101
|
Ribeiro dos Santos P, Rancez M, Prétet JL, Michel-Salzat A, Messent V, Bogdanova A, Couëdel-Courteille A, Souil E, Cheynier R, Butor C. Rapid dissemination of SIV follows multisite entry after rectal inoculation. PLoS One 2011; 6:e19493. [PMID: 21573012 PMCID: PMC3090405 DOI: 10.1371/journal.pone.0019493] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 04/06/2011] [Indexed: 12/30/2022] Open
Abstract
Receptive ano-rectal intercourse is a major cause of HIV infection in men having sex with men and in heterosexuals. Current knowledge of the mechanisms of entry and dissemination during HIV rectal transmission is scarce and does not allow the development of preventive strategies. We investigated the early steps of rectal infection in rhesus macaques inoculated with the pathogenic isolate SIVmac251 and necropsied four hours to nine days later. All macaques were positive for SIV. Control macaques inoculated with heat-inactivated virus were consistently negative for SIV. SIV DNA was detected in the rectum as early as four hours post infection by nested PCR for gag in many laser-microdissected samples of lymphoid aggregates and lamina propria but never in follicle-associated epithelium. Scarce SIV antigen positive cells were observed by immunohistofluorescence in the rectum, among intraepithelial and lamina propria cells as well as in clusters in lymphoid aggregates, four hours post infection and onwards. These cells were T cells and non-T cells that were not epithelial cells, CD68+ macrophages, DC-SIGN+ cells or fascin+ dendritic cells. DC-SIGN+ cells carried infectious virus. Detection of Env singly spliced mRNA in the mucosa by nested RT-PCR indicated ongoing viral replication. Strikingly, four hours post infection colic lymph nodes were also infected in all macaques as either SIV DNA or infectious virus was recovered. Rapid SIV entry and dissemination is consistent with trans-epithelial transport. Virions appear to cross the follicle-associated epithelium, and also the digestive epithelium. Viral replication could however be more efficient in lymphoid aggregates. The initial sequence of events differs from both vaginal and oral infections, which implies that prevention strategies for rectal transmission will have to be specific. Microbicides will need to protect both digestive and follicle-associated epithelia. Vaccines will need to induce immunity in lymph nodes as well as in the rectum.
Collapse
Affiliation(s)
- Patricia Ribeiro dos Santos
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Magali Rancez
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jean-Luc Prétet
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alice Michel-Salzat
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Valérie Messent
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anna Bogdanova
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anne Couëdel-Courteille
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Evelyne Souil
- Plateforme de Morpho-Histologie, Institut Cochin, INSERM U1016, CNRS URA8104, Université Paris Descartes UMR-S1016, Paris, France
| | - Rémi Cheynier
- Département d'Immunologie-Hématologie, Institut Cochin, INSERM U1016, CNRS URA8104, Université Paris Descartes UMR-S1016, Paris, France
| | - Cécile Butor
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
102
|
Epithelial cell secretions from the human female reproductive tract inhibit sexually transmitted pathogens and Candida albicans but not Lactobacillus. Mucosal Immunol 2011; 4:335-42. [PMID: 21048705 PMCID: PMC3094926 DOI: 10.1038/mi.2010.72] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Female reproductive tract (FRT) epithelial cells protect against potential pathogens and sexually transmitted infections. The purpose of this study was to determine if epithelial cells from the upper FRT secrete antimicrobials that inhibit reproductive tract pathogens that threaten women's health. Apical secretions from primary cultures of Fallopian tube, uterine, cervical, and ectocervical epithelial cells were incubated with Neisseria gonorrhoeae, Candida albicans (yeast and hyphal forms), human immunodeficiency virus 1 (HIV-1), and Lactobacillus crispatus before being tested for their ability to grow and/or infect target cells. Epithelial cell secretions from the upper FRT inhibit N. gonorrhoeae and both forms of Candida, as well as reduce HIV-1 (R5) infection of target cells. In contrast, none had an inhibitory effect on L. crispatus. An analysis of cytokines and chemokines in uterine secretions revealed several molecules that could account for pathogen inhibition. These findings provide definitive evidence for the critical role of epithelial cells in protecting the FRT from infections, without comprising the beneficial presence of L. crispatus, which is part of the normal vaginal microflora of humans.
Collapse
|
103
|
Attachment and fusion inhibitors potently prevent dendritic cell-driven HIV infection. J Acquir Immune Defic Syndr 2011; 56:204-12. [PMID: 21084994 DOI: 10.1097/qai.0b013e3181ff2aa5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dendritic cells (DCs) efficiently transfer captured (trans) or de novo-produced (cis) virus to CD4 T cells. Using monocyte-derived DCs, we evaluated entry inhibitors targeting HIV envelope (BMS-C, T-1249) or CCR5 (CMPD167) for their potency to prevent DC infection, DC-driven infection in T cells in trans and cis, and direct infection of DC-T-cell mixtures. Immature DC-T-cell cultures with distinct mechanisms of viral transfer yielded similar levels of infection and produced more proviral DNA compared with matched mature DC-T-cell cultures or infected immature DCs. Although all compounds completely blocked HIV replication, 16 times more of each inhibitor (250 vs 15.6 nM) was required to prevent low-level infection of DCs compared with the productive DC-T-cell cocultures. Across all cell systems tested, BMS-C blocked infection most potently. BMS-C was significantly more effective than CMPD167 at preventing DC infection. In fact, low doses of CMPD167 significantly enhanced DC infection. Elevated levels of CCL4 were observed when immature DCs were cultured with CMPD167. Viral entry inhibitors did not interfere with Candida albicans-specific DC cytokine/chemokine responses. These findings indicate that an envelope-binding small molecule is a promising tool for topical microbicide design to prevent the infection of early targets needed to establish and disseminate HIV infection.
Collapse
|
104
|
Abstract
Macrophages and CD4+ T cells are natural target cells for HIV-1, and both cell types contribute to the establishment of the viral reservoir that is responsible for continuous residual virus replication during antiretroviral therapy and viral load rebound upon treatment interruption. Scientific findings that support a critical role for the infected monocyte/macrophage in HIV-1-associated diseases, such as neurological disorders and cardiovascular disease, are accumulating. To prevent or treat these HIV-1-related diseases, we need to halt HIV-1 replication in the macrophage reservoir. This article describes our current knowledge of how monocytes and certain macrophage subsets are able to restrict HIV-1 infection, in addition to what makes macrophages respond less well to current antiretroviral drugs as compared with CD4+ T cells. These insights will help to find novel approaches that can be used to meet this challenge.
Collapse
Affiliation(s)
- Sebastiaan M Bol
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Viviana Cobos-Jiménez
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
105
|
Grivel JC, Shattock RJ, Margolis LB. Selective transmission of R5 HIV-1 variants: where is the gatekeeper? J Transl Med 2011; 9 Suppl 1:S6. [PMID: 21284905 PMCID: PMC3105506 DOI: 10.1186/1479-5876-9-s1-s6] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To enter target cells HIV-1 uses CD4 and a coreceptor. In vivo the coreceptor function is provided either by CCR5 (for R5) or CXCR4 (for X4 HIV-1). Although both R5 and X4 HIV-1 variants are present in body fluids (semen, blood, cervicovaginal and rectal secretions), R5 HIV-1 appears to transmit infection and dominates early stages of HIV disease. Moreover, recent sequence analysis of virus in acute infection shows that, in the majority of cases of transmission, infection is initiated by a single virus. Therefore, the existence of a "gatekeeper" that selects R5 over X4 HIV-1 and that operates among R5 HIV-1 variants has been suggested. In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes. Although many mechanisms have been identified none of them explains the almost perfect selection of R5 over X4 in HIV-1 transmission. We suggest that instead of one strong gatekeeper there are multiple functional gatekeepers and that their superimposition is sufficient to protect against X4 HIV-1 infection and potentially select among R5 HIV-1 variants. In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s). In the case of gatekeepers for HIV-1 transmission, the task is to identify them and to decipher their molecular mechanisms. Knowledge of the gatekeepers' localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants.
Collapse
Affiliation(s)
- Jean-Charles Grivel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | | | | |
Collapse
|
106
|
Abstract
The identification of phenotypically distinct HIV-1 variants with different prevalence during the progression of the disease has been one of the earliest discoveries in HIV-1 biology, but its relevance to AIDS pathogenesis remains only partially understood. The physiological basis for the phenotypic variability of HIV-1 was elucidated with the discovery of distinct coreceptors employed by the virus to infect susceptible cells. The role of the viral phenotype in the variable clinical course and treatment outcome of HIV-1 infection has been extensively investigated over the past two decades. In this review, we summarize the major findings on the clinical significance of the HIV-1 coreceptor usage.
Collapse
Affiliation(s)
- Hanneke Schuitemaker
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infection and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
107
|
Merbah M, Introini A, Fitzgerald W, Grivel JC, Lisco A, Vanpouille C, Margolis L. Cervico-vaginal tissue ex vivo as a model to study early events in HIV-1 infection. Am J Reprod Immunol 2011; 65:268-78. [PMID: 21223429 DOI: 10.1111/j.1600-0897.2010.00967.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Vaginal intercourse remains the most prevalent route of infection of women. In spite of many efforts, the detailed mechanisms of HIV-1 transmission in the female lower genital tract remain largely unknown. With all the obvious restrictions on studying these mechanisms in humans, their understanding depends on the development of adequate experimental models. Isolated cell cultures do not faithfully reproduce important aspects of cell-cell interactions in living tissues and tissue responses to pathogens. Explants and other types of ex vivo tissue models serve as a bridge between cell culture and tissues in vivo. Herein, we discuss various cervico-vaginal tissue models and their use in studying HIV vaginal transmission and consider future directions of such studies.
Collapse
Affiliation(s)
- Melanie Merbah
- Section of Intercellular Interactions, Program in Physical Biology, Eunice-Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Ochiel DO, Ochsenbauer C, Kappes JC, Ghosh M, Fahey JV, Wira CR. Uterine epithelial cell regulation of DC-SIGN expression inhibits transmitted/founder HIV-1 trans infection by immature dendritic cells. PLoS One 2010; 5:e14306. [PMID: 21179465 PMCID: PMC3001862 DOI: 10.1371/journal.pone.0014306] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 11/19/2010] [Indexed: 01/10/2023] Open
Abstract
Background Sexual transmission accounts for the majority of HIV-1 infections. In over 75% of cases, infection is initiated by a single variant (transmitted/founder virus). However, the determinants of virus selection during transmission are unknown. Host cell-cell interactions in the mucosa may be critical in regulating susceptibility to infection. We hypothesized in this study that specific immune modulators secreted by uterine epithelial cells modulate susceptibility of dendritic cells (DC) to infection with HIV-1. Methodology/Principal Findings Here we report that uterine epithelial cell secretions (i.e. conditioned medium, CM) decreased DC-SIGN expression on immature dendritic cells via a transforming growth factor beta (TGF-β) mechanism. Further, CM inhibited dendritic cell-mediated trans infection of HIV-1 expressing envelope proteins of prototypic reference. Similarly, CM inhibited trans infection of HIV-1 constructs expressing envelopes of transmitted/founder viruses, variants that are selected during sexual transmission. In contrast, whereas recombinant TGF- β1 inhibited trans infection of prototypic reference HIV-1 by dendritic cells, TGF-β1 had a minimal effect on trans infection of transmitted/founder variants irrespective of the reporter system used to measure trans infection. Conclusions/Significance Our results provide the first direct evidence for uterine epithelial cell regulation of dendritic cell transmission of infection with reference and transmitted/founder HIV-1 variants. These findings have immediate implications for designing strategies to prevent sexual transmission of HIV-1.
Collapse
Affiliation(s)
- Daniel O Ochiel
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America.
| | | | | | | | | | | |
Collapse
|
109
|
Saba E, Grivel JC, Vanpouille C, Brichacek B, Fitzgerald W, Margolis L, Lisco A. Response to “The “gatekeeper” hypothesis challenged in a human cervico-vaginal tissue model for HIV-1 transmission”. Mucosal Immunol 2010. [DOI: 10.1038/mi.2010.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
110
|
Yan N, Lieberman J. Gaining a foothold: how HIV avoids innate immune recognition. Curr Opin Immunol 2010; 23:21-8. [PMID: 21123040 DOI: 10.1016/j.coi.2010.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 12/24/2022]
Abstract
During the first week after sexual exposure to HIV, HIV infection does not appear to trigger a strong innate immune response. Here we describe some recent studies that show that HIV may avoid triggering antiviral innate immune responses by not replicating efficiently in dendritic cells and by avoiding detection in infected CD4 T cells and macrophages by harnessing a host cytoplasmic DNase TREX1 to digest nonproductive HIV reverse transcripts.
Collapse
Affiliation(s)
- Nan Yan
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | | |
Collapse
|
111
|
Balandya E, Sheth S, Sanders K, Wieland-Alter W, Lahey T. Semen protects CD4+ target cells from HIV infection but promotes the preferential transmission of R5 tropic HIV. THE JOURNAL OF IMMUNOLOGY 2010; 185:7596-604. [PMID: 21059891 DOI: 10.4049/jimmunol.1002846] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sexual intercourse is the major means of HIV transmission, yet the impact of semen on HIV infection of CD4(+) T cells remains unclear. To resolve this conundrum, we measured CD4(+) target cell infection with X4 tropic HIV IIIB and HC4 and R5 tropic HIV BaL and SF162 after incubation with centrifuged seminal plasma (SP) from HIV-negative donors and assessed the impact of SP on critical determinants of target cell susceptibility to HIV infection. We found that SP potently protects CD4(+) T cells from infection with X4 and R5 tropic HIV in a dose- and time-dependent manner. SP caused a diminution in CD4(+) T cell surface expression of the HIVR CD4 and enhanced surface expression of the HIV coreceptor CCR5. Consequently, SP protected CD4(+) T cells from infection with R5 tropic HIV less potently than it protected CD4(+) T cells from infection with X4 tropic HIV. SP also reduced CD4(+) T cell activation and proliferation, and the magnitude of SP-mediated suppression of target cell CD4 expression, activation, and proliferation correlated closely with the magnitude of the protection of CD4(+) T cells from infection with HIV. Taken together, these data show that semen protects CD4(+) T cells from HIV infection by restricting critical determinants of CD4(+) target cell susceptibility to HIV infection. Further, semen contributes to the selective transmission of R5 tropic HIV to CD4(+) target cells.
Collapse
Affiliation(s)
- Emmanuel Balandya
- Program in Experimental and Molecular Medicine, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
112
|
Lederman MM, Alter G, Daskalakis DC, Rodriguez B, Sieg SF, Hardy G, Cho M, Anthony D, Harding C, Weinberg A, Silverman RH, Douek DC, Margolis L, Goldstein DB, Carrington M, Goedert JJ. Determinants of protection among HIV‐exposed seronegative persons: an overview. J Infect Dis 2010; 202 Suppl 3:S333-8. [PMID: 20887220 DOI: 10.1086/655967] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Both clinical experience and a growing medical literature indicate that some persons who have been exposed to human immunodeficiency virus (HIV) infection remain uninfected. Although in some instances this may represent good fortune, cohorts of uninfected persons have been reported who are considered at high risk for infection. In these cohorts a variety of characteristics have been proposed as mediating protection, but to date only the 32–base pair deletion in the chemokine (C‐C motif) receptor 5 gene, which results in complete failure of cell surface expression of this coreceptor, has been associated with high‐level protection from HIV infection. With this in mind, there are probably many other factors that may individually or in combination provide some level of protection from acquisition of HIV infection. Because some of these factors are probably incompletely protective or inconsistently active, identifying them with confidence will be difficult. Nonetheless, clarifying the determinants of protection against HIV infection is a high priority that will require careful selection of high‐risk uninfected cohorts, who should undergo targeted studies of plausible mediators and broad screening for unexpected determinants of protection.
Collapse
Affiliation(s)
- Michael M Lederman
- Center for AIDS Research, Case Western Reserve University School of Medicine, University Hospitals/Case Medical Center, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
PURPOSE OF REVIEW This review will discuss the role of antiretroviral therapy to treat primary HIV infection (PHI) as a strategy to prevent onward viral transmission. RECENT FINDINGS Novel technology has greatly enhanced the appreciation of the characteristics of recently transmitted HIV-1 variants. Recent primate data demonstrate marked enhanced infectiousness of viral variants isolated from acutely infected macaques compared with viruses isolated from animals in the chronic phase of disease. These data are supported by phylogenetic analyses of recently transmitted cases in humans, implying that individuals with PHI may contribute disproportionately to onward transmission at a population level. SUMMARY In the absence of randomized clinical trial data supporting individual benefit of antiretroviral therapy, targeting and treating individuals with PHI as a public health intervention strategy represent a paradigm shift from current treatment strategies based around proven individual benefit alone. However, there is increasing evidence that PHI contributes disproportionately to viral transmission at a population level and failure to incorporate the potential role PHI plays, particularly in focused epidemics, maybe a naïve omission of many of the current mathematical models evaluating the impact of universal test and treat on population-level HIV incidence.
Collapse
|
114
|
Abstract
PURPOSE OF REVIEW Improvements in sequencing approaches and robust mathematical modeling have dramatically increased information on viral genetics during acute infection with HIV and simian immunodeficiency virus, providing unprecedented insight into viral transmission and viral/immune interactions. RECENT FINDINGS Overall viral genetic diversity is reduced significantly during mucosal transmission. Remarkably, in the vast majority of sexual transmissions, this diversity is reduced to a single viral variant that establishes the initial productive clinical infection. By identifying and enumerating transmitted/founder viruses, researchers can begin to define the characteristics that are necessary and sufficient for successful viral replication within a new host. SUMMARY Acute HIV infection is a critical window of opportunity for vaccine and therapeutic intervention. New sequencing technologies and mathematical modeling of transmission and early evolution have provided a clearer understanding of the number of founder viruses that establish infection, the rapid generation of diversity in these viruses and the subsequent evasion of host immunity. The information gained by identifying transmitted viruses, monitoring the initial host responses to these viruses and then identifying mechanisms of viral escape could provide better strategies for vaccine development, preexposure prophylaxis, microbicides, or other therapeutic interventions.
Collapse
|
115
|
Veazey RS, Ketas TJ, Dufour J, Moroney-Rasmussen T, Green LC, Klasse PJ, Moore JP. Protection of rhesus macaques from vaginal infection by vaginally delivered maraviroc, an inhibitor of HIV-1 entry via the CCR5 co-receptor. J Infect Dis 2010; 202:739-44. [PMID: 20629537 DOI: 10.1086/655661] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
An effective vaginal microbicide could reduce human immunodeficiency virus type 1 (HIV-1) transmission to women. Among microbicide candidates in clinical development is Maraviroc (MVC), a small-molecule drug that binds the CCR5 co-receptor and impedes HIV-1 entry into cells. Delivered systemically, MVC reduces viral load in HIV-1-infected individuals, but its ability to prevent transmission is untested. We have now evaluated MVC as a vaginal microbicide with use of a stringent model that involves challenge of rhesus macaques with a high-dose of a CCR5-using virus, SHIV-162P3. Gel-formulated, prescription-grade MVC provided dose-dependent protection, half-maximally at 0.5 mM (0.25 mg/mL). The duration of protection was transient; the longer the delay between MVC application and virus challenge, the less protection (half life of approximately 4 h). As expected, MVC neither protected against challenge with a CXCR4-using virus, SHIV-KU1, nor exacerbated postinfection viremia. These findings validate MVC development as a vaginal microbicide for women and should guide clinical programs.
Collapse
|
116
|
IL-8 decreases HIV-1 transcription in peripheral blood lymphocytes and ectocervical tissue explants. J Acquir Immune Defic Syndr 2010; 54:463-9. [PMID: 20577090 DOI: 10.1097/qai.0b013e3181e5e12c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
IL-8 is enhanced in the peripheral blood and lymphoid tissue of HIV-infected individuals, suggesting that IL-8 is important in the pathogenesis of HIV-1 infection and progression to AIDS. Characterizing the mechanisms of IL-8 regulation of HIV-1 replication may be relevant in addressing the role of IL-8 as a therapeutic target in HIV-1 infection. We evaluated replication of primary R5-tropic HIV-1 in peripheral blood lymphocytes and ectocervical tissue explants infected in vitro in the presence of physiological concentrations of IL-8 found in the serum and genital tract secretions of HIV-infected individuals. To identify the specific stages of the viral life cycle targeted by IL-8, we performed real-time polymerase chain reaction to detect HIV-1 reverse transcription, integration, and transcription. Early during the infection, IL-8 decreased HIV-1 reverse transcription and viral integration. This effect was transient, as on day 4 after infection, we detected no differences on HIV-1 DNA or proviral DNA in peripheral blood lymphocyte. IL-8 decreased HIV-1 transcription in both lymphocytes and ectocervical tissue explants. The decrease in viral RNA expression was associated with reduced HIV-1 replication, as measured by viral p24 release in the culture supernatants. This is the first report to suggest that IL-8 decreases replication of primary R5-tropic HIV-1 by transcriptional mechanisms.
Collapse
|
117
|
Potent in vitro inactivation of both free and cell-associated CCR5- and CXCR4-tropic HIV-1 by common commercial soap bars from South Africa. J Acquir Immune Defic Syndr 2010; 54:340-2. [PMID: 20517160 DOI: 10.1097/qai.0b013e3181e3dbf6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We showed herein the potent virucidal effect of soap and water solutions against both CCR5-tropic and CXCR4-tropic cell-free HIV-1 strains, and cytotoxicity for HIV-1-infected lymphocytes during short incubation durations, ranging from 30 seconds to 2 minutes. These observations indicate a rapid inhibitory effect of soap and water on viral infectivity.
Collapse
|
118
|
Duenas-Decamp MJ, Peters PJ, Repik A, Musich T, Gonzalez-Perez MP, Caron C, Brown R, Ball J, Clapham PR. Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis. Future Virol 2010; 5:435-451. [PMID: 20930940 DOI: 10.2217/fvl.10.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.
Collapse
Affiliation(s)
- Maria José Duenas-Decamp
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Ghosh M, Fahey JV, Shen Z, Lahey T, Cu-Uvin S, Wu Z, Mayer K, Wright PF, Kappes JC, Ochsenbauer C, Wira CR. Anti-HIV activity in cervical-vaginal secretions from HIV-positive and -negative women correlate with innate antimicrobial levels and IgG antibodies. PLoS One 2010; 5:e11366. [PMID: 20614007 PMCID: PMC2894072 DOI: 10.1371/journal.pone.0011366] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 05/10/2010] [Indexed: 01/02/2023] Open
Abstract
Background We investigated the impact of antimicrobials in cervicovaginal lavage (CVL) from HIV(+) and HIV(−) women on target cell infection with HIV. Since female reproductive tract (FRT) secretions contain a spectrum of antimicrobials, we hypothesized that CVL from healthy HIV(+) and (−) women inhibit HIV infection. Methodology/Principal Findings CVL from 32 HIV(+) healthy women with high CD4 counts and 15 healthy HIV(−) women were collected by gently washing the cervicovaginal area with 10 ml of sterile normal saline. Following centrifugation, anti-HIV activity in CVL was determined by incubating CVL with HIV prior to addition to TZM-bl cells. Antimicrobials and anti-gp160 HIV IgG antibodies were measured by ELISA. When CXCR4 and CCR5 tropic HIV-1 were incubated with CVL from HIV(+) women prior to addition to TZM-bl cells, anti-HIV activity in CVL ranged from none to 100% inhibition depending on the viral strains used. CVL from HIV(−) controls showed comparable anti-HIV activity. Analysis of CH077.c (clone of an R5-tropic, mucosally-transmitted founder virus) viral inhibition by CVL was comparable to laboratory strains. Measurement of CVL for antimicrobials HBD2, trappin-2/elafin, SLPI and MIP3α indicated that each was present in CVL from HIV(+) and HIV(−) women. HBD2 and MIP3α correlated with anti-HIV activity as did anti-gp160 HIV IgG antibodies in CVL from HIV(+) women. Conclusions/Significance These findings indicate that CVL from healthy HIV(+) and HIV(−) women contain innate and adaptive defense mechanisms that inhibit HIV infection. Our data suggest that innate endogenous antimicrobials and HIV-specific IgG in the FRT can act in concert to contribute toward the anti-HIV activity of the CVL and may play a role in inhibition of HIV transmission to women.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - John V. Fahey
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Zheng Shen
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Timothy Lahey
- Department of Microbiology and Immunology and Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Susan Cu-Uvin
- The Immunology Center, The Miriam Hospital, Brown University, Providence, Rhode Island, United States of America
| | - Zhijin Wu
- Department of Community Health and Center for Statistical Sciences, Brown University, Providence, Rhode Island, United States of America
| | - Kenneth Mayer
- The Immunology Center, The Miriam Hospital, Brown University, Providence, Rhode Island, United States of America
| | - Peter F. Wright
- Department of Pediatrics, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - John C. Kappes
- Department of Medicine, University of Alabama, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama, Birmingham, Alabama, United States of America
- Department of Pathology, University of Alabama, Birmingham, Alabama, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama, Birmingham, Alabama, United States of America
| | - Charles R. Wira
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
120
|
Jenabian MA, Saïdi H, Charpentier C, Bouhlal H, Schols D, Balzarini J, Bell TW, Vanham G, Bélec L. Differential activity of candidate microbicides against early steps of HIV-1 infection upon complement virus opsonization. AIDS Res Ther 2010; 7:16. [PMID: 20546571 PMCID: PMC2895573 DOI: 10.1186/1742-6405-7-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/14/2010] [Indexed: 11/29/2022] Open
Abstract
Background HIV-1 in genital secretions may be opsonized by several molecules including complement components. Opsonized HIV-1 by complement enhances the infection of various mucosal target cells, such as dendritic cells (DC) and epithelial cells. Results We herein evaluated the effect of HIV-1 complement opsonization on microbicide candidates' activity, by using three in vitro mucosal models: CCR5-tropic HIV-1JR-CSF transcytosis through epithelial cells, HIV-1JR-CSF attachment on immature monocyte-derived dendritic cells (iMDDC), and infectivity of iMDDC by CCR5-tropic HIV-1BaL and CXCR4-tropic HIV-1NDK. A panel of 10 microbicide candidates [T20, CADA, lectines HHA & GNA, PVAS, human lactoferrin, and monoclonal antibodies IgG1B12, 12G5, 2G12 and 2F5], were investigated using cell-free unopsonized or opsonized HIV-1 by complements. Only HHA and PVAS were able to inhibit HIV trancytosis. Upon opsonization, transcytosis was affected only by HHA, HIV-1 adsorption on iMDDC by four molecules (lactoferrin, IgG1B12, IgG2G5, IgG2G12), and replication in iMDDC of HIV-1BaL by five molecules (lactoferrin, CADA, T20, IgG1B12, IgG2F5) and of HIV-1NDK by two molecules (lactoferrin, IgG12G5). Conclusion These observations demonstrate that HIV-1 opsonization by complements may modulate in vitro the efficiency of candidate microbicides to inhibit HIV-1 infection of mucosal target cells, as well as its crossing through mucosa.
Collapse
|
121
|
Li H, Bar KJ, Wang S, Decker JM, Chen Y, Sun C, Salazar-Gonzalez JF, Salazar MG, Learn GH, Morgan CJ, Schumacher JE, Hraber P, Giorgi EE, Bhattacharya T, Korber BT, Perelson AS, Eron JJ, Cohen MS, Hicks CB, Haynes BF, Markowitz M, Keele BF, Hahn BH, Shaw GM. High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men. PLoS Pathog 2010; 6:e1000890. [PMID: 20485520 PMCID: PMC2869329 DOI: 10.1371/journal.ppat.1000890] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/01/2010] [Indexed: 11/18/2022] Open
Abstract
Elucidating virus-host interactions responsible for HIV-1 transmission is important for advancing HIV-1 prevention strategies. To this end, single genome amplification (SGA) and sequencing of HIV-1 within the context of a model of random virus evolution has made possible for the first time an unambiguous identification of transmitted/founder viruses and a precise estimation of their numbers. Here, we applied this approach to HIV-1 env analyses in a cohort of acutely infected men who have sex with men (MSM) and found that a high proportion (10 of 28; 36%) had been productively infected by more than one virus. In subjects with multivariant transmission, the minimum number of transmitted viruses ranged from 2 to 10 with viral recombination leading to rapid and extensive genetic shuffling among virus lineages. A combined analysis of these results, together with recently published findings based on identical SGA methods in largely heterosexual (HSX) cohorts, revealed a significantly higher frequency of multivariant transmission in MSM than in HSX [19 of 50 subjects (38%) versus 34 of 175 subjects (19%); Fisher's exact p = 0.008]. To further evaluate the SGA strategy for identifying transmitted/founder viruses, we analyzed 239 overlapping 5′ and 3′ half genome or env-only sequences from plasma viral RNA (vRNA) and blood mononuclear cell DNA in an MSM subject who had a particularly well-documented virus exposure history 3–6 days before symptom onset and 14–17 days before peak plasma viremia (47,600,000 vRNA molecules/ml). All 239 sequences coalesced to a single transmitted/founder virus genome in a time frame consistent with the clinical history, and a molecular clone of this genome encoded replication competent virus in accord with model predictions. Higher multiplicity of HIV-1 infection in MSM compared with HSX is consistent with the demonstrably higher epidemiological risk of virus acquisition in MSM and could indicate a greater challenge for HIV-1 vaccines than previously recognized. Understanding the biology of sexual transmission of HIV-1 could contribute importantly to the development of effective prevention measures. However, different routes of virus transmission (vaginal, rectal, penile or oral) and inaccessibility of tissues at or near the time of virus transmission make this goal elusive. Here, we apply single genome amplification and sequencing of plasma HIV-1 and a model of random virus evolution to a cohort of acutely infected men who have sex with men (MSM) and find that MSM are twice as likely as heterosexuals to become infected by multiple viruses as opposed to a single virus. Some MSM subjects were infected by as many as 7 to 10 or more genetically distinct viruses as a consequence of a single exposure event. We go on to molecularly clone the first full-length transmitted/founder subtype B HIV-1 virus and show that it is highly replicative in human CD4+ T-cells but not macrophages. Our study provides the first comparative, quantitative analysis of the multiplicity of HIV-1 infection in the two primary risk groups—MSM and heterosexuals—driving the global pandemic, and we discuss the implications of the findings to HIV-1 vaccine development and prevention research.
Collapse
Affiliation(s)
- Hui Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Katharine J. Bar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shuyi Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Julie M. Decker
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yalu Chen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chuanxi Sun
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jesus F. Salazar-Gonzalez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Maria G. Salazar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gerald H. Learn
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Charity J. Morgan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joseph E. Schumacher
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Peter Hraber
- Theoretical Biology and Biophysics (T6), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Elena E. Giorgi
- Theoretical Biology and Biophysics (T6), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Tanmoy Bhattacharya
- Nuclear and Particle Physics, Astrophysics and Cosmology (T-2), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Bette T. Korber
- Theoretical Biology and Biophysics (T6), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics (T6), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Myron S. Cohen
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Charles B. Hicks
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
- Rockefeller University, New York, New York, United States of America
| | - Brandon F. Keele
- SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Beatrice H. Hahn
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - George M. Shaw
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
122
|
Tornatore M, Gonçalves CV, Mendoza-Sassi RA, Silveira JM, D'ávila NE, Maas CG, Bianchi MS, Pinheiro EM, Machado ES, Soares MA, Martinez AMB. HIV-1 vertical transmission in Rio Grande, Southern Brazil. Int J STD AIDS 2010; 21:351-5. [DOI: 10.1258/ijsa.2009.009033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to determine the rate and risk factors of HIV-1 mother-to-child transmission (MTCT), the timing of transmission and the transmitted subtype in a population where subtypes B and C co-circulate. One hundred and forty-four babies born to HIV-1-infected mothers were studied. Subtype and timing of transmission were determined by a nested polymerase chain reaction of the gp41 gene. Seven children were infected (4.9%): four were infected intrautero and one intrapartum. The higher frequency of intrautero transmission was statistically significant ( P = 0.001). Use of antiretrovirals (ARVs) in the three stages of gestation was a protective risk factor for MTCT (PR = 0.42; CI: 0.21–0.83; P = 0.013). A higher HIV viral load at delivery was the only independent risk factor for MTCT. Early and universal access to ARVs during pregnancy are the most important measures to decrease vertical HIV-1 transmission even in areas where HIV clade distribution differs.
Collapse
Affiliation(s)
- M Tornatore
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | - C V Gonçalves
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | | | - J M Silveira
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | - N E D'ávila
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | - C G Maas
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | - M S Bianchi
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | - E M Pinheiro
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | - E S Machado
- Departamento de Genética, Universidade Federal do Rio de Janeiro
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro
| | - M A Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro
- Divisão de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | |
Collapse
|
123
|
Saba E, Grivel JC, Vanpouille C, Brichacek B, Fitzgerald W, Margolis L, Lisco A. HIV-1 sexual transmission: early events of HIV-1 infection of human cervico-vaginal tissue in an optimized ex vivo model. Mucosal Immunol 2010; 3:280-90. [PMID: 20147895 PMCID: PMC3173980 DOI: 10.1038/mi.2010.2] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Infection and dissemination of human immunodeficiency virus (HIV)-1 through the female body after vaginal intercourse depends on the activation/differentiation status of mucosal CD4 T cells. In this study, we investigated this status and the susceptibility to HIV-1 infection of human cervico-vaginal tissue ex vivo. We found that virtually all T cells are of the effector memory phenotype with broad CC chemokine receptor 5 (CCR5) expression. As it does in vivo, human cervico-vaginal tissue ex vivo preferentially supports the productive infection of R5 HIV-1 rather than that of X4 HIV-1 in spite of the broad expression of CXC chemokine receptor 4 (CXCR4). X4 HIV-1 replicated only in the few tissues that were enriched in CD27(+)CD28(+) effector memory CD4 T cells. Productive infection of R5 HIV-1 occurred preferentially in activated CD38(+)CD4 T cells and was followed by a similar activation of HIV-1-uninfected (bystander) CD4 T cells that may amplify viral infection. These results provide new insights into the dependence of HIV-1 infection and dissemination on the activation/differentiation of cervico-vaginal lymphocytes.
Collapse
Affiliation(s)
| | | | | | | | | | - Leonid Margolis
- Corresponding authors: National Institutes of Health, Building 10, Room 9D58, 10 Center Drive, Bethesda, MD, , , Tel: 301-5941751, Fax: 301-4800857
| | - Andrea Lisco
- Corresponding authors: National Institutes of Health, Building 10, Room 9D58, 10 Center Drive, Bethesda, MD, , , Tel: 301-5941751, Fax: 301-4800857
| |
Collapse
|
124
|
Restriction of HIV-1 genotypes in breast milk does not account for the population transmission genetic bottleneck that occurs following transmission. PLoS One 2010; 5:e10213. [PMID: 20422033 PMCID: PMC2857876 DOI: 10.1371/journal.pone.0010213] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 03/17/2010] [Indexed: 12/27/2022] Open
Abstract
Background Breast milk transmission of HIV-1 remains a major route of pediatric infection. Defining the characteristics of viral variants to which breastfeeding infants are exposed is important for understanding the genetic bottleneck that occurs in the majority of mother-to-child transmissions. The blood-milk epithelial barrier markedly restricts the quantity of HIV-1 in breast milk, even in the absence of antiretroviral drugs. The basis of this restriction and the genetic relationship between breast milk and blood variants are not well established. Methodology/Principal Findings We compared 356 HIV-1 subtype C gp160 envelope (env) gene sequences from the plasma and breast milk of 13 breastfeeding women. A trend towards lower viral population diversity and divergence in breast milk was observed, potentially indicative of clonal expansion within the breast. No differences in potential N-linked glycosylation site numbers or in gp160 variable loop amino acid lengths were identified. Genetic compartmentalization was evident in only one out of six subjects in whom contemporaneously obtained samples were studied. However, in samples that were collected 10 or more days apart, six of seven subjects were classified as having compartmentalized viral populations, highlighting the necessity of contemporaneous sampling for genetic compartmentalization studies. We found evidence of CXCR4 co-receptor using viruses in breast milk and blood in nine out of the thirteen subjects, but no evidence of preferential localization of these variants in either tissue. Conclusions/Significance Despite marked restriction of HIV-1 quantities in milk, our data indicate intermixing of virus between blood and breast milk. Thus, we found no evidence that a restriction in viral genotype diversity in breast milk accounts for the genetic bottleneck observed following transmission. In addition, our results highlight the rapidity of HIV-1 env evolution and the importance of sample timing in analyses of gene flow.
Collapse
|
125
|
Abstract
Recent studies indicate that sexual transmission of human immunodeficiency virus type 1 (HIV-1) generally results from productive infection by only one virus, a finding attributable to the mucosal barrier. Surprisingly, a recent study of injection drug users (IDUs) from St. Petersburg, Russia, also found most subjects to be acutely infected by a single virus. Here, we show by single-genome amplification and sequencing in a different IDU cohort that 60% of IDU subjects were infected by more than one virus, including one subject who was acutely infected by at least 16 viruses. Multivariant transmission was more common in IDUs than in heterosexuals (60% versus 19%; odds ratio, 6.14; 95% confidence interval [CI], 1.37 to 31.27; P = 0.008). These findings highlight the diversity in HIV-1 infection risks among different IDU cohorts and the challenges faced by vaccines in protecting against this mode of infection.
Collapse
|
126
|
Sharma P, Garg S. Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv Drug Deliv Rev 2010; 62:491-502. [PMID: 19931328 DOI: 10.1016/j.addr.2009.11.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 09/14/2009] [Indexed: 11/30/2022]
Abstract
The impact of human immunodeficiency virus (HIV) infection has been devastating with nearly 7400 new infections every day. Although, the advent of highly active antiretroviral therapy (HAART) has made a tremendous contribution in reducing the morbidity and mortality in developed countries, the situation in developing countries is still grim with millions of people being infected by this disease. The new advancements in the field of nanotechnology based drug delivery systems hold promise to improve the situation. These nanoscale systems have been successfully employed in other diseases such as cancer, and therefore, we now have a better understanding of the practicalities and technicalities associated with their clinical development. Nanotechnology based approaches offer some unique opportunities specifically for the improvement of water solubility, stability, bioavailability and targeting of antiretroviral drugs. This review presents discussion on the contribution of pure drug and polymer based nanotechnologies for the delivery anti-HIV drugs.
Collapse
Affiliation(s)
- Puneet Sharma
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
127
|
CCR5: From Natural Resistance to a New Anti-HIV Strategy. Viruses 2010; 2:574-600. [PMID: 21994649 PMCID: PMC3185609 DOI: 10.3390/v2020574] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/22/2009] [Accepted: 02/04/2010] [Indexed: 02/08/2023] Open
Abstract
The C-C chemokine receptor type 5 (CCR5) is a key player in HIV infection due to its major involvement in the infection process. Investigations into the role of the CCR5 coreceptor first focused on its binding to the virus and the molecular mechanisms leading to the entry and spread of HIV. The identification of naturally occurring CCR5 mutations has allowed scientists to address the CCR5 molecule as a promising target to prevent or limit HIV infection in vivo. Naturally occurring CCR5-specific antibodies have been found in exposed but uninfected people, and in a subset of HIV seropositive people who show long-term control of the infection. This suggests that natural autoimmunity to the CCR5 coreceptor exists and may play a role in HIV control. Such natural immunity has prompted strategies aimed at achieving anti-HIV humoral responses through CCR5 targeting, which will be described here.
Collapse
|
128
|
Matsuda K, Inaba K, Fukazawa Y, Matsuyama M, Ibuki K, Horiike M, Saito N, Hayami M, Igarashi T, Miura T. In vivo analysis of a new R5 tropic SHIV generated from the highly pathogenic SHIV-KS661, a derivative of SHIV-89.6. Virology 2010; 399:134-143. [PMID: 20102777 DOI: 10.1016/j.virol.2010.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/14/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
Abstract
Although X4 tropic SHIVs have been studied extensively, they show distinct infection phenotypes from those of R5 tropic viruses, which play an important role in HIV-1 transmission and pathogenesis. To augment the variety of R5 tropic SHIVs, we generated a new R5 tropic SHIV from the highly pathogenic X4 tropic SHIV-KS661, a derivative of SHIV-89.6. Based on consensus amino acid alignment analyses of subtype B R5 tropic HIV-1, five amino acid substitutions in the third variable region successfully changed the secondary receptor preference from X4 to R5. Improvements in viral replication were observed in infected rhesus macaques after two passages, and reisolated virus was designated SHIV-MK38. SHIV-MK38 maintained R5 tropism through in vivo passages and showed robust replication in infected monkeys. Our study clearly demonstrates that a minimal number of amino acid substitutions in the V3 region can alter secondary receptor preference and increase the variety of R5 tropic SHIVs.
Collapse
Affiliation(s)
- Kenta Matsuda
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoinkawaramachi, Sakyo-ku, Kyoto 606-8507, Japan
| | - Katsuhisa Inaba
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoinkawaramachi, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshinori Fukazawa
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoinkawaramachi, Sakyo-ku, Kyoto 606-8507, Japan
| | - Megumi Matsuyama
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoinkawaramachi, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kentaro Ibuki
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoinkawaramachi, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mariko Horiike
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoinkawaramachi, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naoki Saito
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoinkawaramachi, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masanori Hayami
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoinkawaramachi, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuhiko Igarashi
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoinkawaramachi, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoinkawaramachi, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
129
|
Abstract
PURPOSE OF REVIEW To summarize our current understanding of the restricted diversity and biological characteristics of newly transmitted HIV-1 variants. RECENT FINDINGS Transmission of HIV-1 involves a reduction in viral diversity, supporting the concept of a genetic bottleneck. In most cases, transmission appears to be mediated by a single infectious unit. Transmission of multiple variants has also been observed and is associated with factors that compromise the genital mucosa. The biological characteristics of the newly transmitted variants are influenced by the mode of transmission and perhaps the viral subtype. For sexual transmission, the integrity of the mucosal barrier is likely to impose a major restriction on the infecting virus, whereas mother-to-child transmission is also influenced by the presence of maternal antibody. SUMMARY Transmission of HIV-1 is complex, multimodal, and poorly understood, but one common feature appears to be a window of opportunity when the infection is localized and viral diversity is limited; at this time the virus is at its most vulnerable. A better understanding of the restrictions inflicted upon transmitting HIV-1 should therefore lead to improved biomedical interventions that have the potential to protect against HIV infection.
Collapse
|
130
|
Abstract
The early immune response to HIV-1 infection is likely to be an important factor in determining the clinical course of disease. Recent data indicate that the HIV-1 quasispecies that arise following a mucosal infection are usually derived from a single transmitted virus. Moreover, the finding that the first effective immune responses drive the selection of virus escape mutations provides insight into the earliest immune responses against the transmitted virus and their contributions to the control of acute viraemia. Strong innate and adaptive immune responses occur subsequently but they are too late to eliminate the infection. In this Review, we discuss recent studies on the kinetics and quality of early immune responses to HIV-1 and their implications for developing a successful preventive HIV-1 vaccine.
Collapse
|
131
|
Feline immunodeficiency virus env gene evolution in experimentally infected cats. Vet Immunol Immunopathol 2009; 134:96-106. [PMID: 19897254 DOI: 10.1016/j.vetimm.2009.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Feline immunodeficiency virus (FIV), an immunosuppressive lentivirus found in cats worldwide, is studied to illuminate mechanisms of lentiviral pathogenesis and to identify key components of protective immunity. During replication, lentiviruses accumulate errors of nucleotide mis-incorporation due to the low-fidelity of reverse transcriptase and recombination between viral variants, resulting in the emergence of a complex viral "quasispecies". In patients infected with HIV-1, env sequences may vary by up to 10% and the detection of quasispecies with greater heterogeneity is associated with higher viral loads and reduced CD4+ T cell numbers [1], indicating that transmission of more complex quasispecies may lead to disease progression. However, little is known about how FIV evolves as disease progresses, or why some cats develop AIDS rapidly while disease progression is slow in others. The aim of this study was to determine whether disease progression may be governed by viral evolution and to examine the diversity of viral variants emerging following infection with an infectious molecular clone. The FIV env gene encoding the envelope glycoprotein (Env) was examined at early (12 weeks) and late (322 weeks) stages of FIV infection in two groups of cats infected experimentally with the FIV-GL8 molecular clone. Viral variants were detected within quasispecies in cats in the late stages of FIV infection that contained differing amino acid compositions in several variable loops of Env, some of which were identified as determinants of receptor usage and resistance to neutralization. Therefore these results indicate that the FIV env gene evolves during the course of infection, giving rise to variants that resist neutralization and likely lead to disease progression.
Collapse
|
132
|
Sexual transmission of HIV-1. Antiviral Res 2009; 85:276-85. [PMID: 19874852 DOI: 10.1016/j.antiviral.2009.10.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/02/2009] [Accepted: 10/16/2009] [Indexed: 12/18/2022]
Abstract
HIV-1 transmission occurs in a limited number of ways all of which are preventable. Overall, the risk of HIV-1 transmission following a single sexual exposure is low especially in comparison with other sexually transmitted infections (STIs); with estimates of the average probability of male to female HIV-1 transmission only 0.0005-0.0026 per coital act. The risk of acquiring HIV-1 from a single contact varies enormously and is dependant upon the infectiousness of the HIV-1 positive individual and the susceptibility to HIV-1 of their sexual partner. An understanding of the determinants of HIV-1 transmission is important not only to assess the infection risk to an individual when exposed to the virus (e.g. to determine the provision of post exposure prophylaxis), but also to make accurate predictions on the potential spread of HIV-1 infection in a population and to direct appropriate targeted prevention strategies. In this review article we summarise the current literature on the major worldwide source of HIV-1 acquisition, sexual transmission. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
|
133
|
Nittayananta W, Hladik F, Klausner M, Harb S, Dale BA, Coombs RW. HIV type 1 fails to trigger innate immune factor synthesis in differentiated oral epithelium. AIDS Res Hum Retroviruses 2009; 25:1013-21. [PMID: 19842793 DOI: 10.1089/aid.2009.0032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The oral mucosa is relatively resistant to human immunodeficiency virus type 1 (HIV-1) transmission. The mechanisms contributing to this resistance remain incompletely understood, but may include HIV-induced synthesis of innate immune factors. We used fully differentiated oral epithelium as a surrogate for the oral mucosa in vivo, exposed it to X4- and R5-tropic HIV-1 in culture, and quantified mRNA expression of six innate immune factors. Neither virus increased expression of human beta defensin 2 (hBD-2) mRNA over supernatants from uninfected lymphoblast controls. HIV-1 also failed to induce mRNA of four additional innate immunity-related genes. Similar results were obtained with oral monolayer epithelial cells. Interestingly, the X4-tropic virus inhibited mRNA expression of hBD-2, and of three of the other factors, at higher dosages in the differentiated oral epithelium but not the monolayers. The failure of HIV-1 to induce innate immune factors in the differentiated epithelium was not due to a lack of tissue penetration, as we detected fluorescence-tagged virions up to 30 mum deep from the apical surface. HIV-1 does not trigger de novo innate immune factor synthesis in oral epithelium, pointing to the role of a constitutive innate immunity for protection against HIV-1 in the oral cavity.
Collapse
Affiliation(s)
- Wipawee Nittayananta
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Florian Hladik
- Departments of Obstetrics and Gynecology, University of Washington, Seattle, Washington 98104
- Department of Medicine, University of Washington, Seattle, Washington 98104
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | | | - Socorro Harb
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98104
| | - Beverly A. Dale
- Department of Medicine, University of Washington, Seattle, Washington 98104
- Department of Oral Biology, University of Washington, Seattle, Washington 98104
- Department of Periodontics, University of Washington, Seattle, Washington 98104
- Department of Biochemistry, University of Washington, Seattle, Washington 98104
| | - Robert W. Coombs
- Department of Medicine, University of Washington, Seattle, Washington 98104
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98104
| |
Collapse
|
134
|
Boukari H, Brichacek B, Stratton P, Mahoney SF, Lifson JD, Margolis L, Nossal R. Movements of HIV-virions in human cervical mucus. Biomacromolecules 2009; 10:2482-8. [PMID: 19711976 PMCID: PMC2768114 DOI: 10.1021/bm900344q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Time-resolved confocal microscopy and fluorescence correlation spectroscopy were used to examine the movements of fluorescently labeled HIV-virions (approximately 100 nm) added to samples of human cervical mucus. Particle-tracking analysis indicates that the motion of most virions is decreased 200-fold compared to that in aqueous solution and is not driven by typical diffusion. Rather, the time-dependence of their ensemble-averaged mean-square displacements is proportional to tau(alpha) + v(2)tau(2), describing a combination of anomalous diffusion (alpha approximately 0.3) and flow-like behavior, with tau being the lag time. We attribute the flow-like behavior to slowly relaxing mucus matrix that follows mechanical perturbations such as stretching and twisting of the sample. Further analysis of the tracks and displacements of individual virions indicates differences in the local movements among the virions, including constrained motion and infrequent jumps, perhaps due to abrupt changes in matrix structure. Changes in the microenvironments due to slow structural changes may facilitate movement of the virions, allowing them to reach the epithelial layer.
Collapse
Affiliation(s)
- Hacène Boukari
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
135
|
Heterosexual transmission of human immunodeficiency virus type 1 subtype C: Macrophage tropism, alternative coreceptor use, and the molecular anatomy of CCR5 utilization. J Virol 2009; 83:8208-20. [PMID: 19515785 DOI: 10.1128/jvi.00296-09] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human immunodeficiency virus type 1 transmission selects for virus variants with genetic characteristics distinct from those of donor quasispecies, but the biological factors favoring their transmission or establishment in new hosts are poorly understood. We compared primary target cell tropisms and entry coreceptor utilizations of donor and recipient subtype C Envs obtained near the time of acute infection from Zambian heterosexual transmission pairs. Both donor and recipient Envs demonstrated only modest macrophage tropism, and there was no overall difference between groups in macrophage or CD4 T-cell infection efficiency. Several individual pairs showed donor/recipient differences in primary cell infection, but these were not consistent between pairs. Envs had surprisingly broad uses of GPR15, CXCR6, and APJ, but little or no use of CCR2b, CCR3, CCR8, GPR1, and CXCR4. Donors overall used GPR15 better than did recipients. However, while several individual pairs showed donor/recipient differences for GPR15 and/or other coreceptors, the direction of the differences was inconsistent, and several pairs had unique alternative coreceptor patterns that were conserved across the transmission barrier. CCR5/CCR2b chimeras revealed that recipients as a group were more sensitive than were donors to replacement of the CCR5 extracellular loops with corresponding regions of CCR2b, but significant differences in this direction were not consistent within pairs. These data show that sexual transmission does not select for enhanced macrophage tropism, nor for preferential use of any alternative coreceptor. Recipient Envs are somewhat more constrained than are donors in flexibility of CCR5 use, but this pattern is not universal for all pairs, indicating that it is not an absolute requirement.
Collapse
|
136
|
Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, Decker JM, Wang S, Baalwa J, Kraus MH, Parrish NF, Shaw KS, Guffey MB, Bar KJ, Davis KL, Ochsenbauer-Jambor C, Kappes JC, Saag MS, Cohen MS, Mulenga J, Derdeyn CA, Allen S, Hunter E, Markowitz M, Hraber P, Perelson AS, Bhattacharya T, Haynes BF, Korber BT, Hahn BH, Shaw GM. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. ACTA ACUST UNITED AC 2009; 206:1273-89. [PMID: 19487424 PMCID: PMC2715054 DOI: 10.1084/jem.20090378] [Citation(s) in RCA: 615] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Identification of full-length transmitted HIV-1 genomes could be instrumental in HIV-1 pathogenesis, microbicide, and vaccine research by enabling the direct analysis of those viruses actually responsible for productive clinical infection. We show in 12 acutely infected subjects (9 clade B and 3 clade C) that complete HIV-1 genomes of transmitted/founder viruses can be inferred by single genome amplification and sequencing of plasma virion RNA. This allowed for the molecular cloning and biological analysis of transmitted/founder viruses and a comprehensive genome-wide assessment of the genetic imprint left on the evolving virus quasispecies by a composite of host selection pressures. Transmitted viruses encoded intact canonical genes (gag-pol-vif-vpr-tat-rev-vpu-env-nef) and replicated efficiently in primary human CD4+ T lymphocytes but much less so in monocyte-derived macrophages. Transmitted viruses were CD4 and CCR5 tropic and demonstrated concealment of coreceptor binding surfaces of the envelope bridging sheet and variable loop 3. 2 mo after infection, transmitted/founder viruses in three subjects were nearly completely replaced by viruses differing at two to five highly selected genomic loci; by 12–20 mo, viruses exhibited concentrated mutations at 17–34 discrete locations. These findings reveal viral properties associated with mucosal HIV-1 transmission and a limited set of rapidly evolving adaptive mutations driven primarily, but not exclusively, by early cytotoxic T cell responses.
Collapse
|
137
|
Saïdi H. Microbicides: an emerging science of HIV-1 prevention in women-15th Conference on Retroviruses and Opportunistic Infections, Boston, USA, 3-6 February 2008. Rev Med Virol 2009; 19:69-76. [PMID: 19086006 DOI: 10.1002/rmv.601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Women account for almost 60% of human immunodeficiency virus type 1 (HIV-1) infections in Sub-Saharan Africa. HIV-1 prevention tools such as condoms, abstinence and monogamy are not always feasible options for women due to various socio-economic and cultural factors. Microbicides are anti-microbial medications formulated for topical administration to prevent the sexual transmission of HIV-1 and other pathogens. Ideally, they will afford bidirectional protection to both men and women who are engaged in vaginal or anal sex. Since the use of condom is often difficult or impossible, this multifunctional role of microbicides will be crucial in the fight against AIDS. The 15th Conference on Retroviruses and Opportunistic Infections (CROI) was recently held in Boston, USA, where one of the most interesting subject area discussed by researchers from all around the world was the latest developments and understandings in microbicide-related basic science and pre-clinical product development as well as in product manufacturing and formulation that address the issue of user adherence.
Collapse
Affiliation(s)
- Héla Saïdi
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France.
| |
Collapse
|
138
|
Targeting a host element as a strategy to block HIV replication: is it nice to fool with Mother Nature? Curr Opin HIV AIDS 2009; 4:79-81. [PMID: 19339944 DOI: 10.1097/coh.0b013e3283207b07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
139
|
Saïdi H, Magri G, Carbonneil C, Bouhlal H, Hocini H, Belec L. Apical interactions of HIV type 1 with polarized HEC-1 cell monolayer modulate R5-HIV type 1 spread by submucosal macrophages. AIDS Res Hum Retroviruses 2009; 25:497-509. [PMID: 19397398 DOI: 10.1089/aid.2008.0156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The in vitro model of HIV-1 transcytosis through a monolayer of HEC-1 cells is thought to mimic the mucosal crossing of the virus that may occur in vivo. We evaluated whether the stimulation of HEC-1 by HIV may modulate HIV infection of macrophages. Thus, the ability to capture, produce, and transfer R5 viruses to T cells, attract T cells, and finally produce cytokines/chemokines, was compared between untreated macrophages (M0) and macrophages differentiated in the presence of medium collected at the basolateral pole of HEC-1, which were unstimulated [M(BL)] or stimulated with either R5-HIV-1Ba-L [M(BL-R5)] or X4-HIV-1NDK [M(BL-X4)]. M(BL-X4)-secreted CCR5-interacting chemokines integrated and replicated HIV less efficiently than did M(BL) and M(BL-R5). M(BL-R5) and M(BL-X4) similarly transmitted HIV to activated T cells. Interestingly, mannose-binding receptors and heparan sulfate proteoglycans were variously involved in HIV adsorption, whereas DC-SIGN mostly mediated the HIV transfer. Conversely to M(BL) and M(BL-X4), M(BL-R5) did not secrete eotaxin, GRO, ITAC, lymphotactin, MIP-1, MIP-3, and RANTES, which was associated with a weak capacity to recruit CD4(+)CXCR4(+)CCR5(+) T cells. In particular, M(BL-R5) specifically released soluble factors enhancing HIV production by recruited T cells. These submucosal-conditioned macrophages differentially captured, produced, and transferred R5-HIV-1 to T cells, according to the tropism of the virus deposited at the apical pole of HEC-1. These observations challenge the question of the in vivo involvement of HIV-1 as a supraepithelial stimulus that likely modulates the susceptibility for HIV-1 of submucosal target cells in favor of its transmission.
Collapse
Affiliation(s)
- Héla Saïdi
- Université Paris Descartes (Paris V), Unité INSERM U743 “Immunologie Humaine,” Equipe “Immunité et Biothérapie Muqueuse,” Centre de Recherches Biomédicales des Cordeliers, Paris, France
- Institut Pasteur, Antiviral Immunity, Biotherapy, and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| | - Giuliana Magri
- Université Paris Descartes (Paris V), Unité INSERM U743 “Immunologie Humaine,” Equipe “Immunité et Biothérapie Muqueuse,” Centre de Recherches Biomédicales des Cordeliers, Paris, France
| | - Cédric Carbonneil
- Université Paris Descartes (Paris V), Unité INSERM U743 “Immunologie Humaine,” Equipe “Immunité et Biothérapie Muqueuse,” Centre de Recherches Biomédicales des Cordeliers, Paris, France
| | - Hicham Bouhlal
- Université Paris Descartes (Paris V), Unité INSERM U743 “Immunologie Humaine,” Equipe “Immunité et Biothérapie Muqueuse,” Centre de Recherches Biomédicales des Cordeliers, Paris, France
- Institut Pasteur, Antiviral Immunity, Biotherapy, and Vaccine Unit, Infection and Epidemiology Department, Paris, France
- Unité Inserm 4925, Laboratoire d'Immunologie, Université Picardie Jules Verne, Amiens, France
| | - Hakim Hocini
- Université Paris Descartes (Paris V), Unité INSERM U743 “Immunologie Humaine,” Equipe “Immunité et Biothérapie Muqueuse,” Centre de Recherches Biomédicales des Cordeliers, Paris, France
| | - Laurent Belec
- Université Paris Descartes (Paris V), Unité INSERM U743 “Immunologie Humaine,” Equipe “Immunité et Biothérapie Muqueuse,” Centre de Recherches Biomédicales des Cordeliers, Paris, France
| |
Collapse
|
140
|
Saïdi H, Jenabian MA, Bélec L. Early events in vaginal HIV transmission: implications in microbicide development. Future Virol 2009. [DOI: 10.2217/fvl.09.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vitro models for HIV crossing through mucosae include direct infection of epithelial cells, transcytosis through epithelial cells, epithelial transmigration of infected donor cells, uptake by intraepithelial dendritic cells, and circumvention of the epithelial barrier through physical breaches. Mucosal crossing of HIV for further reaching of the submucosal target cells (macrophages, lymphocytes and dendritic cells) may be modulated by supraepithelial factors, such as seminal complement components (opsonized HIV), by epithelial factors released in the submucosal microenvironment, such as antimicrobial soluble factors, cytokines and chemokines, and by the potent intraepithelial and submucosal innate immunity. Poor understanding of the subtle and complex orchestration of the numerous virus and cell factors involved in HIV mucosal crossing renders the design of effective microbicide formulations difficult. Thus, there is currently no clear relationship between the success of preclinical development of microbicide formulations, using the available assays of anti-HIV efficacy and mucosal toxicity, and its efficacy against HIV acquisition in women enrolled in a large-scale Phase III trial. In addition, the proof of concept that a microbicide formulation may be efficient outside the laboratory has not yet been clearly demonstrated. Finally, there is an urgent need to better understand and modelize the early events occurring during the first hours of HIV contact with the female genital mucosae, especially considering the enormous gaps of knowledge in the understanding of the mechanisms of HIV mucosal crossing through female genital mucosae.
Collapse
Affiliation(s)
- Héla Saïdi
- Immunité antivirale biothérapie et vaccins, Institut Pasteur, Paris, France and, Université Paris Descartes (Paris V), France and, Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Mohammad-Ali Jenabian
- Université Paris Descartes (Paris V), France and, Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Laurent Bélec
- Université Paris Descartes (Paris V), France and, Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
141
|
Abstract
HIV infection leads to progressive CD4 T cell depletion, resulting in the development of AIDS. The mechanisms that trigger T cell death after HIV infection are still not fully understood, but a lot of data indicate that apoptosis of uninfected CD4 lymphocytes plays a major role. HIV directly modulates cell death using various strategies in which several viral proteins, in particular the envelope glycoproteins (Env), play an essential role. Importantly, Env, expressed on infected cells, triggers autophagy in uninfected CD4 T cells, leading to their apoptosis. Furthermore, HIV, like other viruses, has evolved strategies to inhibit this autophagic process in HIV-infected cells. This discovery further increases the level of complexity of the cellular processes involved in HIV-induced pathology. Interestingly, HIV protease inhibitors, currently used in highly active antiretroviral therapy (HAART), are able to induce autophagy in cancer cells, leading to a recent repositioning of these drugs as anticancer agents. This review presents an overview of the relationship between HIV, HAART, and autophagy.
Collapse
Affiliation(s)
- Lucile Espert
- University of Montpellier, Institut de Biologie, 4, Bd Henri IV, CS 69033, 34965, Montpellier Cedex 2, France
| | | |
Collapse
|
142
|
Lederman MM, Jump R, Pilch-Cooper HA, Root M, Sieg SF. Topical application of entry inhibitors as "virustats" to prevent sexual transmission of HIV infection. Retrovirology 2008; 5:116. [PMID: 19094217 PMCID: PMC2637900 DOI: 10.1186/1742-4690-5-116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 12/18/2008] [Indexed: 11/10/2022] Open
Abstract
With the continuing march of the AIDS epidemic and little hope for an effective vaccine in the near future, work to develop a topical strategy to prevent HIV infection is increasingly important. This stated, the track record of large scale "microbicide" trials has been disappointing with nonspecific inhibitors either failing to protect women from infection or even increasing HIV acquisition. Newer strategies that target directly the elements needed for viral entry into cells have shown promise in non-human primate models of HIV transmission and as these agents have not yet been broadly introduced in regions of highest HIV prevalence, they are particularly attractive for prophylaxis. We review here the agents that can block HIV cellular entry and that show promise as topical strategies or "virustats" to prevent mucosal transmission of HIV infection.
Collapse
Affiliation(s)
- Michael M Lederman
- Department of Medicine, Case Western Reserve University, 1100 Euclid Ave, Cleveland, OH 44118, USA
| | - Robin Jump
- Department of Medicine, Case Western Reserve University, 1100 Euclid Ave, Cleveland, OH 44118, USA
| | - Heather A Pilch-Cooper
- Department of Medicine, Case Western Reserve University, 1100 Euclid Ave, Cleveland, OH 44118, USA
| | - Michael Root
- Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia PA, 19107, USA
| | - Scott F Sieg
- Department of Medicine, Case Western Reserve University, 1100 Euclid Ave, Cleveland, OH 44118, USA
| |
Collapse
|
143
|
Moscicki AB. Vaginal microbicides: where are we and where are we going? J Infect Chemother 2008; 14:337-41. [PMID: 18936885 DOI: 10.1007/s10156-008-0630-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Indexed: 10/21/2022]
Abstract
The epidemic of HIV has catalyzed the need for safe and effective prevention methods, particularly for women. Vaginal microbicides have been targeted because these methods can be controlled by women themselves. Microbicides have focused on preventing HIV as well as other sexually transmitted infections, because the acquisition of HIV is enhanced by the presence of many infections. Although many products show promise in preclinical trials, safety remains paramount. The importance of safety was exemplified by the nonoxynol-9 studies which showed actual harm. This experience catalyzed the development of criteria that should be used as safety standards in trials, including immune markers of the cervical epithelium, and colposcopy standards. Unfortunately, immune markers are in their infant stages of development and reliability and validity checks remain large challenges. There have been four recent phase IIb/III trials that had disappointing results. However, these trials offer an opportunity to develop new preclinical models and biomarkers. The search for new microbicides remains critical. Current microbicides in trials can be categorized into vaginal defense enhancers (which help maintain the vaginal pH or facilitate the colonization of vaginal lactobacilli); surfactants (or detergents) which disrupt viral membranes; HIV entry inhibitors; and HIV reverse transcriptase inhibitors. Even with a good product, acceptance by both partners will be essential for its success, and lack of acceptance is often not evident until large trials are completed.
Collapse
Affiliation(s)
- Anna-Barbara Moscicki
- Division of Adolescent Medicine, Department of Pediatrics, University of California San Francisco, 3333 California Street, Suite 245, San Francisco, CA 94118, USA.
| |
Collapse
|
144
|
RAG2-/- gamma(c)-/- mice transplanted with CD34+ cells from human cord blood show low levels of intestinal engraftment and are resistant to rectal transmission of human immunodeficiency virus. J Virol 2008; 82:12145-53. [PMID: 18842716 DOI: 10.1128/jvi.01105-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rectal transmission is one of the main routes of infection by human immunodeficiency virus type 1 (HIV-1). To efficiently study transmission mechanisms and prevention strategies, a small animal model permissive for rectal transmission of HIV is mandatory. We tested the susceptibility of RAG2(-/-)gamma(c)(-/-) mice transplanted with human cord blood hematopoietic stem cells to rectal infection with HIV. We rectally exposed these humanized mice to cell-free and cell-associated HIV. All mice remained HIV negative as assessed by plasma viral load. The same mice infected intraperitoneally showed high levels of HIV replication. In the gut-associated lymphatic tissue, we found disproportionately smaller numbers of human cells than in other lymphoid organs. This finding may explain the observed resistance to rectal transmission of HIV. To increase the numbers of local HIV target cells and the likelihood of HIV transmission, we treated mice with different proinflammatory stimuli: local application of interleukin-1beta, addition of seminal plasma to the inoculum, or induction of colitis with dextran sodium sulfate. These procedures attracted some human leukocytes, but the transmission rate was still very low. The humanized mice showed low levels of human engraftment in the intestinal tract and seem to be resistant to rectal transmission of HIV, and thus they are an unsuitable model for this application.
Collapse
|
145
|
Tropism-independent protection of macaques against vaginal transmission of three SHIVs by the HIV-1 fusion inhibitor T-1249. Proc Natl Acad Sci U S A 2008; 105:10531-6. [PMID: 18647836 DOI: 10.1073/pnas.0802666105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have assessed the potential of the fusion inhibitory peptide T-1249 for development as a vaginal microbicide to prevent HIV-1 sexual transmission. When formulated as a simple gel, T-1249 provided dose-dependent protection to macaques against high-dose challenge with three different SHIVs that used either CCR5 or CXCR4 for infection (the R5 virus SHIV-162P3, the X4 virus SHIV-KU1 and the R5X4 virus SHIV-89.6P), and it also protected against SIVmac251 (R5). Protection of half of the test animals was estimated by interpolation to occur at T-1249 concentrations of approximately 40-130 muM, whereas complete protection was observed at 0.1-2 mM. In vitro, T-1249 had substantial breadth of activity against HIV-1 strains from multiple genetic subtypes and in a coreceptor-independent manner. Thus, at 1 muM in a peripheral blood mononuclear cell-based replication assay, T-1249 inhibited all 29 R5 viruses, all 12 X4 viruses and all 7 R5X4 viruses in the test panel, irrespective of their genetic subtype. Combining lower concentrations of T-1249 with other entry inhibitors (CMPD-167, BMS-C, or AMD3465) increased the proportion of test viruses that could be blocked. In the PhenoSense assay, T-1249 was active against 636 different HIV-1 Env-pseudotyped viruses of varying tropism and derived from clinical samples, with IC(50) values typically clustered in a 10-fold range approximately 10 nM. Overall, these results support the concept of using T-1249 as a component of an entry inhibitor-based combination microbicide to prevent the sexual transmission of diverse HIV-1 variants.
Collapse
|
146
|
Preferential cytolysis of peripheral memory CD4+ T cells by in vitro X4-tropic human immunodeficiency virus type 1 infection before the completion of reverse transcription. J Virol 2008; 82:9154-63. [PMID: 18596085 DOI: 10.1128/jvi.00773-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CD4+ T-cell depletion is the hallmark of AIDS pathogenesis. Multiple mechanisms may contribute to the death of productively infected CD4+ T cells and innocent-bystander cells. In this study, we characterize a novel mechanism in which human immunodeficiency virus type 1 (HIV-1) infection preferentially depletes peripheral memory CD4+ T cells before the completion of reverse transcription. Using a recombinant HIV-1 carrying the green fluorescent protein reporter gene, we demonstrate that memory CD4+ T cells were susceptible to infection-induced cell death at a low multiplicity of infection. Infected memory CD4+ T cells underwent rapid necrotic cell death. Killing of host cells was dependent on X4 envelope-mediated viral fusion, but not on virion-associated Vpr or Nef. In contrast to peripheral resting CD4+ T cells, CD4+ T cells stimulated by mitogen or certain cytokines were resistant to HIV-1-induced early cell death. These results demonstrate that early steps in HIV-1 infection have a detrimental effect on certain subsets of CD4+ T cells. The early cell death may serve as a selective disadvantage for X4-tropic HIV-1 in acute infection but may play a role in accelerated disease progression, which is associated with the emergence of X4-tropic HIV-1 in the late stage of AIDS.
Collapse
|
147
|
Virological consequences of early events following cell-cell contact between human immunodeficiency virus type 1-infected and uninfected CD4+ cells. J Virol 2008; 82:7773-89. [PMID: 18508887 DOI: 10.1128/jvi.00695-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-infected cells transmit viral products to uninfected CD4(+) cells very rapidly. However, the natures of the transmitted viral products and the mechanism of transmission, as well as the relative virological consequences, have not yet been fully clarified. We studied the virological events occurring a few hours after contact between HIV-1-infected and uninfected CD4(+) cells using a coculture cell system in which the virus expression in target cells could be monitored through the induction of a green fluorescent protein reporter gene driven by HIV-1 long terminal repeats. Within 16 h of coculture, we observed two phenomena not related to the cell-free virus infection, i.e., the formation of donor-target cell fusions and a fusion-independent internalization of viral particles likely occurring at least in part through intercellular connections. Both events depended on the expression of Env and CD4 in donor and target cells, respectively, whereas the HIV-1 internalization required clathrin activity in target cells. Importantly, both phenomena were also observed in cocultures of primary CD4(+) lymphocytes, while primary macrophages supported only HIV-1 endocytosis. By investigating the virological consequences of these events, we noticed that while fused cells released infectious HIV-1 particles, albeit with reduced efficiency compared with donor cells, no virus expression was detectable upon HIV-1 endocytosis in target cells. In sum, the HIV-1 transmission following contact between an HIV-1-infected and an uninfected CD4(+) cell can occur through different mechanisms, leading to distinguishable virological outcomes.
Collapse
|
148
|
Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A 2008; 105:7552-7. [PMID: 18490657 DOI: 10.1073/pnas.0802203105] [Citation(s) in RCA: 1474] [Impact Index Per Article: 92.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection. Viral env genes evolving from individual transmitted or founder viruses generally exhibited a Poisson distribution of mutations and star-like phylogeny, which coalesced to an inferred consensus sequence at or near the estimated time of virus transmission. Overall, 78 of 102 subjects had evidence of productive clinical infection by a single virus, and 24 others had evidence of productive clinical infection by a minimum of two to five viruses. Phenotypic analysis of transmitted or early founder Envs revealed a consistent pattern of CCR5 dependence, masking of coreceptor binding regions, and equivalent or modestly enhanced resistance to the fusion inhibitor T1249 and broadly neutralizing antibodies compared with Envs from chronically infected subjects. Low multiplicity infection and limited viral evolution preceding peak viremia suggest a finite window of potential vulnerability of HIV-1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.
Collapse
|
149
|
Haynes BF, Shattock RJ. Critical issues in mucosal immunity for HIV-1 vaccine development. J Allergy Clin Immunol 2008; 122:3-9; quiz 10-1. [PMID: 18468671 DOI: 10.1016/j.jaci.2008.03.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 01/08/2023]
Abstract
Development of a safe and effective vaccine for HIV-1 infection is a critical global priority. However, the nature of host-virus interactions that lead to early immunosuppression and CD4 depletion, HIV-1 diversity, and the inability of the immune system to eliminate the latently infected CD4 pool of cells has to date thwarted successful vaccine development. Moreover, both the initial antibody-inducing vaccine (protein envelope gp120) and cell-mediated vaccine (recombinant adenovirus containing HIV-1 genes) strategies have failed in efficacy trials, and the latter cell-mediated vaccine appeared to have caused enhanced HIV-1 acquisition. Thus basic and translational research to understand why current vaccines have failed and elucidation of new mechanisms of virus control at mucosal surfaces is essential for eventual successful development of a preventive HIV-1 vaccine.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| | | |
Collapse
|
150
|
Giacaman RA, Asrani AC, Gebhard KH, Dietrich EA, Vacharaksa A, Ross KF, Herzberg MC. Porphyromonas gingivalis induces CCR5-dependent transfer of infectious HIV-1 from oral keratinocytes to permissive cells. Retrovirology 2008; 5:29. [PMID: 18371227 PMCID: PMC2292744 DOI: 10.1186/1742-4690-5-29] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 03/27/2008] [Indexed: 01/14/2023] Open
Abstract
Background Systemic infection with HIV occurs infrequently through the oral route. The frequency of occurrence may be increased by concomitant bacterial infection of the oral tissues, since co-infection and inflammation of some cell types increases HIV-1 replication. A putative periodontal pathogen, Porphyromonas gingivalis selectively up-regulates expression of the HIV-1 coreceptor CCR5 on oral keratinocytes. We, therefore, hypothesized that P. gingivalis modulates the outcome of HIV infection in oral epithelial cells. Results Oral and tonsil epithelial cells were pre-incubated with P. gingivalis, and inoculated with either an X4- or R5-type HIV-1. Between 6 and 48 hours post-inoculation, P. gingivalis selectively increased the infectivity of R5-tropic HIV-1 from oral and tonsil keratinocytes; infectivity of X4-tropic HIV-1 remained unchanged. Oral keratinocytes appeared to harbor infectious HIV-1, with no evidence of productive infection. HIV-1 was harbored at highest levels during the first 6 hours after HIV exposure and decreased to barely detectable levels at 48 hours. HIV did not appear to co-localize with P. gingivalis, which increased selective R5-tropic HIV-1 trans infection from keratinocytes to permissive cells. When CCR5 was selectively blocked, HIV-1 trans infection was reduced. Conclusion P. gingivalis up-regulation of CCR5 increases trans infection of harbored R5-tropic HIV-1 from oral keratinocytes to permissive cells. Oral infections such as periodontitis may, therefore, increase risk for oral infection and dissemination of R5-tropic HIV-1.
Collapse
Affiliation(s)
- Rodrigo A Giacaman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|