101
|
Jamieson K, McNaught KJ, Ormsby T, Leggett NA, Honda S, Selker EU. Telomere repeats induce domains of H3K27 methylation in Neurospora. eLife 2018; 7:31216. [PMID: 29297465 PMCID: PMC5752202 DOI: 10.7554/elife.31216] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Development in higher organisms requires selective gene silencing, directed in part by di-/trimethylation of lysine 27 on histone H3 (H3K27me2/3). Knowledge of the cues that control formation of such repressive Polycomb domains is extremely limited. We exploited natural and engineered chromosomal rearrangements in the fungus Neurospora crassa to elucidate the control of H3K27me2/3. Analyses of H3K27me2/3 in strains bearing chromosomal rearrangements revealed both position-dependent and position-independent facultative heterochromatin. We found that proximity to chromosome ends is necessary to maintain, and sufficient to induce, transcriptionally repressive, subtelomeric H3K27me2/3. We ascertained that such telomere-proximal facultative heterochromatin requires native telomere repeats and found that a short array of ectopic telomere repeats, (TTAGGG)17, can induce a large domain (~225 kb) of H3K27me2/3. This provides an example of a cis-acting sequence that directs H3K27 methylation. Our findings provide new insight into the relationship between genome organization and control of heterochromatin formation.
Collapse
Affiliation(s)
- Kirsty Jamieson
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Kevin J McNaught
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Tereza Ormsby
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Neena A Leggett
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Shinji Honda
- Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| |
Collapse
|
102
|
Diman A, Decottignies A. Genomic origin and nuclear localization of TERRA telomeric repeat-containing RNA: from Darkness to Dawn. FEBS J 2017; 285:1389-1398. [PMID: 29240300 DOI: 10.1111/febs.14363] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/10/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Abstract
Long noncoding RNAs, produced from distinct regions of the chromosomes, are emerging as new key players in several important biological processes. The long noncoding RNAs add a new layer of complexity to cellular regulatory pathways, from transcription to cellular trafficking or chromatin remodeling. More than 25 years ago, the discovery of a transcriptional activity at telomeres of protozoa ended the long-lasting belief that telomeres were transcriptionally silent. Since then, progressively accumulating evidences established that production of TElomeric Repeat-containing RNA (TERRA) was a general feature of eukaryotic cells. Whether TERRA molecules always originate from the telomeres or whether they can be transcribed from internal telomeric repeats as well is however still a matter of debate. Whether TERRA transcripts always localize to telomeres and play similar roles in all eukaryotic cells is also unclear. We review the studies on TERRA localization in the cell, its composition and some aspects of its transcriptional regulation to summarize the current knowledge and controversies about the genomic origin of TERRA, with a focus on human and mouse TERRA.
Collapse
Affiliation(s)
- Aurélie Diman
- Genetic & Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anabelle Decottignies
- Genetic & Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
103
|
Lafuente-Barquero J, Luke-Glaser S, Graf M, Silva S, Gómez-González B, Lockhart A, Lisby M, Aguilera A, Luke B. The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage. PLoS Genet 2017; 13:e1007136. [PMID: 29281624 PMCID: PMC5760084 DOI: 10.1371/journal.pgen.1007136] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 01/09/2018] [Accepted: 11/28/2017] [Indexed: 01/08/2023] Open
Abstract
RNA-DNA hybrids are naturally occurring obstacles that must be overcome by the DNA replication machinery. In the absence of RNase H enzymes, RNA-DNA hybrids accumulate, resulting in replication stress, DNA damage and compromised genomic integrity. We demonstrate that Mph1, the yeast homolog of Fanconi anemia protein M (FANCM), is required for cell viability in the absence of RNase H enzymes. The integrity of the Mph1 helicase domain is crucial to prevent the accumulation of RNA-DNA hybrids and RNA-DNA hybrid-dependent DNA damage, as determined by Rad52 foci. Mph1 forms foci when RNA-DNA hybrids accumulate, e.g. in RNase H or THO-complex mutants and at short telomeres. Mph1, however is a double-edged sword, whose action at hybrids must be regulated by the Smc5/6 complex. This is underlined by the observation that simultaneous inactivation of RNase H2 and Smc5/6 results in Mph1-dependent synthetic lethality, which is likely due to an accumulation of toxic recombination intermediates. The data presented here support a model, where Mph1’s helicase activity plays a crucial role in responding to persistent RNA-DNA hybrids. DNA damage can either occur exogenously through DNA damaging agents such as UV light and exposure to chemotherapeutics, or endogenously via metabolic, cellular processes. The RNA product of transcription, for example, can engage in the formation of RNA-DNA hybrids. Such RNA-DNA hybrids can impede replication fork progression and cause genomic instability, a hallmark of cancer. The misregulation of RNA-DNA hybrids has also been implicated in several neurological disorders. Recently, it has become evident that RNA-DNA hybrids may also have beneficial roles and therefore, these structures have to be tightly controlled. We found that Mph1 (mutator phenotype 1), the budding yeast homolog of Fanconi Anemia protein M, counteracts the accumulation of RNA-DNA hybrids. The inactivation of MPH1 results in a severe growth defect when combined with mutations in the well-characterized RNase H enzymes, that degrade the RNA moiety of an RNA-DNA hybrid. Based on the data presented here, we propose a model, where Mph1 itself has to be kept in check by the SMC (structural maintenance of chromosome) 5/6 complex at replication forks stalled by RNA-DNA hybrids. Mph1 acts as a double-edged sword, as both its deletion and the inability to control its helicase activity cause DNA damage and growth arrest when RNA-DNA hybrids accumulate.
Collapse
Affiliation(s)
- Juan Lafuente-Barquero
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
| | - Sarah Luke-Glaser
- Institute of Molecular Biology (IMB), Mainz, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marco Graf
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Sonia Silva
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
- Department of Biology, University of Copenhagen, Ole Maaloeesvej 5, Copenhagen N, Denmark
| | - Belén Gómez-González
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
| | | | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaloeesvej 5, Copenhagen N, Denmark
| | - Andrés Aguilera
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
- * E-mail: (BL); (AA)
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Institute of Neurobiology and Developmental Biology, JGU Mainz, Mainz, Germany
- * E-mail: (BL); (AA)
| |
Collapse
|
104
|
Tardat M, Déjardin J. Telomere chromatin establishment and its maintenance during mammalian development. Chromosoma 2017; 127:3-18. [PMID: 29250704 PMCID: PMC5818603 DOI: 10.1007/s00412-017-0656-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Telomeres are specialized structures that evolved to protect the end of linear chromosomes from the action of the cell DNA damage machinery. They are composed of tandem arrays of repeated DNA sequences with a specific heterochromatic organization. The length of telomeric repeats is dynamically regulated and can be affected by changes in the telomere chromatin structure. When telomeres are not properly controlled, the resulting chromosomal alterations can induce genomic instability and ultimately the development of human diseases, such as cancer. Therefore, proper establishment, regulation, and maintenance of the telomere chromatin structure are required for cell homeostasis. Here, we review the current knowledge on telomeric chromatin dynamics during cell division and early development in mammals, and how its proper regulation safeguards genome stability.
Collapse
Affiliation(s)
- Mathieu Tardat
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Jérôme Déjardin
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
105
|
CTCF driven TERRA transcription facilitates completion of telomere DNA replication. Nat Commun 2017; 8:2114. [PMID: 29235471 PMCID: PMC5727389 DOI: 10.1038/s41467-017-02212-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
Telomere repeat DNA forms a nucleo-protein structure that can obstruct chromosomal DNA replication, especially under conditions of replication stress. Transcription of telomere repeats can initiate at subtelomeric CTCF-binding sites to generate telomere repeat-encoding RNA (TERRA), but the role of transcription, CTCF, and TERRA in telomere replication is not known. Here, we have used CRISPR/Cas9 gene editing to mutate CTCF-binding sites at the putative start site of TERRA transcripts for a class of subtelomeres. Under replication stress, telomeres lacking CTCF-driven TERRA exhibit sister-telomere loss and upon entry into mitosis, exhibit the formation of ultra-fine anaphase bridges and micronuclei. Importantly, these phenotypes could be rescued by the forced transcription of TERRA independent of CTCF binding. Our findings indicate that subtelomeric CTCF facilitates telomeric DNA replication by promoting TERRA transcription. Our findings also demonstrate that CTCF-driven TERRA transcription acts in cis to facilitate telomere repeat replication and chromosome stability. TERRA RNA is involved in maintaining stability during telomere repeat replication. Here the authors, by using CRISPR/Cas9, mutate CTCF-binding sites at start site of TERRA transcripts and find that subtelomeric CTCF facilitates telomeric DNA replication by promoting TERRA transcription.
Collapse
|
106
|
Telomeres, Aging and Exercise: Guilty by Association? Int J Mol Sci 2017; 18:ijms18122573. [PMID: 29186077 PMCID: PMC5751176 DOI: 10.3390/ijms18122573] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023] Open
Abstract
Telomeres are repetitive tandem DNA sequences that cap chromosomal ends protecting genomic DNA from enzymatic degradation. Telomeres progressively shorten with cellular replication and are therefore assumed to correlate with biological and chronological age. An expanding body of evidence suggests (i) a predictable inverse association between telomere length, aging and age-related diseases and (ii) a positive association between physical activity and telomere length. Both hypotheses have garnered tremendous research attention and broad consensus; however, the evidence for each proposition is inconsistent and equivocal at best. Telomere length does not meet the basic criteria for an aging biomarker and at least 50% of key studies fail to find associations with physical activity. In this review, we address the evidence in support and refutation of the putative associations between telomere length, aging and physical activity. We finish with a brief review of plausible mechanisms and potential future research directions.
Collapse
|
107
|
Garrido-Ramos MA. Satellite DNA: An Evolving Topic. Genes (Basel) 2017; 8:genes8090230. [PMID: 28926993 PMCID: PMC5615363 DOI: 10.3390/genes8090230] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.
Collapse
Affiliation(s)
- Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
108
|
Regulated expression of the lncRNA TERRA and its impact on telomere biology. Mech Ageing Dev 2017; 167:16-23. [PMID: 28888705 DOI: 10.1016/j.mad.2017.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022]
Abstract
The telomere protects against genomic instability by minimizing the accelerated end resection of the genetic material, a phenomenon that results in severe chromosome instability that could favor the transformation of a cell by enabling the emergence of tumor-promoting mutations. Some mechanisms that avoid this fate, such as capping and loop formation, have been very well characterized; however, telomeric non-coding transcripts, such as long non-coding RNAs (lncRNAs), should also be considered in this context because they play roles in the organization of telomere dynamics, involving processes such as replication, degradation, extension, and heterochromatin stabilization. Although the mechanism through which the expression of telomeric transcripts regulates telomere dynamics is not yet clear, a non-coding RNA component opens the research options in telomere biology and the impact that it can have on telomere-associated diseases such as cancer.
Collapse
|
109
|
Abstract
In modern molecular biology, RNA has emerged as a versatile macromolecule capable of mediating an astonishing number of biological functions beyond its role as a transient messenger of genetic information. The recent discovery and functional analyses of new classes of noncoding RNAs (ncRNAs) have revealed their widespread use in many pathways, including several in the nucleus. This Review focuses on the mechanisms by which nuclear ncRNAs directly contribute to the maintenance of genome stability. We discuss how ncRNAs inhibit spurious recombination among repetitive DNA elements, repress mobilization of transposable elements (TEs), template or bridge DNA double-strand breaks (DSBs) during repair, and direct developmentally regulated genome rearrangements in some ciliates. These studies reveal an unexpected repertoire of mechanisms by which ncRNAs contribute to genome stability and even potentially fuel evolution by acting as templates for genome modification.
Collapse
|
110
|
Zeng S, Liu L, Sun Y, Lu G, Lin G. Role of telomeric repeat-containing RNA in telomeric chromatin remodeling during the early expansion of human embryonic stem cells. FASEB J 2017; 31:4783-4795. [PMID: 28765174 DOI: 10.1096/fj.201600939rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 07/05/2017] [Indexed: 01/05/2023]
Abstract
This study aimed to explore the role of telomeric repeat-containing RNA (TERRA) in telomeric chromatin remodeling during the early expansion of human embryonic stem cells (hESCs). During the derivation of hESCs, histone demethylation in the telomeric region facilitates telomerase-mediated telomere elongation. An adequate telomere repeat is essential for hESCs to acquire and/or maintain the unlimited symmetric division, which suggests that there is a link between pluripotency and telomere maintenance. The present study found that the gradual decrease in TERRA levels and related TERRA foci were correlated with telomeric length elongation in the early expansion of hESCs. In addition, TERRA participated in telomeric chromatin remodeling by cooperating with SUV39H1 (suppressor of variegation 3-9 homolog 1/2) to propagate telomeric heterochromatin marker, histone H3 trimethylation of lysine 9. Moreover, the fibroblast growth factor signaling pathway, which is activated in hESCs, could suppress TERRA levels via telomeric repeat factor 1, which results in reduced SUV39H1 recruitment by TERRA at the telomere. Taken together, these results highlight the role of TERRA in hESC telomere elongation and homeostasis in the acquisition and/or maintenance of stem cell pluripotency.-Zeng, S., Liu, L., Sun, Y., Lu, G., Lin, G. Role of telomeric repeat-containing RNA in telomeric chromatin remodeling during the early expansion of human embryonic stem cells.
Collapse
Affiliation(s)
- Sicong Zeng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Lvjun Liu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Guangxiu Lu
- National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; .,National Engineering and Research Center of Human Stem Cell, Changsha, China
| |
Collapse
|
111
|
Koskas S, Decottignies A, Dufour S, Pezet M, Verdel A, Vourc’h C, Faure V. Heat shock factor 1 promotes TERRA transcription and telomere protection upon heat stress. Nucleic Acids Res 2017; 45:6321-6333. [PMID: 28369628 PMCID: PMC5499866 DOI: 10.1093/nar/gkx208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 11/13/2022] Open
Abstract
In response to metabolic or environmental stress, cells activate powerful defense mechanisms to prevent the formation and accumulation of toxic protein aggregates. The main orchestrator of this cellular response is HSF1 (heat shock factor 1), a transcription factor involved in the up-regulation of protein-coding genes with protective roles. It has become very clear that HSF1 has a broader function than initially expected. Indeed, our previous work demonstrated that, upon stress, HSF1 activates the transcription of a non-coding RNA, named Satellite III, at pericentromeric heterochromatin. Here, we observe that the function of HSF1 extends to telomeres and identify subtelomeric DNA as a new genomic target of HSF1. We show that the binding of HSF1 to subtelomeric regions plays an essential role in the upregulation of non-coding TElomeric Repeat containing RNA (TERRA) transcription upon heat shock. Importantly, our data show that telomere integrity is impacted by heat shock and that telomeric DNA damages are markedly enhanced in HSF1 deficient cells. Altogether, our findings reveal a new direct and essential function of HSF1 in the transcriptional activation of TERRA and in telomere protection upon stress.
Collapse
Affiliation(s)
- Sivan Koskas
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | | | - Solenne Dufour
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | - Mylène Pezet
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | - André Verdel
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | - Claire Vourc’h
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | - Virginie Faure
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| |
Collapse
|
112
|
Naderlinger E, Holzmann K. Epigenetic Regulation of Telomere Maintenance for Therapeutic Interventions in Gliomas. Genes (Basel) 2017; 8:E145. [PMID: 28513547 PMCID: PMC5448019 DOI: 10.3390/genes8050145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
High-grade astrocytoma of WHO grade 4 termed glioblastoma multiforme (GBM) is a common human brain tumor with poor patient outcome. Astrocytoma demonstrates two known telomere maintenance mechanisms (TMMs) based on telomerase activity (TA) and on alternative lengthening of telomeres (ALT). ALT is associated with lower tumor grades and better outcome. In contrast to ALT, regulation of TA in tumors by direct mutation and epigenetic activation of the hTERT promoter is well established. Here, we summarize the genetic background of TMMs in non-malignant cells and in cancer, in addition to clinical and pathological features of gliomas. Furthermore, we present new evidence for epigenetic mechanisms (EMs) involved in regulation of ALT and TA with special emphasis on human diffuse gliomas as potential therapeutic drug targets. We discuss the role of TMM associated telomeric chromatin factors such as DNA and histone modifying enzymes and non-coding RNAs including microRNAs and long telomeric TERRA transcripts.
Collapse
Affiliation(s)
- Elisabeth Naderlinger
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| | - Klaus Holzmann
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| |
Collapse
|
113
|
Nguyen DT, Voon HPJ, Xella B, Scott C, Clynes D, Babbs C, Ayyub H, Kerry J, Sharpe JA, Sloane-Stanley JA, Butler S, Fisher CA, Gray NE, Jenuwein T, Higgs DR, Gibbons RJ. The chromatin remodelling factor ATRX suppresses R-loops in transcribed telomeric repeats. EMBO Rep 2017; 18:914-928. [PMID: 28487353 DOI: 10.15252/embr.201643078] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 02/04/2023] Open
Abstract
ATRX is a chromatin remodelling factor found at a wide range of tandemly repeated sequences including telomeres (TTAGGG)n ATRX mutations are found in nearly all tumours that maintain their telomeres via the alternative lengthening of telomere (ALT) pathway, and ATRX is known to suppress this pathway. Here, we show that recruitment of ATRX to telomeric repeats depends on repeat number, orientation and, critically, on repeat transcription. Importantly, the transcribed telomeric repeats form RNA-DNA hybrids (R-loops) whose abundance correlates with the recruitment of ATRX Here, we show loss of ATRX is also associated with increased R-loop formation. Our data suggest that the presence of ATRX at telomeres may have a central role in suppressing deleterious DNA secondary structures that form at transcribed telomeric repeats, and this may account for the increased DNA damage, stalling of replication and homology-directed repair previously observed upon loss of ATRX function.
Collapse
Affiliation(s)
- Diu Tt Nguyen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hsiao Phin J Voon
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Department of Biochemistry and Molecular Biology, The Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Barbara Xella
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Caroline Scott
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David Clynes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christian Babbs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Helena Ayyub
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jon Kerry
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jacqueline A Sharpe
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jackie A Sloane-Stanley
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sue Butler
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Chris A Fisher
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Nicki E Gray
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Thomas Jenuwein
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
114
|
Oh BK, Keo P, Bae J, Ko JH, Choi JS. Variable TERRA abundance and stability in cervical cancer cells. Int J Mol Med 2017; 39:1597-1604. [PMID: 28440422 DOI: 10.3892/ijmm.2017.2956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/31/2017] [Indexed: 11/05/2022] Open
Abstract
Telomeres are transcribed into long non-coding RNA, referred to as telomeric repeat-containing RNA (TERRA), which plays important roles in maintaining telomere integrity and heterochromatin formation. TERRA has been well characterized in HeLa cells, a type of cervical cancer cell. However, TERRA abundance and stability have not been examined in other cervical cancer cells, at least to the best of our knowledge. Thus, in this study, we measured TERRA levels and stability, as well as telomere length in 6 cervical cancer cell lines, HeLa, SiHa, CaSki, HeLa S3, C-33A and SNU-17. We also examined the association between the TERRA level and its stability and telomere length. We found that the TERRA level was several fold greater in the SiHa, CaSki, HeLa S3, C-33A and SNU-17 cells, than in the HeLa cells. An RNA stability assay of actinomycin D-treated cells revealed that TERRA had a short half-life of ~4 h in HeLa cells, which was consistent with previous studies, but was more stable with a longer half-life (>8 h) in the other 5 cell lines. Telomere length varied from 4 to 9 kb in the cells and did not correlate significantly with the TERRA level. On the whole, our data indicate that TERRA abundance and stability vary between different types of cervical cancer cells. TERRA degrades rapidly in HeLa cells, but is maintained stably in other cervical cancer cells that accumulate higher levels of TERRA. TERRA abundance is associated with the stability of RNA in cervical cancer cells, but is unlikely associated with telomere length.
Collapse
Affiliation(s)
- Bong-Kyeong Oh
- Institute of Medical Science, Hanyang University College of Medicine, Seoul 133-791, Republic of Korea
| | - Ponnarath Keo
- Institute of Medical Science, Hanyang University College of Medicine, Seoul 133-791, Republic of Korea
| | - Jaeman Bae
- Institute of Medical Science, Hanyang University College of Medicine, Seoul 133-791, Republic of Korea
| | - Jung Hwa Ko
- Department of Obstetrics and Gynecology, Hallym University Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Joong Sub Choi
- Institute of Medical Science, Hanyang University College of Medicine, Seoul 133-791, Republic of Korea
| |
Collapse
|
115
|
Ghanam AR, Xu Q, Ke S, Azhar M, Cheng Q, Song X. Shining the Light on Senescence Associated LncRNAs. Aging Dis 2017; 8:149-161. [PMID: 28400982 PMCID: PMC5362175 DOI: 10.14336/ad.2016.0810] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence can be described as a complex stress response that leads to irreversible cell cycle arrest. This process was originally described as an event that primary cells go through after many passages of cells during cell culture. More recently, cellular senescence is viewed as a programmed process by which the cell displays a senescence phenotype when exposed to a variety of stresses. Cellular senescence has been implicated in tumor suppression and aging such that senescence may contribute to both tumor progression and normal tissue repair. Here, we review different forms of cellular senescence, as well as current biomarkers used to identify senescent cells in vitro and in vivo. Additionally, we highlight the role of senescence-associated long noncoding RNAs (lncRNAs).
Collapse
Affiliation(s)
- A R Ghanam
- 1CAS Key Laboratory of Brain Function and Disease, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.; 2Collage of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Qianlan Xu
- 1CAS Key Laboratory of Brain Function and Disease, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shengwei Ke
- 1CAS Key Laboratory of Brain Function and Disease, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Azhar
- 1CAS Key Laboratory of Brain Function and Disease, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Qingyu Cheng
- 1CAS Key Laboratory of Brain Function and Disease, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoyuan Song
- 1CAS Key Laboratory of Brain Function and Disease, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
116
|
Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. BIOCHEMISTRY (MOSCOW) 2017; 81:1602-1649. [PMID: 28260487 PMCID: PMC7087716 DOI: 10.1134/s0006297916130034] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Collapse
Affiliation(s)
- N G Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
117
|
Wang Y, Wang Y, Ma L, Nie M, Ju J, Liu M, Deng Y, Yao B, Gui T, Li X, Guo C, Ma C, Tan R, Zhao Q. Heterochromatin Protein 1γ Is a Novel Epigenetic Repressor of Human Embryonic ϵ-Globin Gene Expression. J Biol Chem 2017; 292:4811-4817. [PMID: 28154185 DOI: 10.1074/jbc.m116.768515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/27/2017] [Indexed: 11/06/2022] Open
Abstract
Production of hemoglobin during development is tightly regulated. For example, expression from the human β-globin gene locus, comprising β-, δ-, ϵ-, and γ-globin genes, switches from ϵ-globin to γ-globin during embryonic development and then from γ-globin to β-globin after birth. Expression of human ϵ-globin in mice has been shown to ameliorate anemia caused by β-globin mutations, including those causing β-thalassemia and sickle cell disease, raising the prospect that reactivation of ϵ-globin expression could be used in managing these conditions in humans. Although the human globin genes are known to be regulated by a variety of multiprotein complexes containing enzymes that catalyze epigenetic modifications, the exact mechanisms controlling ϵ-globin gene silencing remain elusive. Here we found that the heterochromatin protein HP1γ, a multifunctional chromatin- and DNA-binding protein with roles in transcriptional activation and elongation, represses ϵ-globin expression by interacting with a histone-modifying enzyme, lysine methyltransferase SUV4-20h2. Silencing of HP1γ expression markedly decreased repressive histone marks and the multimethylation of histone H3 lysine 9 and H4 lysine 20, leading to a significant decrease in DNA methylation at the proximal promoter of the ϵ-globin gene and greatly increased ϵ-globin expression. In addition, using chromatin immunoprecipitation, we showed that SUV4-20h2 facilitates the deposition of HP1γ on the ϵ-globin-proximal promoter. Thus, these data indicate that HP1γ is a novel epigenetic repressor of ϵ-globin gene expression and provide a potential strategy for targeted therapies for β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Yadong Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lingling Ma
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Min Nie
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Junyi Ju
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ming Liu
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yexuan Deng
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bing Yao
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tao Gui
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinyu Li
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chan Guo
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chi Ma
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Renxiang Tan
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Quan Zhao
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
118
|
Sagie S, Toubiana S, Hartono SR, Katzir H, Tzur-Gilat A, Havazelet S, Francastel C, Velasco G, Chédin F, Selig S. Telomeres in ICF syndrome cells are vulnerable to DNA damage due to elevated DNA:RNA hybrids. Nat Commun 2017; 8:14015. [PMID: 28117327 PMCID: PMC5286223 DOI: 10.1038/ncomms14015] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
DNA:RNA hybrids, nucleic acid structures with diverse physiological functions, can disrupt genome integrity when dysregulated. Human telomeres were shown to form hybrids with the lncRNA TERRA, yet the formation and distribution of these hybrids among telomeres, their regulation and their cellular effects remain elusive. Here we predict and confirm in several human cell types that DNA:RNA hybrids form at many subtelomeric and telomeric regions. We demonstrate that ICF syndrome cells, which exhibit short telomeres and elevated TERRA levels, are enriched for hybrids at telomeric regions throughout the cell cycle. Telomeric hybrids are associated with high levels of DNA damage at chromosome ends in ICF cells, which are significantly reduced with overexpression of RNase H1. Our findings suggest that abnormally high TERRA levels in ICF syndrome lead to accumulation of telomeric hybrids that, in turn, can result in telomeric dysfunction. ICF syndrome cells exhibit shortened telomeres and elevated levels of the noncoding RNA TERRA. Here the authors show this is associated with high levels of DNA damage, suggesting an increase in telomere dysfunction due to the formation of DNA: RNA hybrids
Collapse
Affiliation(s)
- Shira Sagie
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Shir Toubiana
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Hagar Katzir
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Aya Tzur-Gilat
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Shany Havazelet
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Claire Francastel
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, CNRS UMR7216, Paris Cedex 75205, France
| | - Guillaume Velasco
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, CNRS UMR7216, Paris Cedex 75205, France
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Sara Selig
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
119
|
de Castro IJ, Budzak J, Di Giacinto ML, Ligammari L, Gokhan E, Spanos C, Moralli D, Richardson C, de las Heras JI, Salatino S, Schirmer EC, Ullman KS, Bickmore WA, Green C, Rappsilber J, Lamble S, Goldberg MW, Vinciotti V, Vagnarelli P. Repo-Man/PP1 regulates heterochromatin formation in interphase. Nat Commun 2017; 8:14048. [PMID: 28091603 PMCID: PMC5241828 DOI: 10.1038/ncomms14048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022] Open
Abstract
Repo-Man is a protein phosphatase 1 (PP1) targeting subunit that regulates mitotic progression and chromatin remodelling. After mitosis, Repo-Man/PP1 remains associated with chromatin but its function in interphase is not known. Here we show that Repo-Man, via Nup153, is enriched on condensed chromatin at the nuclear periphery and at the edge of the nucleopore basket. Repo-Man/PP1 regulates the formation of heterochromatin, dephosphorylates H3S28 and it is necessary and sufficient for heterochromatin protein 1 binding and H3K27me3 recruitment. Using a novel proteogenomic approach, we show that Repo-Man is enriched at subtelomeric regions together with H2AZ and H3.3 and that depletion of Repo-Man alters the peripheral localization of a subset of these regions and alleviates repression of some polycomb telomeric genes. This study shows a role for a mitotic phosphatase in the regulation of the epigenetic landscape and gene expression in interphase.
Collapse
Affiliation(s)
- Inês J. de Castro
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - James Budzak
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Maria L. Di Giacinto
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Lorena Ligammari
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Ezgi Gokhan
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3BF, UK
| | - Daniela Moralli
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | - Silvia Salatino
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | - Katharine S. Ullman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Catherine Green
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3BF, UK
- Technische Universitat Berlin, 13355 Berlin, Germany
| | - Sarah Lamble
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Martin W. Goldberg
- School of Biological and Medical Science, Durham University, Durham DH1 3LE, UK
| | - Veronica Vinciotti
- College of Engineering, Design and Technology, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| |
Collapse
|
120
|
Telomere Damage Response and Low-Grade Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:213-224. [PMID: 28921472 DOI: 10.1007/978-981-10-5987-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Telomeres at the ends of chromosomes safeguard genome integrity and stability in human nucleated cells. However, telomere repeats shed off during cell proliferation and other stress responses. Our recent studies show that telomere attrition induces not only epithelial stem cell senescence but also low-grade inflammation in the lungs. The senescence-associated low-grade inflammation (SALI) is characteristic of alveolar stem cell replicative senescence, increased proinflammatory and anti-inflammatory cytokines, infiltrated immune cells, and spillover effects. To date, the mechanisms underlying SALI remain unclear. Investigations demonstrate that senescent epithelial stem cells with telomere erosion are not the source of secreted cytokines, containing no significant increase in expression of the genes coding for increased cytokines, suggesting an alternative senescence-associated secretory phenotype (A-SASP). Given that telomere loss results in significant alterations in the genomes and accumulations of the cleaved telomeric DNA in the cells and milieu externe, we conclude that telomere position effects (TPEs) on gene expression and damage-associated molecular patterns (DAMPs) in antigen presentation are involved in A-SASP and SALI in response to telomere damage in mammals.
Collapse
|
121
|
Kim W, Ludlow AT, Min J, Robin JD, Stadler G, Mender I, Lai TP, Zhang N, Wright WE, Shay JW. Regulation of the Human Telomerase Gene TERT by Telomere Position Effect-Over Long Distances (TPE-OLD): Implications for Aging and Cancer. PLoS Biol 2016; 14:e2000016. [PMID: 27977688 PMCID: PMC5169358 DOI: 10.1371/journal.pbio.2000016] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023] Open
Abstract
Telomerase is expressed in early human development and then becomes silenced in most normal tissues. Because ~90% of primary human tumors express telomerase and generally maintain very short telomeres, telomerase is carefully regulated, particularly in large, long-lived mammals. In the current report, we provide substantial evidence for a new regulatory control mechanism of the rate limiting catalytic protein component of telomerase (hTERT) that is determined by the length of telomeres. We document that normal, young human cells with long telomeres have a repressed hTERT epigenetic status (chromatin and DNA methylation), but the epigenetic status is altered when telomeres become short. The change in epigenetic status correlates with altered expression of TERT and genes near to TERT, indicating a change in chromatin. Furthermore, we identified a chromosome 5p telomere loop to a region near TERT in human cells with long telomeres that is disengaged with increased cell divisions as telomeres progressively shorten. Finally, we provide support for a role of the TRF2 protein, and possibly TERRA, in the telomere looping maintenance mechanism through interactions with interstitial TTAGGG repeats. This provides new insights into how the changes in genome structure during replicative aging result in an increased susceptibility to age-related diseases and cancer prior to the initiation of a DNA damage signal.
Collapse
Affiliation(s)
- Wanil Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Andrew T Ludlow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jaewon Min
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jerome D Robin
- Faculté de Médecine, Tour Pasteur 8éme Étage, Nice, France
| | - Guido Stadler
- Berkeley Lights, Inc., Emeryville, California, United States of America
| | - Ilgen Mender
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tsung-Po Lai
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ning Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
122
|
Yamada T, Yoshimura H, Shimada R, Hattori M, Eguchi M, Fujiwara TK, Kusumi A, Ozawa T. Spatiotemporal analysis with a genetically encoded fluorescent RNA probe reveals TERRA function around telomeres. Sci Rep 2016; 6:38910. [PMID: 27958374 PMCID: PMC5153658 DOI: 10.1038/srep38910] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022] Open
Abstract
Telomeric repeat-containing RNA (TERRA) controls the structure and length of telomeres through interactions with numerous telomere-binding proteins. However, little is known about the mechanism by which TERRA regulates the accessibility of the proteins to telomeres, mainly because of the lack of spatiotemporal information of TERRA and its-interacting proteins. We developed a fluorescent probe to visualize endogenous TERRA to investigate its dynamics in living cells. Single-particle fluorescence imaging revealed that TERRA accumulated in a telomere-neighboring region and trapped diffusive heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), thereby inhibiting hnRNPA1 localization to the telomere. These results suggest that TERRA regulates binding of hnRNPA1 to the telomere in a region surrounding the telomere, leading to a deeper understanding of the mechanism of TERRA function.
Collapse
Affiliation(s)
- Toshimichi Yamada
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rintaro Shimada
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuru Hattori
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masatoshi Eguchi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
123
|
Kang MK, Mehrazarin S, Park NH, Wang CY. Epigenetic gene regulation by histone demethylases: emerging role in oncogenesis and inflammation. Oral Dis 2016; 23:709-720. [PMID: 27514027 DOI: 10.1111/odi.12569] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Histone N-terminal tails of nucleosomes are the sites of complex regulation of gene expression through post-translational modifications. Among these modifications, histone methylation had long been associated with permanent gene inactivation until the discovery of Lys-specific demethylase (LSD1), which is responsible for dynamic gene regulation. There are more than 30 members of the Lys demethylase (KDM) family, and with exception of LSD1 and LSD2, all other KDMs possess the Jumonji C (JmjC) domain exhibiting demethylase activity and require unique cofactors, for example, Fe(II) and α-ketoglutarate. These cofactors have been targeted when devising KDM inhibitors, which may yield therapeutic benefit. KDMs and their counterpart Lys methyltransferases (KMTs) regulate multiple biological processes, including oncogenesis and inflammation. KDMs' functional interactions with retinoblastoma (Rb) and E2 factor (E2F) target promoters illustrate their regulatory role in cell cycle progression and oncogenesis. Recent findings also demonstrate the control of inflammation and immune functions by KDMs, such as KDM6B that regulates the pro-inflammatory gene expression and CD4+ T helper (Th) cell lineage determination. This review will highlight the mechanisms by which KDMs and KMTs regulate the target gene expression and how epigenetic mechanisms may be applied to our understanding of oral inflammation.
Collapse
Affiliation(s)
- M K Kang
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - S Mehrazarin
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - N-H Park
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA.,David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - C-Y Wang
- Laboratory of Molecular Signaling, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
124
|
Abstract
A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.
Collapse
|
125
|
Novakovic B, Napier CE, Vryer R, Dimitriadis E, Manuelpillai U, Sharkey A, Craig JM, Reddel RR, Saffery R. DNA methylation mediated up-regulation of TERRA non-coding RNA is coincident with elongated telomeres in the human placenta. Mol Hum Reprod 2016; 22:791-799. [PMID: 27604461 DOI: 10.1093/molehr/gaw053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION What factors regulate elongated telomere length in the human placenta? SUMMARY ANSWER Hypomethylation of TERRA promoters in the human placenta is associated with high TERRA expression, however, no clear mechanistic link between these phenomena and elongated telomere length in the human placenta was found. WHAT IS KNOWN ALREADY Human placenta tissue and trophoblasts show longer telomere lengths compared to gestational age-matched somatic cells. However, telomerase (hTERT) expression and activity in the placenta is low, suggesting a role for an alternative lengthening of telomeres (ALT). While ALT is observed in 10-15% of human cancers and in some mouse stem cells, ALT has never been reported in non-cancerous human tissues. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Human term placental tissue and matched cord blood mononuclear cells (CBMCs) were collected as part of the Peri/Postnatal Epigenetic Twins study (PETS). In addition, first trimester placental villi, purified cytotrophoblasts, choriocarcinoma cell lines and a panel of ALT-positive cancer cell lines were tested. Telomere length was determined using the Terminal Restriction Fragment (TRF) assay and a relative quantitative PCR method. DNA methylation levels at several CpG rich subtelomeric TERRA promoters were determined using bisulfite conversion and the SEQUENOM EpiTYPER platform. Expression of TERRA and hTERT was determined using quantitative RT-PCR. ALT was assessed using the C-circle assay (CCA). MAIN RESULTS AND THE ROLE OF CHANCE The human placenta tissue and purified first trimester trophoblasts showed low subtelomeric (TERRA) DNA methylation compared to matched CBMCs and other somatic cells. Interestingly placental TERRA methylation was lower than ALT-cancer cell lines, previously reported to be hypomethylated at these loci. Low TERRA methylation was associated with higher expression of TERRA RNA in placenta compared to matched CBMCs. Detectable levels of C-circles were observed in first trimester placental villi, but not term placenta, suggesting that the ALT mechanism may be active in specific placental cells in early gestation. C-circle analysis of purified first trimester trophoblasts and ALT-associated PML bodies (APB) staining of first trimester villi cross-sections failed to identify this specific cell type population. LIMITATIONS, REASONS FOR CAUTION While first trimester villi showed detectable levels of C-circles, these levels were very low compared with those observed in ALT-positive tumours and cell lines. This is consistent with a small sub-population of ALT-positive cells but this requires further investigation. Finally, no mechanistic link was established between TERRA DNA methylation, the presence of C-circles and longer telomere length. WIDER IMPLICATIONS OF THE FINDINGS Given the previously described role of TERRA ncRNA as a negative regulator of telomerase, the finding of elevated TERRA and long telomeres is counterintutive. ALT as a mechanism for telomere length maintenance has only been reported in certain human cancers, and recently in mouse embryonic stem cells and embryos. As with many aspects of cancer, it appears that ALT activity in tumours may be the inappropriate activation of a pathway found in very specific cell types in human development. Our data are the first supportive evidence for ALT in a non-cancerous human tissue, a result that requires further investigation and replication. The level of TERRA methylation in the human placenta is significantly lower than found in ALT cancer cell lines and somatic cells, raising the possibility of a novel mechanism in maintaining low methylation at subtelomeric regions. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by NHMRC early career fellowship (B.N.), NHMRC Senior Research Fellowship (R.S.) and the Victoria Government Infrastructure Grant. R.R. holds a patent for the C-circle assay. No other conflicts declared.
Collapse
Affiliation(s)
- Boris Novakovic
- Murdoch Childrens Research Institute-Cancer and Disease Epigenetics, Royal Children's Hospital Flemington Road, Parkville, Melbourne, Victoria 3052, Australia
| | - Christine E Napier
- Cancer Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Regan Vryer
- Murdoch Childrens Research Institute-Cancer and Disease Epigenetics, Royal Children's Hospital Flemington Road, Parkville, Melbourne, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 305 2
| | - Eva Dimitriadis
- Embryo Implantation Laboratory, Hudson Institute for Medical Research, Monash University, Clayton VIC 3168, Australia
| | - Ursula Manuelpillai
- Pregnancy Research Centre, Department of Perinatal Medicine, Royal Women's Hospital , Parkville, Victoria 3052, Australia.,Centre for Genetic Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | - Andrew Sharkey
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jeffrey M Craig
- Department of Paediatrics, University of Melbourne, Parkville VIC 305 2.,Early Life Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville VIC 3052, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Richard Saffery
- Murdoch Childrens Research Institute-Cancer and Disease Epigenetics, Royal Children's Hospital Flemington Road, Parkville, Melbourne, Victoria 3052, Australia .,Department of Paediatrics, University of Melbourne, Parkville VIC 305 2
| |
Collapse
|
126
|
Diman A, Boros J, Poulain F, Rodriguez J, Purnelle M, Episkopou H, Bertrand L, Francaux M, Deldicque L, Decottignies A. Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription. SCIENCE ADVANCES 2016; 2:e1600031. [PMID: 27819056 PMCID: PMC5087959 DOI: 10.1126/sciadv.1600031] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/29/2016] [Indexed: 05/07/2023]
Abstract
DNA breaks activate the DNA damage response and, if left unrepaired, trigger cellular senescence. Telomeres are specialized nucleoprotein structures that protect chromosome ends from persistent DNA damage response activation. Whether protection can be enhanced to counteract the age-dependent decline in telomere integrity is a challenging question. Telomeric repeat-containing RNA (TERRA), which is transcribed from telomeres, emerged as important player in telomere integrity. However, how human telomere transcription is regulated is still largely unknown. We identify nuclear respiratory factor 1 and peroxisome proliferator-activated receptor γ coactivator 1α as regulators of human telomere transcription. In agreement with an upstream regulation of these factors by adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), pharmacological activation of AMPK in cancer cell lines or in normal nonproliferating myotubes up-regulated TERRA, thereby linking metabolism to telomere fitness. Cycling endurance exercise, which is associated with AMPK activation, increased TERRA levels in skeletal muscle biopsies obtained from 10 healthy young volunteers. The data support the idea that exercise may protect against aging.
Collapse
Affiliation(s)
- Aurélie Diman
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Joanna Boros
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Florian Poulain
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Julie Rodriguez
- Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348 Louvain-la-Neuve, Belgium
| | - Marin Purnelle
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348 Louvain-la-Neuve, Belgium
| | - Harikleia Episkopou
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348 Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348 Louvain-la-Neuve, Belgium
- Corresponding author. (L.D.); (A.D.)
| | - Anabelle Decottignies
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
- Corresponding author. (L.D.); (A.D.)
| |
Collapse
|
127
|
Lee WK, Cho MH. Telomere-binding protein regulates the chromosome ends through the interaction with histone deacetylases in Arabidopsis thaliana. Nucleic Acids Res 2016; 44:4610-24. [PMID: 26857545 PMCID: PMC4889915 DOI: 10.1093/nar/gkw067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 01/13/2023] Open
Abstract
Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes. Many telomere-binding proteins bind to telomeric repeat sequences and further generate T-loops in animals. However, it is not clear if they regulate telomere organization using epigenetic mechanisms and how the epigenetic molecules are involved in regulating the telomeres. Here, we show direct interactions between the telomere-binding protein, AtTRB2 and histone deacetylases, HDT4 and HDA6, in vitro and in vivo AtTRB2 mediates the associations of HDT4 and HDA6 with telomeric repeats. Telomere elongation is found in AtTRB2, HDT4 and HDA6 mutants over generations, but also in met1 and cmt3 DNA methyltransferases mutants. We also characterized HDT4 as an Arabidopsis H3K27 histone deacetylase. HDT4 binds to acetylated peptides at residue K27 of histone H3 in vitro, and deacetylates this residue in vivo Our results suggest that AtTRB2 also has a role in the regulation of telomeric chromatin as a possible scaffold protein for recruiting the epigenetic regulators in Arabidopsis, in addition to its telomere binding and length regulation activity. Our data provide evidences that epigenetic molecules associate with telomeres by direct physical interaction with telomere-binding proteins and further regulate homeostasis of telomeres in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Won Kyung Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| | - Myeon Haeng Cho
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
128
|
Moravec M, Wischnewski H, Bah A, Hu Y, Liu N, Lafranchi L, King MC, Azzalin CM. TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe. EMBO Rep 2016; 17:999-1012. [PMID: 27154402 DOI: 10.15252/embr.201541708] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/07/2016] [Indexed: 11/09/2022] Open
Abstract
Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, shortened telomeres are highly transcribed into the evolutionarily conserved long noncoding RNA TERRA A fraction of TERRA produced upon telomere shortening is polyadenylated and largely devoid of telomeric repeats, and furthermore, telomerase physically interacts with this polyadenylated TERRA in vivo We also show that experimentally enhanced transcription of a manipulated telomere promotes its association with telomerase and concomitant elongation. Our data represent the first direct evidence that TERRA stimulates telomerase recruitment and activity at chromosome ends in an organism with human-like telomeres.
Collapse
Affiliation(s)
- Martin Moravec
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Harry Wischnewski
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Amadou Bah
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Yan Hu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Na Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Lorenzo Lafranchi
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Claus M Azzalin
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| |
Collapse
|
129
|
Ichikawa Y, Nishimura Y, Kurumizaka H, Shimizu M. Nucleosome organization and chromatin dynamics in telomeres. Biomol Concepts 2016; 6:67-75. [PMID: 25720088 DOI: 10.1515/bmc-2014-0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/01/2014] [Indexed: 11/15/2022] Open
Abstract
Telomeres are DNA-protein complexes located at the ends of linear eukaryotic chromosomes, and are essential for chromosome stability and maintenance. In most organisms, telomeres consist of tandemly repeated sequences of guanine-clusters. In higher eukaryotes, most of the telomeric repeat regions are tightly packaged into nucleosomes, even though telomeric repeats act as nucleosome-disfavoring sequences. Although telomeres were considered to be condensed heterochromatin structures, recent studies revealed that the chromatin structures in telomeres are actually dynamic. The dynamic properties of telomeric chromatin are considered to be important for the structural changes between the euchromatic and heterochromatic states during the cell cycle and in cellular differentiation. We propose that the nucleosome-disfavoring property of telomeric repeats is a crucial determinant for the lability of telomeric nucleosomes, and provides a platform for chromatin dynamics in telomeres. Furthermore, we discuss the influences of telomeric components on the nucleosome organization and chromatin dynamics in telomeres.
Collapse
|
130
|
TERRA and the state of the telomere. Nat Struct Mol Biol 2016; 22:853-8. [PMID: 26581519 DOI: 10.1038/nsmb.3078] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/29/2015] [Indexed: 02/05/2023]
Abstract
Long noncoding telomeric repeat-containing RNA (TERRA) has been implicated in telomere maintenance in a telomerase-dependent and a telomerase-independent manner during replicative senescence and cancer. TERRA's proposed activities are diverse, thus making it difficult to pinpoint the critical roles that TERRA may have. We propose that TERRA orchestrates different activities at chromosome ends in a manner that depends on the state of the telomere.
Collapse
|
131
|
Complex interactions between the DNA-damage response and mammalian telomeres. Nat Struct Mol Biol 2016; 22:859-66. [PMID: 26581520 DOI: 10.1038/nsmb.3092] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/23/2015] [Indexed: 12/28/2022]
Abstract
Natural chromosome ends resemble double-stranded DNA breaks, but they do not activate a damage response in healthy cells. Telomeres therefore have evolved to solve the 'end-protection problem' by inhibiting multiple DNA damage-response pathways. During the past decade, the view of telomeres has progressed from simple caps that hide chromosome ends to complex machineries that have an active role in organizing the genome. Here we focus on mammalian telomeres and summarize and interpret recent discoveries in detail, focusing on how repair pathways are inhibited, how resection and replication are controlled and how these mechanisms govern cell fate during senescence, crisis and transformation.
Collapse
|
132
|
Montes M, Lund AH. Emerging roles of lncRNAs in senescence. FEBS J 2016; 283:2414-26. [PMID: 26866709 DOI: 10.1111/febs.13679] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/16/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a complex stress response that leads to an irreversible state of cell growth arrest. Senescence may be induced by various stimuli such as telomere shortening, DNA damage or oncogenic insult, among others. Senescent cells are metabolically highly active, producing a wealth of cytokines and chemokines that, depending on the context, may have a beneficial or deleterious effect on the organism. Senescence is considered a tightly regulated stress response that is largely governed by the p53/p21 and p16/Rb pathways. Many molecules have been identified as regulators of these two networks, such as transcription factors, chromatin modifiers and non-coding RNAs. The expression level of several long non-coding RNAs is affected during different types of senescence; however, which of these are important for the biological function remains poorly understood. Here we review our current knowledge of the mechanistic roles of lncRNAs affecting the main senescence pathways, and discuss the importance of identifying new regulators.
Collapse
Affiliation(s)
- Marta Montes
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
133
|
|
134
|
Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP, Lai MKP, Kappei D, Kumar AP, Sethi G. Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res Rev 2016; 25:55-69. [PMID: 26616852 DOI: 10.1016/j.arr.2015.11.006] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022]
Abstract
Telomeres are the heterochromatic repeat regions at the ends of eukaryotic chromosomes, whose length is considered to be a determinant of biological ageing. Normal ageing itself is associated with telomere shortening. Here, critically short telomeres trigger senescence and eventually cell death. This shortening rate may be further increased by inflammation and oxidative stress and thus affect the ageing process. Apart from shortened or dysfunctional telomeres, cells undergoing senescence are also associated with hyperactivity of the transcription factor NF-κB and overexpression of inflammatory cytokines such as TNF-α, IL-6, and IFN-γ in circulating macrophages. Interestingly, telomerase, a reverse transcriptase that elongates telomeres, is involved in modulating NF-κB activity. Furthermore, inflammation and oxidative stress are implicated as pre-disease mechanisms for chronic diseases of ageing such as neurodegenerative diseases, cardiovascular disease, and cancer. To date, inflammation and telomere shortening have mostly been studied individually in terms of ageing and the associated disease phenotype. However, the interdependent nature of the two demands a more synergistic approach in understanding the ageing process itself and for developing new therapeutic approaches. In this review, we aim to summarize the intricate association between the various inflammatory molecules and telomeres that together contribute to the ageing process and related diseases.
Collapse
|
135
|
Abstract
Aging is a universal, intrinsic, and time-dependent biological decay that is linked to intricate cellular processes including cellular senescence, telomere shortening, stem cell exhaustion, mitochondrial dysfunction, and deregulated metabolism. Cellular senescence is accepted as one of the core processes of aging at the organism level. Understanding the molecular mechanism underlying senescence could facilitate the development of potential therapeutics for aging and age-related diseases. Recently, the discovery of long non-coding RNAs (lncRNA) provided insights into a novel regulatory layer that can intervene with cellular senescence. Increasing evidence indicates that targeting lncRNAs may impact on senescence pathways. In this review, we will focus on lncRNAs involved in mechanistic pathways governing cellular senescence.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sun Lei
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS, Singapore
- *Correspondence: Sun Lei,
| |
Collapse
|
136
|
Takahama K, Miyawaki A, Shitara T, Mitsuya K, Morikawa M, Hagihara M, Kino K, Yamamoto A, Oyoshi T. G-Quadruplex DNA- and RNA-Specific-Binding Proteins Engineered from the RGG Domain of TLS/FUS. ACS Chem Biol 2015; 10:2564-9. [PMID: 26360301 DOI: 10.1021/acschembio.5b00566] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human telomere DNA (Htelo) and telomeric repeat-containing RNA (TERRA) are integral telomere components containing the short DNA repeats d(TTAGGG) and RNA repeats r(UUAGGG), respectively. Htelo and TERRA form G-quadruplexes, but the biological significance of their G-quadruplex formation in telomeres is unknown. Compounds that selectively bind G-quadruplex DNA and RNA are useful for understanding the functions of each G-quadruplex. Here we report that engineered Arg-Gly-Gly repeat (RGG) domains of translocated in liposarcoma containing only Phe (RGGF) and Tyr (RGGY) specifically bind and stabilize the G-quadruplexes of Htelo and TERRA, respectively. Moreover, RGGF inhibits trimethylation of both histone H4 at lysine 20 and histone H3 at lysine 9 at telomeres, while RGGY inhibits only H3 trimethylation in living cells. These findings indicate that G-quadruplexes of Htelo and TERRA have distinct functions in telomere histone methylation.
Collapse
Affiliation(s)
- Kentaro Takahama
- Department
of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Arisa Miyawaki
- Department
of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Takumi Shitara
- Department
of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Keita Mitsuya
- Graduate
School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Masayuki Morikawa
- Kagawa
School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1
Shido, Sanuki-shi, Kagawa 769-2193, Japan
| | - Masaki Hagihara
- Graduate
School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Katsuhito Kino
- Kagawa
School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1
Shido, Sanuki-shi, Kagawa 769-2193, Japan
| | - Ayumu Yamamoto
- Department
of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Takanori Oyoshi
- Department
of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| |
Collapse
|
137
|
Chen R, Zhang K, Chen H, Zhao X, Wang J, Li L, Cong Y, Ju Z, Xu D, Williams BRG, Jia J, Liu JP. Telomerase Deficiency Causes Alveolar Stem Cell Senescence-associated Low-grade Inflammation in Lungs. J Biol Chem 2015; 290:30813-29. [PMID: 26518879 DOI: 10.1074/jbc.m115.681619] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Indexed: 12/16/2022] Open
Abstract
Mutations of human telomerase RNA component (TERC) and telomerase reverse transcriptase (TERT) are associated with a subset of lung aging diseases, but the mechanisms by which TERC and TERT participate in lung diseases remain unclear. In this report, we show that knock-out (KO) of the mouse gene Terc or Tert causes pulmonary alveolar stem cell replicative senescence, epithelial impairment, formation of alveolar sacs, and characteristic inflammatory phenotype. Deficiency in TERC or TERT causes a remarkable elevation in various proinflammatory cytokines, including IL-1, IL-6, CXCL15 (human IL-8 homolog), IL-10, TNF-α, and monocyte chemotactic protein 1 (chemokine ligand 2 (CCL2)); decrease in TGF-β1 and TGFβRI receptor in the lungs; and spillover of IL-6 and CXCL15 into the bronchoalveolar lavage fluids. In addition to increased gene expressions of α-smooth muscle actin and collagen 1α1, suggesting myofibroblast differentiation, TERC deficiency also leads to marked cellular infiltrations of a mononuclear cell population positive for the leukocyte common antigen CD45, low-affinity Fc receptor CD16/CD32, and pattern recognition receptor CD11b in the lungs. Our data demonstrate for the first time that telomerase deficiency triggers alveolar stem cell replicative senescence-associated low-grade inflammation, thereby driving pulmonary premature aging, alveolar sac formation, and fibrotic lesion.
Collapse
Affiliation(s)
- Ruping Chen
- From the Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong Province 250012, China, the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Kexiong Zhang
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Hao Chen
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Xiaoyin Zhao
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Jianqiu Wang
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Li Li
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Yusheng Cong
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Zhenyu Ju
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Dakang Xu
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China, the Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, the Department of Molecular and Translational Science, Faculty of Medicine, Monash University, Clayton, Victoria 3168, Australia, and
| | - Bryan R G Williams
- the Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, the Department of Molecular and Translational Science, Faculty of Medicine, Monash University, Clayton, Victoria 3168, Australia, and
| | - Jihui Jia
- From the Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong Province 250012, China
| | - Jun-Ping Liu
- From the Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong Province 250012, China, the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China, the Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, the Department of Molecular and Translational Science, Faculty of Medicine, Monash University, Clayton, Victoria 3168, Australia, and the Department of Immunology, Faculty of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3018, Australia
| |
Collapse
|
138
|
Choudhury SR, Cui Y, Milton JR, Li J, Irudayaraj J. Selective increase in subtelomeric DNA methylation: an epigenetic biomarker for malignant glioma. Clin Epigenetics 2015; 7:107. [PMID: 26451167 PMCID: PMC4597615 DOI: 10.1186/s13148-015-0140-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
Background Subtelomeric regions dynamically change their epigenetic pattern during development and progression of several malignancies and degenerative disorders. However, DNA methylation of human subtelomeres and their correlation to telomere length (TL) remain undetermined in glioma. Results Herein, we report on the selective changes in subtelomeric DNA methylation at the end of five chromosomes (Chr.) (7q, 8q. 18p, 21q, and XpYp) and ascertain their correlation with TL in patients with glioma. Subtelomeric methylation level was invariably higher in glioma patients compared to the control group, irrespective of their age and tumor grade. In particular, a significant increase in methylation was observed at the subtelomeric CpG sites of Chr. 8q, 21q, and XpYp in tissues, obtained from the brain tumor of glioma patients. In contrast, no significant change in methylation was observed at the subtelomere of Chr. 7q and 18p. Selective changes in the subtelomeric methylation level, however, did not show any significant correlation to the global TL. This observed phenomenon was validated in vitro by inducing demethylation in a glioblastoma cell line (SF-767) using 5-azacytidine (AZA) treatment. AZA treatment caused significant changes in the subtelomeric methylation pattern but did not alter the TL, which supports our hypothesis. Conclusions DNA methylation level dramatically increased at the subtelomere of Chr.8q, 21q, and XpYp in malignant glioma, which could be used as an early epigenetic diagnostic biomarker of the disease. Alterations in subtelomeric methylation, however, have no effects on the TL. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0140-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samrat Roy Choudhury
- Department of Biological Engineering, Center for Cancer Research, Purdue University, West Lafayette, IN 47906 USA
| | - Yi Cui
- Department of Biological Engineering, Center for Cancer Research, Purdue University, West Lafayette, IN 47906 USA
| | - Jacob R Milton
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906 USA
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Joseph Irudayaraj
- Department of Biological Engineering, Center for Cancer Research, Purdue University, West Lafayette, IN 47906 USA
| |
Collapse
|
139
|
Eid R, Demattei MV, Episkopou H, Augé-Gouillou C, Decottignies A, Grandin N, Charbonneau M. Genetic Inactivation of ATRX Leads to a Decrease in the Amount of Telomeric Cohesin and Level of Telomere Transcription in Human Glioma Cells. Mol Cell Biol 2015; 35:2818-30. [PMID: 26055325 PMCID: PMC4508314 DOI: 10.1128/mcb.01317-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/17/2015] [Accepted: 03/30/2015] [Indexed: 01/09/2023] Open
Abstract
Mutations in ATRX (alpha thalassemia/mental retardation syndrome X-linked), a chromatin-remodeling protein, are associated with the telomerase-independent ALT (alternative lengthening of telomeres) pathway of telomere maintenance in several types of cancer, including human gliomas. In telomerase-positive glioma cells, we found by immunofluorescence that ATRX localized not far from the chromosome ends but not exactly at the telomere termini. Chromatin immunoprecipitation (ChIP) experiments confirmed a subtelomeric localization for ATRX, yet short hairpin RNA (shRNA)-mediated genetic inactivation of ATRX failed to trigger the ALT pathway. Cohesin has been recently shown to be part of telomeric chromatin. Here, using ChIP, we showed that genetic inactivation of ATRX provoked diminution in the amount of cohesin in subtelomeric regions of telomerase-positive glioma cells. Inactivation of ATRX also led to diminution in the amount of TERRAs, noncoding RNAs resulting from transcription of telomeric DNA, as well as to a decrease in RNA polymerase II (RNAP II) levels at the telomeres. Our data suggest that ATRX might establish functional interactions with cohesin on telomeric chromatin in order to control TERRA levels and that one or the other or both of these events might be relevant to the triggering of the ALT pathway in cancer cells that exhibit genetic inactivation of ATRX.
Collapse
Affiliation(s)
- Rita Eid
- UMR CNRS 7292, Université François-Rabelais de Tours, Tours, France
| | | | - Harikleia Episkopou
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Catholic University of Louvain, Brussels, Belgium
| | - Corinne Augé-Gouillou
- Equipe Associée 6306, Instabilité Génétique et Cancer, Université François-Rabelais de Tours, Tours, France
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Catholic University of Louvain, Brussels, Belgium
| | - Nathalie Grandin
- UMR CNRS 7292, Université François-Rabelais de Tours, Tours, France
| | | |
Collapse
|
140
|
Hass EP, Zappulla DC. The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae. eLife 2015. [PMID: 26218225 PMCID: PMC4547093 DOI: 10.7554/elife.07750] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae and in humans, the telomerase RNA subunit is bound by Ku, a ring-shaped protein heterodimer best known for its function in DNA repair. Ku binding to yeast telomerase RNA promotes telomere lengthening and telomerase recruitment to telomeres, but how this is achieved remains unknown. Using telomere-length analysis and chromatin immunoprecipitation, we show that Sir4 – a previously identified Ku-binding protein that is a component of telomeric silent chromatin – is required for Ku-mediated telomere lengthening and telomerase recruitment. We also find that specifically tethering Sir4 directly to Ku-binding-defective telomerase RNA restores otherwise-shortened telomeres to wild-type length. These findings suggest that Sir4 is the telomere-bound target of Ku-mediated telomerase recruitment and provide one mechanism for how the Sir4-competing Rif1 and Rif2 proteins negatively regulate telomere length in yeast. DOI:http://dx.doi.org/10.7554/eLife.07750.001 Inside a cell's nucleus, DNA is packaged into structures called chromosomes. The ends of every chromosome are capped by repeating sequences of DNA known as telomeres, which protect the chromosomes from damage. Every time a cell divides, the telomeres shorten. If telomere length falls below a critical level, the cell can die or enter a state in which it can no longer divide. During cell division, an enzyme called telomerase normally restores telomeres to their original length. Telomerase is made up of several proteins and an RNA molecule. In yeast and humans, a protein called Ku is one part of the telomerase enzyme. Ku binds to the RNA subunit of telomerase and helps the enzyme find and interact with the telomeres. Previous research has shown that Ku is unable to work alone to recruit telomerase to the chromosome. A protein called Sir4 binds to telomeres and cells lacking it have short telomeres, but the reason behind this was not known. Hass and Zappulla confirmed previous reports that Ku binds to Sir4 using a biochemical approach. Additional experiments provided genetic evidence that this binding interaction is important for telomerase to lengthen telomeres appropriately. Cells in which the RNA subunit of telomerase is unable to bind effectively to Ku have short telomeres. Hass and Zappulla directly tethered Sir4 to this defective RNA and found this restored the shortened telomeres to a normal length, indicating that Sir4 normally binds Ku to recruit telomerase. Discovering this mode of recruitment also helps to explain how two other telomeric proteins (Rif1 and 2) limit telomere lengthening; they compete with Ku-Sir4 recruitment to form a length-regulating system. Taken together, Hass and Zappulla's results provide strong evidence that Sir4 cooperates with Ku to control the lengthening of chromosome ends. Future research will hopefully reveal the precise space and time requirements for this telomerase-controlling system in yeast. Additionally, because Ku has been reported to be a subunit of human telomerase, future studies could also explore whether human cells use a similar strategy. DOI:http://dx.doi.org/10.7554/eLife.07750.002
Collapse
Affiliation(s)
- Evan P Hass
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
141
|
Mallm JP, Rippe K. Aurora Kinase B Regulates Telomerase Activity via a Centromeric RNA in Stem Cells. Cell Rep 2015; 11:1667-78. [PMID: 26051938 DOI: 10.1016/j.celrep.2015.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/28/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022] Open
Abstract
Non-coding RNAs can modulate histone modifications that, at the same time, affect transcript expression levels. Here, we dissect such a network in mouse embryonic stem cells (ESCs). It regulates the activity of the reverse transcriptase telomerase, which synthesizes telomeric repeats at the chromosome ends. We find that histone H3 serine 10 phosphorylation set by Aurora kinase B (AURKB) in ESCs during the S phase of the cell cycle at centromeric and (sub)telomeric loci promotes the expression of non-coding minor satellite RNA (cenRNA). Inhibition of AURKB induces silencing of cenRNA transcription and establishment of a repressive chromatin state with histone H3 lysine 9 trimethylation and heterochromatin protein 1 accumulation. This process results in a continuous shortening of telomeres. We further show that AURKB interacts with both telomerase and cenRNA and activates telomerase in trans. Thus, in mouse ESCs, telomere maintenance is regulated via expression of cenRNA in a cell-cycle-dependent manner.
Collapse
Affiliation(s)
- Jan-Philipp Mallm
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Bioquant Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| | - Karsten Rippe
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Bioquant Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| |
Collapse
|
142
|
Feuerhahn S, Chen LY, Luke B, Porro A. No DDRama at chromosome ends: TRF2 takes centre stage. Trends Biochem Sci 2015; 40:275-85. [DOI: 10.1016/j.tibs.2015.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022]
|
143
|
Cusanelli E, Chartrand P. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet 2015; 6:143. [PMID: 25926849 PMCID: PMC4396414 DOI: 10.3389/fgene.2015.00143] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
Telomeres are dynamic nucleoprotein structures that protect the ends of chromosomes from degradation and activation of DNA damage response. For this reason, telomeres are essential to genome integrity. Chromosome ends are enriched in heterochromatic marks and proper organization of telomeric chromatin is important to telomere stability. Despite their heterochromatic state, telomeres are transcribed giving rise to long noncoding RNAs (lncRNA) called TERRA (telomeric repeat-containing RNA). TERRA molecules play critical roles in telomere biology, including regulation of telomerase activity and heterochromatin formation at chromosome ends. Emerging evidence indicate that TERRA transcripts form DNA-RNA hybrids at chromosome ends which can promote homologous recombination among telomeres, delaying cellular senescence and sustaining genome instability. Intriguingly, TERRA RNA-telomeric DNA hybrids are involved in telomere length homeostasis of telomerase-negative cancer cells. Furthermore, TERRA transcripts play a role in the DNA damage response (DDR) triggered by dysfunctional telomeres. We discuss here recent developments on TERRA's role in telomere biology and genome integrity, and its implication in cancer.
Collapse
Affiliation(s)
- Emilio Cusanelli
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna Vienna, Austria
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
144
|
Reduced telomere length is not associated with early signs of vascular aging in young men born after intrauterine growth restriction: a paradox? J Hypertens 2015; 32:1613-19; discussion 1619-20. [PMID: 24805953 DOI: 10.1097/hjh.0000000000000217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The mechanisms that increase cardiovascular risk in individuals born small for gestational age (SGA) are not well understood. Telomere shortening has been suggested to be a predictor of disease onset. Our aim was to determine whether impaired intrauterine growth is associated with early signs of vascular aging and whether telomere length could be a biomarker of this pathway. METHODS One hundred and fourteen healthy young men born SGA or after normal pregnancy [appropriate for gestational age (AGA)] were enrolled. Patient data were gathered from questionnaires and clinical exams, including blood pressure (BP) measurement routine laboratory analyses, and carotid intima-media thickness (cIMT). Leukocyte telomere length (LTL) was assessed by quantitative PCR. Birth data were obtained from medical records. RESULTS The SGA group had significantly higher pulse pressure and cIMT, and a trend to increased SBP and heart rate in comparison to the AGA group. Interestingly, SGA men exhibited a 42% longer LTL than the AGA group. LTL was inversely associated with age, BMI, BP and birth parameters. In multiple regression analysis, BMI was the key determinant of SBP and cIMT. CONCLUSION Young men born SGA show early signs of vascular aging. Unexpectedly, in our cohort, the SGA group had longer telomeres than the normal controls. Although longer telomeres are predictive of better health in the future, our findings could indicate a faster telomere attrition rate and probable early onset of cardiovascular risk in SGA participants. Follow-up of this cohort will clarify hypothesis and validate telomere dynamics as indicators of future health risks.
Collapse
|
145
|
Wang C, Zhao L, Lu S. Role of TERRA in the regulation of telomere length. Int J Biol Sci 2015; 11:316-23. [PMID: 25678850 PMCID: PMC4323371 DOI: 10.7150/ijbs.10528] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/25/2014] [Indexed: 01/08/2023] Open
Abstract
Telomere dysfunction is closely associated with human diseases such as cancer and ageing. Inappropriate changes in telomere length and/or structure result in telomere dysfunction. Telomeres have been considered to be transcriptionally silent, but it was recently demonstrated that mammalian telomeres are transcribed into telomeric repeat-containing RNA (TERRA). TERRA, a long non-coding RNA, participates in the regulation of telomere length, telomerase activity and heterochromatinization. The correct regulation of telomere length may be crucial to telomeric homeostasis and functions. Here, we summarize recent advances in our understanding of the crucial role of TERRA in the maintenance of telomere length, with focus on the variety of mechanisms by which TERRA is involved in the regulation of telomere length. This review aims to enable further understanding of how TERRA-targeted drugs can target telomere-related diseases.
Collapse
Affiliation(s)
- Caiqin Wang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, China, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou 310006, China
| | - Li Zhao
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, China, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou 310006, China
| | - Shiming Lu
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, China, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou 310006, China
| |
Collapse
|
146
|
Hirashima K, Seimiya H. Telomeric repeat-containing RNA/G-quadruplex-forming sequences cause genome-wide alteration of gene expression in human cancer cells in vivo. Nucleic Acids Res 2015; 43:2022-32. [PMID: 25653161 PMCID: PMC4344506 DOI: 10.1093/nar/gkv063] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomere erosion causes cell mortality, suggesting that longer telomeres enable more cell divisions. In telomerase-positive human cancer cells, however, telomeres are often kept shorter than those of surrounding normal tissues. Recently, we showed that cancer cell telomere elongation represses innate immune genes and promotes their differentiation in vivo. This implies that short telomeres contribute to cancer malignancy, but it is unclear how such genetic repression is caused by elongated telomeres. Here, we report that telomeric repeat-containing RNA (TERRA) induces a genome-wide alteration of gene expression in telomere-elongated cancer cells. Using three different cell lines, we found that telomere elongation up-regulates TERRA signal and down-regulates innate immune genes such as STAT1, ISG15 and OAS3 in vivo. Ectopic TERRA oligonucleotides repressed these genes even in cells with short telomeres under three-dimensional culture conditions. This appeared to occur from the action of G-quadruplexes (G4) in TERRA, because control oligonucleotides had no effect and a nontelomeric G4-forming oligonucleotide phenocopied the TERRA oligonucleotide. Telomere elongation and G4-forming oligonucleotides showed similar gene expression signatures. Most of the commonly suppressed genes were involved in the innate immune system and were up-regulated in various cancers. We propose that TERRA G4 counteracts cancer malignancy by suppressing innate immune genes.
Collapse
Affiliation(s)
- Kyotaro Hirashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
147
|
|
148
|
Deng Z, Kim ET, Vladimirova O, Dheekollu J, Wang Z, Newhart A, Liu D, Myers JL, Hensley SE, Moffat J, Janicki SM, Fraser NW, Knipe DM, Weitzman MD, Lieberman PM. HSV-1 remodels host telomeres to facilitate viral replication. Cell Rep 2014; 9:2263-78. [PMID: 25497088 DOI: 10.1016/j.celrep.2014.11.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 10/12/2014] [Accepted: 11/11/2014] [Indexed: 12/23/2022] Open
Abstract
Telomeres protect the ends of cellular chromosomes. We show here that infection with herpes simplex virus 1 (HSV-1) results in chromosomal structural aberrations at telomeres and the accumulation of telomere dysfunction-induced DNA damage foci (TIFs). At the molecular level, HSV-1 induces transcription of telomere repeat-containing RNA (TERRA), followed by the proteolytic degradation of the telomere protein TPP1 and loss of the telomere repeat DNA signal. The HSV-1-encoded E3 ubiquitin ligase ICP0 is required for TERRA transcription and facilitates TPP1 degradation. Small hairpin RNA (shRNA) depletion of TPP1 increases viral replication, indicating that TPP1 inhibits viral replication. Viral replication protein ICP8 forms foci that coincide with telomeric proteins, and ICP8-null virus failed to degrade telomere DNA signal. These findings suggest that HSV-1 reorganizes telomeres to form ICP8-associated prereplication foci and to promote viral genomic replication.
Collapse
Affiliation(s)
- Zhong Deng
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Eui Tae Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Zhuo Wang
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Dongmei Liu
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | - Jennifer Moffat
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Nigel W Fraser
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
149
|
Lorenzi LE, Bah A, Wischnewski H, Shchepachev V, Soneson C, Santagostino M, Azzalin CM. Fission yeast Cactin restricts telomere transcription and elongation by controlling Rap1 levels. EMBO J 2014; 34:115-29. [PMID: 25398909 DOI: 10.15252/embj.201489559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The telomeric transcriptome comprises multiple long non-coding RNAs generated by transcription of linear chromosome ends. In a screening performed in Schizosaccharomyces pombe, we identified factors modulating the cellular levels of the telomeric transcriptome. Among these factors, Cay1 is the fission yeast member of the conserved family of Cactins, uncharacterized proteins crucial for cell growth and survival. In cay1∆ mutants, the cellular levels of the telomeric factor Rap1 are drastically diminished due to defects in rap1+ pre-mRNA splicing and Rap1 protein stability. cay1∆ cells accumulate histone H3 acetylated at lysine 9 at telomeres, which become transcriptionally desilenced, are over-elongated by telomerase and cause chromosomal aberrations in the cold. Overexpressing Rap1 in cay1+ deleted cells significantly reverts all telomeric defects. Additionally, cay1∆ mutants accumulate unprocessed Tf2 retrotransposon RNA through Rap1-independent mechanisms. Thus, Cay1 plays crucial roles in cells by ultimately harmonizing expression of transcripts originating from seemingly unrelated genomic loci.
Collapse
Affiliation(s)
- Luca E Lorenzi
- Institute of Biochemistry (IBC) Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Amadou Bah
- Institute of Biochemistry (IBC) Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Harry Wischnewski
- Institute of Biochemistry (IBC) Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Vadim Shchepachev
- Institute of Biochemistry (IBC) Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Charlotte Soneson
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Santagostino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università degli Studi di Pavia, Pavia, Italy
| | - Claus M Azzalin
- Institute of Biochemistry (IBC) Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| |
Collapse
|
150
|
Functional characterization of the TERRA transcriptome at damaged telomeres. Nat Commun 2014; 5:5379. [PMID: 25359189 DOI: 10.1038/ncomms6379] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/25/2014] [Indexed: 12/19/2022] Open
Abstract
Telomere deprotection occurs during tumorigenesis and aging upon telomere shortening or loss of the telomeric shelterin component TRF2. Deprotected telomeres undergo changes in chromatin structure and elicit a DNA damage response (DDR) that leads to cellular senescence. The telomeric long noncoding RNA TERRA has been implicated in modulating the structure and processing of deprotected telomeres. Here, we characterize the human TERRA transcriptome at normal and TRF2-depleted telomeres and demonstrate that TERRA upregulation is occurring upon depletion of TRF2 at all transcribed telomeres. TRF2 represses TERRA transcription through its homodimerization domain, which was previously shown to induce chromatin compaction and to prevent the early steps of DDR activation. We show that TERRA associates with SUV39H1 H3K9 histone methyltransferase, which promotes accumulation of H3K9me3 at damaged telomeres and end-to-end fusions. Altogether our data elucidate the TERRA landscape and defines critical roles for this RNA in the telomeric DNA damage response.
Collapse
|