101
|
Rivera S, Rivera C, Loriot Y, Hennequin C, Vozenin MC, Deutsch E. [Cancer stem cells: a new target for lung cancer treatment]. Cancer Radiother 2011; 15:355-64. [PMID: 21664165 DOI: 10.1016/j.canrad.2011.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 03/21/2011] [Accepted: 03/31/2011] [Indexed: 12/18/2022]
Abstract
Lung cancer remains the leading cause of cancer death. Understanding lung tumours physiopathology should provide opportunity to prevent tumour development or/and improve their therapeutic management. Cancer stem cell theory refers to a subpopulation of cancer cells also named tumour initiating cells that can drive cancer development. Cells presenting these characteristics have been identified and isolated from lung cancer. Exploring cell markers and signalling pathways specific to lung cancer stem cells may lead to progress in therapy and improve the prognosis of patients with lung cancer. Continuous efforts in developing in vitro and in vivo models may yield reliable tools to better understand cancer stem cell abilities and to test new therapeutic targets. Even if some data are in favour of a higher chemo and radioresistance of cancer stem cells this issue remains disputed. Preclinical data on putative cancer stem cell targets are emerging by now. These preliminary studies are critical for the next generation of lung cancer therapies.
Collapse
Affiliation(s)
- S Rivera
- INSERM 10-30-Radiosensibilité des tumeurs et tissus sains, institut de cancérologie Gustave-Roussy, 114 rue Édouard-Vaillant, Villejuif, France.
| | | | | | | | | | | |
Collapse
|
102
|
Catalano V, Gaggianesi M, Spina V, Iovino F, Dieli F, Stassi G, Todaro M. Colorectal cancer stem cells and cell death. Cancers (Basel) 2011; 3:1929-46. [PMID: 24212789 PMCID: PMC3757397 DOI: 10.3390/cancers3021929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/21/2011] [Accepted: 04/06/2011] [Indexed: 11/16/2022] Open
Abstract
Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.
Collapse
Affiliation(s)
- Veronica Catalano
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
| | - Miriam Gaggianesi
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
- Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia (PV), Italy
| | - Valentina Spina
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
| | - Flora Iovino
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
| | - Francesco Dieli
- Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mail:
| | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
- Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia (PV), Italy
- Author to whom correspondence should be addressed; E-Mail: or
| | - Matilde Todaro
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo (PA), Italy; E-Mails: (V.C.); (V.S.); (F.I.); (F.D.); (M.T.)
| |
Collapse
|
103
|
Martineau HM, Cousens C, Imlach S, Dagleish MP, Griffiths DJ. Jaagsiekte sheep retrovirus infects multiple cell types in the ovine lung. J Virol 2011; 85:3341-55. [PMID: 21270155 PMCID: PMC3067841 DOI: 10.1128/jvi.02481-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/20/2011] [Indexed: 01/06/2023] Open
Abstract
Ovine pulmonary adenocarcinoma (OPA) is a transmissible lung cancer of sheep caused by Jaagsiekte sheep retrovirus (JSRV). The details of early events in the pathogenesis of OPA are not fully understood. For example, the identity of the JSRV target cell in the lung has not yet been determined. Mature OPA tumors express surfactant protein-C (SP-C) or Clara cell-specific protein (CCSP), which are specific markers of type II pneumocytes or Clara cells, respectively. However, it is unclear whether these are the cell types initially infected and transformed by JSRV or whether the virus targets stem cells in the lung that subsequently acquire a differentiated phenotype during tumor growth. To examine this question, JSRV-infected lung tissue from experimentally infected lambs was studied at early time points after infection. Single JSRV-infected cells were detectable 10 days postinfection in bronchiolar and alveolar regions. These infected cells were labeled with anti-SP-C or anti-CCSP antibodies, indicating that differentiated epithelial cells are early targets for JSRV infection in the ovine lung. In addition, undifferentiated cells that expressed neither SP-C nor CCSP were also found to express the JSRV Env protein. These results enhance the understanding of OPA pathogenesis and may have comparative relevance to human lung cancer, for which samples representing early stages of tumor growth are difficult to obtain.
Collapse
Affiliation(s)
- Henny M. Martineau
- Moredun Research Institute, Pentlands Science Park, Penicuik, Scotland, United Kingdom
| | - Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Penicuik, Scotland, United Kingdom
| | - Stuart Imlach
- Moredun Research Institute, Pentlands Science Park, Penicuik, Scotland, United Kingdom
| | - Mark P. Dagleish
- Moredun Research Institute, Pentlands Science Park, Penicuik, Scotland, United Kingdom
| | - David J. Griffiths
- Moredun Research Institute, Pentlands Science Park, Penicuik, Scotland, United Kingdom
| |
Collapse
|
104
|
Akunuru S, Palumbo J, Zhai QJ, Zheng Y. Rac1 targeting suppresses human non-small cell lung adenocarcinoma cancer stem cell activity. PLoS One 2011; 6:e16951. [PMID: 21347385 PMCID: PMC3036726 DOI: 10.1371/journal.pone.0016951] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/18/2011] [Indexed: 01/15/2023] Open
Abstract
The cancer stem cell (CSC) theory predicts that a small fraction of cancer cells possess unique self-renewal activity and mediate tumor initiation and propagation. However, the molecular mechanisms involved in CSC regulation remains unclear, impinging on effective targeting of CSCs in cancer therapy. Here we have investigated the hypothesis that Rac1, a Rho GTPase implicated in cancer cell proliferation and invasion, is critical for tumor initiation and metastasis of human non-small cell lung adenocarcinoma (NSCLA). Rac1 knockdown by shRNA suppressed the tumorigenic activities of human NSCLA cell lines and primary patient NSCLA specimens, including effects on invasion, proliferation, anchorage-independent growth, sphere formation and lung colonization. Isolated side population (SP) cells representing putative CSCs from human NSCLA cells contained elevated levels of Rac1-GTP, enhanced in vitro migration, invasion, increased in vivo tumor initiating and lung colonizing activities in xenografted mice. However, CSC activity was also detected within the non-SP population, suggesting the importance of therapeutic targeting of all cells within a tumor. Further, pharmacological or shRNA targeting of Rac1 inhibited the tumorigenic activities of both SP and non-SP NSCLA cells. These studies indicate that Rac1 represents a useful target in NSCLA, and its blockade may have therapeutic value in suppressing CSC proliferation and metastasis.
Collapse
Affiliation(s)
- Shailaja Akunuru
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
- Molecular Developmental Biology Program, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Joseph Palumbo
- Division of Hematology and Oncology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Qihui James Zhai
- Department of Pathology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
- Molecular Developmental Biology Program, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
105
|
Rivera C, Rivera S, Loriot Y, Vozenin MC, Deutsch E. Lung cancer stem cell: new insights on experimental models and preclinical data. JOURNAL OF ONCOLOGY 2010; 2011:549181. [PMID: 21209720 PMCID: PMC3010697 DOI: 10.1155/2011/549181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/15/2010] [Indexed: 12/18/2022]
Abstract
Lung cancer remains the leading cause of cancer death. Understanding lung tumors physiopathology should provide opportunity to prevent tumor development or/and improve their therapeutic management. Cancer stem cell (CSC) theory refers to a subpopulation of cancer cells, also named tumor-initiating cells, that can drive cancer development. Cells presenting these characteristics have been identified and isolated from lung cancer. Exploring cell markers and signaling pathways specific to lung CSCs may lead to progress in therapy and improve the prognosis of patients with lung cancer. Continuous efforts in developing in vitro and in vivo models may yield reliable tools to better understand CSC abilities and to test new therapeutic targets. Preclinical data on putative CSC targets are emerging by now. These preliminary studies are critical for the next generation of lung cancer therapies.
Collapse
Affiliation(s)
- Caroline Rivera
- Laboratoire UPRES EA 27-10 “Radiosensibilité des Tumeurs et Tissus Sains”, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94800 Villejuif, France
| | - Sofia Rivera
- Laboratoire UPRES EA 27-10 “Radiosensibilité des Tumeurs et Tissus Sains”, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94800 Villejuif, France
| | - Yohann Loriot
- Laboratoire UPRES EA 27-10 “Radiosensibilité des Tumeurs et Tissus Sains”, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94800 Villejuif, France
| | - Marie-Catherine Vozenin
- Laboratoire UPRES EA 27-10 “Radiosensibilité des Tumeurs et Tissus Sains”, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94800 Villejuif, France
| | - Eric Deutsch
- Laboratoire UPRES EA 27-10 “Radiosensibilité des Tumeurs et Tissus Sains”, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94800 Villejuif, France
| |
Collapse
|
106
|
Vooder T, Välk K, Kolde R, Roosipuu R, Vilo J, Metspalu A. Gene Expression-Based Approaches in Differentiation of Metastases and Second Primary Tumour. Case Rep Oncol 2010; 3:255-261. [PMID: 20740207 PMCID: PMC2920010 DOI: 10.1159/000318010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A 64-year-old male patient was diagnosed with 3 consecutive non-small cell lung carcinomas (NSCLC). In the current study, we applied whole-genome gene expression analysis to control, primary and locally recurrent cancer, and supposed metastasis samples of a single patient. According to our knowledge, there are no published papers describing the gene expression profiles of a single patient's squamous cell lung cancers. As the histology and differentiation grade of the primary cancer and the supposed metastasis differed minimally, but local recurrence was poorly differentiated, molecular profiling of the samples was carried out in order to confirm or reject the hypothesis of second primary cancer. Principal component analysis of the gene expression data revealed distinction of the local recurrence. Gene ontology analysis showed no molecular characteristics of metastasis in the supposed metastasis. Gene expression analysis is valuable and can be supportive in decision-making of diagnostically complicated cancer cases.
Collapse
Affiliation(s)
- Tõnu Vooder
- Institute of Molecular and Cell Biology, University of Tartu and Estonian Biocentre, Tartu, Estonia
| | | | | | | | | | | |
Collapse
|