101
|
D’Amico E, Grosso G, Nieves JW, Zanghì A, Factor-Litvak P, Mitsumoto H. Metabolic Abnormalities, Dietary Risk Factors and Nutritional Management in Amyotrophic Lateral Sclerosis. Nutrients 2021; 13:nu13072273. [PMID: 34209133 PMCID: PMC8308334 DOI: 10.3390/nu13072273] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating progressive neurodegenerative disease that affects motor neurons, leading to a relentless paralysis of skeletal muscles and eventual respiratory failure. Although a small percentage of patients may have a longer survival time (up to 10 years), in most cases, the median survival time is from 20 to 48 months. The pathogenesis and risk factors for ALS are still unclear: among the various aspects taken into consideration, metabolic abnormalities and nutritional factors have been the focus of recent interests. Although there are no consistent findings regarding prior type-2 diabetes, hypercholesterolemia and ALS incidence, abnormalities in lipid and glucose metabolism may be linked to disease progression, leading to a relatively longer survival (probably as a result of counteract malnutrition and cachexia in the advanced stages of the disease). Among potential dietary risk factors, a higher risk of ALS has been associated with an increased intake of glutamate, while the consumption of antioxidant and anti-inflammatory compounds, such as vitamin E, n-3 polyunsaturated fatty acids, and carotenoids, has been related to lower incidence. Poor nutritional status and weight loss in ALS resulting from poor oral intake, progressive muscle atrophy, and the potential hypermetabolic state have been associated with rapid disease progression. It seems important to routinely perform a nutritional assessment of ALS patients at the earliest referral: weight maintenance (if adequate) or gain (if underweight) is suggested from the scientific literature; evidence of improved diet quality (in terms of nutrients and limits for pro-inflammatory dietary factors) and glucose and lipid control is yet to be confirmed, but it is advised. Further research is warranted to better understand the role of nutrition and the underlying metabolic abnormalities in ALS, and their contribution to the pathogenic mechanisms leading to ALS initiation and progression.
Collapse
Affiliation(s)
- Emanuele D’Amico
- Department G.F. Ingrassia, University of Catania, 95123 Catania, Italy; (E.D.); (A.Z.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-0954-781-187
| | - Jeri W. Nieves
- Mailman School of Public Health and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA; (J.W.N.); (P.F.-L.)
| | - Aurora Zanghì
- Department G.F. Ingrassia, University of Catania, 95123 Catania, Italy; (E.D.); (A.Z.)
| | - Pam Factor-Litvak
- Mailman School of Public Health and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA; (J.W.N.); (P.F.-L.)
| | - Hiroshi Mitsumoto
- Eleanor and Lou Gehrig ALS Center, The Neurological Institute of New York Columbia University Medical Center, New York, NY 10032, USA;
| |
Collapse
|
102
|
Peters N, Dal Bello-Haas V, Packham T, Chum M, O'Connell C, Johnston WS, MacDermid JC, Turnbull J, Van Damme J, Kuspinar A. Do Generic Preference-Based Measures Accurately Capture Areas of Health-Related Quality of Life Important to Individuals with Amyotrophic Lateral Sclerosis: A Content Validation Study. PATIENT-RELATED OUTCOME MEASURES 2021; 12:191-203. [PMID: 34211304 PMCID: PMC8242131 DOI: 10.2147/prom.s313512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 11/23/2022]
Abstract
Objective The objectives of this study were to 1) assess the content validity of generic preference-based measures (GPBMs), and (2) examine the convergent validity of the EuroQol 5 Dimension 5 Level (EQ-5D-5L), against the Patient Generated Index (PGI) in Amyotrophic Lateral Sclerosis (ALS). Methods Participants were recruited from 3 clinical sites across Canada. The PGI, EQ-5D-5L and Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) were administered through an online or hardcopy survey and scores compared for convergent validation. Domains nominated by participants as important to their health-related quality of life were generated using the PGI, classified using the International Classification of Functioning, Disability and Health (ICF) and mapped onto GPBMs to determine content coverage. Results Fifty-two participants (N=28 female; 61.3 ± 11.6 mean age ± standard deviation (SD); 3.5 ± 2.9 mean ± SD years since diagnosis) completed this study. The top three ICF domains identified by participants were recreation and leisure, lower limb mobility, and interpersonal relationships. The Quality of Well-Being Self-Administered (QWB-SA) scale had the highest content coverage (87%) and the Health Utilities Index 3 (HUI3) had the lowest (33%). Two domains were covered by all GPBMs and no GPBM included all domains identified as important by participants. A moderate correlation coefficient of 0.52 between the PGI and EQ-5D-5L was found. Conclusion The majority of GPBMs covered only approximately half of the domains important to individuals with ALS suggesting the need for an ALS specific preference-based measure to better reflect the health-related quality of life of this population.
Collapse
Affiliation(s)
- Nicole Peters
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | | | - Tara Packham
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Marvin Chum
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Wendy S Johnston
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Joy C MacDermid
- School of Physical Therapy, Western University, London, ON, Canada
| | - John Turnbull
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jill Van Damme
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Ayse Kuspinar
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
103
|
Ren Y, Li S, Chen S, Sun X, Yang F, Wang H, Li M, Cui F, Huang X. TDP-43 and Phosphorylated TDP-43 Levels in Paired Plasma and CSF Samples in Amyotrophic Lateral Sclerosis. Front Neurol 2021; 12:663637. [PMID: 34194383 PMCID: PMC8236522 DOI: 10.3389/fneur.2021.663637] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of this study was to measure both plasma and cerebrospinal fluid (CSF) TAR DNA-binding protein 43 (TDP-43) and phosphorylated TDP-43 (pTDP-43) levels in sporadic amyotrophic lateral sclerosis (sALS) patients, and to compare them with that of healthy controls. The correlation between plasma or CSF TDP-43/pTDP-43 and clinical indicators of ALS patients was assessed. Methods: Paired plasma and CSF TDP-43/pTDP-43 levels in 69 ALS patients and 59 healthy controls were measured by sandwich ELISA. Time to generalization (TTG), an indicator suggested that the time of symptoms spreading from spinal or bulbar localization to both, was evaluated in all patients screened for mutations in genes associated with ALS. Results: Both of the plasma TDP-43 and pTDP-43 levels were significantly higher in ALS patients than HCs (P < 0.001). The pTDP-43/TDP-43 ratios in plasma were significantly higher in HCs than ALS patients (P < 0.001). The area under the curve (AUC) value was 0.924 for plasma TDP-43 level, with a 91.3% sensitivity and 91.5% specificity. Moreover, the correlation between plasma and CSF TDP-43 was observed in each ALS patient (r = 0.195, P = 0.027). A correlation between CSF pTDP-43 levels and the ALSFRS-R (r = -0.245; P = 0.042) was established. A correlation was observed between plasma TDP-43 levels and TTG in ALS patients, which indicated that high levels of plasma TDP-43 correlated with prolonged TTG (r = 0.415; P = 0.004). Conclusion: The plasma TDP-43 and pTDP-43 levels might play an important role in diagnosis in the future study of ALS. The plasma TDP-43 might differentiate ALS and HC groups based on high sensitivity and specificity, and as an indicator of progression of disease.
Collapse
Affiliation(s)
- Yuting Ren
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siyuan Li
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Siyu Chen
- Department of Geriatric Neurology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaosun Sun
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, Tianjin Third Central Hospital, Tianjin, China
| | - Fei Yang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongfen Wang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mao Li
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fang Cui
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xusheng Huang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
104
|
Tungtur SK, Wilkins HM, Rogers RS, Badawi Y, Sage JM, Agbas A, Jawdat O, Barohn RJ, Swerdlow RH, Nishimune H. Oxaloacetate treatment preserves motor function in SOD1 G93A mice and normalizes select neuroinflammation-related parameters in the spinal cord. Sci Rep 2021; 11:11051. [PMID: 34040085 PMCID: PMC8155202 DOI: 10.1038/s41598-021-90438-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/07/2021] [Indexed: 01/27/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) remains a devastating motor neuron disease with limited treatment options. Oxaloacetate treatment has a neuroprotective effect in rodent models of seizure and neurodegeneration. Therefore, we treated the ALS model superoxide dismutase 1 (SOD1) G93A mice with oxaloacetate and evaluated their neuromuscular function and lifespan. Treatment with oxaloacetate beginning in the presymptomatic stage significantly improved neuromuscular strength measured during the symptomatic stage in the injected mice compared to the non-treated group. Oxaloacetate treatment starting in the symptomatic stage significantly delayed limb paralysis compared with the non-treated group. For lifespan analysis, oxaloacetate treatment did not show a statistically significant positive effect, but the treatment did not shorten the lifespan. Mechanistically, SOD1G93A mice showed increased levels of tumor necrosis factor-α (TNFα) and peroxisome proliferative activated receptor gamma coactivator 1α (PGC-1α) mRNAs in the spinal cord. However, oxaloacetate treatment reverted these abnormal levels to that of wild-type mice. Similarly, the altered expression level of total NF-κB protein returned to that of wild-type mice with oxaloacetate treatment. These results suggest that the beneficial effects of oxaloacetate treatment in SOD1G93A mice may reflect the effects on neuroinflammation or bioenergetic stress.
Collapse
Affiliation(s)
- Sudheer K Tungtur
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
- Cardiovascular Division, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Heather M Wilkins
- Department of Neurology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Robert S Rogers
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
- Department of Curriculum and Integrative Learning, Kansas City University, Joplin, MO, 64804, USA
| | - Yomna Badawi
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jessica M Sage
- Department of Basic Sciences, Kansas City University, Kansas City, MO, 64106, USA
| | - Abdulbaki Agbas
- Department of Basic Sciences, Kansas City University, Kansas City, MO, 64106, USA
| | - Omar Jawdat
- Department of Neurology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Richard J Barohn
- Department of Neurology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
- Department of Neurology, University Missouri-Columbia, Columbia, MO, 65212, USA
| | - Russell H Swerdlow
- Department of Neurology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA.
- Tokyo Metropolitan Institute of Gerontology, Neurobiology of Aging, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
105
|
Lisiecka D, Kearns A, Bourke F, Lawson I, Muir C. A qualitative meta-synthesis of evidence (meta-ethnography) exploring the personal experiences of gastrostomy tube in neurodegenerative diseases: a case of motor neurone disease. Disabil Rehabil 2021; 44:4949-4965. [PMID: 34033736 DOI: 10.1080/09638288.2021.1922518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE The lived experiences of a gastrostomy tube (GT) in adults with neurodegenerative diseases (NDDs) are not well understood. The aim of this qualitative meta-synthesis was to review and synthesise the available evidence to inform clinical practice and identify research gaps. METHODS Meta-ethnographic synthesis of qualitative studies was conducted with systematic searching of eight databases from inception to March 2021. Qualitative studies reporting personal experiences of GTs in adults with NDDs were identified. New theories were developed during translation of concepts from each study and combined as a "line-of-argument" synthesis. Patient and public involvement was incorporated as two of the authors are living with an NDD and a GT. RESULTS AND CONCLUSIONS Of 2863 unique records identified, only nine fulfilled the review criteria. All studies recruited participants with motor neurone disease (MND); no other NDDs were represented. Two main themes emerged: decision making and living with GT. Decision making was the predominant theme and data regarding living with GT were sparse. There is limited research on the lived experience of a GT in adults with NDDs. The lived experience of GT in MND is complex and individualised. Future research is indicated to inform clinical practice.Implications for rehabilitationEvidence related to the lived experiences of gastrostomy tube (GT) in neurodegenerative diseases (NDDs) is lacking especially in relation to the time after GT insertion.Decision making in relation to GT is a complex and individualised psychological process for some people, while others perceive no decisional conflict.Support from healthcare professionals is crucial during the decision-making time and should not cease after GT insertion.Support from healthcare professionals can help resolve any clinical complications and also incorporate GT into everyday routines.Healthcare professionals should be aware that their views on the benefits and problems related to GT may differ to those of individuals with a NDD.
Collapse
Affiliation(s)
- Dominika Lisiecka
- Department of Nursing and Healthcare Sciences, School of Health and Social Sciences, Munster Technological University, Kerry Campus, Tralee, Ireland
| | - Aine Kearns
- Department of Speech & Language Therapy, School of Allied Health, University of Limerick, Limerick, Ireland
| | - Fiona Bourke
- Department of Speech & Language Therapy, School of Allied Health, University of Limerick, Limerick, Ireland
| | - Ian Lawson
- North Yorkshire Disability Forum, Whitby, UK
| | | |
Collapse
|
106
|
Stoyanov GS, Dzhenkov DL, Petkova L. Histomorphology of Amyotrophic Lateral Sclerosis: An Autopsy Case Report. Cureus 2021; 13:e14999. [PMID: 34150370 PMCID: PMC8202449 DOI: 10.7759/cureus.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting predominantly the motor neurons of the anterior horns of the spinal cord. The condition, in most cases, starts with lower limb muscle weakness that steadily progresses and affects all muscle groups of the body. This in time leads to severe muscle atrophy and muscle paralysis, with respiratory muscle affection leading to respiratory failure. Several clinical investigations such as a physical examination, imaging modalities of the spinal cord, electroencephalography, electromyography, and genetic tests in the case of suspicion of a hereditary form are often informative enough to place the diagnosis. Histological changes are often nonspecific with neuronal degeneration and demyelination in the anterior horns of the spinal cord being the most severe changes. Here, we present the classical constellation of histopathological changes associated with ALS along with demyelination, neuronal degeneration, Lewy-like intra and extracellular bodies, and intracellular Bunina bodies.
Collapse
Affiliation(s)
- George S Stoyanov
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Deyan L Dzhenkov
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Lilyana Petkova
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| |
Collapse
|
107
|
Rodríguez-Cueto C, Gómez-Almería M, García Toscano L, Romero J, Hillard CJ, de Lago E, Fernández-Ruiz J. Inactivation of the CB 2 receptor accelerated the neuropathological deterioration in TDP-43 transgenic mice, a model of amyotrophic lateral sclerosis. Brain Pathol 2021; 31:e12972. [PMID: 33983653 PMCID: PMC8549023 DOI: 10.1111/bpa.12972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
The activation of the cannabinoid receptor type‐2 (CB2) afforded neuroprotection in amyotrophic lateral sclerosis (ALS) models. The objective of this study was to further investigate the relevance of the CB2 receptor through investigating the consequences of its inactivation. TDP‐43(A315T) transgenic mice were crossed with CB2 receptor knock‐out mice to generate double mutants. Temporal and qualitative aspects of the pathological phenotype of the double mutants were compared to TDP‐43 transgenic mice expressing the CB2 receptor. The double mutants exhibited significantly accelerated neurological decline, such that deteriorated rotarod performance was visible at 7 weeks, whereas rotarod performance was normal up to 11 weeks in transgenic mice with intact expression of the CB2 receptor. A morphological analysis of spinal cords confirmed an earlier death (visible at 65 days) of motor neurons labelled with Nissl staining and ChAT immunofluorescence in double mutants compared to TDP‐43 transgenic mice expressing the CB2 receptor. Evidence of glial reactivity, measured using GFAP and Iba‐1 immunostaining, was seen in double mutants at 65 days, but not in TDP‐43 transgenic mice expressing the CB2 receptor. However, at 90 days, both genotypes exhibited similar changes for all these markers, although surviving motor neurons of transgenic mice presented some morphological abnormalities in absence of the CB2 receptor that were not as evident in the presence of this receptor. This faster deterioration seen in double mutants led to premature mortality compared with TDP‐43 transgenic mice expressing the CB2 receptor. We also investigated the consequences of a pharmacological inactivation of the CB2 receptor using the selective antagonist AM630 in TDP‐43 transgenic mice, but results showed only subtle trends towards a greater deterioration. In summary, our results confirmed the potential of the CB2 receptor agonists as a neuroprotective therapy in ALS and strongly support the need to progress towards an evaluation of this potential in patients.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marta Gómez-Almería
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
| | - Laura García Toscano
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eva de Lago
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
108
|
Oxymatrine Extends Survival by Attenuating Neuroinflammation in a Mouse Model of Amyotrophic Lateral Sclerosis. Neuroscience 2021; 465:11-22. [PMID: 33945797 DOI: 10.1016/j.neuroscience.2021.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the leading causes of death associated with neurodegenerative diseases worldwide, and the progression of the disease is characteristically accompanied by severe neuroinflammation. Neuroprotective effects of oxymatrine (OMT) were shown to be due to reduced neuroinflammation in the mouse models of Alzheimer's disease and Parkinson's disease. The present study investigated whether OMT has a therapeutic potential in transgenic SOD1-G93A (TgSOD1-G93A) mice. Daily OMT treatment started at the age of 55 days until the end stage of the disease. Body weight and rotarod motor performance were assessed every 3 days starting from 70 days of age. Footprints were recorded to measure the stride length 40 days and 60 days after the initiation of the treatment. Some animals were sacrificed at the age of 115 days, and the lumbar spinal cord was harvested for immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR) to evaluate the neuroinflammatory responses. The results indicated that treatment with OMT delayed body weight loss, improved motor performance, and prolonged the survival of SOD1-G93A mice. Mechanistically, OMT treatment enhanced motor neuronal survival and alleviated the activation of microglia and astrocytes compared with those in the vehicle-treated group. Furthermore, the expression of the proinflammatory mediators was downregulated, and the expression of the anti-inflammatory factors was upregulated in the OMT-treated group compared with those in the vehicle-treated group (P < 0.05). Thus, the treatment with OMT had neuroprotective effects, promoting neuronal survival and extending the lifetime of SOD1-G93A mice by suppressing neuroinflammation.
Collapse
|
109
|
Lake J, Storm CS, Makarious MB, Bandres-Ciga S. Genetic and Transcriptomic Biomarkers in Neurodegenerative Diseases: Current Situation and the Road Ahead. Cells 2021; 10:1030. [PMID: 33925602 PMCID: PMC8170880 DOI: 10.3390/cells10051030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases are etiologically and clinically heterogeneous conditions, often reflecting a spectrum of disease rather than well-defined disorders. The underlying molecular complexity of these diseases has made the discovery and validation of useful biomarkers challenging. The search of characteristic genetic and transcriptomic indicators for preclinical disease diagnosis, prognosis, or subtyping is an area of ongoing effort and interest. The next generation of biomarker studies holds promise by implementing meaningful longitudinal and multi-modal approaches in large scale biobank and healthcare system scale datasets. This work will only be possible in an open science framework. This review summarizes the current state of genetic and transcriptomic biomarkers in Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis, providing a comprehensive landscape of recent literature and future directions.
Collapse
Affiliation(s)
- Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.); (M.B.M.)
| | - Catherine S. Storm
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK;
- UCL Movement Disorders Centre, University College London, London WC1E 6BT, UK
| | - Mary B. Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.); (M.B.M.)
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.); (M.B.M.)
| |
Collapse
|
110
|
Barazesh M, Mohammadi S, Bahrami Y, Mokarram P, Morowvat MH, Saidijam M, Karimipoor M, Kavousipour S, Vosoughi AR, Khanaki K. CRISPR/Cas9 Technology as a Modern Genetic Manipulation Tool for Recapitulating of Neurodegenerative Disorders in Large Animal Models. Curr Gene Ther 2021; 21:130-148. [PMID: 33319680 DOI: 10.2174/1566523220666201214115024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative diseases are often the consequence of alterations in structures and functions of the Central Nervous System (CNS) in patients. Despite obtaining massive genomic information concerning the molecular basis of these diseases and since the neurological disorders are multifactorial, causal connections between pathological pathways at the molecular level and CNS disorders development have remained obscure and need to be elucidated to a great extent. OBJECTIVE Animal models serve as accessible and valuable tools for understanding and discovering the roles of causative factors in the development of neurodegenerative disorders and finding appropriate treatments. Contrary to rodents and other small animals, large animals, especially non-human primates (NHPs), are remarkably similar to humans; hence, they establish suitable models for recapitulating the main human's neuropathological manifestations that may not be seen in rodent models. In addition, they serve as useful models to discover effective therapeutic targets for neurodegenerative disorders due to their similarity to humans in terms of physiology, evolutionary distance, anatomy, and behavior. METHODS In this review, we recommend different strategies based on the CRISPR-Cas9 system for generating animal models of human neurodegenerative disorders and explaining in vivo CRISPR-Cas9 delivery procedures that are applied to disease models for therapeutic purposes. RESULTS With the emergence of CRISPR/Cas9 as a modern specific gene-editing technology in the field of genetic engineering, genetic modification procedures such as gene knock-in and knock-out have become increasingly easier compared to traditional gene targeting techniques. Unlike the old techniques, this versatile technology can efficiently generate transgenic large animal models without the need to complicate lab instruments. Hence, these animals can accurately replicate the signs of neurodegenerative disorders. CONCLUSION Preclinical applications of CRISPR/Cas9 gene-editing technology supply a unique opportunity to establish animal models of neurodegenerative disorders with high accuracy and facilitate perspectives for breakthroughs in the research on the nervous system disease therapy and drug discovery. Furthermore, the useful outcomes of CRISPR applications in various clinical phases are hopeful for their translation to the clinic in a short time.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khoram Abad, Iran
| | - Yadollah Bahrami
- Molecular Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooneh Mokarram
- Autophagy Research center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Reza Vosoughi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Korosh Khanaki
- Medical Biotechnology Research Center, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
111
|
Duffy SS, Hayes JP, Fiore NT, Moalem-Taylor G. The cannabinoid system and microglia in health and disease. Neuropharmacology 2021; 190:108555. [PMID: 33845074 DOI: 10.1016/j.neuropharm.2021.108555] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Recent years have yielded significant advances in our understanding of microglia, the immune cells of the central nervous system (CNS). Microglia are key players in CNS development, immune surveillance, and the maintenance of proper neuronal function throughout life. In the healthy brain, homeostatic microglia have a unique molecular signature. In neurological diseases, microglia become activated and adopt distinct transcriptomic signatures, including disease-associated microglia (DAM) implicated in neurodegenerative disorders. Homeostatic microglia synthesise the endogenous cannabinoids 2-arachidonoylglycerol and anandamide and express the cannabinoid receptors CB1 and CB2 at constitutively low levels. Upon activation, microglia significantly increase their synthesis of endocannabinoids and upregulate their expression of CB2 receptors, which promote a protective microglial phenotype by enhancing their production of neuroprotective factors and reducing their production of pro-inflammatory factors. Here, we summarise the effects of the microglial cannabinoid system in the CNS demyelinating disease multiple sclerosis, the neurodegenerative diseases Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, chronic inflammatory and neuropathic pain, and psychiatric disorders including depression, anxiety and schizophrenia. We discuss the therapeutic potential of cannabinoids in regulating microglial activity and highlight the need to further investigate their specific microglia-dependent immunomodulatory effects.
Collapse
Affiliation(s)
- Samuel S Duffy
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Jessica P Hayes
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Nathan T Fiore
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Gila Moalem-Taylor
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
112
|
Leão T, Madeira SC, Gromicho M, de Carvalho M, Carvalho AM. Learning dynamic Bayesian networks from time-dependent and time-independent data: Unraveling disease progression in Amyotrophic Lateral Sclerosis. J Biomed Inform 2021; 117:103730. [PMID: 33737206 DOI: 10.1016/j.jbi.2021.103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/17/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing patients to quickly lose motor neurons. The disease is characterized by a fast functional impairment and ventilatory decline, leading most patients to die from respiratory failure. To estimate when patients should get ventilatory support, it is helpful to adequately profile the disease progression. For this purpose, we use dynamic Bayesian networks (DBNs), a machine learning model, that graphically represents the conditional dependencies among variables. However, the standard DBN framework only includes dynamic (time-dependent) variables, while most ALS datasets have dynamic and static (time-independent) observations. Therefore, we propose the sdtDBN framework, which learns optimal DBNs with static and dynamic variables. Besides learning DBNs from data, with polynomial-time complexity in the number of variables, the proposed framework enables the user to insert prior knowledge and to make inference in the learned DBNs. We use sdtDBNs to study the progression of 1214 patients from a Portuguese ALS dataset. First, we predict the values of every functional indicator in the patients' consultations, achieving results competitive with state-of-the-art studies. Then, we determine the influence of each variable in patients' decline before and after getting ventilatory support. This insightful information can lead clinicians to pay particular attention to specific variables when evaluating the patients, thus improving prognosis. The case study with ALS shows that sdtDBNs are a promising predictive and descriptive tool, which can also be applied to assess the progression of other diseases, given time-dependent and time-independent clinical observations.
Collapse
Affiliation(s)
- Tiago Leão
- Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Sara C Madeira
- LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Gromicho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mamede de Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa-Norte, Lisbon, Portugal
| | - Alexandra M Carvalho
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Lisbon ELLIS Unit (Lisbon Unit for Learning and Intelligent Systems), Portugal.
| |
Collapse
|
113
|
Nguyen C, Caga J, Mahoney CJ, Kiernan MC, Huynh W. Behavioural changes predict poorer survival in amyotrophic lateral sclerosis. Brain Cogn 2021; 150:105710. [PMID: 33725515 DOI: 10.1016/j.bandc.2021.105710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The Motor Neuron Disease Behavioural Scale (MiND-B) is a clinically validated tool that was developed to detect behavioural dysfunction in patients with amyotrophic lateral sclerosis (ALS). The current study aimed to evaluate behavioural impairment using MiND-B, as well as cognitive dysfunction in ALS patients, and to determine their prognostic implications. METHOD Patients with a clinical diagnosis of ALS were prospectively recruited from a specialised multidisciplinary ALS clinic. Patients underwent behavioural assessment with the Motor Neuron Disease Behavioural Scale (MiND-B) and cognitive evaluation using the Addenbrooke's Cognitive Examination (ACE). Primary outcome measure was selected as survival time, defined by time from assessment to time of death or censor date. Univariate assessment of survival effect was carried out using Kaplan-Meier survival analysis followed by cox regression analysis to assess the effect of MiND-B and ACE scores on survival time. RESULTS A total of 134 patients were included in the study. MiND-B testing determined that 59% were classified as having behavioural dysfunction, with deficits associated with a significantly shorter survival time (HR 2.53, p = 0.003, 95% CI 1.3-4.6). Furthermore, regression analysis demonstrated that for every 1-point reduction in the MiND-B score, risk of death increased by 3%. ACE testing established that 33% of the cohort had evidence of cognitive dysfunction. Patients with cognitive dysfunction on ACE testing had a significantly shorter survival time than patients without cognitive impairment (HR 2.0, p = 0.042, 95% CI 1.04-3.3). CONCLUSION The presence of behavioural and cognitive impairments in ALS patients was associated with poor survival. The MiND-B and ACE inventories are simple and efficient clinical tools that can be administered in the multidisciplinary ALS clinic, that aid in the prognostication of this patient population.
Collapse
Affiliation(s)
- Chilan Nguyen
- School of Medicine, University of Notre Dame, NSW, Australia
| | - Jashelle Caga
- Brain and Mind Centre, University of Sydney, NSW, Australia
| | | | | | - William Huynh
- Brain and Mind Centre, University of Sydney, NSW, Australia; Prince of Wales Clinical School, University of New South Wales, NSW, Australia.
| |
Collapse
|
114
|
Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degenerations: Similarities in Genetic Background. Diagnostics (Basel) 2021; 11:diagnostics11030509. [PMID: 33805659 PMCID: PMC7998502 DOI: 10.3390/diagnostics11030509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal progressive degenerative disorder of motor neurons that overlaps with frontotemporal lobar degeneration (FTLD) clinically, morphologically, and genetically. Although many distinct mutations in various genes are known to cause amyotrophic lateral sclerosis, it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Many of the gene mutations are in proteins that share similar functions. They can be grouped into those associated with cell axon dynamics and those associated with cellular phagocytic machinery, namely protein aggregation and metabolism, apoptosis, and intracellular nucleic acid transport. Analysis of pathways implicated by mutant ALS genes has provided new insights into the pathogenesis of both familial forms of ALS (fALS) and sporadic forms (sALS), although, regrettably, this has not yet yielded definitive treatments. Many genes play an important role, with TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly, C9orf72 being critical genetic players in these neurological disorders. In this mini-review, we will focus on the molecular mechanisms of these two diseases.
Collapse
|
115
|
Robichaud PP, Arseneault M, O'Connell C, Ouellette RJ, Morin PJ. Circulating cell-free DNA as potential diagnostic tools for amyotrophic lateral sclerosis. Neurosci Lett 2021; 750:135813. [PMID: 33705931 DOI: 10.1016/j.neulet.2021.135813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
DNA methylation has garnered much attention in recent years for its diagnostic potential in multiple conditions including cancer and neurodegenerative diseases. Conversely, advances regarding the potential diagnostic relevance of DNA methylation status have been sparse in the field of amyotrophic lateral sclerosis (ALS) even though patients diagnosed with this condition would significantly benefit from improved molecular assays aimed at furthering the current diagnostic and therapeutic options available. This review will provide an overview of the current diagnostic approaches available for ALS diagnosis and discuss the potential clinical usefulness of DNA methylation. We will also present examples of DNA methylation as a diagnostic tool in various types of cancer and neurodegenerative conditions and expand on how circulating cfDNA methylation may be leveraged for the early detection of ALS. In general, this article will reinforce the importance of cfDNA methylation as diagnostic tools and will further highlight its clinical relevance for persons diagnosed with ALS.
Collapse
Affiliation(s)
- Philippe-Pierre Robichaud
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Centre, Department of Genetic Services, 330 Université Ave, Moncton, New Brunswick, E1C 2Z3, Canada; Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, New Brunswick, E1C 8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Michael Arseneault
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Colleen O'Connell
- Stan Cassidy Centre for Rehabilitation, 800 Priestman Street, Fredericton, New Brunswick, E3B 0C7, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, New Brunswick, E1C 8X3, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada.
| |
Collapse
|
116
|
Imamura K, Yada Y, Izumi Y, Morita M, Kawata A, Arisato T, Nagahashi A, Enami T, Tsukita K, Kawakami H, Nakagawa M, Takahashi R, Inoue H. Prediction Model of Amyotrophic Lateral Sclerosis by Deep Learning with Patient Induced Pluripotent Stem Cells. Ann Neurol 2021; 89:1226-1233. [PMID: 33565152 PMCID: PMC8247989 DOI: 10.1002/ana.26047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/21/2022]
Abstract
In amyotrophic lateral sclerosis (ALS), early diagnosis is essential for both current and potential treatments. To find a supportive approach for the diagnosis, we constructed an artificial intelligence‐based prediction model of ALS using induced pluripotent stem cells (iPSCs). Images of spinal motor neurons derived from healthy control subject and ALS patient iPSCs were analyzed by a convolutional neural network, and the algorithm achieved an area under the curve of 0.97 for classifying healthy control and ALS. This prediction model by deep learning algorithm with iPSC technology could support the diagnosis and may provide proactive treatment of ALS through future prospective research. ANN NEUROL 2021;89:1226–1233
Collapse
Affiliation(s)
- Keiko Imamura
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto, Japan.,Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
| | - Yuichiro Yada
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Akihiro Kawata
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Takayo Arisato
- Department of Neurology, National Hospital Organization Minamikyusyu Hospital, Kagoshima, Japan
| | - Ayako Nagahashi
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto, Japan.,Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takako Enami
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto, Japan.,Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kayoko Tsukita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Masanori Nakagawa
- Department of Neurology, North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhisa Inoue
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto, Japan.,Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan.,Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
117
|
Rodríguez-Cueto C, García-Toscano L, Santos-García I, Gómez-Almería M, Gonzalo-Consuegra C, Espejo-Porras F, Fernández-Ruiz J, de Lago E. Targeting the CB 2 receptor and other endocannabinoid elements to delay disease progression in amyotrophic lateral sclerosis. Br J Pharmacol 2021; 178:1373-1387. [PMID: 33486755 DOI: 10.1111/bph.15386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids form a singular group of plant-derived compounds, endogenous lipids and synthetic derivatives with multiple therapeutic effects exerted by targeting different elements of the endocannabinoid system. One of their therapeutic applications is the preservation of neuronal integrity exerted by attenuating the multiple neurotoxic events that kill neurons in neurodegenerative disorders. In this review, we will address the potential of cannabinoids as neuroprotective agents in amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disorder characterized by muscle denervation, atrophy and paralysis, and progressive deterioration in upper and/or lower motor neurons. The emphasis will be paid on the cannabinoid type 2 (CB2 ) receptor, whose activation limits glial reactivity, but the potential of additional endocannabinoid-related targets will be also addressed. The evidence accumulated so far at the preclinical level supports the need to soon move towards the patients and initiate clinical trials to confirm the potential of cannabinoid-based medicines as disease modifiers in ALS. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Laura García-Toscano
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Irene Santos-García
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Marta Gómez-Almería
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Claudia Gonzalo-Consuegra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Francisco Espejo-Porras
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Eva de Lago
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
118
|
Yuan MM, Peng X, Zeng TY, Wu MLY, Chen Y, Zhang K, Wang XJ. The illness experience for people with amyotrophic lateral sclerosis: A qualitative study. J Clin Nurs 2021; 30:1455-1463. [PMID: 33559184 PMCID: PMC8248064 DOI: 10.1111/jocn.15697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/05/2022]
Abstract
Aims and objectives This study aims to gain a comprehensive understanding of the illness experience of amyotrophic lateral sclerosis (ALS) patients in China and the meaning they attach to those experiences. Background ALS is a progressive and fatal neurodegenerative disorder that significantly impacts individuals and families. There is a large number of patients with ALS in China. However, little is known about how they live with ALS. Design Phenomenological qualitative research was performed among twenty people with ALS from the neurology department of a tertiary hospital in China. Colaizzi's method was used to analyse the participants’ data. The Consolidated Criteria for Reporting Qualitative Research (COREQ) was used as a guideline to secure accurate and complete reporting of the study. Results We proposed three themes and eight subthemes on the illness experience of participants: (1) life countdown: ‘my body was frozen’ (body out of control and inward suffering); (2) family self‐help: ‘we kept an eye on each other’ (family warmth and hardship, and supporting the supporter); and (3) reconstruction of life: ‘what was the meaning of my life’ (learning to accept, rebuilding self‐worth, resetting the priority list and living in the moment). Conclusions In the family self‐help model, patients are prompted to turn from negative mentalities to search for meaning in life actively. Healthcare providers need to attach importance to the family self‐help model to alleviate the pressure on medical resources. Relevance to clinical practice Healthcare providers should encourage patients to play a supportive role in the family and provide more care support and professional care knowledge guidance to caregivers, to promote the formation of the family self‐help model which might help to improve the experience of patients and families.
Collapse
Affiliation(s)
- Meng-Mei Yuan
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Peng
- Department of neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tie-Ying Zeng
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei-Li-Yang Wu
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Chen
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Zhang
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Jun Wang
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
119
|
A Novel Method for Triggering the Swallowing Reflex in Patients with Amyotrophic Lateral Sclerosis: the Ishizaki Press Method. Dysphagia 2021; 37:177-182. [PMID: 33590294 DOI: 10.1007/s00455-021-10261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
This study describes the identification of specific maxillofacial points triggering the swallowing reflex by finger pressure in a patient with severe amyotrophic lateral sclerosis. This method has been named as the "Ishizaki Press Method." The first point was identified in a serendipitous encounter during training sessions to aid communication. This led to the search for such additional points, after obtaining informed consent from the patient and his relatives. Seven effective points were identified: the depressions in front of the left and right tragus (Ting gong points), bilateral points over the parotid and submandibular glands, and a point over the mentum in the midline of the face. The efficacy of these trigger points was noted to be ≥ 70%. The mean time taken for swallowing to occur in response to the stimulation at each of these points was less than 10 s, and the induction of a rapid swallowing reflex was recognized. Alternating left and right stimulations of the Ting gong points and the parotid points triggered the swallowing reflex significantly faster than unilateral stimulations alone. The Ishizaki Press Method may improve the management of dysphagia in patients with amyotrophic lateral sclerosis.
Collapse
|
120
|
Esselin F, De La Cruz E, Pageot N, Juntas-Moralès R, Alphandéry S, Camu W. Increased worsening of amyotrophic lateral sclerosis patients during Covid-19-related lockdown in France. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:505-507. [PMID: 33576710 DOI: 10.1080/21678421.2021.1883669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covid-19-related lockdown (LD) in France precluded in-person follow-up in referral ALS centers. ALS patients' evolution and worsening before and during LD were studied to analyze its impact. A total of 84 patients were identified. The monthly rate of ALSFRS-R decline during LD was 1.06 ± 1.42 and was significantly increased compared to the pre-LD period, 0.58 ± 0.73, corresponding to an 83% increase (p = 0.007). Weight loss was unchanged between pre-LD and LD, gender and site of onset did not influence the rates of change of ALSFRS-R score. Several factors may be implicated in this increased severity of ALS during LD, such as psychological consequences of LD, interruptions of physiotherapy and speech therapy, or in-patient visits both to the tertiary center and the GP. Physicians and health authorities should be aware of that, in order to prevent the consequences of future sanitary restrictions.
Collapse
Affiliation(s)
- Florence Esselin
- Centre de référence SLA, CHU Montpellier, Univ Montpellier, INSERM, Montpellier, France
| | - Elisa De La Cruz
- Centre de référence SLA, CHU Montpellier, Univ Montpellier, INSERM, Montpellier, France
| | - Nicolas Pageot
- Centre de référence SLA, CHU Montpellier, Univ Montpellier, INSERM, Montpellier, France
| | - Raul Juntas-Moralès
- Unitat Neuromuscular, Servei de Neurologia, Hospital Vall d'Hebron, Barcelona, Spain
| | - Sébastien Alphandéry
- Centre de référence SLA, CHU Montpellier, Univ Montpellier, INSERM, Montpellier, France
| | - William Camu
- Centre de référence SLA, CHU Montpellier, Univ Montpellier, INSERM, Montpellier, France
| |
Collapse
|
121
|
Fagagnini A, Garavís M, Gómez-Pinto I, Fasoli S, Gotte G, Laurents DV. NMR Characterization of Angiogenin Variants and tRNA Ala Products Impacting Aberrant Protein Oligomerization. Int J Mol Sci 2021; 22:1439. [PMID: 33535464 PMCID: PMC7867098 DOI: 10.3390/ijms22031439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Protein oligomerization is key to countless physiological processes, but also to abnormal amyloid conformations implicated in over 25 mortal human diseases. Human Angiogenin (h-ANG), a ribonuclease A family member, produces RNA fragments that regulate ribosome formation, the creation of new blood vessels and stress granule function. Too little h-ANG activity leads to abnormal protein oligomerization, resulting in Amyotrophic Lateral Sclerosis (ALS) or Parkinson's disease. While a score of disease linked h-ANG mutants has been studied by X-ray diffraction, some elude crystallization. There is also a debate regarding the structure that RNA fragments adopt after cleavage by h-ANG. Here, to better understand the beginning of the process that leads to aberrant protein oligomerization, the solution secondary structure and residue-level dynamics of WT h-ANG and two mutants i.e., H13A and R121C, are characterized by multidimensional heteronuclear NMR spectroscopy under near-physiological conditions. All three variants are found to adopt well folded and highly rigid structures in the solution, although the elements of secondary structure are somewhat shorter than those observed in crystallography studies. R121C alters the environment of nearby residues only. By contrast, the mutation H13A affects local residues as well as nearby active site residues K40 and H114. The conformation characterization by CD and 1D 1H NMR spectroscopies of tRNAAla before and after h-ANG cleavage reveals a retention of the duplex structure and little or no G-quadruplex formation.
Collapse
Affiliation(s)
- Andrea Fagagnini
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Sezione di Chimica Biologica, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (A.F.); (S.F.)
| | - Miguel Garavís
- Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, c/Serrano 119, E-28006 Madrid, Spain; (M.G.); (I.G.-P.)
| | - Irene Gómez-Pinto
- Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, c/Serrano 119, E-28006 Madrid, Spain; (M.G.); (I.G.-P.)
| | - Sabrina Fasoli
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Sezione di Chimica Biologica, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (A.F.); (S.F.)
| | - Giovanni Gotte
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Sezione di Chimica Biologica, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (A.F.); (S.F.)
| | - Douglas V. Laurents
- Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, c/Serrano 119, E-28006 Madrid, Spain; (M.G.); (I.G.-P.)
| |
Collapse
|
122
|
Kiernan MC, Vucic S, Talbot K, McDermott CJ, Hardiman O, Shefner JM, Al-Chalabi A, Huynh W, Cudkowicz M, Talman P, Van den Berg LH, Dharmadasa T, Wicks P, Reilly C, Turner MR. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol 2021; 17:104-118. [PMID: 33340024 PMCID: PMC7747476 DOI: 10.1038/s41582-020-00434-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Individuals who are diagnosed with amyotrophic lateral sclerosis (ALS) today face the same historically intransigent problem that has existed since the initial description of the disease in the 1860s - a lack of effective therapies. In part, the development of new treatments has been hampered by an imperfect understanding of the biological processes that trigger ALS and promote disease progression. Advances in our understanding of these biological processes, including the causative genetic mutations, and of the influence of environmental factors have deepened our appreciation of disease pathophysiology. The consequent identification of pathogenic targets means that the introduction of effective therapies is becoming a realistic prospect. Progress in precision medicine, including genetically targeted therapies, will undoubtedly change the natural history of ALS. The evolution of clinical trial designs combined with improved methods for patient stratification will facilitate the translation of novel therapies into the clinic. In addition, the refinement of emerging biomarkers of therapeutic benefits is critical to the streamlining of care for individuals. In this Review, we synthesize these developments in ALS and discuss the further developments and refinements needed to accelerate the introduction of effective therapeutic approaches.
Collapse
Affiliation(s)
- Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
| | - Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Orla Hardiman
- Academic Neurology Unit, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- National Neuroscience Centre, Beaumont Hospital, Dublin, Ireland
| | - Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, University of Arizona College of Medicine Phoenix, Creighton University, Phoenix, AZ, USA
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, UK
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Merit Cudkowicz
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul Talman
- Neurosciences Department, Barwon Health District, Melbourne, Victoria, Australia
| | - Leonard H Van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thanuja Dharmadasa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paul Wicks
- Wicks Digital Health, Lichfield, United Kingdom
| | - Claire Reilly
- The Motor Neurone Disease Association of New Zealand, Auckland, New Zealand
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
123
|
Comorbidity Pattern Analysis for Predicting Amyotrophic Lateral Sclerosis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electronic Medical Records (EMRs) can be used to create alerts for clinicians to identify patients at risk and to provide useful information for clinical decision-making support. In this study, we proposed a novel approach for predicting Amyotrophic Lateral Sclerosis (ALS) based on comorbidities and associated indicators using EMRs. The medical histories of ALS patients were analyzed and compared with those of subjects without ALS, and the associated comorbidities were selected as features for constructing the machine learning and prediction model. We proposed a novel weighted Jaccard index (WJI) that incorporates four different machine learning techniques to construct prediction systems. Alternative prediction models were constructed based on two different levels of comorbidity: single disease codes and clustered disease codes. With an accuracy of 83.7%, sensitivity of 78.8%, specificity of 85.7%, and area under the receiver operating characteristic curve (AUC) value of 0.907 for the single disease code level, the proposed WJI outperformed the traditional Jaccard index (JI) and scoring methods. Incorporating the proposed WJI into EMRs enabled the construction of a prediction system for analyzing the risk of suffering a specific disease based on comorbidity combinatorial patterns, which could provide a fast, low-cost, and noninvasive evaluation approach for early diagnosis of a specific disease.
Collapse
|
124
|
Kumar V, Maity S. ER Stress-Sensor Proteins and ER-Mitochondrial Crosstalk-Signaling Beyond (ER) Stress Response. Biomolecules 2021; 11:173. [PMID: 33525374 PMCID: PMC7911976 DOI: 10.3390/biom11020173] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Recent studies undoubtedly show the importance of inter organellar connections to maintain cellular homeostasis. In normal physiological conditions or in the presence of cellular and environmental stress, each organelle responds alone or in coordination to maintain cellular function. The Endoplasmic reticulum (ER) and mitochondria are two important organelles with very specialized structural and functional properties. These two organelles are physically connected through very specialized proteins in the region called the mitochondria-associated ER membrane (MAM). The molecular foundation of this relationship is complex and involves not only ion homeostasis through the shuttling of calcium but also many structural and apoptotic proteins. IRE1alpha and PERK are known for their canonical function as an ER stress sensor controlling unfolded protein response during ER stress. The presence of these transmembrane proteins at the MAM indicates its potential involvement in other biological functions beyond ER stress signaling. Many recent studies have now focused on the non-canonical function of these sensors. In this review, we will focus on ER mitochondrial interdependence with special emphasis on the non-canonical role of ER stress sensors beyond ER stress.
Collapse
|
125
|
Bayesian Network as a Decision Tool for Predicting ALS Disease. Brain Sci 2021; 11:brainsci11020150. [PMID: 33498784 PMCID: PMC7912628 DOI: 10.3390/brainsci11020150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Clinical diagnosis of amyotrophic lateral sclerosis (ALS) is difficult in the early period. But blood tests are less time consuming and low cost methods compared to other methods for the diagnosis. The ALS researchers have been used machine learning methods to predict the genetic architecture of disease. In this study we take advantages of Bayesian networks and machine learning methods to predict the ALS patients with blood plasma protein level and independent personal features. According to the comparison results, Bayesian Networks produced best results with accuracy (0.887), area under the curve (AUC) (0.970) and other comparison metrics. We confirmed that sex and age are effective variables on the ALS. In addition, we found that the probability of onset involvement in the ALS patients is very high. Also, a person’s other chronic or neurological diseases are associated with the ALS disease. Finally, we confirmed that the Parkin level may also have an effect on the ALS disease. While this protein is at very low levels in Parkinson’s patients, it is higher in the ALS patients than all control groups.
Collapse
|
126
|
Sonkodi B. Delayed Onset Muscle Soreness (DOMS): The Repeated Bout Effect and Chemotherapy-Induced Axonopathy May Help Explain the Dying-Back Mechanism in Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Brain Sci 2021; 11:brainsci11010108. [PMID: 33467407 PMCID: PMC7830646 DOI: 10.3390/brainsci11010108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Delayed onset muscle soreness (DOMS) is hypothesized to be caused by glutamate excitotoxicity-induced acute compression axonopathy of the sensory afferents in the muscle spindle. Degeneration of the same sensory afferents is implicated in the disease onset and progression of amyotrophic lateral sclerosis (ALS). A series of “silent” acute compression proprioceptive axonopathies with underlying genetic/environmental factors, damaging eccentric contractions and the non-resolving neuroinflammatory process of aging could lead to ALS disease progression. Since the sensory terminals in the muscle spindle could not regenerate from the micro-damage in ALS, unlike in DOMS, the induced protective microcircuits and their long-term functional plasticity (the equivalent of the repeated bout effect in DOMS) will be dysfunctional. The acute stress invoking osteocalcin, bradykinin, COX1, COX2, GDNF, PGE2, NGF, glutamate and N-methyl-D-aspartate (NMDA) receptors are suggested to be the critical signalers of this theory. The repeated bout effect of DOMS and the dysfunctional microcircuits in ALS are suggested to involve several dimensions of memory and learning, like pain memory, inflammation, working and episodic memory. The spatial encoding of these memory dimensions is compromised in ALS due to blunt position sense from the degenerating proprioceptive axon terminals of the affected muscle spindles. Dysfunctional microcircuits progressively and irreversibly interfere with postural control, with motor command and locomotor circuits, deplete the neuroenergetic system, and ultimately interfere with life-sustaining central pattern generators in ALS. The activated NMDA receptor is suggested to serve the “gate control” function in DOMS and ALS in line with the gate control theory of pain. Circumvention of muscle spindle-loading could be a choice of exercise therapy in muscle spindle-affected neurodegenerative diseases.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, University of Physical Education, Alkotas u. 44, H-1123 Budapest, Hungary
| |
Collapse
|
127
|
Caga J, Zoing MC, Foxe D, Ramsey E, D'Mello M, Mioshi E, Ahmed RM, Kiernan MC, Piguet O. Problem-focused coping underlying lower caregiver burden in ALS-FTD: implications for caregiver intervention. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:434-441. [PMID: 33438449 DOI: 10.1080/21678421.2020.1867180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: Amyotrophic lateral sclerosis (ALS) is a multisystem neurodegenerative disorder which includes cognitive and behavioral symptoms akin to frontotemporal dementia (FTD). Despite the necessity of caregiver intervention to assist with the management of cognitive and behavioral symptoms, there has been a lack of research on the topic. A focus on caregiver coping may offer a promising foundation to guide the development of interventions as part of ALS care. Accordingly, the aim of the present study was to examine the relationships between caregiver coping, psychological morbidity and burden of care in the context of ALS cognitive and behavioral symptoms. Methods: Fifty-five patient-caregiver dyads were recruited from specialized ALS and FTD clinics. Specific coping strategies were examined using the COPE Inventory/Brief COPE and psychological morbidity and burden were assessed using the Depression, Anxiety, and Stress Scale-21 and Zarit Burden Interview. The relationship between coping, psychological morbidity and burden of care were analyzed using univariate and multivariate methods. Results: High-burden caregivers were more likely to be caring for patients with a diagnosis of ALS-FTD (p =.0001). Caregivers used problem-focused strategies (particularly planning) more frequently (M = 71.4, SD = 15.3) compared to emotion-focused (M = 60.8, SD = 12.3) and dysfunctional coping strategies (M = 42.2, SD = 8.6). A diagnosis of ALS-FTD (p=.0001) and problem-focused strategies (p=.024) emerged as significant predictors of caregiver burden. Caregiver anxiety, depression and stress were not predictive of caregiver burden (p=.151). Conclusions: Timely provision of caregiver support optimizing problem-focused coping strategies as part of multidisciplinary ALS care, particularly for caregivers of ALS-FTD patients may mitigate caregiver burden.
Collapse
Affiliation(s)
- Jashelle Caga
- Brain & Mind Centre, The University of Sydney, Camperdown, Australia.,Sydney Medical School, The University of Sydney, Camperdown, Australia
| | - Margaret C Zoing
- Brain & Mind Centre, The University of Sydney, Camperdown, Australia
| | - David Foxe
- Brain & Mind Centre, The University of Sydney, Camperdown, Australia.,School of Psychology, The University of Sydney, Camperdown, Australia, and
| | - Eleanor Ramsey
- Brain & Mind Centre, The University of Sydney, Camperdown, Australia
| | - Mirelle D'Mello
- Brain & Mind Centre, The University of Sydney, Camperdown, Australia.,School of Psychology, The University of Sydney, Camperdown, Australia, and
| | - Eneida Mioshi
- School of Health Sciences, The University of East Anglia, Norwich, UK
| | - Rebekah M Ahmed
- Brain & Mind Centre, The University of Sydney, Camperdown, Australia.,Sydney Medical School, The University of Sydney, Camperdown, Australia
| | - Matthew C Kiernan
- Brain & Mind Centre, The University of Sydney, Camperdown, Australia.,Sydney Medical School, The University of Sydney, Camperdown, Australia
| | - Olivier Piguet
- Brain & Mind Centre, The University of Sydney, Camperdown, Australia.,School of Psychology, The University of Sydney, Camperdown, Australia, and
| |
Collapse
|
128
|
Vucic S, Kiernan MC, Menon P, Huynh W, Rynders A, Ho KS, Glanzman R, Hotchkin MT. Study protocol of RESCUE-ALS: A Phase 2, randomised, double-blind, placebo-controlled study in early symptomatic amyotrophic lateral sclerosis patients to assess bioenergetic catalysis with CNM-A u8 as a mechanism to slow diseas e progression. BMJ Open 2021; 11:e041479. [PMID: 33431491 PMCID: PMC7802642 DOI: 10.1136/bmjopen-2020-041479] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is an adult-onset, progressive and universally fatal neurodegenerative disorder. In Europe, Australia and Canada, riluzole is the only approved therapeutic agent for the treatment of ALS, while in the USA, riluzole and edaravone have been approved by the Food and Drug Administration (FDA) . Neither riluzole nor edaravone treatment has resulted in substantial disease-modifying effects. There is, therefore, an urgent need for drugs that result in safe and effective treatment. Here, we present the design and rationale for the phase 2 RESCUE-ALS study, investigating the novel nanocatalytic drug, CNM-Au8, as a therapeutic intervention that enhances the metabolic and energetic capacity of motor neurones. CNM-Au8 is an aqueous suspension of clean-surfaced, faceted gold nanocrystals that have extraordinary catalytic capabilities, that enhance efficiencies of key metabolic reactions, while simultaneously reducing levels of reactive oxygen species. This trial utilises a novel design by employing motor unit number index (MUNIX), measured by electromyography, as a quantitative measure of lower motor neurone loss and as an early marker of ALS disease progression. METHODS AND ANALYSIS This is a multicentre, randomised, double-blind, parallel group, placebo-controlled study of the efficacy, safety, pharmacokinetics and pharmacodynamics of CNM-Au8 in ALS patients. Patients will be randomised 1:1 to either receive 30 mg of CNM-Au8 once daily or matching placebo over a 36-week double-blind treatment period. Efficacy will be assessed as the change in motor neurone loss as measured by electromyography (eg, MUNIX, the primary endpoint; and secondary endpoints including MScanFit, motor unit size index, Split Hand Index, Neurophysiology Index). Exploratory endpoints include standard clinical and quality of life assessments. ETHICS AND DISSEMINATION RESCUE-ALS was approved by the Western Sydney Local Health District Human Research Ethics Committee (Ethics Ref: 2019/ETH12107). Results of the study will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT04098406.
Collapse
Affiliation(s)
- Steve Vucic
- Department of Neurology, Westmead Hospital and Western Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Parvathi Menon
- Department of Neurology, Westmead Hospital and Western Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Karen S Ho
- Clene Nanomedicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
129
|
Ahmed RM, Steyn F, Dupuis L. Hypothalamus and weight loss in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:327-338. [PMID: 34225938 DOI: 10.1016/b978-0-12-820107-7.00020-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder. While initially pathophysiology was thought to be restricted to motor deficits, it is increasingly recognized that patients develop prominent changes in weight and eating behavior that result from and mediate the underlying neurodegenerative process. These changes include alterations in metabolism, lipid levels, and insulin resistance. Emerging research suggests that these alterations may be mediated through changes in the hypothalamic function, with atrophy of the hypothalamus shown in both ALS patients and also presymptomatic genetic at-risk patients. This chapter reviews the evidence for hypothalamic involvement in ALS, including melanocortin pathways and potential treatment targets.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Frederik Steyn
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia; Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Luc Dupuis
- Université de Strasbourg, Inserm, UMR-S 1118, Centre de Recherches en Biomédecine, Strasbourg, France.
| |
Collapse
|
130
|
Gunton A, Hansen G, Schellenberg KL. Photovoice as a Participatory Research Tool in Amyotrophic Lateral Sclerosis. J Neuromuscul Dis 2021; 8:91-99. [PMID: 32986680 PMCID: PMC8293638 DOI: 10.3233/jnd-200537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Photovoice is a qualitative research tool increasingly utilized in the healthcare field to understand the illness experience from the patient and caregiver perspective. This is the first study to evaluate photovoice in the context of amyotrophic lateral sclerosis (ALS). Objective: A patient and caregiver centered research tool was utilized to gain a greater understanding of challenges faced when living with ALS. Methods: Eight patients and three corresponding caregivers participating by taking photographs, writing descriptive text, and participating in individual and group interviews. Inductive thematic analysis was employed to uncover recurring themes. Results: Five main themes were identified; 1) facing the diagnosis, 2) loss of function, 3) isolation, 4) health system challenges, and 5) hope. Despite the devasting impact of ALS, the majority of participants reported a surprising amount of positivity in the face of receiving this difficult diagnosis, and demonstrated incredible creativity and adaptability to meet the ensuing loss of function. However, patients and caregivers discussed feelings of isolation and health care system challenges. The importance of hope was a strong and recurring theme. Conclusions: The photovoice research tool demonstrates the profound resilience of these participants, and challenges the medical community to find ways of fostering positivity and hope throughout the ALS disease course. Further clinic and community resources, education, and supports are needed to combat the sense of isolation and health care system challenges experienced by patients and their caregivers.
Collapse
Affiliation(s)
- Adrianna Gunton
- College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gregory Hansen
- Division of Pediatric Critical Care, Jim Pattison Children's Hospital, Saskatoon, Saskatchewan, Canada
| | - Kerri Lynn Schellenberg
- Department of Medicine, Division of Neurology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
131
|
Dash R, Ali MC, Jahan I, Munni YA, Mitra S, Hannan MA, Timalsina B, Oktaviani DF, Choi HJ, Moon IS. Emerging potential of cannabidiol in reversing proteinopathies. Ageing Res Rev 2021; 65:101209. [PMID: 33181336 DOI: 10.1016/j.arr.2020.101209] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
The aberrant accumulation of disease-specific protein aggregates accompanying cognitive decline is a pathological hallmark of age-associated neurological disorders, also termed as proteinopathies, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. Along with oxidative stress and neuroinflammation, disruption in protein homeostasis (proteostasis), a network that constitutes protein surveillance system, plays a pivotal role in the pathobiology of these dementia disorders. Cannabidiol (CBD), a non-psychotropic phytocannabinoid of Cannabis sativa, is known for its pleiotropic neuropharmacological effects on the central nervous system, including the ability to abate oxidative stress, neuroinflammation, and protein misfolding. Over the past years, compelling evidence has documented disease-modifying role of CBD in various preclinical and clinical models of neurological disorders, suggesting the potential therapeutic implications of CBD in these disorders. Because of its putative role in the proteostasis network in particular, CBD could be a potent modulator for reversing not only age-associated neurodegeneration but also other protein misfolding disorders. However, the current understanding is insufficient to underpin this proposition. In this review, we discuss the potentiality of CBD as a pharmacological modulator of the proteostasis network, highlighting its neuroprotective and aggregates clearing roles in the neurodegenerative disorders. We anticipate that the current effort will advance our knowledge on the implication of CBD in proteostasis network, opening up a new therapeutic window for aging proteinopathies.
Collapse
|
132
|
McKay KA, Smith KA, Smertinaite L, Fang F, Ingre C, Taube F. Military service and related risk factors for amyotrophic lateral sclerosis. Acta Neurol Scand 2021; 143:39-50. [PMID: 32905613 PMCID: PMC7756624 DOI: 10.1111/ane.13345] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The cause of amyotrophic lateral sclerosis (ALS) is unknown, but occupations have been explored as a potential proxy measure of risk. There is a substantial body of literature connecting military service to ALS. We aimed to summarize and assess the quality of this evidence. METHODS Systematic review of the literature, including observational studies which explored one of the following exposures: general military service (army, air force, marines, or navy); or specific exposures associated with military service measured among military personnel. The outcome of interest was ALS incidence, which could include onset, diagnosis, or death from ALS. RESULTS A total of 2642 articles were screened. Following exclusion, 19 articles remained for inclusion in the systematic review, including 1 meta-analysis and 18 original observational studies. Most studies were of moderate quality. In general, the relationship between military service was suggestive of an increased risk, particularly among Gulf War and WWII veterans. Exposure to pesticides (including Agent Orange) certain chemicals (exhaust, burning agents), heavy metals, and head trauma appeared to increase the risk of ALS among military personnel. CONCLUSIONS There is a possible association between military service and the subsequent development of ALS; however, the evidence was limited. Studies were generally hindered by small sample sizes and inadequate follow-up time. Future studies should endeavor to objectively measure specific exposures, or combinations thereof, associated with military service, as this will be of vital importance in implementing preventative strategies into military organizations.
Collapse
Affiliation(s)
- Kyla A. McKay
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
- Centre for Molecular Medicine Karolinska Institutet Stockholm Sweden
| | - Kelsi A. Smith
- Clinical Epidemiology Division Department of Medicine Solna, Karolinska Institutet Stockholm Sweden
| | - Lidija Smertinaite
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology Insitute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Caroline Ingre
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Fabian Taube
- School of Public Health and Community Medicine Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
- Swedish Armed Forces Center for Defence Medicine Gothenburg Sweden
| |
Collapse
|
133
|
Sitruk-Ware R, Bonsack B, Brinton R, Schumacher M, Kumar N, Lee JY, Castelli V, Corey S, Coats A, Sadanandan N, Gonzales-Portillo B, Heyck M, Shear A, Blaise C, Zhang H, Sheyner M, García-Sánchez J, Navarro L, El-Etr M, De Nicola AF, Borlongan CV. Progress in progestin-based therapies for neurological disorders. Neurosci Biobehav Rev 2020; 122:38-65. [PMID: 33359391 DOI: 10.1016/j.neubiorev.2020.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Hormone therapy, primarily progesterone and progestins, for central nervous system (CNS) disorders represents an emerging field of regenerative medicine. Following a failed clinical trial of progesterone for traumatic brain injury treatment, attention has shifted to the progestin Nestorone for its ability to potently and selectively transactivate progesterone receptors at relatively low doses, resulting in robust neurogenetic, remyelinating, and anti-inflammatory effects. That CNS disorders, including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI), and stroke, develop via demyelinating, cell death, and/or inflammatory pathological pathways advances Nestorone as an auspicious candidate for these disorders. Here, we assess the scientific and clinical progress over decades of research into progesterone, progestins, and Nestorone as neuroprotective agents in MS, ALS, SCI, and stroke. We also offer recommendations for optimizing timing, dosage, and route of the drug regimen, and identifying candidate patient populations, in advancing Nestorone to the clinic.
Collapse
Affiliation(s)
| | - Brooke Bonsack
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Vanessa Castelli
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alexandreya Coats
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cozene Blaise
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Julián García-Sánchez
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lisset Navarro
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
134
|
Stanga S, Boido M, Kienlen-Campard P. How to Build and to Protect the Neuromuscular Junction: The Role of the Glial Cell Line-Derived Neurotrophic Factor. Int J Mol Sci 2020; 22:ijms22010136. [PMID: 33374485 PMCID: PMC7794999 DOI: 10.3390/ijms22010136] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The neuromuscular junction (NMJ) is at the crossroad between the nervous system (NS) and the muscle. Following neurotransmitter release from the motor neurons (MNs), muscle contraction occurs and movement is generated. Besides eliciting muscle contraction, the NMJ represents a site of chemical bidirectional interplay between nerve and muscle with the active participation of Schwann cells. Indeed, signals originating from the muscle play an important role in synapse formation, stabilization, maintenance and function, both in development and adulthood. We focus here on the contribution of the Glial cell line-Derived Neurotrophic Factor (GDNF) to these processes and to its potential role in the protection of the NMJ during neurodegeneration. Historically related to the maintenance and survival of dopaminergic neurons of the substantia nigra, GDNF also plays a fundamental role in the peripheral NS (PNS). At this level, it promotes muscle trophism and it participates to the functionality of synapses. Moreover, compared to the other neurotrophic factors, GDNF shows unique peculiarities, which make its contribution essential in neurodegenerative disorders. While describing the known structural and functional changes occurring at the NMJ during neurodegeneration, we highlight the role of GDNF in the NMJ–muscle cross-talk and we review its therapeutic potential in counteracting the degenerative process occurring in the PNS in progressive and severe diseases such as Alzheimer’s disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA). We also describe functional 3D neuromuscular co-culture systems that have been recently developed as a model for studying both NMJ formation in vitro and its involvement in neuromuscular disorders.
Collapse
Affiliation(s)
- Serena Stanga
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy;
- Laboratory of Brain Development and Disease, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, Italy
- National Institute of Neuroscience (INN), 10125 Turin, Italy
- Correspondence:
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy;
- Laboratory of Brain Development and Disease, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, Italy
- National Institute of Neuroscience (INN), 10125 Turin, Italy
| | - Pascal Kienlen-Campard
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), 1200 Bruxelles, Belgium;
| |
Collapse
|
135
|
Kotan D, Özözen Ayas Z, Tunca C, Gungen BD, Akçimen F, Başak AN. Phenotypic and genotypic features of patients diagnosed with ALS in the city of Sakarya, Turkey. Acta Neurol Belg 2020; 120:1411-1418. [PMID: 32671691 DOI: 10.1007/s13760-020-01441-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease leading to motor neuron damage. In this study, the clinical, demographic, and genetic features of ALS patients in the city of Sakarya, Turkey, were investigated. Patients with an established diagnosis of ALS according to the Awaji criteria were included. Age, sex, age at onset of ALS, initial complaints, consanguineous marriage, and genetic features were retrospectively investigated. Conventional genetic analysis and NGS were used for molecular evaluation of patients. A total of 55 probands (10 familial, 45 sporadic) in whom ALS was suspected due to their phenotypic features were included. Thirty-two patients were male (58.2%), and 23 were female (41.8%); their mean ages were 62.65 ± 13 years. The mean age of onset for 37 familial patients from 10 families was 49.9 years. Two cases had juvenile-onset. Fourteen (25.5%) bulbar-onset versus 40 (72.7%) limb-onset patients were detected; one patient had both. Six (10.9%) patients showed marked frontotemporal dementia. Twenty-nine (52.7%) patients died during the follow-up period. Genetic analysis identified causative variants in eleven cases, carrying variants in six different ALS genes (C9orf72, SOD1, VCP, SPG11, TBK1, and SH3TC2). Genetic investigations have revealed more than 40 genes to be involved in the pathogenesis of ALS. Our relatively small study cohort restricted to one province of Turkey, however, prone to migration, consists of 10/55 familial ALS cases, which harbor two rare (SH3TC2-p.Met523Thr and TBK1-p.Glu643del) and two novel (SPG11-p.Lys656Valfs*11 and VCP-p.Arg191Pro) mutations contributing to the literature.
Collapse
Affiliation(s)
- Dilcan Kotan
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | | | - Ceren Tunca
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), KUTTAM, Koç University School of Medicine, İstanbul, Turkey
| | | | - Fulya Akçimen
- Department of Molecular Biology and Genetics, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, İstanbul, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), KUTTAM, Koç University School of Medicine, İstanbul, Turkey
| |
Collapse
|
136
|
Trolese MC, Mariani A, Terao M, de Paola M, Fabbrizio P, Sironi F, Kurosaki M, Bonanno S, Marcuzzo S, Bernasconi P, Trojsi F, Aronica E, Bendotti C, Nardo G. CXCL13/CXCR5 signalling is pivotal to preserve motor neurons in amyotrophic lateral sclerosis. EBioMedicine 2020; 62:103097. [PMID: 33161233 PMCID: PMC7670099 DOI: 10.1016/j.ebiom.2020.103097] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CXCL13 is a B and T lymphocyte chemokine that mediates neuroinflammation through its receptor CXCR5. This chemokine is highly expressed by motoneurons (MNs) in Amyotrophic Lateral Sclerosis (ALS) SOD1G93A (mSOD1) mice during the disease, particularly in fast-progressing mice. Accordingly, in this study, we investigated the role of this chemokine in ALS. METHODS We used in vitro and in vivo experimental paradigms derived from ALS mice and patients to investigate the expression level and distribution of CXCL13/CXCR5 axis and its role in MN death and disease progression. Moreover, we compared the levels of CXCL13 in the CSF and serum of ALS patients and controls. FINDINGS CXCL13 and CXCR5 are overexpressed in the spinal MNs and peripheral axons in mSOD1 mice. CXCL13 inhibition in the CNS of ALS mice resulted in the exacerbation of motor impairment (n = 4/group;Mean_Diff.=27.81) and decrease survival (n = 14_Treated:19.2 ± 1.05wks, n = 17_Controls:20.2 ± 0.6wks; 95% CI: 0.4687-1.929). This was corroborated by evidence from primary spinal cultures where the inhibition or activation of CXCL13 exacerbated or prevented the MN loss. Besides, we found that CXCL13/CXCR5 axis is overexpressed in the spinal cord MNs of ALS patients, and CXCL13 levels in the CSF discriminate ALS (n = 30) from Multiple Sclerosis (n = 16) patients with a sensitivity of 97.56%. INTERPRETATION We hypothesise that MNs activate CXCL13 signalling to attenuate CNS inflammation and prevent the neuromuscular denervation. The low levels of CXCL13 in the CSF of ALS patients might reflect the MN dysfunction, suggesting this chemokine as a potential clinical adjunct to discriminate ALS from other neurological diseases. FUNDING Vaccinex, Inc.; Regione Lombardia (TRANS-ALS).
Collapse
Affiliation(s)
- Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Alessandro Mariani
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Massimiliano de Paola
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Silvia Bonanno
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Pia Bernasconi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Eleonora Aronica
- Department of Pathology, Academic Medic\\\al Centre, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| |
Collapse
|
137
|
The Role of iPSC Modeling Toward Projection of Autophagy Pathway in Disease Pathogenesis: Leader or Follower. Stem Cell Rev Rep 2020; 17:539-561. [PMID: 33245492 DOI: 10.1007/s12015-020-10077-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is responsible for degradation of non-essential or damaged cellular constituents and damaged organelles. The autophagy pathway maintains efficient cellular metabolism and reduces cellular stress by removing additional and pathogenic components. Dysfunctional autophagy underlies several diseases. Thus, several research groups have worked toward elucidating key steps in this pathway. Autophagy can be studied by animal modeling, chemical modulators, and in vitro disease modeling with induced pluripotent stem cells (iPSC) as a loss-of-function platform. The introduction of iPSC technology, which has the capability to maintain the genetic background, has facilitated in vitro modeling of some diseases. Furthermore, iPSC technology can be used as a platform to study defective cellular and molecular pathways during development and unravel novel steps in signaling pathways of health and disease. Different studies have used iPSC technology to explore the role of autophagy in disease pathogenesis which could not have been addressed by animal modeling or chemical inducers/inhibitors. In this review, we discuss iPSC models of autophagy-associated disorders where the disease is caused due to mutations in autophagy-related genes. We classified this group as "primary autophagy induced defects (PAID)". There are iPSC models of diseases in which the primary cause is not dysfunctional autophagy, but autophagy is impaired secondary to disease phenotypes. We call this group "secondary autophagy induced defects (SAID)" and discuss them. Graphical abstract.
Collapse
|
138
|
Song H, Liu JC, Cao ZP, Luo WJ, Chen JY. Medical cost and healthcare utilization of amyotrophic lateral sclerosis in China: A cohort study based on hospital data from 2015 to 2018. Medicine (Baltimore) 2020; 99:e23258. [PMID: 33217848 PMCID: PMC7676534 DOI: 10.1097/md.0000000000023258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a specific neurodegenerative disease, imposed increased economic and utilizations burden on the healthcare system, especially with the progress of the diseases severity. However, the economic burden on Chinese ALS patients remained unclear. This study therefore was aimed to investigate medical cost and healthcare utilization for Chinese ALS patients.Longitudinal health data of over 20 million individuals, including military personnel and civilians, was collected from all Chinese military hospitals. We identified 480 patients with a first major diagnosis for ALS from 2015 to 2018, while matched 400 controlled patients on age, gender, ethnic group, geographic region, length of stay, year of diagnosis and comorbidity. Their medical cost and healthcare utilizations were then measured 1 year before, and 1 year after ALS diagnosis.The median annual medical cost of ALS patients was about 2-fold higher, 17,087 CNY during the index year than 1 year before, 7859 CNY. The highest increase in utilizations may account for medical costs on ALS patients, which was represented by hospitalizations (Odd Ratio (OR) = 4.26, 95% confidence interval (CI) 3.52, 5.15), electromyography (OR = 4.14, 95% CI 2.37, 7.22), nerve conduction velocity (OR = 3.26, 95% CI 2.23, 4.77).This study is the first one reporting direct economic burden on Chinese ALS patients. Efforts should be made to develop cost-effective diagnostic tools in order that sources of medical cost were more effectively allocated, and this disease was detected earlier.
Collapse
Affiliation(s)
- Han Song
- Department of Health Service, PLA General Hospital, Beijing
- Department of Occupational and Environmental Health, and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jian-Chao Liu
- Department of Health Service, PLA General Hospital, Beijing
| | - Zi-Peng Cao
- Department of Occupational and Environmental Health, and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Wen-Jing Luo
- Department of Occupational and Environmental Health, and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jing-Yuan Chen
- Department of Health Service, PLA General Hospital, Beijing
- Department of Occupational and Environmental Health, and the Ministry-of-Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
139
|
Fogarty MJ, Mu EWH, Lavidis NA, Noakes PG, Bellingham MC. Size‐dependent dendritic maladaptations of hypoglossal motor neurons in SOD1
G93A
mice. Anat Rec (Hoboken) 2020; 304:1562-1581. [DOI: 10.1002/ar.24542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew J. Fogarty
- School of Biomedical Sciences The University of Queensland St Lucia Australia
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester Minnesota USA
| | - Erica W. H. Mu
- School of Biomedical Sciences The University of Queensland St Lucia Australia
| | - Nickolas A. Lavidis
- School of Biomedical Sciences The University of Queensland St Lucia Australia
| | - Peter G. Noakes
- School of Biomedical Sciences The University of Queensland St Lucia Australia
- Queensland Brain Institute The University of Queensland St Lucia Australia
| | - Mark C. Bellingham
- School of Biomedical Sciences The University of Queensland St Lucia Australia
| |
Collapse
|
140
|
Spotorno N, Lindberg O, Nilsson C, Landqvist Waldö M, van Westen D, Nilsson K, Vestberg S, Englund E, Zetterberg H, Blennow K, Lätt J, Markus N, Lars-Olof W, Alexander S. Plasma neurofilament light protein correlates with diffusion tensor imaging metrics in frontotemporal dementia. PLoS One 2020; 15:e0236384. [PMID: 33108404 PMCID: PMC7591030 DOI: 10.1371/journal.pone.0236384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/12/2020] [Indexed: 12/02/2022] Open
Abstract
Neurofilaments are structural components of neurons and are particularly abundant in highly myelinated axons. The levels of neurofilament light chain (NfL) in both cerebrospinal fluid (CSF) and plasma have been related to degeneration in several neurodegenerative conditions including frontotemporal dementia (FTD) and NfL is currently considered as the most promising diagnostic and prognostic fluid biomarker in FTD. Although the location and function of filaments in the healthy nervous system suggests a link between increased NfL and white matter degeneration, such a claim has not been fully elucidated in vivo, especially in the context of FTD. The present study provides evidence of an association between the plasma levels of NfL and white matter involvement in behavioral variant FTD (bvFTD) by relating plasma concentration of NfL to diffusion tensor imaging (DTI) metrics in a group of 20 bvFTD patients. The results of both voxel-wise and tract specific analysis showed that increased plasma NfL concentration is associated with a reduction in fractional anisotropy (FA) in a widespread set of white matter tracts including the superior longitudinal fasciculus, the fronto-occipital fasciculus the anterior thalamic radiation and the dorsal cingulum bundle. Plasma NfL concentration also correlated with cortical thinning in a portion of the right medial prefrontal cortex and of the right lateral orbitofrontal cortex. These results support the hypothesis that blood NfL levels reflect the global level of neurodegeneration in bvFTD and help to advance our understanding of the association between this blood biomarker for FTD and the disease process.
Collapse
Affiliation(s)
- Nicola Spotorno
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden
| | - Christer Nilsson
- Division of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Maria Landqvist Waldö
- Department of clinical Sciences, Clinical Sciences Helsingborg, Lund, Lund University, Lund, Sweden
| | - Danielle van Westen
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Nilsson
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | | | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences, Lund, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jimmy Lätt
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Nilsson Markus
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Wahlund Lars-Olof
- Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden
| | - Santillo Alexander
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| |
Collapse
|
141
|
Chełstowska B, Barańczyk-Kuźma A, Kuźma-Kozakiewicz M. Dyslipidemia in patients with amyotrophic lateral sclerosis - a case control retrospective study. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:195-205. [PMID: 33103950 DOI: 10.1080/21678421.2020.1832119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disorder leading to quadriplegia and aphagia. While swallowing difficulties and increased energy demand lead to malnutrition, increased lipid concentration may correlate with survival and respiratory functions. Objective: To analyze the frequency and type of dyslipidemias in a large population of clinically characterized ALS patients (PALS). Methods: The retrospective study included clinical and laboratory data of 650 consecutive PALS fulfilling the El Escorial criteria and 365 age- and gender-matched hospital controls. Results: 65% of PALS suffered from dyslipidemia independently of concomitant metabolic diseases. The most frequent lipid disorder was hypercholesterolemia (35% PALS, 25% controls), followed by mixed dyslipidemia (24.6%, 14%), with rare cases of hypertriglyceridemia and atherogenic dyslipidemia. Triacylglycerols (TAG) and LDL/HDL correlated with BMI, while LDL/HDL and total cholesterol (TCh) with disease duration. Among PALS with concomitant metabolic diseases, TCh correlated with disease duration and ALSFRS-R, while TAG with respiratory functions (FVC) in patients without metabolic diseases. The highest median concentration of TCh, LDL and LDL/HDL was found in classic ALS and PMA and the lowest in PBP. Conclusion: Dyslipidemia occurs more frequently in PALS compared to controls and independently of concomitant metabolic diseases. Similar to the general population, the most frequent lipid disturbance is hypercholesterolemia, followed by mixed dyslipidemia. Although particular lipid parameters correlate with BMI and disease duration, they do not show strong correlations with disease progression rate. There is a need of randomized control trials assessing the risk and benefits of the use of lipid lowering agents in ALS.
Collapse
Affiliation(s)
- Beata Chełstowska
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Barańczyk-Kuźma
- Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Kuźma-Kozakiewicz
- Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland.,Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
142
|
ALS-Related Mutant SOD1 Aggregates Interfere with Mitophagy by Sequestering the Autophagy Receptor Optineurin. Int J Mol Sci 2020; 21:ijms21207525. [PMID: 33065963 PMCID: PMC7590160 DOI: 10.3390/ijms21207525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive demise of motor neurons. One of the causes of familial ALS is the mutation of the gene encoding superoxide dismutase 1 (SOD1), which leads to abnormal protein aggregates. How SOD1 aggregation drives ALS is still poorly understood. Recently, ALS pathogenesis has been functionally implicated in mitophagy, specifically the clearance of damaged mitochondria. Here, to understand this mechanism, we investigated the relationship between the mitophagy receptor optineurin and SOD1 aggregates. We found that mutant SOD1 (mSOD1) proteins associate with and then sequester optineurin, which is required to form the mitophagosomes, to aggregates in N2a cells. Optineurin recruitment into mSOD1 aggregates resulted in a reduced mitophagy flux. Furthermore, we observed that an exogenous augmentation of optineurin alleviated the cellular cytotoxicity induced by mSOD1. Taken together, these studies demonstrate that ALS-linked mutations in SOD1 interfere with the mitophagy process through optineurin sequestration, suggesting that the accumulation of damaged mitochondria may play a crucial role in the pathophysiological mechanisms contributing to ALS.
Collapse
|
143
|
The Impact of Mitochondrial Deficiencies in Neuromuscular Diseases. Antioxidants (Basel) 2020; 9:antiox9100964. [PMID: 33050147 PMCID: PMC7600520 DOI: 10.3390/antiox9100964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neuromuscular diseases (NMDs) are a heterogeneous group of acquired or inherited rare disorders caused by injury or dysfunction of the anterior horn cells of the spinal cord (lower motor neurons), peripheral nerves, neuromuscular junctions, or skeletal muscles leading to muscle weakness and waste. Unfortunately, most of them entail serious or even fatal consequences. The prevalence rates among NMDs range between 1 and 10 per 100,000 population, but their rarity and diversity pose difficulties for healthcare and research. Some molecular hallmarks are being explored to elucidate the mechanisms triggering disease, to set the path for further advances. In fact, in the present review we outline the metabolic alterations of NMDs, mainly focusing on the role of mitochondria. The aim of the review is to discuss the mechanisms underlying energy production, oxidative stress generation, cell signaling, autophagy, and inflammation triggered or conditioned by the mitochondria. Briefly, increased levels of inflammation have been linked to reactive oxygen species (ROS) accumulation, which is key in mitochondrial genomic instability and mitochondrial respiratory chain (MRC) dysfunction. ROS burst, impaired autophagy, and increased inflammation are observed in many NMDs. Increasing knowledge of the etiology of NMDs will help to develop better diagnosis and treatments, eventually reducing the health and economic burden of NMDs for patients and healthcare systems.
Collapse
|
144
|
Wang L, Zhang L. MicroRNAs in amyotrophic lateral sclerosis: from pathogenetic involvement to diagnostic biomarker and therapeutic agent development. Neurol Sci 2020; 41:3569-3577. [PMID: 33006054 DOI: 10.1007/s10072-020-04773-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding small single-stranded RNAs that are 21-25 nucleotides (NTs) in length and participate in post-transcriptional gene regulation. Studies have shown that miRNA dysfunction plays a critical role in the occurrence and development of a variety of nervous system diseases, including neurodegenerative diseases. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an unclear etiology and is characterized by the selective invasion of motor neurons in the brain and spinal cord. Symptoms can range from mild spasms in the limbs or medulla oblongata muscles to paralysis in almost all skeletal muscles. The role of miRNAs in the pathogenesis, diagnosis, and treatment of ALS has become of greater importance to those studying ALS. In this review, we reviewed experimentally confirmed miRNAs shown to be involved in the pathogenesis of ALS and that are used as diagnostic biomarkers or therapeutic ALS agents. At present, there are at least 20-30 genes clearly related to the pathogenesis of ALS. Multiple miRNAs have been reported in different pathogenic gene models. MiRNAs could be used as biomarkers for the diagnosis of ALS; the differential expression of some miRNAs could be related to ALS prognosis. As therapeutic agents, miRNAs are still in the exploratory stage. Although encouraging results have been achieved using animal models, much research is still needed before clinical trials can ensue. However, with additional miRNA studies in ALS patients and animal models, the pathogenesis, early diagnosis, and therapy of ALS should be elucidated.
Collapse
Affiliation(s)
- Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Liaoning, Shenyang, People's Republic of China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
145
|
Maugeri G, D’Agata V, Roggio F, Cortis C, Fusco A, Foster C, Mañago MM, Harris-Love MO, Vleck V, Piacentini MF, Musumeci G. The "Journal of Functional Morphology and Kinesiology" Journal Club Series: PhysioMechanics of Human Locomotion. J Funct Morphol Kinesiol 2020; 5:52. [PMID: 32935069 PMCID: PMC7489281 DOI: 10.3390/jfmk5030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022] Open
Abstract
We are glad to introduce the Third Journal Club of Volume five, the third issue. This edition is focused on relevant studies published in the last years in the field of PhysioMechanics of Human Locomotion, chosen by our Editorial Board members and their colleagues. We hope to stimulate your curiosity in this field and to share with you the passion for the Sports Medicine and Movement Sciences seen also from the scientific point of view. The Editorial Board members wish you an inspiring lecture.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.M.); (V.D.); (F.R.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.M.); (V.D.); (F.R.)
| | - Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.M.); (V.D.); (F.R.)
| | - Cristina Cortis
- Department of Human Sciences, Society and Health, University of Cassino and Lazio Meridionale, 03043 Cassino, Italy; (C.C.); (A.F.)
| | - Andrea Fusco
- Department of Human Sciences, Society and Health, University of Cassino and Lazio Meridionale, 03043 Cassino, Italy; (C.C.); (A.F.)
| | - Carl Foster
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA;
| | - Mark M. Mañago
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO 80045, USA; (M.M.M.); (M.O.H.-L.)
| | - Michael O. Harris-Love
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO 80045, USA; (M.M.M.); (M.O.H.-L.)
- Geriatric Research, Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Veronica Vleck
- CIPER, Faculdade de Motricidade Humana, University of Lisbon, 1499-002 Lisbon, Portugal;
| | - Maria Francesca Piacentini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.M.); (V.D.); (F.R.)
- Research Center on Motor Activities (CRAM), University of Catania, 95123 Catania, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
146
|
Involvement of the dentate nucleus in the pathophysiology of amyotrophic lateral sclerosis: A multi-center and multi-modal neuroimaging study. NEUROIMAGE-CLINICAL 2020; 28:102385. [PMID: 32871387 PMCID: PMC7476068 DOI: 10.1016/j.nicl.2020.102385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
This original research article highlights cerebellar structural and functional connectivity abnormalities implicated in the pathophysiology of ALS. In this study, resting-state functional MRI (rs-FMRI), diffusion tensor imaging (DTI), and 3D T1W structural images were examined. Functional connectivity was investigated between the cerebral cortex and cerebellum targeting the dentate nucleus (DN). Microstructural white matter diffusivity was examined along the cerebellar peduncles connecting the DN with the cerebral cortex and brain stem. Grey matter volumes of the cerebellar lobules and DN were determined. Overall, we provide evidence supporting involvement of the DN and associated cerebellar white matter tracts in the pathophysiology of ALS.
Amyotrophic lateral sclerosis (ALS) is characterized primarily by motor neuron but also frontotemporal lobar degeneration. Although the cerebellum is involved in both motor and cognitive functions, little is known of its role in ALS. We targeted the dentate nucleus (DN) in the cerebellum and the associated white matter fibers tracts connecting the DN to the rest of the brain using multimodal imaging techniques to examine the cerebellar structural and functional connectivity patterns in ALS patients and hypothesized that the DN is implicated in the pathophysiology of ALS. A cohort of 127 participants (56 healthy subjects (HS); 71 ALS patients) were recruited across Canada through the Canadian ALS Neuroimaging Consortium (CALSNIC). Resting state functional MRI, diffusion tensor imaging (DTI), and 3D weighted T1 structural images were acquired on a 3-tesla scanner. The DN in the cerebellum was used as a seed to evaluate the whole brain cerebral resting-state functional connectivity (rsFC). The superior cerebellar peduncle (SCP), middle cerebellar peduncle (MCP) and inferior cerebellar peduncle (ICP) were used as a region of interest in DTI to evaluate the structural integrity of the DN with the cortex and brain stem. Cerebellar volumetric analysis was done to examine the lobular and DN grey matter (GM) changes in ALS patients. Lastly, an association between DN rsFC and structural alterations were explored. DN rsFC was reduced with cerebrum (supplementary motor area, precentral gyrus, frontal, posterior parietal, temporal), lobule IV, and brain stem, and increased with parieto-occipital region. DN rsFC and white matter (WM) diffusivity alterations at SCP, MCP, and ICP were accompanied by correlations with ALSFRS-R. There were no DN volumetric changes. Notably, DN rsFC correlated with WM abnormalities at superior cerebellar peduncle. The DN plays a pathophysiological role in ALS. Impaired rsFC is likely due to the observed cerebellar peduncular WM damage given the lack of GM atrophy of the DN. This study demonstrates altered cerebellar rsFC connectivity with motor and extra-motor regions in ALS, and impaired rsFC is likely due to the observed cerebellar peduncular WM damage given the lack of GM atrophy of the DN. The correlation between the altered DN connectivity, and the behavioral data support the hypothesis that the DN plays a pathophysiological role in ALS.
Collapse
|
147
|
Panchamia JK, Gurrieri C, Amundson AW. Spinal Anesthesia for Amyotrophic Lateral Sclerosis Patient Undergoing Lower Extremity Orthopedic Surgery: An Overview of the Anesthetic Considerations. Int Med Case Rep J 2020; 13:249-254. [PMID: 32765120 PMCID: PMC7369305 DOI: 10.2147/imcrj.s256716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/13/2020] [Indexed: 01/10/2023] Open
Abstract
Background Amyotrophic lateral sclerosis is a progressive neurodegenerative disease primarily affecting the upper and lower motor neurons. Patients present with a variety of clinical manifestations inevitably resulting in death secondary to respiratory insufficiency from muscle weakness and consequential pulmonary complications. Despite the lack of universal consensus on the ideal anesthetic approach to amyotrophic lateral sclerosis patients undergoing lower extremity total joint surgery, there are few noteworthy anesthetic considerations in this cohort. Case Report A 75-year-old male with multiple medical comorbidities, including a recent diagnosis of amyotrophic lateral sclerosis, presented to a large academic medical center for a right total hip arthroplasty revision. The patient’s preoperative neurologic examination demonstrated brisk deep tendon reflexes, visible fasciculations of lower extremities, and motor weakness of upper and lower extremities. Serology demonstrated an elevated creatine kinase, and an electromyography study showed active denervation in the cervical, thoracic, and lumbosacral regions. After a careful risk-benefit analysis was performed, involving a multidisciplinary team approach, the patient successfully underwent the surgical procedure with a spinal anesthetic and minimal sedation. Perioperative course was unremarkable, and there were no neurologic complications in the first 6 months after surgery. Conclusion Patients with amyotrophic lateral sclerosis present unique challenges for anesthesia providers. General anesthesia may potentially worsen respiratory function; therefore, alternative methods to avoiding airway manipulation should be considered. Conversely, regional techniques may carry the risk of exacerbating pre-existing neurologic symptoms. Currently, no definite guidelines exist on the perioperative anesthetic management of amyotrophic lateral sclerosis patients; ultimately, the decision to perform regional anesthesia should be based on analyzing a patient’s risk against the potential benefits.
Collapse
Affiliation(s)
- Jason K Panchamia
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Carmelina Gurrieri
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Adam W Amundson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
148
|
Baumert B, Sobuś A, Gołąb-Janowska M, Paczkowska E, Łuczkowska K, Rogińska D, Zawiślak A, Milczarek S, Osękowska B, Pawlukowska W, Meller A, Machowska-Sempruch K, Wełnicka A, Safranow K, Nowacki P, Machaliński B. Repeated Application of Autologous Bone Marrow-Derived Lineage-Negative Stem/Progenitor Cells-Focus on Immunological Pathways in Patients with ALS. Cells 2020; 9:cells9081822. [PMID: 32752182 PMCID: PMC7463801 DOI: 10.3390/cells9081822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
Therapeutic interventions in amyotrophic lateral sclerosis (ALS) are still far from satisfying. Immune modulating procedures raise hopes for slowing the disease progression. Stem cell therapies are believed to possess the ability to regulate innate and adaptive immune response and inflammation processes. Hence, three intrathecal administrations of autologous bone marrow-derived lineage-negative (Lin–) cells were performed every six weeks in 40 sporadic ALS patients. The concentrations of inflammatory-related proteins and expression profiles of selected miRNA in the cerebrospinal fluid (CSF) and plasma at different timepoints post-transplantation were quantified by multiplex Luminex and qRT-PCR. The global gene expression in nucleated blood cells was assessed using the gene microarray technique. According to the ALS Functional Rating Scale (FRSr), the study population was divided into responders (group I, n = 17) and non-responders (group II, n = 23). A thorough analysis of the pro-inflammatory expression profiles, regulated miRNA pathways, and global gene expression profiles at the RNA level revealed the local and systemic effects of Lin– cell therapy on the immune system of patients with ALS. The autologous application of Lin– cells in CSF modulates immune processes and might prevent the progression of neurodegeneration. However, further in-depth studies are necessary to confirm the findings, and prolonged intervention is needed to maintain therapeutic effects.
Collapse
Affiliation(s)
- Bartłomiej Baumert
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Monika Gołąb-Janowska
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (W.P.); (A.M.); (K.M.-S.); (A.W.); (P.N.)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Alicja Zawiślak
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Sławomir Milczarek
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Bogumiła Osękowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
| | - Wioletta Pawlukowska
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (W.P.); (A.M.); (K.M.-S.); (A.W.); (P.N.)
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Agnieszka Meller
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (W.P.); (A.M.); (K.M.-S.); (A.W.); (P.N.)
| | - Karolina Machowska-Sempruch
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (W.P.); (A.M.); (K.M.-S.); (A.W.); (P.N.)
| | - Agnieszka Wełnicka
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (W.P.); (A.M.); (K.M.-S.); (A.W.); (P.N.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Przemysław Nowacki
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (W.P.); (A.M.); (K.M.-S.); (A.W.); (P.N.)
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.B.); (A.S.); (E.P.); (K.Ł.); (D.R.); (A.Z.); (S.M.); (B.O.)
- Correspondence: ; Tel.: +48-91-4661-546
| |
Collapse
|
149
|
Aydemir D, Ulusu NN. Importance of the serum biochemical parameters as potential biomarkers for rapid diagnosis and evaluating preclinical stage of ALS. Med Hypotheses 2020; 141:109736. [DOI: 10.1016/j.mehy.2020.109736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
|
150
|
Izrael M, Slutsky SG, Revel M. Rising Stars: Astrocytes as a Therapeutic Target for ALS Disease. Front Neurosci 2020; 14:824. [PMID: 32848579 PMCID: PMC7399224 DOI: 10.3389/fnins.2020.00824] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial disease, characterized by a progressive loss of motor neurons that eventually leads to paralysis and death. The current ALS-approved drugs modestly change the clinical course of the disease. The mechanism by which motor neurons progressively degenerate remains unclear but entails a non-cell autonomous process. Astrocytes impaired biological functionality were implicated in multiple neurodegenerative diseases, including ALS, frontotemporal dementia (FTD), Parkinson’s disease (PD), and Alzheimer disease (AD). In ALS disease patients, A1 reactive astrocytes were found to play a key role in the pathology of ALS disease and death of motor neurons, via loss or gain of function or acquired toxicity. The contribution of astrocytes to the maintenance of motor neurons by diverse mechanisms makes them a promising therapeutic candidate for the treatment of ALS. Therapeutic approaches targeting at modulating the function of endogenous astrocytes or replacing lost functionality by transplantation of healthy astrocytes, may contribute to the development of therapies which might slow down or even halt the progression ALS diseases. The proposed mechanisms by which astrocytes can potentially ameliorate ALS progression and the status of ALS clinical studies involving astrocytes are discussed.
Collapse
Affiliation(s)
- Michal Izrael
- Neurodegenerative Diseases Department at Kadimastem Ltd., Nes-Ziona, Israel
| | - Shalom Guy Slutsky
- Neurodegenerative Diseases Department at Kadimastem Ltd., Nes-Ziona, Israel
| | - Michel Revel
- Neurodegenerative Diseases Department at Kadimastem Ltd., Nes-Ziona, Israel.,Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|