after infection, ischemic injury, or after a transplant. We also show how protective IgM-NAA can be rendered pathogenic under non-physiological conditions. We also review IgG-NAA that are more abundant than IgM-NAA in plasma. However, we need to understand if the (Fab)(2) region of IgG-NAA has physiological relevance in non-disease states, as in plasma, their functional activity is blocked by IgM-NAA having anti-idiotypic activity. Some IgG-NAA are produced by B2 cells that have escaped tolerance mechanisms and we show how such pathogenic IgG-NAA are regulated to prevent autoimmune disease. The Fc region of IgG-NAA can influence inflammation and B cell function in vivo by binding to activating and inhibitory FcγR. IgM-NAA has therapeutic potential. Polyclonal IgM infusions can be used to abrogate on-going inflammation. Additionally, inflammation arising after ischemic kidney injury, e.g., during high-risk elective cardiac surgery or after allograft transplantation, can be prevented by pre-emptively infusing polyclonal IgM or DC pretreated ex vivo with IgM or by increasing in vivo IgM with a vaccine approach. Cell therapy is appealing as less IgM will be required.
Collapse
Affiliation(s)
- Peter Isaac Lobo
- Department of Internal Medicine, Division of Nephrology, Center of Immunology, Inflammation and Regenerative Medicine, University of Virginia Health Center, Charlottesville, VA, USA
| |
Collapse
|
139
|
Honda SI, Sato K, Totsuka N, Fujiyama S, Fujimoto M, Miyake K, Nakahashi-Oda C, Tahara-Hanaoka S, Shibuya K, Shibuya A. Marginal zone B cells exacerbate endotoxic shock via interleukin-6 secretion induced by Fcα/μR-coupled TLR4 signalling. Nat Commun 2016; 7:11498. [PMID: 27146354 PMCID: PMC4858745 DOI: 10.1038/ncomms11498] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/02/2016] [Indexed: 11/09/2022] Open
Abstract
Marginal zone (MZ) B cells produce a first wave of antibodies for protection from blood-borne pathogens. However, the role of MZ B cells in inflammatory responses has not been elucidated. Here we show that MZ B cells produce pro-inflammatory cytokines, such as interleukin-6 (IL-6), and exacerbate systemic inflammatory responses to lipopolysaccharide (LPS). After intravenous injection of LPS or E. coli, mice deficient in MZ B cells or IL-6 only in MZ B cells have attenuated systemic inflammatory responses and prolonged survival compared with wild-type mice. LPS directly stimulates MZ B cells via Toll-like receptor 4 (TLR4) and MyD88 pathways for IL-6 production. Furthermore, TLR4 requires physical and functional association with Fcα/μR (CD351) for its oligomer formation, NF-κB signalling and IL-6 production from MZ B cells; this association is responsible for systemic inflammatory responses and endotoxic shock. These results reveal a pro-inflammatory role of MZ B cells in endotoxic shock.
Collapse
Affiliation(s)
- Shin-ichiro Honda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennohdai, Tsukuba 305-8575, Ibaraki, Japan
| | - Kazuki Sato
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennohdai, Tsukuba 305-8575, Ibaraki, Japan
| | - Naoya Totsuka
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennohdai, Tsukuba 305-8575, Ibaraki, Japan
| | - Satoshi Fujiyama
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennohdai, Tsukuba 305-8575, Ibaraki, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennohdai, Tsukuba 305-8575, Ibaraki, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Institute of Medical Sciences, University of Tokyo, Shirokanedai, Minatoloku, Tokyo 108-8639, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennohdai, Tsukuba 305-8575, Ibaraki, Japan
| | - Satoko Tahara-Hanaoka
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennohdai, Tsukuba 305-8575, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tennohdai, Tsukuba 305-8575, Ibaraki, Japan
| | - Kazuko Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennohdai, Tsukuba 305-8575, Ibaraki, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennohdai, Tsukuba 305-8575, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tennohdai, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
140
|
Kverneland AH, Streitz M, Geissler E, Hutchinson J, Vogt K, Boës D, Niemann N, Pedersen AE, Schlickeiser S, Sawitzki B. Age and gender leucocytes variances and references values generated using the standardized ONE-Study protocol. Cytometry A 2016; 89:543-64. [PMID: 27144459 DOI: 10.1002/cyto.a.22855] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 01/10/2023]
Abstract
Flow cytometry is now accepted as an ideal technology to reveal changes in immune cell composition and function. However, it is also an error-prone and variable technology, which makes it difficult to reproduce findings across laboratories. We have recently developed a strategy to standardize whole blood flow cytometry. The performance of our protocols was challenged here by profiling samples from healthy volunteers to reveal age- and gender-dependent differences and to establish a standardized reference cohort for use in clinical trials. Whole blood samples from two different cohorts were analyzed (first cohort: n = 52, second cohort: n = 46, both 20-84 years with equal gender distribution). The second cohort was run as a validation cohort by a different operator. The "ONE Study" panels were applied to analyze expression of >30 different surface markers to enumerate proportional and absolute numbers of >50 leucocyte subsets. Indeed, analysis of the first cohort revealed significant age-dependent changes in subsets e.g. increased activated and differentiated CD4(+) and CD8(+) T cell subsets, acquisition of a memory phenotype for Tregs as well as decreased MDC2 and Marginal Zone B cells. Males and females showed different dynamics in age-dependent T cell activation and differentiation, indicating faster immunosenescence in males. Importantly, although both cohorts consisted of a small sample size, our standardized approach enabled validation of age-dependent changes with the second cohort. Thus, we have proven the utility of our strategy and generated reproducible reference ranges accounting for age- and gender-dependent differences, which are crucial for a better patient monitoring and individualized therapy. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Anders H Kverneland
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Germany.,Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Mathias Streitz
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Germany
| | | | | | - Katrin Vogt
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - David Boës
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Nadja Niemann
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Anders Elm Pedersen
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | | | - Birgit Sawitzki
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
141
|
Zhang J, Wan M, Ren J, Gao J, Fu M, Wang G, Liu Y, Li W. Positive selection of B10 cells is determined by BCR specificity and signaling strength. Cell Immunol 2016; 304-305:27-34. [PMID: 27132875 DOI: 10.1016/j.cellimm.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/15/2016] [Accepted: 04/22/2016] [Indexed: 02/08/2023]
Abstract
B10 cells, a regulatory B cell subset, negatively regulate immune responses in an IL-10-dependent manner. However, the mechanism of B10 cell development is unclear. We found that B10 cells mainly identified self-antigens. TgVH3B4 transgenic mice, whose VH was derived from an actin-reactive natural antibody, exhibit elevated numbers of actin-binding B10 cells. Immunization of TgVH3B4 mice with actin induced elevated B10 cell numbers in an antigen-specific manner, indicating positive selection of B10 cells by self-antigens. Furthermore, higher BCR signaling strength facilitated B10 cell development. We also observed that actin-reactive IgG levels were unchanged in TgVH3B4 mice after immunization with actin in contrast to the elevated OVA-reactive IgG level after immunization with OVA, indicating that B10 cells acted in an antigen-specific manner to inhibit the immune response. Our data demonstrate for the first time that B10 cells are positively selected by self-reactivity and that higher BCR signaling strength promotes B10 cell development.
Collapse
Affiliation(s)
- Jigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Ming Wan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Jing Ren
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Jixin Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yufeng Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
142
|
Hata K, Yanase N, Sudo K, Kiyonari H, Mukumoto Y, Mizuguchi J, Yokosuka T. Differential regulation of T-cell dependent and T-cell independent antibody responses through arginine methyltransferase PRMT1 in vivo. FEBS Lett 2016; 590:1200-10. [DOI: 10.1002/1873-3468.12161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Kikumi Hata
- Department of Immunology; Tokyo Medical University; Japan
| | - Noriko Yanase
- Department of Immunology; Tokyo Medical University; Japan
| | - Katsuko Sudo
- Animal Research Center; Tokyo Medical University; Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit; RIKEN Center for Life Science Technologies; Kobe Japan
- Genetic Engineering Team; RIKEN Center for Life Science Technologies; Kobe Japan
| | - Yoshiko Mukumoto
- Genetic Engineering Team; RIKEN Center for Life Science Technologies; Kobe Japan
| | | | | |
Collapse
|
143
|
Plasma cell alloantigen ENPP1 is expressed by a subset of human B cells with potential regulatory functions. Immunol Cell Biol 2016; 94:719-28. [PMID: 27029896 DOI: 10.1038/icb.2016.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/27/2022]
Abstract
Plasma cell alloantigen 1 (PC1), also known as ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1), is an enzyme involved primarily in hydrolysis of adenosine triphosphate at the cell surface. Although the expression pattern of PC1 is relatively broad, its expression in B cells is found at significant levels only in terminally differentiated germinal center B cells, plasma cells and a subset of B-1a cells in mice. Here we describe studies designed to determine whether expression of PC1 might define novel populations of human B cells with similarities to mouse B cells. We found that PC1 is expressed in small populations of human B lineage cells in peripheral blood, cord blood, tonsils, bone marrow and pediatric peritoneal fluid, with the highest levels in plasma cells. The characteristics of human PC1(+) B cells differ from mouse peritoneal B-1a subsets and from features of the human CD20(+)CD27(+)CD43(+)CD70(-) B-cell subset proposed to be human B-1 cells. Expression of PC1 was greatly increased in B cells stimulated with the combination of CD40 ligand, interleukin (IL)-4 and IL-21. In addition, PC1(+) B cells activated CD4(+) T regulatory cells. ENPP1 thus defines a subset of human B cells that differs significantly from mouse peritoneal B-1a and proposed human B-1 cells.
Collapse
|
144
|
Roth A, Glaesener S, Schütz K, Meyer-Bahlburg A. Reduced Number of Transitional and Naive B Cells in Addition to Decreased BAFF Levels in Response to the T Cell Independent Immunogen Pneumovax®23. PLoS One 2016; 11:e0152215. [PMID: 27031098 PMCID: PMC4816312 DOI: 10.1371/journal.pone.0152215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
Protective immunity against T cell independent (TI) antigens such as Streptococcus pneumoniae is characterized by antibody production of B cells induced by the combined activation of T cell independent type 1 and type 2 antigens in the absence of direct T cell help. In mice, the main players in TI immune responses have been well defined as marginal zone (MZ) B cells and B-1 cells. However, the existence of human equivalents to these B cell subsets and the nature of the human B cell compartment involved in the immune reaction remain elusive. We therefore analyzed the effect of a TI antigen on the B cell compartment through immunization of healthy individuals with the pneumococcal polysaccharide (PnPS)-based vaccine Pneumovax®23, and subsequent characterization of B cell subpopulations. Our data demonstrates a transient decrease of transitional and naïve B cells, with a concomitant increase of IgA+ but not IgM+ or IgG+ memory B cells and a predominant generation of PnPS-specific IgA+ producing plasma cells. No alterations could be detected in T cells, or proposed human B-1 and MZ B cell equivalents. Consistent with the idea of a TI immune response, antigen-specific memory responses could not be observed. Finally, BAFF, which is supposed to drive class switching to IgA, was unexpectedly found to be decreased in serum in response to Pneumovax®23. Our results demonstrate that a characteristic TI response induced by Pneumovax®23 is associated with distinct phenotypical and functional changes within the B cell compartment. Those modulations occur in the absence of any modulations of T cells and without the development of a specific memory response.
Collapse
Affiliation(s)
- Alena Roth
- Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Stephanie Glaesener
- Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Katharina Schütz
- Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Almut Meyer-Bahlburg
- Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
145
|
Aw D, Hilliard L, Nishikawa Y, Cadman ET, Lawrence RA, Palmer DB. Disorganization of the splenic microanatomy in ageing mice. Immunology 2016; 148:92-101. [PMID: 26840375 DOI: 10.1111/imm.12590] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 12/27/2022] Open
Abstract
The precise mechanisms responsible for immunosenescence still remain to be determined, however, considering the evidence that disruption of the organization of primary and secondary lymphoid organs results in immunodeficiency, we propose that this could be involved in the decline of immune responses with age. Therefore, we investigated the integrity of the splenic microarchitecture in mice of increasing age and its reorganization following immune challenge in young and old mice. Several differences in the anatomy of the spleen with age in both the immune and stromal cells were observed. There is an age-related increase in the overall size of the white pulp, which occurs primarily within the T-cell zone and is mirrored by the enlargement of the T-cell stromal area, concurrent to the distinct boundary between T cells and B cells becoming less defined in older mice. In conjunction, there appears to be a loss of marginal zone macrophages, which is accompanied by an accumulation of fibroblasts in the spleens from older animals. Furthermore, whereas the reorganization of the white pulp is resolved after several days following antigenic challenge in young animals, it remains perturbed in older subjects. All these age-related changes within the spleen could potentially contribute to the age-dependent deficiencies in functional immunity.
Collapse
Affiliation(s)
- Danielle Aw
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Lucy Hilliard
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Yoshio Nishikawa
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Emma T Cadman
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Rachel A Lawrence
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Donald B Palmer
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
146
|
Saintamand A, Rouaud P, Garot A, Saad F, Carrion C, Oblet C, Cogné M, Pinaud E, Denizot Y. The IgH 3' regulatory region governs μ chain transcription in mature B lymphocytes and the B cell fate. Oncotarget 2016; 6:4845-52. [PMID: 25742787 PMCID: PMC4467119 DOI: 10.18632/oncotarget.3010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/21/2014] [Indexed: 12/11/2022] Open
Abstract
We report that the IgH 3' regulatory region (3'RR) has no role on μ chain transcription and pre-BCR expression in B cell progenitors. In contrast, analysis of heterozygous IgH aΔ3'RR/bwt mice indicated that the 3'RR controls μ chain transcripts in mature splenocytes and impacts membrane IgM density without obvious effect on BCR signals (colocalisation with lipid rafts and phosphorylation of Erk and Akt after BCR crosslinking). Deletion of the 3'RR modulates the B cell fate to less marginal zone B cells. In conclusion, the 3'RR is dispensable for pre-BCR expression and necessary for optimal commitments toward the marginal zone B cell fate. These results reinforce the concept of a dual regulation of the IgH locus transcription and accessibility by 5' elements at immature B cell stages, and by the 3'RR as early as the resting mature B cell stage and then along further activation and differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michel Cogné
- CNRS, CRIBL, UMR 7276, Limoges, France.,Université de Limoges, CRIBL, UMR 7276, Limoges, France.,Institut Universitaire de France, Paris, France
| | | | | |
Collapse
|
147
|
Panda S, Ding JL. Natural antibodies bridge innate and adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2016; 194:13-20. [PMID: 25527792 DOI: 10.4049/jimmunol.1400844] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Natural Abs, belonging to isotypes IgM, IgG3, and IgA, were discovered nearly half a century ago. Despite knowledge about the role of the polyreactive natural IgM in pathogen elimination, B cell survival and homeostasis, inflammatory diseases, and autoimmunity, there is a lack of clarity about the physiological role of natural IgG and natural IgA because they appear incapable of recognizing Ags on their own and are perceived as nonreactive. However, recent research revealed exciting functions of natural IgG in innate immunity. Natural IgG:lectin collaboration swiftly and effectively kills invading pathogens. These advances prompt further examination of natural Abs in immune defense and homeostasis, with the potential for developing novel therapeutics. This review provides new insights into the interaction between natural Abs and lectins, with implications on how interactions between molecules of the innate and adaptive immune systems bridge these two arms of immunity.
Collapse
Affiliation(s)
- Saswati Panda
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Jeak L Ding
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
148
|
Fahl SP, Harris B, Coffey F, Wiest DL. Rpl22 Loss Impairs the Development of B Lymphocytes by Activating a p53-Dependent Checkpoint. THE JOURNAL OF IMMUNOLOGY 2016; 194:200-9. [PMID: 25416806 DOI: 10.4049/jimmunol.1402242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although ribosomal proteins facilitate the ribosome’s core function of translation, emerging evidence suggests that some ribosomal proteins are also capable of performing tissue-restricted functions either from within specialized ribosomes or from outside of the ribosome. In particular, we have previously demonstrated that germline ablation of the gene encoding ribosomal protein Rpl22 causes a selective and p53-dependent arrest of ab T cell progenitors at the b-selection checkpoint. We have now identified a crucial role for Rpl22 during early B cell development. Germline ablation of Rpl22 results in a reduction in the absolute number of B-lineage progenitors in the bone marrow beginning at the pro–B cell stage. Although Rpl22-deficient pro–B cells are hyporesponsive to IL-7, a key cytokine required for early B cell development, the arrest of B cell development does not result from disrupted IL-7 signaling. Instead, p53 induction appears to be responsible for the developmental defects, as Rpl22 deficiency causes increased expression of p53 and activation of downstream p53 target genes, and p53 deficiency rescues the defect in B cell development in Rpl22-deficient mice. Interestingly, the requirement for Rpl22 in the B cell lineage appears to be developmentally restricted, because Rpl22-deficient splenic B cells proliferate normally in response to Ag receptor and Toll receptor stimuli and undergo normal class-switch recombination. These results indicate that Rpl22 performs a critical, developmentally restricted role in supporting early B cell development by preventing p53 induction.
Collapse
Affiliation(s)
- Shawn P Fahl
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Bryan Harris
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Francis Coffey
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - David L Wiest
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
149
|
Laria A, Lurati A, Marrazza M, Mazzocchi D, Re KA, Scarpellini M. The macrophages in rheumatic diseases. J Inflamm Res 2016; 9:1-11. [PMID: 26929657 PMCID: PMC4755472 DOI: 10.2147/jir.s82320] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Macrophages belong to the innate immune system giving us protection against pathogens. However it is known that they are also involved in rheumatic diseases. Activated macrophages have two different phenotypes related to different stimuli: M1 (classically activated) and M2 (alternatively activated). M1 macrophages release high levels of pro-inflammatory cytokines, reactive nitrogen and oxygen intermediates killing microorganisms and tumor cells; while M2 macrophages are involved in resolution of inflammation through phagocytosis of apoptotic neutrophils, reduced production of pro-inflammatory cytokines, and increased synthesis of mediators important in tissue remodeling, angiogenesis, and wound repair. The role of macrophages in the different rheumatic diseases is different according to their M1/M2 macrophages phenotype.
Collapse
|
150
|
Tian L, Choi SC, Lee HN, Murakami Y, Qi CF, Sengottuvelu M, Voss O, Krzewski K, Coligan JE. Enhanced efferocytosis by dendritic cells underlies memory T-cell expansion and susceptibility to autoimmune disease in CD300f-deficient mice. Cell Death Differ 2016; 23:1086-96. [PMID: 26768664 DOI: 10.1038/cdd.2015.161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/20/2015] [Accepted: 11/19/2015] [Indexed: 12/27/2022] Open
Abstract
Homeostasis requires the immunologically silent clearance of apoptotic cells before they become pro-inflammatory necrotic cells. CD300f (CLM-1) is a phosphatidylserine receptor known to positively regulate efferocytosis by macrophages, and CD300f gene-deficient mice are predisposed to develop a lupus-like disease. Here we show that, in contrast to CD300f function in macrophages, its expression inhibits efferocytosis by DC, and its deficiency leads to enhanced antigen processing and T-cell priming by these DC. The consequences are the expansion of memory T cells and increased ANA levels in aged CD300f-deficient mice, which predispose CD300f-deficient mice to develop an overt autoimmune disease when exposed to an overload of apoptotic cells, or an exacerbated autoimmunity when combined with FcγRIIB deficiency. Thus, our data demonstrates that CD300f helps to maintain immune homeostasis by promoting macrophage clearance of self-antigens, while conversely inhibiting DC uptake and presentation of self-antigens.
Collapse
Affiliation(s)
- L Tian
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - S-C Choi
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - H-N Lee
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Y Murakami
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - C-F Qi
- Pathology Core, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - M Sengottuvelu
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - O Voss
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - K Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - J E Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| |
Collapse
|