101
|
Malhotra S, Hayes D, Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev 2019; 32:e00138-18. [PMID: 31142499 PMCID: PMC6589863 DOI: 10.1128/cmr.00138-18] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In human pathophysiology, the clash between microbial infection and host immunity contributes to multiple diseases. Cystic fibrosis (CF) is a classical example of this phenomenon, wherein a dysfunctional, hyperinflammatory immune response combined with chronic pulmonary infections wreak havoc upon the airway, leading to a disease course of substantial morbidity and shortened life span. Pseudomonas aeruginosa is an opportunistic pathogen that commonly infects the CF lung, promoting an accelerated decline of pulmonary function. Importantly, P. aeruginosa exhibits significant resistance to innate immune effectors and to antibiotics, in part, by expressing specific virulence factors (e.g., antioxidants and exopolysaccharides) and by acquiring adaptive mutations during chronic infection. In an effort to review our current understanding of the host-pathogen interface driving CF pulmonary disease, we discuss (i) the progression of disease within the primitive CF lung, specifically focusing on the role of host versus bacterial factors; (ii) critical, neutrophil-derived innate immune effectors that are implicated in CF pulmonary disease, including reactive oxygen species (ROS) and antimicrobial peptides (e.g., LL-37); (iii) P. aeruginosa virulence factors and adaptive mutations that enable evasion of the host response; and (iv) ongoing work examining the distribution and colocalization of host and bacterial factors within distinct anatomical niches of the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel J Wozniak
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
102
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
103
|
The Response of nor and nos Contributes to Staphylococcus aureus Virulence and Metabolism. J Bacteriol 2019; 201:JB.00107-19. [PMID: 30782631 DOI: 10.1128/jb.00107-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus causes a wide spectrum of disease, with the site and severity of infection dependent on virulence traits encoded within genetically distinct clonal complexes (CCs) and bacterial responses to host innate immunity. The production of nitric oxide (NO) by activated phagocytes is a major host response to which S. aureus metabolically adapts through multiple strategies that are conserved in all CCs, including an S. aureus nitric oxide synthase (Nos). Previous genome analysis of CC30, a lineage associated with chronic endocardial and osteoarticular infections, revealed a putative NO reductase (Nor) not found in other CCs that potentially contributes to NO resistance and clinical outcome. Here, we demonstrate that Nor has true nitric oxide reductase activity, with nor expression enhanced by NO stress and anaerobic growth. Furthermore, we demonstrate that nor is regulated by MgrA and SrrAB, which modulate S. aureus virulence and hypoxic response. Transcriptome analysis of the S. aureus UAMS-1, UAMS-1 Δnor, and UAMS-1 Δnos strains under NO stress and anaerobic growth demonstrates that Nor contributes to nucleotide metabolism and Nos to glycolysis. We demonstrate that Nor and Nos contribute to enhanced survival in the presence of human human polymorphonuclear cells and have organ-specific seeding in a tail vein infection model. Nor contributes to abscess formation in an osteological implant model. We also demonstrate that Nor has a role in S. aureus metabolism and virulence. The regulation overlap between Nor and Nos points to an intriguing link between regulation of intracellular NO, metabolic adaptation, and persistence in the CC30 lineage.IMPORTANCE Staphylococcus aureus can cause disease at most body sites, and illness spans asymptomatic infection to death. The variety of clinical presentations is due to the diversity of strains, which are grouped into distinct clonal complexes (CCs) based on genetic differences. The ability of S. aureus CC30 to cause chronic infections relies on its ability to evade the oxidative/nitrosative defenses of the immune system and survive under different environmental conditions, including differences in oxygen and nitric oxide concentrations. The significance of this work is the exploration of unique genes involved in resisting NO stress and anoxia. A better understanding of the functions that control the response of S. aureus CC30 to NO and oxygen will guide the treatment of severe disease presentations.
Collapse
|
104
|
Pal R, Hameed S, Kumar P, Singh S, Fatima Z. Understanding lipidomic basis of iron limitation induced chemosensitization of drug-resistant Mycobacterium tuberculosis. 3 Biotech 2019; 9:122. [PMID: 30863701 PMCID: PMC6401079 DOI: 10.1007/s13205-019-1645-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023] Open
Abstract
Under limited micronutrients condition, Mycobacterium tuberculosis (MTB) has to struggle for acquisition of the limited micronutrients available in the host. One such crucial micronutrient that MTB requires for the growth and sustenance is iron. The present study aimed to sequester the iron supply of MTB to control drug resistance in MTB. We found that iron restriction renders hypersensitivity to multidrug-resistant MTB strains against first-line anti-TB drugs. To decipher the effect of iron restriction on possible mechanisms of chemosensitization and altered cellular circuitry governing drug resistance and virulence of MTB, we explored MTB cellular architecture. We could identify non-intact cell envelope, tampered MTB morphology and diminished mycolic acid under iron restricted MDR-MTB cells. Deeper exploration unraveled altered lipidome profile observed through conventional TLC and advanced mass spectrometry-based LC-ESI-MS techniques. Lipidome analysis not only depicted profound alterations of various lipid classes which are crucial for pathogenecity but also exposed leads such as indispensability of iron to sustain metabolic, genotoxic and oxidative stresses. Furthermore, iron deprivation led to inhibited biofilm formation and capacity of MTB to adhere buccal epithelial cells. Lastly, we demonstrated enhanced survival of Mycobacterium-infected Caenorhabditis elegans model under iron limitation. The present study offers evidence and proposes alteration of lipidome profile and affected virulence traits upon iron chelation. Taken together, iron deprivation could be a potential strategy to rescue MDR and enhance the effectiveness of existing anti-TB drugs.
Collapse
Affiliation(s)
- Rahul Pal
- 0000 0004 1805 0217grid.444644.2Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| | - Saif Hameed
- 0000 0004 1805 0217grid.444644.2Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| | - Parveen Kumar
- 0000 0004 1767 6103grid.413618.9Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sarman Singh
- 0000 0004 1767 6103grid.413618.9Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Zeeshan Fatima
- 0000 0004 1805 0217grid.444644.2Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| |
Collapse
|
105
|
Enhanced engineered ZnO nanostructures and their antibacterial activity against urinary, gastrointestinal, respiratory and dermal genital infections. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-00996-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
106
|
Chen B, Yang Z, Pan J, Ren Y, Wu H, Wei C. Functional identification behind gravity-separated sludge in high concentration organic coking wastewater: Microbial aggregation, apoptosis-like decay and community. WATER RESEARCH 2019; 150:120-128. [PMID: 30508709 DOI: 10.1016/j.watres.2018.11.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Functional identification and elimination of activity-decayed sludge are helpful for improving the performance of biological treatment process. However, cell decay-associated changes in biological functions have not been explored for gravity-separated sludge. In this work, sludge flocs from the aerobic basin of a wastewater treatment plant treating high-concentration organic coking wastewater was fractionated according to settling velocity, i.e. sludge F (fast settling), sludge M (moderate settling) and sludge S (slow settling). Sludge volume index (SVI), mean floc size, dehydrogenase activity, specific oxygen uptake rate (SOUR), extracellular polymeric substances (EPS) content and aggregation interaction were investigated in the fractionated sludges. Apoptosis-like decayed cell distribution (ALDCD), a novel property of sludge, was proposed to describe sludge decay based on cell membrane variation. ALDCD of sludge F was 6.64% and 13.5% lower than sludge M and S, respectively. Microbial community and functional prediction revealed that sludge F exhibited the highest microbial potential for organic removal and sludge M had the highest potential for nitrogen metabolism while sludge S had the lowest potential for both. Our analysis suggests that the treatment efficiency might be enhanced by retaining compact sludge flocs while eliminating dispersive sludge flocs. This study also facilitates the identification and elimination of functional microbial groups from decayed sludge in wastewater treatment.
Collapse
Affiliation(s)
- Ben Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhao Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Jianxin Pan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
107
|
Wadhawan S, Gautam S. Rescue of Escherichia coli cells from UV-induced death and filamentation by caspase-3 inhibitor. Int Microbiol 2019; 22:369-376. [DOI: 10.1007/s10123-019-00060-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 12/25/2022]
|
108
|
Lee H, Lee DG. SOS genes contribute to Bac8c induced apoptosis-like death in Escherichia coli. Biochimie 2019; 157:195-203. [DOI: 10.1016/j.biochi.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
|
109
|
Bai YM, Mao J, Li DX, Luo XJ, Chen J, Tay FR, Niu LN. Bimodal antibacterial system based on quaternary ammonium silane-coupled core-shell hollow mesoporous silica. Acta Biomater 2019; 85:229-240. [PMID: 30593887 DOI: 10.1016/j.actbio.2018.12.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Hollow mesoporous silica (HMS) have been extensively investigated as a biomaterial for drug delivery. The present study developed quaternary ammonium silane-grafted hollow mesoporous silica (QHMS) to create a metronidazole (MDZ) sustained delivery system, MDZ@QHMS, with bimodal, contact-kill and release-kill capability. The QHMS was assembled through a self-templating method. Metronidazole was incorporated within the QHMS core using solvent evaporation. Antibacterial activities of the MDZ@QHMS were investigated using single-species biofilms of Staphylococcus aureus (ATCC25923), Escherichia coli (ATCC25922) and Porphyromonas gingivalis (ATCC33277). The MDZ@QHMS maintained a hollow mesoporous structure and demonstrated sustained drug release and bacteridal actvity against the three bacterial strains at a concentration of 100 μg/mL or above. These nanoparticles were not relatively cytotoxic to human gingival fibroblasts when employed below 100 µg/mL. Compared with HMS, the MDZ@QHMS system at the same concentration demonstrated antibiotic-elution and contact-killing bimodal antibacterial activities. The synthesized drug carrier with sustained, bimodal antibacterial function and minimal cytotoxicity possesses potential for localized antibiotic applications. STATEMENT OF SIGNIFICANCE: The present study develops quaternary ammonium silane-grafted hollow mesoporous silica (QHMS) to create a metronidazole (MDZ) sustained delivery system, MDZ@QHMS, with bimodal, contact-kill and release-kill capability. This system demonstrates sustained drug release and maintained a hollow mesoporous structure. The synthesized drug carrier with sustained, bimodal antibacterial function and excellent biocompatibility possesses potential for localized antibiotic applications.
Collapse
|
110
|
Spungin D, Bidle KD, Berman-Frank I. Metacaspase involvement in programmed cell death of the marine cyanobacteriumTrichodesmium. Environ Microbiol 2019; 21:667-681. [DOI: 10.1111/1462-2920.14512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Dina Spungin
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan, 5290002 Israel
| | - Kay D. Bidle
- Department of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| | - Ilana Berman-Frank
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan, 5290002 Israel
- Department of Marine Biology; Leon H. Charney School of Marine Sciences, University of Haifa; Haifa Israel
| |
Collapse
|
111
|
Physiological, Genetic, and Transcriptomic Analysis of Alcohol-Induced Delay of Escherichia coli Death. Appl Environ Microbiol 2019; 85:AEM.02113-18. [PMID: 30389772 DOI: 10.1128/aem.02113-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/27/2018] [Indexed: 11/20/2022] Open
Abstract
When Escherichia coli K-12 is inoculated into rich medium in batch culture, cells experience five phases. While the lag and logarithmic phases are mechanistically fairly well defined, the stationary phase, death phase, and long-term stationary phase are less well understood. Here, we characterize a mechanism of delaying death, a phenomenon we call the "alcohol effect," where the addition of small amounts of certain alcohols prolongs stationary phase for at least 10 days longer than in untreated conditions. We show that the stationary phase is extended when ethanol is added above a minimum threshold concentration. Once ethanol levels fall below a threshold concentration, cells enter the death phase. We also show that the effect is conferred by the addition of straight-chain alcohols 1-propanol, 1-butanol, 1-pentanol, and, to a lesser degree, 1-hexanol. However, methanol, isopropanol, 1-heptanol, and 1-octanol do not delay entry into death phase. Though modulated by RpoS, the alcohol effect does not require RpoS activity or the activities of the AdhE or AdhP alcohol dehydrogenases. Further, we show that ethanol is capable of extending the life span of stationary-phase cultures for non-K-12 E. coli strains and that this effect is caused in part by genes of the glycolate degradation pathway. These data suggest a model where ethanol and other shorter 1-alcohols can serve as signaling molecules, perhaps by modulating patterns of gene expression that normally regulate the transition from stationary phase to death phase.IMPORTANCE In one of the most well-studied organisms in the life sciences, Escherichia coli, we still do not fully understand what causes populations to die. This is largely due to the technological difficulties of studying bacterial cell death. This study provides an avenue to studying how and why E. coli populations, and perhaps other microbes, transition from stationary phase to death phase by exploring how ethanol and other alcohols delay the onset of death. Here, we demonstrate that alcohols are acting as signaling molecules to achieve the delay in death phase. This study not only offers a better understanding of a fundamental process but perhaps also provides a gateway to studying the dynamics between ethanol and microbes in the human gastrointestinal tract.
Collapse
|
112
|
Liu Y, Song M, Ding S, Zhu K. Discovery of Linear Low-Cationic Peptides to Target Methicillin-Resistant Staphylococcus aureus in Vivo. ACS Infect Dis 2019; 5:123-130. [PMID: 30372023 DOI: 10.1021/acsinfecdis.8b00230] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development and rapid spread of multidrug resistant (MDR) bacteria cause severe public crises. New antibacterial compounds are urgently needed to treat bacterial infections. By circumventing the disadvantages of cationic peptides here, we engineered a short, linear, low-cationic peptide bacaucin-1a, which exhibited remarkable antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Bacaucin-1a was efficient in the prevention of MRSA associated infections in both in vitro and in vivo models with a unique mode of action. The discovery of low-cationic antibiotic candidates will extend our antibiotic pipeline in the fight against antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Yuan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
| | - Meirong Song
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, China 100193
| |
Collapse
|
113
|
Kim HM, Waters A, Turner ME, Rice KC, Ahn SJ. Regulation of cid and lrg expression by CcpA in Streptococcus mutans. MICROBIOLOGY (READING, ENGLAND) 2019; 165:113-123. [PMID: 30475201 PMCID: PMC6600348 DOI: 10.1099/mic.0.000744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Abstract
The Streptococcus mutans Cid/Lrg system represents an ideal model for studying this organism's ability to withstand various stressors encountered in the oral cavity. The lrg and cid operons display distinct and opposite patterns of expression in response to growth phase and glucose levels, suggesting that the activity and regulation of these proteins must be tightly coordinated in the cell and closely associated with metabolic pathways of the organism. Here, we demonstrate that expression of the cid and lrg operons is directly mediated by a global transcriptional regulator CcpA in response to glucose levels. Comparison of the cid and lrg promoter regions with the conserved CcpA binding motif revealed the presence of two potential cre sites (for CcpA binding) in the cid promoter (designated cid-cre1 and cid-cre2), which were arranged in a similar manner to those previously identified in the lrg promoter region (designated lrg-cre1 and lrg-cre2). We demonstrated that CcpA binds to both the cid and lrg promoters with a high affinity, but has an opposing glucose-dependent effect on the regulation of cid (positive) and lrg (negative) expression. DNase I footprinting analyses revealed potential binding sequences for CcpA in both cid and lrg promoter regions. Collectively, these data suggest that CcpA is a direct regulator of cid and lrg expression, and are suggestive of a potential mechanism by which Cid/Lrg-mediated virulence and cellular homeostasis is integrated with signals associated with both the environment and cellular metabolic status.
Collapse
Affiliation(s)
- Hey-Min Kim
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Anthony Waters
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Matthew E. Turner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Kelly C. Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
114
|
Smolková B, Uzhytchak M, Lynnyk A, Kubinová Š, Dejneka A, Lunov O. A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers. J Funct Biomater 2018; 10:jfb10010002. [PMID: 30586923 PMCID: PMC6463085 DOI: 10.3390/jfb10010002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Physics-based biomedical approaches have proved their importance for the advancement of medical sciences and especially in medical diagnostics and treatments. Thus, the expectations regarding development of novel promising physics-based technologies and tools are very high. This review describes the latest research advances in biomedical applications of external physical cues. We overview three distinct topics: using high-gradient magnetic fields in nanoparticle-mediated cell responses; non-thermal plasma as a novel bactericidal agent; highlights in understanding of cellular mechanisms of laser irradiation. Furthermore, we summarize the progress, challenges and opportunities in those directions. We also discuss some of the fundamental physical principles involved in the application of each cue. Considerable technological success has been achieved in those fields. However, for the successful clinical translation we have to understand the limitations of technologies. Importantly, we identify the misconceptions pervasive in the discussed fields.
Collapse
Affiliation(s)
- Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
115
|
Batista de Andrade Neto J, Alexandre Josino MA, Rocha da Silva C, de Sousa Campos R, Aires do Nascimento FBS, Sampaio LS, Gurgel do Amaral Valente Sá L, de Sá Carneiro I, Dias Barroso FD, Juvêncio da Silva L, Lima de Mesquita JR, Cavalcanti BC, Odorico de Moraes M, Nobre Júnior HV. A mechanistic approach to the in-vitro resistance modulating effects of fluoxetine against meticillin resistant Staphylococcus aureus strains. Microb Pathog 2018; 127:335-340. [PMID: 30529514 DOI: 10.1016/j.micpath.2018.11.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/25/2022]
Abstract
Emergence of methicilin resistant Staphylococcus aureus (MRSA) strains is a major cause of infirmity worldwide and has limited our therapeutic options against these pathogens. In this regard, the search for candidates with an antimicrobial activity, with a greater efficacy and a lower toxicity, is necessary. As a result, there is greater need to search for resistance modifying agents which, in combination with existing drugs, will restore the efficacy of these drugs. The antibacterial effect of fluoxetine was determined by a broth microdilution method (the M07-A9 method of the Clinical and Laboratory Standard Institute) and flow cytometry techniques in which the probable mechanism of action of the compound was also assessed. The isolates used in the study belonged to the Laboratory of Bioprospecting of Antimicrobial Molecules (LABIMAN) of the Federal University of Ceará. After 24 h, Methicillin-resistant Sthaphylococcus aureus (MRSA) strains showed fluoxetine MICs equal to 64 μg/mL and 128 μg/mL, respectively. Cytometric analysis showed that treatment with fluoxetine caused alterations to the integrity of the plasma membranes and DNA damage, which led to cell death, probably by apoptosis.
Collapse
Affiliation(s)
- João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Maria Aparecida Alexandre Josino
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Rosana de Sousa Campos
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | - Letícia Serpa Sampaio
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Igor de Sá Carneiro
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Fátima Daiana Dias Barroso
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Bruno Coelho Cavalcanti
- Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil.
| |
Collapse
|
116
|
Yun J, Lee DG. Bactericidal action of Tat (47-58) peptide via attenuation of cell defense systems. Int J Biochem Cell Biol 2018; 105:78-83. [DOI: 10.1016/j.biocel.2018.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 12/25/2022]
|
117
|
Reffuveille F, Josse J, Velard F, Lamret F, Varin-Simon J, Dubus M, Haney EF, Hancock REW, Mongaret C, Gangloff SC. Bone Environment Influences Irreversible Adhesion of a Methicillin-Susceptible Staphylococcus aureus Strain. Front Microbiol 2018; 9:2865. [PMID: 30538688 PMCID: PMC6277558 DOI: 10.3389/fmicb.2018.02865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022] Open
Abstract
Prosthesis and joint infections are an important threat in public health, especially due to the development of bacterial biofilms and their high resistance to antimicrobials. Biofilm-associated infections increase mortality and morbidity rates as well as hospitalization costs. Prevention is the best strategy for this serious issue, so there is an urgent need to understand the signals that could induce irreversible bacterial adhesion on a prosthesis. In this context, we investigated the influence of the bone environment on surface adhesion by a methicillin-susceptible Staphylococcus aureus strain. Using static and dynamic biofilm models, we tested various bone environment factors and showed that the presence of Mg2+, lack of oxygen, and starvation each increased bacterial adhesion. It was observed that human osteoblast-like cell culture supernatants, which contain secreted components that would be found in the bone environment, increased bacterial adhesion capacity by 2-fold (p = 0.015) compared to the medium control. Moreover, supernatants from osteoblast-like cells stimulated with TNF-α to mimic inflammatory conditions increased bacterial adhesion by almost 5-fold (p = 0.003) without impacting on the overall biomass. Interestingly, the effect of osteoblast-like cell supernatants on bacterial adhesion could be counteracted by the activity of synthetic antibiofilm peptides. Overall, the results of this study demonstrate that factors within the bone environment and products of osteoblast-like cells directly influence S. aureus adhesion and could contribute to biofilm initiation on bone and/or prosthetics implants.
Collapse
Affiliation(s)
- Fany Reffuveille
- EA 4691 Biomaterials and Inflammation in Bone Site (BIOS), SFR Cap Santé (FED 4231), University of Reims-Champagne-Ardenne, Reims, France
| | - Jérôme Josse
- EA 4691 Biomaterials and Inflammation in Bone Site (BIOS), SFR Cap Santé (FED 4231), University of Reims-Champagne-Ardenne, Reims, France.,CIRI, INSERM U1111 - CNRS UMR5308 - ENS Lyon, Team "Staphylococcal Pathogenesis", Lyon 1 University, Lyon, France
| | - Frédéric Velard
- EA 4691 Biomaterials and Inflammation in Bone Site (BIOS), SFR Cap Santé (FED 4231), University of Reims-Champagne-Ardenne, Reims, France
| | - Fabien Lamret
- EA 4691 Biomaterials and Inflammation in Bone Site (BIOS), SFR Cap Santé (FED 4231), University of Reims-Champagne-Ardenne, Reims, France
| | - Jennifer Varin-Simon
- EA 4691 Biomaterials and Inflammation in Bone Site (BIOS), SFR Cap Santé (FED 4231), University of Reims-Champagne-Ardenne, Reims, France
| | - Marie Dubus
- EA 4691 Biomaterials and Inflammation in Bone Site (BIOS), SFR Cap Santé (FED 4231), University of Reims-Champagne-Ardenne, Reims, France
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Céline Mongaret
- EA 4691 Biomaterials and Inflammation in Bone Site (BIOS), SFR Cap Santé (FED 4231), University of Reims-Champagne-Ardenne, Reims, France.,Pharmacy Department, University Hospital of Reims, Reims, France
| | - Sophie C Gangloff
- EA 4691 Biomaterials and Inflammation in Bone Site (BIOS), SFR Cap Santé (FED 4231), University of Reims-Champagne-Ardenne, Reims, France
| |
Collapse
|
118
|
|
119
|
Meirelles LA, Newman DK. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol Microbiol 2018; 110:995-1010. [PMID: 30230061 DOI: 10.1111/mmi.14132] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, produces redox-active pigments called phenazines. Pyocyanin (PYO, the blue phenazine) plays an important role during biofilm development. Paradoxically, PYO auto-poisoning can stimulate cell death and release of extracellular DNA (eDNA), yet PYO can also promote survival within biofilms when cells are oxidant-limited. Here, we identify the environmental and physiological conditions in planktonic culture that promote PYO-mediated cell death. We demonstrate that PYO auto-poisoning is enhanced when cells are starved for carbon. In the presence of PYO, cells activate a set of genes involved in energy-dependent defenses, including: (i) the oxidative stress response, (ii) RND efflux systems and (iii) iron-sulfur cluster biogenesis factors. P. aeruginosa can avoid PYO poisoning when reduced carbon is available, but blockage of adenosine triphosphate (ATP) synthesis either through carbon limitation or direct inhibition of the F0 F1 -ATP synthase triggers death and eDNA release. Finally, even though PYO is toxic to the majority of the population when cells are nutrient limited, a subset of cells is intrinsically PYO resistant. The effect of PYO on the producer population thus appears to be dynamic, playing dramatically different yet predictable roles throughout distinct stages of growth, helping rationalize its multifaceted contributions to biofilm development.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
120
|
Li J, Ma L, Liao X, Liu D, Lu X, Chen S, Ye X, Ding T. Ultrasound-Induced Escherichia coli O157:H7 Cell Death Exhibits Physical Disruption and Biochemical Apoptosis. Front Microbiol 2018; 9:2486. [PMID: 30459727 PMCID: PMC6232819 DOI: 10.3389/fmicb.2018.02486] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022] Open
Abstract
Ultrasound has attracted great interest of both industry and scientific communities for its potential use as a physical processing and preservation tool. In this study, Escherichia coli O157:H7 was selected as the model microbe to investigate the ultrasound-induced cell death. Slight variations in membrane potential and ion exchanges across membrane induced by low-intensity ultrasound increased the membrane permeability of E. coli O157:H7, and this reversible sublethal effect can preserve the viability of E. coli O157:H7 and meanwhile be beneficial for bioprocessing application. In comparison, high-intensity ultrasound resulted in irreversible lethal effect on E. coli O157:H7, which can be applied in the field of microbial inactivation. In addition, both low- and high-intensity ultrasound induced either physical destruction or trigger genetically encoded apoptosis of E. coli O157:H7. Accumulation of reactive oxygen species and decrease of adenosine tri-phosphate might be related to the physiological and biochemical hallmarks of apoptosis, including exposed phosphatidylserine and activated caspases in E. coli O157:H7. The result provides novel insight into the mechanisms of non-thermal physical treatment on the inactivation of bacteria and lays foundation for the further research on the cell signaling and metabolic pathway in apoptotic bacteria.
Collapse
Affiliation(s)
- Jiao Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Xinyu Liao
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Donghong Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Shiguo Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Tian Ding
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| |
Collapse
|
121
|
Vasilchenko AS, Gritsenko VA, Kosyan DB, Rogozhin EA. A Low-Molecular-Weight Compound Derived from Human Leukocytes Determines a Bactericidal Activity of the Interferon Preparation. Probiotics Antimicrob Proteins 2018; 11:999-1008. [PMID: 30215182 DOI: 10.1007/s12602-018-9463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to characterize the structure and mode of action of antimicrobials derived from a commercial preparation of alfa-interferon. By combination of semi-preparative/analytical reversed-phase high-performance liquid chromatography, we isolated and purified a novel active substance based on carbohydrate with a complex of amino acids, which determines antimicrobial property of commercial preparation of interferon. A size-exclusion chromatography was performed and LC/ESI-MS revealed molecular masses of active substance were in the range of 180-249 Da. Edman sequencing identified phenylthiohydantoin (PTH) derivatives which consisted a set of preliminary (Asp, Glu, Gly, and Ala) and minor amino acids (Leu and Thr) at equimolar ratio. Thus, the purified active substance is a compound containing the complex of amino acids connected with carbohydrate background and called leucidin. Leucidin demonstrated antimicrobial activity against the model Escherichia coli (E. coli) K12 strain at a minimal inhibitory concentration of 20 μg mL-1. The revealed antimicrobial mechanism of action is associated with violation of the bacterial cell wall leading to a SOS response and bacterial autolysis. Despite the preliminary nature of the results, obtained data allowed us to discover the previously unknown leukocyte-derived antimicrobial molecules.
Collapse
Affiliation(s)
- A S Vasilchenko
- Tyumen State University, Volodarsky st 6, Tyumen, Russian Federation.
| | - V A Gritsenko
- Institute of Cellular and Intracellular Symbiosis, RAS, Pionerskaya st 11, Orenburg, Russian Federation
| | - D B Kosyan
- Federal Research Centre of Biological Systems and Agro-technologies, RAS, Yanvarya st 9, Orenburg, Russia
| | - E A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, ul. Miklukho-Maklaya, 16/10, Moscow, Russian Federation.,Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow, Russian Federation
| |
Collapse
|
122
|
Tenconi E, Traxler MF, Hoebreck C, van Wezel GP, Rigali S. Production of Prodiginines Is Part of a Programmed Cell Death Process in Streptomyces coelicolor. Front Microbiol 2018; 9:1742. [PMID: 30127771 PMCID: PMC6087738 DOI: 10.3389/fmicb.2018.01742] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022] Open
Abstract
Actinobacteria are prolific producers of antitumor antibiotics with antiproliferative activity, but why these bacteria synthetize metabolites with this bioactivity has so far remained a mystery. In this work we raised the hypothesis that under certain circumstances, production of antiproliferative agents could be part of a genetically programmed death of the producing organism. While programmed cell death (PCD) has been well documented when Streptomyces species switch from vegetative (nutrition) to aerial (reproduction) growth, lethal determinants are yet to be discovered. Using DNA-damaging prodiginines of Streptomyces coelicolor as model system, we revealed that, under certain conditions, their biosynthesis is always triggered in the dying zone of the mycelial network prior to morphological differentiation, right after an initial round of cell death. The programmed massive death round of the vegetative mycelium is absent in a prodiginine non-producer (ΔredD strain), and mutant complementation restored both prodiginine production and cell death. The redD null mutant of S. coelicolor also showed increased DNA, RNA, and proteins synthesis when most of the mycelium of the wild-type strain was dead when prodiginines accumulated. Moreover, addition of the prodiginine synthesis inhibitors also resulted in enhanced accumulation of viable filaments. Overall, our data enable us to propose a model where the time-space production of prodiginines is programmed to be triggered by the perception of dead cells, and their biosynthesis further amplifies the PCD process. As prodiginine production coincides with the moment S. coelicolor undergoes morphogenesis, the production of these lethal compounds might be used to eradicate the obsolete part of the population in order to provide nutrients for development of the survivors. Hence, next to weapons in competition between organisms or signals in inter- and intra-species communications, we propose a third role for antibiotics (in the literal meaning of the word ‘against life’) i.e., elements involved in self-toxicity in order to control cell proliferation, and/or for PCD associated with developmental processes.
Collapse
Affiliation(s)
- Elodie Tenconi
- InBioS - Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Charline Hoebreck
- InBioS - Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Sébastien Rigali
- InBioS - Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| |
Collapse
|
123
|
Jakobsen V, Viganor L, Blanco-Fernández A, Howe O, Devereux M, McKenzie CJ, McKee V. Tetrameric and polymeric silver complexes of the omeprazole scaffold; synthesis, structure, in vitro and in vivo antimicrobial activities and DNA interaction. J Inorg Biochem 2018; 186:317-328. [PMID: 30025225 DOI: 10.1016/j.jinorgbio.2018.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/21/2018] [Accepted: 05/26/2018] [Indexed: 10/14/2022]
Abstract
Two complexes [AgI(pmtbH)]4 (1) and {[Ag4(pmtbH)4(NO3)4·2X}n (2) (where pmtbH is 2-[(2-pyridinylmethyl)thio]-1H-benzimidazole and X is H2O or MeOH) were synthesised and structurally characterised. Complex 2 showed therapeutic potential against Candida albicans, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa but complex 1 did not show significant activity in vitro. Further in vivo studies using larvae of the insect Galleria mellonella indicated that complex 2 significantly stimulates the immune system and that pre-treatment with the complex offers appreciable protection against all three bacteria. Real-time flow cytometry data support the observed antimicrobial profile of complex 2 and suggest the antimicrobial response may be linked to a form of bacterial programmed cell death (PCD). Complex 2 was found to interact with DNA in the bacterial and fungal cells but it did not cleave plasmid DNA isolated from the three bacteria.
Collapse
Affiliation(s)
- Vibe Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Livia Viganor
- The Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland
| | - Alfonso Blanco-Fernández
- UCD-Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Orla Howe
- The Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland
| | - Michael Devereux
- The Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Vickie McKee
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
124
|
Comment on "How the evolution of multicellularity set the stage for cancer". Br J Cancer 2018; 119:133-134. [PMID: 29755113 PMCID: PMC6035250 DOI: 10.1038/s41416-018-0091-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
|
125
|
Gupta A, Srivastava R. Zinc oxide nanoleaves: A scalable disperser-assisted sonochemical approach for synthesis and an antibacterial application. ULTRASONICS SONOCHEMISTRY 2018; 41:47-58. [PMID: 29137777 DOI: 10.1016/j.ultsonch.2017.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Current study reports a new and highly scalable method for the synthesis of novel structure Zinc oxide nanoleaves (ZnO-NLs) using disperser-assisted sonochemical approach. The synthesis was carried out in different batches from 50mL to 1L to ensure the scalability of the method which produced almost similar results. The use of high speed (9000rpm) mechanical dispersion while bath sonication (200W, 33kHz) yield 4.4g of ZnO-NLs powder in 1L batch reaction within 2h (>96% yield). The ZnO-NLs shows an excellent thermal stability even at a higher temperature (900°C) and high surface area. The high antibacterial activity of ZnO-NLs against diseases causing Gram-positive bacteria Staphylococcus aureus shows a reduction in CFU, morphological changes like eight times reduction in cell size, cell burst, and cellular leakage at 200µg/mL concentration. This study provides an efficient, cost-effective and an environmental friendly approach for the synthesis of ZnO-NLs at industrial scale as well as new technique to increase the efficiency of the existing sonochemical method. We envisage that this method can be applied to various fields where ZnO is significantly consumed like rubber manufacturing, ceramic industry and medicine.
Collapse
Affiliation(s)
- Anadi Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
126
|
Muraille E. Diversity Generator Mechanisms Are Essential Components of Biological Systems: The Two Queen Hypothesis. Front Microbiol 2018; 9:223. [PMID: 29487592 PMCID: PMC5816788 DOI: 10.3389/fmicb.2018.00223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/30/2018] [Indexed: 01/02/2023] Open
Abstract
Diversity is widely known to fuel adaptation and evolutionary processes and increase robustness at the population, species and ecosystem levels. The Neo-Darwinian paradigm proposes that the diversity of biological entities is the consequence of genetic changes arising spontaneously and randomly, without regard for their usefulness. However, a growing body of evidence demonstrates that the evolutionary process has shaped mechanisms, such as horizontal gene transfer mechanisms, meiosis and the adaptive immune system, which has resulted in the regulated generation of diversity among populations. Though their origins are unrelated, these diversity generator (DG) mechanisms share common functional properties. They (i) contribute to the great unpredictability of the composition and/or behavior of biological systems, (ii) favor robustness and collectivism among populations and (iii) operate mainly by manipulating the systems that control the interaction of living beings with their environment. The definition proposed here for DGs is based on these properties and can be used to identify them according to function. Interestingly, prokaryotic DGs appear to be mainly reactive, as they generate diversity in response to environmental stress. They are involved in the widely described Red Queen/arms race/Cairnsian dynamic. The emergence of multicellular organisms harboring K selection traits (longer reproductive life cycle and smaller population size) has led to the acquisition of a new class of DGs that act anticipatively to stress pressures and generate a distinct dynamic called the “White Queen” here. The existence of DGs leads to the view of evolution as a more “intelligent” and Lamarckian-like process. Their repeated selection during evolution could be a neglected example of convergent evolution and suggests that some parts of the evolutionary process are tightly constrained by ecological factors, such as the population size, the generation time and the intensity of selective pressure. The ubiquity of DGs also suggests that regulated auto-generation of diversity is a fundamental property of life.
Collapse
Affiliation(s)
- Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
127
|
Libby E, Driscoll WW, Ratcliff WC. Programmed cell death can increase the efficacy of microbial bet -hedging. Sci Rep 2018; 8:1120. [PMID: 29348455 PMCID: PMC5773525 DOI: 10.1038/s41598-017-18687-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/13/2017] [Indexed: 11/09/2022] Open
Abstract
Programmed cell death (PCD) occurs in both unicellular and multicellular organisms. While PCD plays a key role in the development and maintenance of multicellular organisms, explaining why single-celled organisms would evolve to actively commit suicide has been far more challenging. Here, we explore the potential for PCD to act as an accessory to microbial bet-hedging strategies that utilize stochastic phenotype switching. We consider organisms that face unpredictable and recurring disasters, in which fitness depends on effective phenotypic diversification. We show that when reproductive opportunities are limited by carrying capacity, PCD drives population turnover, providing increased opportunities for phenotypic diversification through stochastic phenotype switching. The main cost of PCD, providing resources for growth to a PCD(−) competitor, is ameliorated by genetic assortment in spatially structured populations. Using agent -based simulations, we explore how basic demographic factors, namely bottlenecks and local dispersal, can generate sufficient spatial structure to favor the evolution of high PCD rates.
Collapse
Affiliation(s)
- Eric Libby
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - William W Driscoll
- Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, MN, 55108, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
128
|
Ergene C, Yasuhara K, Palermo EF. Biomimetic antimicrobial polymers: recent advances in molecular design. Polym Chem 2018. [DOI: 10.1039/c8py00012c] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increasing prevalence of antibiotic-resistant bacterial infections, coupled with the decline in the number of new antibiotic drug approvals, has created a therapeutic gap that portends an emergent public health crisis.
Collapse
Affiliation(s)
- Cansu Ergene
- Materials Science and Engineering
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Kazuma Yasuhara
- Graduate School of Materials Science
- Nara Institute for Science and Technology
- Ikoma
- Japan
| | - Edmund F. Palermo
- Materials Science and Engineering
- Rensselaer Polytechnic Institute
- Troy
- USA
| |
Collapse
|
129
|
For the greater good: Programmed cell death in bacterial communities. Microbiol Res 2017; 207:161-169. [PMID: 29458850 DOI: 10.1016/j.micres.2017.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
For a long a time programmed cell death was thought to be a unique characteristic of higher eukaryotes, but evidence has accumulated showing that programmed cell death is a universal phenomenon in all life forms. Many different types of bacterial programmed cell death systems have been identified, rivalling the eukaryotic systems in diversity. Bacteria are singular, seemingly independently living organisms, however they are part of complex communities. Being part of a community seems indispensable for survival in different environments. This review is focussed on the mechanism of and reasons for bacterial programmed cell death in the context of bacterial communities.
Collapse
|
130
|
Effect of isoquercitrin on membrane dynamics and apoptosis-like death in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:357-363. [PMID: 29155212 DOI: 10.1016/j.bbamem.2017.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
Minimum inhibitory concentration (MIC) is defined as the lowest concentration of a compound that completely inhibits microbial growth. Antibacterial mechanisms of compounds have been investigated at their sub-MICs as well as at their MIC. In this study, the effects of sub-MIC and MIC of isoquercitrin on Escherichia coli were investigated. The antibacterial effect of isoquercitrin was tested using the microdilution method. Sub-MICs of isoquercitrin induced the production of reactive oxygen species and depletion of glutathione. The oxidative effects induced by sub-MICs of isoquercitrin could be prolonged, finally resulting in apoptosis-like death. DNA fragmentation and phosphatidylserine externalization, which are regarded as the hallmarks of apoptosis, were evaluated using the TUNEL assay and Annexin V staining, respectively. Furthermore, isoquercitrin induced the peroxidation of membrane lipids and inner membrane permeabilization at both its sub-MIC and MIC. This suggested membrane damage in response to lipid oxidation. The uptake of membrane impermeable dyes, propidium iodide and calcein, demonstrated that isoquercitrin damaged the cell membrane at concentrations higher than its MIC. Thus, isoquercitrin induced apoptosis-like death and dysregulation of cell membrane dynamics.
Collapse
|
131
|
Ghosh P, Levine H. Morphodynamics of a growing microbial colony driven by cell death. Phys Rev E 2017; 96:052404. [PMID: 29347664 DOI: 10.1103/physreve.96.052404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 06/07/2023]
Abstract
Bacterial cells can often self-organize into multicellular structures with complex spatiotemporal morphology. In this work, we study the spatiotemporal dynamics of a growing microbial colony in the presence of cell death. We present an individual-based model of nonmotile bacterial cells which grow and proliferate by consuming diffusing nutrients on a semisolid two-dimensional surface. The colony spreads by growth forces and sliding motility of cells and undergoes cell death followed by subsequent disintegration of the dead cells in the medium. We model cell death by considering two possible situations: In one of the cases, cell death occurs in response to the limitation of local nutrients, while the other case corresponds to an active death process, known as apoptotic or programmed cell death. We demonstrate how the colony morphology is influenced by the presence of cell death. Our results show that cell death facilitates transitions from roughly circular to highly branched structures at the periphery of an expanding colony. Interestingly, our results also reveal that for the colonies which are growing in higher initial nutrient concentrations, cell death occurs much earlier compared to the colonies which are growing in lower initial nutrient concentrations. This work provides new insights into the branched patterning of growing bacterial colonies as a consequence of complex interplay among the biochemical and mechanical effects.
Collapse
Affiliation(s)
- Pushpita Ghosh
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Texas 77005, USA
- Department of Bioengineering, Rice University, Texas 77005, USA
| |
Collapse
|
132
|
Granzyme B Disrupts Central Metabolism and Protein Synthesis in Bacteria to Promote an Immune Cell Death Program. Cell 2017; 171:1125-1137.e11. [PMID: 29107333 DOI: 10.1016/j.cell.2017.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/23/2017] [Accepted: 09/30/2017] [Indexed: 01/17/2023]
Abstract
Human cytotoxic lymphocytes kill intracellular microbes. The cytotoxic granule granzyme proteases released by cytotoxic lymphocytes trigger oxidative bacterial death by disrupting electron transport, generating superoxide anion and inactivating bacterial oxidative defenses. However, they also cause non-oxidative cell death because anaerobic bacteria are also killed. Here, we use differential proteomics to identify granzyme B substrates in three unrelated bacteria: Escherichia coli, Listeria monocytogenes, and Mycobacteria tuberculosis. Granzyme B cleaves a highly conserved set of proteins in all three bacteria, which function in vital biosynthetic and metabolic pathways that are critical for bacterial survival under diverse environmental conditions. Key proteins required for protein synthesis, folding, and degradation are also substrates, including multiple aminoacyl tRNA synthetases, ribosomal proteins, protein chaperones, and the Clp system. Because killer cells use a multipronged strategy to target vital pathways, bacteria may not easily become resistant to killer cell attack.
Collapse
|
133
|
Remodeling of the Streptococcus mutans proteome in response to LrgAB and external stresses. Sci Rep 2017; 7:14063. [PMID: 29070798 PMCID: PMC5656683 DOI: 10.1038/s41598-017-14324-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022] Open
Abstract
The Streptococcus mutans Cid/Lrg system represents an ideal model to study how this organism withstands various stressors encountered in the oral cavity. Mutation of lrgAB renders S. mutans more sensitive to oxidative, heat, and vancomycin stresses. Here, we have performed a comprehensive proteomics experiment using label-free quantitative mass spectrometry to compare the proteome changes of wild type UA159 and lrgAB mutant strains in response to these same stresses. Importantly, many of identified proteins showed either a strikingly large fold-change, or were completely suppressed or newly induced in response to a particular stress condition. Notable stress proteome changes occurred in a variety of functional categories, including amino acid biosynthesis, energy metabolism, protein synthesis, transport/binding, and transcriptional/response regulators. In the non-stressed growth condition, mutation of lrgAB significantly altered the abundance of 76 proteins (a fold change >1.4, or <0.6, p-value <0.05) and several of these matched the stress proteome of the wild type strain. Interestingly, the statistical correlation between the proteome changes and corresponding RNA-seq transcriptomic studies was relatively low (rho(ρ) <0.16), suggesting that adaptation to a new environment may require radical proteome turnover or metabolic remodeling. Collectively, this study reinforces the importance of LrgAB to the S. mutans stress response.
Collapse
|
134
|
Nagamalleswari E, Rao S, Vasu K, Nagaraja V. Restriction endonuclease triggered bacterial apoptosis as a mechanism for long time survival. Nucleic Acids Res 2017; 45:8423-8434. [PMID: 28854737 PMCID: PMC5737642 DOI: 10.1093/nar/gkx576] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/30/2017] [Indexed: 01/21/2023] Open
Abstract
Programmed cell death (PCD) under certain conditions is one of the features of bacterial altruism. Given the bacterial diversity and varied life style, different PCD mechanisms must be operational that remain largely unexplored. We describe restriction endonuclease (REase) mediated cell death by an apoptotic pathway, beneficial for isogenic bacterial communities. Cell death is pronounced in stationary phase and when the enzyme exhibits promiscuous DNA cleavage activity. We have elucidated the molecular mechanism of REase mediated cell killing and demonstrate that released nutrients from dying cells support the growth of the remaining cells in the population. These findings illustrate a new intracellular moonlighting role for REases which are otherwise established host defence arsenals. REase induced PCD appears to be a cellular design to replenish nutrients for cells undergoing starvation stress and the phenomenon could be wide spread in bacteria, given the abundance of restriction–modification (R–M) systems in the microbial population.
Collapse
Affiliation(s)
- Easa Nagamalleswari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Sandhya Rao
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Kommireddy Vasu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
135
|
Identification of Staphylococcus aureus Cellular Pathways Affected by the Stilbenoid Lead Drug SK-03-92 Using a Microarray. Antibiotics (Basel) 2017; 6:antibiotics6030017. [PMID: 28892020 PMCID: PMC5617981 DOI: 10.3390/antibiotics6030017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 09/07/2017] [Indexed: 12/16/2022] Open
Abstract
The mechanism of action for a new lead stilbene compound coded SK-03-92 with bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA) is unknown. To gain insight into the killing process, transcriptional profiling was performed on SK-03-92 treated vs. untreated S. aureus. Fourteen genes were upregulated and 38 genes downregulated by SK-03-92 treatment. Genes involved in sortase A production, protein metabolism, and transcriptional regulation were upregulated, whereas genes encoding transporters, purine synthesis proteins, and a putative two-component system (SACOL2360 (MW2284) and SACOL2361 (MW2285)) were downregulated by SK-03-92 treatment. Quantitative real-time polymerase chain reaction analyses validated upregulation of srtA and tdk as well as downregulation of the MW2284/MW2285 and purine biosynthesis genes in the drug-treated population. A quantitative real-time polymerase chain reaction analysis of MW2284 and MW2285 mutants compared to wild-type cells demonstrated that the srtA gene was upregulated by both putative two-component regulatory gene mutants compared to the wild-type strain. Using a transcription profiling technique, we have identified several cellular pathways regulated by SK-03-92 treatment, including a putative two-component system that may regulate srtA and other genes that could be tied to the SK-03-92 mechanism of action, biofilm formation, and drug persisters.
Collapse
|
136
|
Abstract
Recent studies have revealed an important role for the Staphylococcus aureus CidC enzyme in cell death during the stationary phase and in biofilm development and have contributed to our understanding of the metabolic processes that are important in the induction of bacterial programmed cell death (PCD). To gain more insight into the characteristics of this enzyme, we performed an in-depth biochemical and biophysical analysis of its catalytic properties. In vitro experiments show that this flavoprotein catalyzes the oxidative decarboxylation of pyruvate to acetate and carbon dioxide. CidC efficiently reduces menadione, but not CoenzymeQ0, suggesting a specific role in the S. aureus respiratory chain. CidC exists as a monomer under neutral-pH conditions but tends to aggregate and bind to artificial lipid membranes at acidic pH, resulting in enhanced enzymatic activity. Unlike its Escherichia coli counterpart, PoxB, CidC does not appear to be activated by other amphiphiles like Triton X-100 or octyl β-d-glucopyranoside. In addition, only reduced CidC is protected from proteolytic cleavage by chymotrypsin, and unlike its homologues in other bacteria, protease treatment does not increase CidC enzymatic activity. Finally, CidC exhibits maximal activity at pH 5.5-5.8 and negligible activity at pH 7-8. The results of this study are consistent with a model in which CidC functions as a pyruvate:menaquinone oxidoreductase whose activity is induced at the cellular membrane during cytoplasmic acidification, a process previously shown to be important for the induction of bacterial PCD.
Collapse
Affiliation(s)
- Xinyan Zhang
- Department of Pharmaceutical Sciences and ‡Department of Pathology & Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198-5900, United States
| | - Kenneth W Bayles
- Department of Pharmaceutical Sciences and ‡Department of Pathology & Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198-5900, United States
| | - Sorin Luca
- Department of Pharmaceutical Sciences and ‡Department of Pathology & Microbiology, University of Nebraska Medical Center , Omaha, Nebraska 68198-5900, United States
| |
Collapse
|
137
|
Yang K, Chen Q, Zhang D, Zhang H, Lei X, Chen Z, Li Y, Hong Y, Ma X, Zheng W, Tian Y, Zheng T, Xu H. The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa. Sci Rep 2017; 7:7750. [PMID: 28798298 PMCID: PMC5552873 DOI: 10.1038/s41598-017-08132-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 07/05/2017] [Indexed: 12/31/2022] Open
Abstract
In recent years, Microcystis aeruginosa blooms have occurred throughout the world, causing huge economic losses and destroying aquatic ecosystems. It is necessary to develop effective and ecofriendly methods to control M. aeruginosa blooms. Here, we report a high algicidal activity of prodigiosin (PG) against M. aeruginosa as well as the algicidal mechanism. PG showed high algicidal activity against M. aeruginosa, with a 50% lethal dose (LD50) of 5.87 μg/mL in 72 h. A combination of methods, including propidium iodide and Annexin V-fluorescein staining assays and light and electron microscopy indicated the existence of two modes of cell death with features similar to those in eukaryotic programmed cell death: necrotic-like and apoptotic-like. Biochemical and physiological analyses showed that PG generates reactive oxygen species (ROS), which induce lipid peroxidation, damage the membrane system and destroy the function of the photosystem. A proteomics analysis revealed that many proteins were differentially expressed in response to PG stress and that most of these proteins were involved in important metabolic processes, which may trigger necrotic-like or apoptotic-like cell death. The present study sheds light on the multiple toxicity mechanisms of PG on M. aeruginosa and its potential for controlling the occurrence of M. aeruginosa blooms in lakes.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Qiuliang Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Danyang Zhang
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Huajun Zhang
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Xueqian Lei
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Zhangran Chen
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yi Li
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yaling Hong
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Xiaohong Ma
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yun Tian
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Tianling Zheng
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China. .,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China.
| | - Hong Xu
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China. .,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China.
| |
Collapse
|
138
|
Raghuram GV, Gupta D, Subramaniam S, Gaikwad A, Khare NK, Nobre M, Nair NK, Mittra I. Physical shearing imparts biological activity to DNA and ability to transmit itself horizontally across species and kingdom boundaries. BMC Mol Biol 2017; 18:21. [PMID: 28793862 PMCID: PMC5550992 DOI: 10.1186/s12867-017-0098-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022] Open
Abstract
Background We have recently reported that cell-free DNA (cfDNA) fragments derived from dying cells that circulate in blood are biologically active molecules and can readily enter into healthy cells to activate DNA damage and apoptotic responses in the recipients. However, DNA is not conventionally known to spontaneously enter into cells or to have any intrinsic biological activity. We hypothesized that cellular entry and acquisition of biological properties are functions of the size of DNA. Results To test this hypothesis, we generated small DNA fragments by sonicating high molecular weight DNA (HMW DNA) to mimic circulating cfDNA. Sonication of HMW DNA isolated from cancerous and non-cancerous human cells, bacteria and plant generated fragments 300–3000 bp in size which are similar to that reported for circulating cfDNA. We show here that while HMW DNAs were incapable of entering into cells, sonicated DNA (sDNA) from different sources could do so indiscriminately without heed to species or kingdom boundaries. Thus, sDNA from human cells and those from bacteria and plant could enter into nuclei of mouse cells and sDNA from human, bacterial and plant sources could spontaneously enter into bacteria. The intracellular sDNA associated themselves with host cell chromosomes and integrated into their genomes. Furthermore, sDNA, but not HMW DNA, from all four sources could phosphorylate H2AX and activate the pro-inflammatory transcription factor NFκB in mouse cells, indicating that sDNAs had acquired biological activities. Conclusions Our results show that small fragments of DNA from different sources can indiscriminately enter into other cells across species and kingdom boundaries to integrate into their genomes and activate biological processes. This raises the possibility that fragmented DNA that are generated following organismal cell-death may have evolutionary implications by acting as mobile genetic elements that are involved in horizontal gene transfer. Electronic supplementary material The online version of this article (doi:10.1186/s12867-017-0098-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gorantla Venkata Raghuram
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Deepika Gupta
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Siddharth Subramaniam
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Ashwini Gaikwad
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Naveen Kumar Khare
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Malcolm Nobre
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Naveen Kumar Nair
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Indraneel Mittra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India.
| |
Collapse
|
139
|
Ramisetty BCM, Santhosh RS. Endoribonuclease type II toxin-antitoxin systems: functional or selfish? MICROBIOLOGY-SGM 2017; 163:931-939. [PMID: 28691660 DOI: 10.1099/mic.0.000487] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most bacterial genomes have multiple type II toxin-antitoxin systems (TAs) that encode two proteins which are referred to as a toxin and an antitoxin. Toxins inhibit a cellular process, while the interaction of the antitoxin with the toxin attenuates the toxin's activity. Endoribonuclease-encoding TAs cleave RNA in a sequence-dependent fashion, resulting in translational inhibition. To account for their prevalence and retention by bacterial genomes, TAs are credited with clinically significant phenomena, such as bacterial programmed cell death, persistence, biofilms and anti-addiction to plasmids. However, the programmed cell death and persistence hypotheses have been challenged because of conceptual, methodological and/or strain issues. In an alternative view, chromosomal TAs seem to be retained by virtue of addiction at two levels: via a poison-antidote combination (TA proteins) and via transcriptional reprogramming of the downstream core gene (due to integration). Any perturbation in the chromosomal TA operons could cause fitness loss due to polar effects on the downstream genes and hence be detrimental under natural conditions. The endoribonucleases encoding chromosomal TAs are most likely selfish DNA as they are retained by bacterial genomes, even though TAs do not confer a direct advantage via the TA proteins. TAs are likely used by various replicons as 'genetic arms' that allow the maintenance of themselves and associated genetic elements. TAs seem to be the 'selfish arms' that make the best use of the 'arms race' between bacterial genomes and plasmids.
Collapse
|
140
|
Abstract
In 1882, Elie Metchnikoff identified myeloid-like cells from starfish larvae responding to the invasion by a foreign body (rose thorn). This marked the origins for the study of innate immunity, and an appreciation that cellular immunity was well established even in these "primitive" organisms. This chapter focuses on these myeloid cells as well as the newest members of this family, the dendritic cells, and explores their evolutionary origins. Our goal is to provide evolutionary context for the development of the multilayered immune system of mammals, where myeloid cells now serve as central effectors of innate immunity and regulators of adaptive immunity. Overall, we find that core contributions of myeloid cells to the regulation of inflammation are based on mechanisms that have been honed over hundreds of millions of years of evolution. Using phagocytosis as a platform, we show how fairly simple beginnings have offered a robust foundation onto which additional control features have been integrated, resulting in central regulatory nodes that now manage multifactorial aspects of homeostasis and immunity.
Collapse
|
141
|
Salvioli di Fossalunga A, Lipuma J, Venice F, Dupont L, Bonfante P. The endobacterium of an arbuscular mycorrhizal fungus modulates the expression of its toxin-antitoxin systems during the life cycle of its host. ISME JOURNAL 2017; 11:2394-2398. [PMID: 28548657 DOI: 10.1038/ismej.2017.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are widespread root symbionts that perform important ecological services, such as improving plant nutrient and water acquisition. Some AMF from the Gigasporaceae family host a population of endobacteria, Candidatus Glomeribacter gigasporarum (Cagg). The analysis of the Cagg genome identified six putative toxin-antitoxin modules (TAs), consisting of pairs of stable toxins and unstable antitoxins that affect diverse physiological functions. Sequence analysis suggested that these TA modules were acquired by horizontal transfer. Gene expression patterns of two TAs (yoeB/yefM and chpB/chpS) changed during the fungal life cycle, with the expression during the pre-symbiotic phase higher than during the symbiosis with the plant host. The heterologous expression in Escherichia coli demonstrated the functionality only for the YoeB-YefM pair. On the basis of these observations, we speculate that TA modules might help Cagg adapt to its intracellular habitat, coordinating its proliferation with the physiological state of the AMF host.
Collapse
Affiliation(s)
| | - Justine Lipuma
- Institut Sophia Agrobiotech (ISA), INRA UMR 1355, CNRS UMR 7254, Université de Nice Sophia Antipolis, Sophia Antipolis, France
| | - Francesco Venice
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Laurence Dupont
- Institut Sophia Agrobiotech (ISA), INRA UMR 1355, CNRS UMR 7254, Université de Nice Sophia Antipolis, Sophia Antipolis, France
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
142
|
Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, Ding T. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.12.021] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
143
|
Jiao Y, Niu LN, Ma S, Li J, Tay FR, Chen JH. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci 2017; 71:53-90. [PMID: 32287485 PMCID: PMC7111226 DOI: 10.1016/j.progpolymsci.2017.03.001] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022]
Abstract
Microbial infections affect humans worldwide. Many quaternary ammonium compounds have been synthesized that are not only antibacterial, but also possess antifungal, antiviral and anti-matrix metalloproteinase capabilities. Incorporation of quaternary ammonium moieties into polymers represents one of the most promising strategies for preparation of antimicrobial biomaterials. Various polymerization techniques have been employed to prepare antimicrobial surfaces with quaternary ammonium functionalities; in particular, syntheses involving controlled radical polymerization techniques enable precise control over macromolecular structure, order and functionality. Although recent publications report exciting advances in the biomedical field, some of these technological developments have also been accompanied by potential toxicological and antimicrobial resistance challenges. Recent evidenced-based data on the biomedical applications of antimicrobial quaternary ammonium-containing biomaterials that are based on randomized human clinical trials, the golden standard in contemporary medicinal science, are included in the present review. This should help increase visibility, stimulate debates and spur conversations within a wider scientific community on the implications and plausibility for future developments of quaternary ammonium-based antimicrobial biomaterials.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Department of Stomatology, PLA Army General Hospital, 100700, Beijing, China
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to the Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Franklin R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Corresponding authors.
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Corresponding authors.
| |
Collapse
|
144
|
Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 2017; 104:365-376. [PMID: 28142193 DOI: 10.1111/mmi.13634] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
Chronic biofilm-associated infections caused by Staphylococcus aureus often lead to significant increases in morbidity and mortality, particularly when associated with indwelling medical devices. This has triggered a great deal of research attempting to understand the molecular mechanisms that control S. aureus biofilm formation and the basis for the recalcitrance of these multicellular structures to antibiotic therapy. The purpose of this review is to summarize our current understanding of S. aureus biofilm development, focusing on the description of a newly-defined, five-stage model of biofilm development and the mechanisms required for each stage. Importantly, this model includes an alternate view of the processes involved in microcolony formation in S. aureus and suggests that these structures originate as a result of stochastically regulated metabolic heterogeneity and proliferation within a maturing biofilm population, rather than a subtractive process involving the release of cell clusters from a thick, unstructured biofilm. Importantly, it is proposed that this new model of biofilm development involves the genetically programmed generation of metabolically distinct subpopulations of cells, resulting in an overall population that is better able to adapt to rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Derek E Moormeier
- Center for Staphylococcal Research, Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kenneth W Bayles
- Center for Staphylococcal Research, Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
145
|
Rice KC, Turner ME, Carney OV, Gu T, Ahn SJ. Modification of the Streptococcus mutans transcriptome by LrgAB and environmental stressors. Microb Genom 2017; 3:e000104. [PMID: 28348880 PMCID: PMC5361627 DOI: 10.1099/mgen.0.000104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
The Streptococcus mutans Cid/Lrg system is central to the physiology of this cariogenic organism, affecting oxidative stress resistance, biofilm formation and competence. Previous transcriptome analyses of lytS (responsible for the regulation of lrgAB expression) and cidB mutants have revealed pleiotropic effects on carbohydrate metabolism and stress resistance genes. In this study, it was found that an lrgAB mutant, previously shown to have diminished aerobic and oxidative stress growth, was also much more growth impaired in the presence of heat and vancomycin stresses, relative to wild-type, lrgA and lrgB mutants. To obtain a more holistic picture of LrgAB and its involvement in stress resistance, RNA sequencing and bioinformatics analyses were used to assess the transcriptional response of wild-type and isogenic lrgAB mutants under anaerobic (control) and stress-inducing culture conditions (aerobic, heat and vancomycin). Hierarchical clustering and principal components analyses of all differentially expressed genes revealed that the most distinct gene expression profiles between S. mutans UA159 and lrgAB mutant occurred during aerobic and high-temperature growth. Similar to previous studies of a cidB mutant, lrgAB stress transcriptomes were characterized by a variety of gene expression changes related to genomic islands, CRISPR-C as systems, ABC transporters, competence, bacteriocins, glucosyltransferases, protein translation, tricarboxylic acid cycle, carbohydrate metabolism/storage and transport. Notably, expression of lrgAB was upregulated in the wild-type strain under all three stress conditions. Collectively, these results demonstrate that mutation of lrgAB alters the transcriptional response to stress, and further support the idea that the Cid/Lrg system acts to promote cell homeostasis in the face of environmental stress.
Collapse
Affiliation(s)
- Kelly C Rice
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Matthew E Turner
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - O'neshia V Carney
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,†Present address: Department of Health Outcomes and Policy, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tongjun Gu
- 2Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Sang-Joon Ahn
- 3Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
146
|
Simonov D, Swift S, Blenkiron C, Phillips AR. Bacterial RNA as a signal to eukaryotic cells as part of the infection process. Discoveries (Craiova) 2016; 4:e70. [PMID: 32309589 PMCID: PMC7159825 DOI: 10.15190/d.2016.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The discovery of regulatory RNA has identified an underappreciated area for microbial subversion of the host. There is increasing evidence that RNA can be delivered from bacteria to host cells associated with membrane vesicles or by direct release from intracellular bacteria. Once inside the host cell, RNA can act by activating sequence-independent receptors of the innate immune system, where recent findings suggest this can be more than simple pathogen detection, and may contribute to the subversion of immune responses. Sequence specific effects are also being proposed, with examples from nematode, plant and human models providing support for the proposition that bacteria-to-human RNA signaling and the subversion of host gene expression may occur.
Collapse
Affiliation(s)
- Denis Simonov
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Anthony R Phillips
- Department of Surgery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
147
|
Unluturk BD, Balasubramaniam S, Akyildiz IF. The Impact of Social Behavior on the Attenuation and Delay of Bacterial Nanonetworks. IEEE Trans Nanobioscience 2016; 15:959-969. [PMID: 27849547 DOI: 10.1109/tnb.2016.2627081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Molecular communication (MC) is a new paradigm for developing communication systems that exchanges information through the transmission and reception of molecules. One proposed model for MC is using bacteria to carry information encoded into DNA plasmids, and this is termed bacterial nanonetworks. However, a limiting factor in the models that have been studied so far is the environment considered only in ideal conditions with a single population. This is far from realistic in natural environments, where bacteria coexist in multiple populations of same and different species, resulting in a very complex social community. This complex community has social interactions that include cooperation, cheating, as well as competition. In this paper, the effects of these social interactions on the information delivery in bacterial nanonetworks are studied in terms of delay, attenuation and data rate. The numerical results show that the cooperative behavior of bacteria improves the performance of delay and attenuation leading to a higher data rate, and this performance can be degraded once their behavior switches towards cheating. The competitive social behavior shows that the performance can degrade delay as well as attenuation leading to slower data rates, as the population with the encoded DNA plasmids are prevented from reaching the receiver. The analysis of social interactions between the bacteria will pave the way for efficient design of bacterial nanonetworks enabling applications such as intrabody sensing, drug delivery, and environmental control against pollution and biological hazards.
Collapse
|
148
|
Stone W, Kroukamp O, Korber DR, McKelvie J, Wolfaardt GM. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience. Front Microbiol 2016; 7:1563. [PMID: 27746774 PMCID: PMC5043023 DOI: 10.3389/fmicb.2016.01563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation.
Collapse
Affiliation(s)
- Wendy Stone
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| | - Otini Kroukamp
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| | - Darren R Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK Canada
| | - Jennifer McKelvie
- Environmental Geoscience, Nuclear Waste Management Organization, Toronto, ON Canada
| | - Gideon M Wolfaardt
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| |
Collapse
|
149
|
Understanding the Streptococcus mutans Cid/Lrg System through CidB Function. Appl Environ Microbiol 2016; 82:6189-6203. [PMID: 27520814 DOI: 10.1128/aem.01499-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
The Streptococcus mutans lrgAB and cidAB operons have been previously described as a potential model system to dissect the complexity of biofilm development and virulence of S. mutans Herein, we have attempted to further characterize the Cid/Lrg system by focusing on CidB, which has been shown to be critical for the ability of S. mutans to survive and persist in a nonpreferred oxygen-enriched condition. We have found that the expression level of cidB is critical to oxidative stress tolerance of S. mutans, most likely by impacting lrg expression. Intriguingly, the impaired aerobic growth phenotype of the cidB mutant could be restored by the additional loss of either CidA or LrgA. Growth-dependent expression of cid and lrg was demonstrated to be tightly under the control of both CcpA and the VicKR two-component system (TCS), regulators known to play an essential role in controlling major catabolic pathways and cell envelope homeostasis, respectively. RNA sequencing (RNA-Seq) analysis revealed that mutation of cidB resulted in global gene expression changes, comprising major domains of central metabolism and virulence processes, particularly in those involved with oxidative stress resistance. Loss of CidB also significantly changed the expression of genes related to genomic islands (GI) TnSmu1 and TnSmu2, the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas system, and toxin-antitoxin (T/A) modules. Taken together, these data show that CidB impinges on the stress response, as well as the fundamental cellular physiology of S. mutans, and further suggest a potential link between Cid/Lrg-mediated cellular processes, S. mutans pathogenicity, and possible programmed growth arrest and cell death mechanisms. IMPORTANCE The ability of Streptococcus mutans to survive a variety of harmful or stressful conditions and to emerge as a numerically significant member of stable oral biofilm communities are essential elements for its persistence and cariogenicity. In this study, the homologous cidAB and lrgAB operons, previously identified as being highly balanced and coordinated during S. mutans aerobic growth, were further characterized through the functional and transcriptomic analysis of CidB. Precise control of CidB levels is shown to impact the expression of lrg, oxidative stress tolerance, major metabolic domains, and the molecular modules linked to cell death and lysis. This study advances our understanding of the Cid/Lrg system as a key player in the integration of complex environmental signals (such as oxidative stress) into the regulatory networks that modulate S. mutans virulence and cell homeostasis.
Collapse
|
150
|
Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, Friedrich O, Grömer T, Kornhuber J, Lang R, Maler JM. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci Rep 2016; 6:32228. [PMID: 27624303 PMCID: PMC5021948 DOI: 10.1038/srep32228] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/04/2016] [Indexed: 11/09/2022] Open
Abstract
Amyloid-β (Aβ) peptides are the main components of the plaques found in the brains of patients with Alzheimer's disease. However, Aβ peptides are also detectable in secretory compartments and peripheral blood contains a complex mixture of more than 40 different modified and/or N- and C-terminally truncated Aβ peptides. Recently, anti-infective properties of Aβ peptides have been reported. Here, we investigated the interaction of Aβ peptides of different lengths with various bacterial strains and the yeast Candida albicans. The amyloidogenic peptides Aβ1-42, Aβ2-42, and Aβ3p-42 but not the non-amyloidogenic peptides Aβ1-40 and Aβ2-40 bound to microbial surfaces. As observed by immunocytochemistry, scanning electron microscopy and Gram staining, treatment of several bacterial strains and Candida albicans with Aβ peptide variants ending at position 42 (Aβx-42) caused the formation of large agglutinates. These aggregates were not detected after incubation with Aβx-40. Furthermore, Aβx-42 exerted an antimicrobial activity on all tested pathogens, killing up to 80% of microorganisms within 6 h. Aβ1-40 only had a moderate antimicrobial activity against C. albicans. Agglutination of Aβ1-42 was accelerated in the presence of microorganisms. These data demonstrate that the amyloidogenic Aβx-42 variants have antimicrobial activity and may therefore act as antimicrobial peptides in the immune system.
Collapse
Affiliation(s)
- Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Mateja Condic
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Medicine III, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Gluecksstraße 4a, D-91054 Erlangen, Germany
| | - Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Marina Scharin-Mehlmann
- Electron Devices, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, D-91058 Erlangen, Germany
| | - Daniel F Gilbert
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Paul-Gordan-Str. 3, D-91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Paul-Gordan-Str. 3, D-91052 Erlangen, Germany
| | - Teja Grömer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nuremberg, Wasserturmstr. 3/5, D-91054 Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| |
Collapse
|