101
|
Liang J, Wen J, Huang Z, Chen XP, Zhang BX, Chu L. Small Nucleolar RNAs: Insight Into Their Function in Cancer. Front Oncol 2019; 9:587. [PMID: 31338327 PMCID: PMC6629867 DOI: 10.3389/fonc.2019.00587] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/17/2019] [Indexed: 02/04/2023] Open
Abstract
Small nucleolar RNAs (SnoRNAs) are a class of non-coding RNAs divided into two classes: C/D box snoRNAs and H/ACA box snoRNAs. The canonical function of C/D box and H/ACA box snoRNAs are 2'-O-ribose methylation and pseudouridylation of ribosomal RNAs (rRNAs), respectively. Emerging evidence has demonstrated that snoRNAs are involved in various physiological and pathological cellular processes. Mutations and aberrant expression of snoRNAs have been reported in cell transformation, tumorigenesis, and metastasis, indicating that snoRNAs may serve as biomarkers and/or therapeutic targets of cancer. Hence, further study of the functions and underlying mechanism of snoRNAs is valuable. In this review, we summarize the biogenesis and functions of snoRNAs, as well as the association of snoRNAs in different types of cancers and their potential roles in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
102
|
Wu L, Wang J, Cai Q, Cavazos TB, Emami NC, Long J, Shu XO, Lu Y, Guo X, Bauer JA, Pasaniuc B, Penney KL, Freedman ML, Kote-Jarai Z, Witte JS, Haiman CA, Eeles RA, Zheng W. Identification of Novel Susceptibility Loci and Genes for Prostate Cancer Risk: A Transcriptome-Wide Association Study in Over 140,000 European Descendants. Cancer Res 2019; 79:3192-3204. [PMID: 31101764 PMCID: PMC6606384 DOI: 10.1158/0008-5472.can-18-3536] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/04/2019] [Accepted: 05/09/2019] [Indexed: 11/16/2022]
Abstract
Genome-wide association study-identified prostate cancer risk variants explain only a relatively small fraction of its familial relative risk, and the genes responsible for many of these identified associations remain unknown. To discover novel prostate cancer genetic loci and possible causal genes at previously identified risk loci, we performed a transcriptome-wide association study in 79,194 cases and 61,112 controls of European ancestry. Using data from the Genotype-Tissue Expression Project, we established genetic models to predict gene expression across the transcriptome for both prostate models and cross-tissue models and evaluated model performance using two independent datasets. We identified significant associations for 137 genes at P < 2.61 × 10-6, a Bonferroni-corrected threshold, including nine genes that remained significant at P < 2.61 × 10-6 after adjusting for all known prostate cancer risk variants in nearby regions. Of the 128 remaining associated genes, 94 have not yet been reported as potential target genes at known loci. We silenced 14 genes and many showed a consistent effect on viability and colony-forming efficiency in three cell lines. Our study provides substantial new information to advance our understanding of prostate cancer genetics and biology. SIGNIFICANCE: This study identifies novel prostate cancer genetic loci and possible causal genes, advancing our understanding of the molecular mechanisms that drive prostate cancer.
Collapse
Affiliation(s)
- Lang Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Jifeng Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Urology, The Fifth People's Hospital of Shanghai, Shanghai, China
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Taylor B Cavazos
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California
| | - Nima C Emami
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joshua A Bauer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Institute of Chemical Biology, High-Throughput Screening Facility, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Kathryn L Penney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - John S Witte
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Christopher A Haiman
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Rosalind A Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
103
|
Zhang K, Han Y, Hu Z, Zhang Z, Shao S, Yao Q, Zheng L, Wang J, Han X, Zhang Y, Chen T, Yao Z, Han T, Hong W. SCARNA10, a nuclear-retained long non-coding RNA, promotes liver fibrosis and serves as a potential biomarker. Am J Cancer Res 2019; 9:3622-3638. [PMID: 31281502 PMCID: PMC6587170 DOI: 10.7150/thno.32935] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in numerous biological functions and pathological processes. However, the clinical significance of lncRNAs and their functions in liver fibrosis remain largely unclear. Methods: The transcript of lncRNA SCARNA10 in serum and liver samples from patients with advanced hepatic fibrosis, liver tissues from two fibrosis mouse models, and cultured hepatic stellate cells (HSCs) was determined by real-time RT-PCR. The effects of lentivirus-mediated knockdown or over-expression of SCARNA10 in liver fibrosis were examined in vitro and in vivo. Moreover, the effects and mechanisms of down-regulation or over-expression of SCARNA10 on the expression of the genes involved in TGFβ pathway were determined. Results: It was found lncRNA ENSMUST00000158992, named as Scarna10, was remarkably up-regulated in mouse fibrotic livers according to the microarray data. We observed that the transcript of SCARNA10 was increased in the serum and liver from patients with advanced hepatic fibrosis. Furthermore, we found that SCARNA10 promoted liver fibrosis both in vitro and in vivo through inducing hepatocytes (HCs) apoptosis and HSCs activation. Mechanistically, RNA immunoprecipitation (RIP) assays demonstrated that SCARNA10 physically associated with polycomb repressive complex 2 (PRC2). Additionally, our results demonstrated that SCARNA10 functioned as a novel positive regulator of TGFβ signaling in hepatic fibrogenesis by inhibiting the binding of PRC2 to the promoters of the genes associated with ECM and TGFβ pathway, thus promoting the transcription of these genes. Conclusions: Our study identified a crucial role of SCARNA10 in liver fibrosis, providing a proof of this molecule as a potential diagnostic marker and a possible therapeutic target against liver fibrosis.
Collapse
|
104
|
Tang G, Zeng Z, Sun W, Li S, You C, Tang F, Peng S, Ma S, Luo Y, Xu J, Tian X, Zhang N, Gong Y, Xie C. Small Nucleolar RNA 71A Promotes Lung Cancer Cell Proliferation, Migration and Invasion via MAPK/ERK Pathway. J Cancer 2019; 10:2261-2275. [PMID: 31258730 PMCID: PMC6584411 DOI: 10.7150/jca.31077] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: Increasing evidence suggested that dysregulated small nucleolar RNAs (snoRNAs) were involved in tumor development. The roles of snoRNA 71A (SNORA71A) in the progression of non-small cell lung cancer (NSCLC) remained unclear. Methods: Dataset GSE19188 from Gene Expression Omnibus (GEO) database was downloaded to detect the expression levels of SNORA71A in NSCLC tissues. The biological significance of SNORA71A was explored by loss-of-function analysis both in vitro and in vivo. Results: SNORA71A was overexpressed in NSCLC tissues compared with normal tissues, and upregulated SNORA71A was significantly associated with worse survival of NSCLC patients. Knockdown of SNORA71A suppressed proliferation of both A549 and PC9 cells, and induced G0/G1 phase arrest. Knockdown of SNORA71A also suppressed xenograft tumor growth in mice. In addition, knockdown of SNORA71A inhibited cell invasion and migration and suppressed epithelial-mesenchymal transition. Furthermore, downregulated SNORA71A decreased the phosphorylation of MEK and ERK1/2 in the MAPK/ERK signal pathway. Conclusion: SNORA71A functions as an oncogene in NSCLC and may serve as a therapeutic target and promising prognostic biomarker of NSCLC.
Collapse
Affiliation(s)
- Guiliang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Chengcheng You
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shan Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Jieyu Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaoli Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
105
|
Deng Y, Zhu Y, Wang H, Khadka VS, Hu L, Ai J, Dou Y, Li Y, Dai S, Mason CE, Wang Y, Jia W, Zhang J, Huang G, Jiang B. Ratio-Based Method To Identify True Biomarkers by Normalizing Circulating ncRNA Sequencing and Quantitative PCR Data. Anal Chem 2019; 91:6746-6753. [PMID: 31002238 PMCID: PMC6884007 DOI: 10.1021/acs.analchem.9b00821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies have indicated that circulating noncoding RNAs (ncRNAs) such as miRNAs are stable biomarkers for the diagnosis and prognosis of human diseases. However, due to low concentrations of circulating ncRNAs in blood, data normalization in plasma/serum ncRNA experiments using next-generation sequencing and quantitative real time RT-qPCR is a challenge. We found that the current normalization methods based on synthetic external spiked-in controls or published endogenous miRNA controls are inappropriate as they are not stably expressed and therefore fail to reliably detect differentially expressed ncRNAs. Using the alternative of individual ncRNAs as biomarkers, we considered a ratio-based normalization method calculated taking the ratio of any two ncRNAs in the same sample and used the resulting ratios as biomarkers. We mathematically verified the method to be independent of spiked-in and internal controls, and more robust than existing reference control based normalization methods to identify differentially expressed ncRNAs as potential biomarkers for human diseases. Thus, the ratio-based method can solve the difficult normalization problem for circuiting ncRNA data to identify reliable biomarkers to meet real clinical practice.
Collapse
Affiliation(s)
- Youping Deng
- Bioinformatics Core, Department of Complementary & Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii 96813, United States
| | - Yong Zhu
- National Center of Colorectal Disease, Nanjing Municipal Hospital of Chinese Medicine, the Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210001, P. R. China
| | - Hongwei Wang
- University of Chicago, Chicago, Illinois 60637, United States
| | - Vedbar S. Khadka
- Bioinformatics Core, Department of Complementary & Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii 96813, United States
| | - Ling Hu
- Department of Anesthesiology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430064, P. R. China
| | - Junmei Ai
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Yuhong Dou
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois 60612, United States
- Department of Clinical Laboratory, Shenzhen Shajing Affiliated Hospital of Guangzhou Medical University, Shenzhen 518104, P. R. China
| | - Yan Li
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Shengming Dai
- Bioinformatics Core, Department of Complementary & Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii 96813, United States
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P. R. China
| | - Christopher E. Mason
- Department of Physiology and Biophysics and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Yunliang Wang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P. R. China
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, Hawaii 96813, United States
| | - Jicai Zhang
- Department of Laboratory Medicine, Shiyan Taihe Hospital, College of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - Bin Jiang
- National Center of Colorectal Disease, Nanjing Municipal Hospital of Chinese Medicine, the Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210001, P. R. China
| |
Collapse
|
106
|
Sun Y, Chen E, Li Y, Ye D, Cai Y, Wang Q, Li Q, Zhang X. H/ACA box small nucleolar RNA 7B acts as an oncogene and a potential prognostic biomarker in breast cancer. Cancer Cell Int 2019; 19:125. [PMID: 31168298 PMCID: PMC6509762 DOI: 10.1186/s12935-019-0830-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/20/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most frequent malignancy occurring in women worldwide. Emerging evidence indicates that small nucleolar RNAs (snoRNAs) play a role in tumor development. In the current study, we evaluated expression profiles and functions of snoRNAs associated with BC. METHODS We analyzed the expression levels of snoRNAs between breast cancer and normal tissues in TCGA database and found that SNORA7B is upregulated in BC. We confirmed this result in clinical cancer tissues and BC cell lines via qRT-PCR. Then, we investigated clinical significance in public datasets and biological function of SNORA7B using a series of in vitro gain- and loss-of-function experiments. RESULTS SNORA7B expression was significantly upregulated in samples from patients with BC in both public database and our clinical tissues compared to its expression in normal tissues. Meanwhile, patients with high SNORA7B expression have worse prognosis. Inhibition of SNORA7B expression impaired cell growth, proliferation, migration, and invasion via inducing apoptosis. CONCLUSIONS SNORA7B functions as an important oncogenic snoRNA in BC and may serve as a potential prognosis biomarker for BC.
Collapse
Affiliation(s)
- Yihan Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Endong Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Yuefeng Li
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Danrong Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Yefeng Cai
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Qingxuan Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Quan Li
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500 Zhejiang China
| |
Collapse
|
107
|
Abstract
It has recently become clear that ribosomes are much more heterogeneous than previously thought, with diversity arising from rRNA sequence and modifications, ribosomal protein (RP) content and posttranslational modifications (PTMs), as well as bound nonribosomal proteins. In some cases, the existence of these diverse ribosome populations has been verified by biochemical or structural methods. Furthermore, knockout or knockdown of RPs can diversify ribosome populations, while also affecting the translation of some mRNAs (but not others) with biological consequences. However, the effects on translation arising from depletion of diverse proteins can be highly similar, suggesting that there may be a more general defect in ribosome function or stability, perhaps arising from reduced ribosome numbers. Consistently, overall reduced ribosome numbers can differentially affect subclasses of mRNAs, necessitating controls for specificity. Moreover, in order to study the functional consequences of ribosome diversity, perturbations including affinity tags and knockouts are introduced, which can also affect the outcome of the experiment. Here we review the available literature to carefully evaluate whether the published data support functional diversification, defined as diverse ribosome populations differentially affecting translation of distinct mRNA (classes). Based on these observations and the commonly observed cellular responses to perturbations in the system, we suggest a set of important controls to validate functional diversity, which should include gain-of-function assays and the demonstration of inducibility under physiological conditions.
Collapse
Affiliation(s)
- Max B Ferretti
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
108
|
The Function of Non-Coding RNAs in Lung Cancer Tumorigenesis. Cancers (Basel) 2019; 11:cancers11050605. [PMID: 31052265 PMCID: PMC6563001 DOI: 10.3390/cancers11050605] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the most prevalent and deadliest cancer worldwide. A significant part of lung cancer studies is dedicated to the expression alterations of non-coding RNAs. The non-coding RNAs are transcripts that cannot be translated into proteins. While the study of microRNAs and siRNAs in lung cancer received a lot of attention over the last decade, highly efficient therapeutic option or the diagnostic methods based on non-coding RNAs are still lacking. Because of this, it is of utmost importance to direct future research on lung cancer towards analyzing other RNA types for which the currently available data indicates that are essential at modulating lung tumorigenesis. Through our review of studies on this subject, we identify the following non-coding RNAs as tumor suppressors: ts-46, ts-47, ts-101, ts-53, ts-3676, ts-4521 (tRNA fragments), SNORD116-26, HBII-420, SNORD15A, SNORA42 (snoRNAs), piRNA-like-163, piR-35127, the piR-46545 (piRNAs), CHIAP2, LOC100420907, RPL13AP17 (pseudogenes), and uc.454 (T-UCR). We also found non-coding RNAs with tumor-promoting function: tRF-Leu-CAG, tRNA-Leu, tRNA-Val (tRNA fragments), circ-RAD23B, circRNA 100146, circPVT1, circFGFR3, circ_0004015, circPUM1, circFLI1, circABCB10, circHIPK3 (circRNAs), SNORA42, SNORA3, SNORD46, SNORA21, SNORD28, SNORA47, SNORD66, SNORA68, SNORA78 (snoRNAs), piR-65, piR-34871, piR-52200, piR651 (piRNAs), hY4 5’ fragments (YRNAs), FAM83A-AS1, WRAP53, NKX2-1-AS1 (NATs), DUXAP8, SFTA1P (pseudogene transcripts), uc.338, uc.339 (T-UCRs), and hTERC.
Collapse
|
109
|
Wu B, Huang L, Qiu W, Liu X, Shen Y, Lu Y, Yang Z, Li X, Cui B, Xu S, Qiao H, Qiu R, Yao L, Kan Y, Li D. Small nucleolar RNA Sf-15 regulates proliferation and apoptosis of Spodoptera frugiperda Sf9 cells. BMC Mol Biol 2019; 20:12. [PMID: 30971200 PMCID: PMC6458620 DOI: 10.1186/s12867-019-0128-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Small nucleolar RNAs (snoRNAs) function in guiding 2'-O-methylation and pseudouridylation of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). In recent years, more and more snoRNAs have been found to play novel roles in mRNA regulation, such as pre-mRNA splicing or RNA editing. In our previous study, we found a silkworm C/D box snoRNA Bm-15 can interact with Notch receptor gene in vitro. To further study the function of Bm-15, we cloned its homolog Sf-15 from Spodoptera frugiperda and investigate the function of Sf-15 in Sf9 cells. RESULTS We showed that knocking down of Sf-15 can inhibit the proliferation, then induce apoptosis of insect S. frugiperda Sf9 cells, but the results were reversed when Sf-15 was overexpressed. De novo sequencing of transcriptome of Sf9 cells showed that the expression of 21 apoptosis-related genes were increased upon Sf-15 repression. Further analysis showed that a Ca2+-induced cell death pathway gene Cn (PPP3C, the serine/threonine-protein phosphatase 2B catalytic subunit), was significantly increased upon Sf-15 depression but decreased when Sf-15 was overexpressed, which indicated that Cn might be a potential target of Sf-15. CONCLUSIONS We conclude that C/D box snoRNA Sf-15 can participate in apoptosis through regulating the expression of Ca2+-induced cell death pathway gene Cn in Sf9 cells. This is the first time that we found snoRNAs exhibiting dual functions in insect, which reveals a novel layer of ncRNA modulation in cell growth and death.
Collapse
Affiliation(s)
- Bo Wu
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Lei Huang
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Wujie Qiu
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Xiao Liu
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Yawen Shen
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Yiping Lu
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Zonglin Yang
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Xinmei Li
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Bin Cui
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Shidong Xu
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Huili Qiao
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Reng Qiu
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Lunguang Yao
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China.
| | - Dandan Li
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China.
| |
Collapse
|
110
|
Abstract
While only a small part of the human genome encodes for proteins, biological functions for the so-called junk genome are increasingly being recognized through high-throughput technologies and mechanistic experimental studies. Indeed, novel mechanisms of gene regulation are being discovered that require coordinated interaction between DNA, RNA, and proteins. Therefore, interdisciplinary efforts are still needed to decipher these complex transcriptional networks. In this review, we discuss how non-coding RNAs (ncRNAs) are epigenetically regulated in cancer and metastases and consequently how ncRNAs participate in the sculpting of the epigenetic profile of a cancer cell, thus modulating the expression of other RNA molecules. In the latter case, ncRNAs not only affect the DNA methylation status of certain genomic loci but also interact with histone-modifying complexes, changing the structure of the chromatin itself. We present several examples of epigenetic changes causing aberrant expression of ncRNAs in the context of tumor progression. Interestingly, there are also important epigenetic changes and transcriptional regulatory effects derived from their aberrant expression. As ncRNAs can also be used as biomarkers for diagnosis and prognosis or explored as potential targets, we present insights into the use of ncRNAs for targeted cancer therapy.
Collapse
|
111
|
Boivin V, Faucher-Giguère L, Scott M, Abou-Elela S. The cellular landscape of mid-size noncoding RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1530. [PMID: 30843375 PMCID: PMC6619189 DOI: 10.1002/wrna.1530] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 01/06/2023]
Abstract
Noncoding RNA plays an important role in all aspects of the cellular life cycle, from the very basic process of protein synthesis to specialized roles in cell development and differentiation. However, many noncoding RNAs remain uncharacterized and the function of most of them remains unknown. Mid-size noncoding RNAs (mncRNAs), which range in length from 50 to 400 nucleotides, have diverse regulatory functions but share many fundamental characteristics. Most mncRNAs are produced from independent promoters although others are produced from the introns of other genes. Many are found in multiple copies in genomes. mncRNAs are highly structured and carry many posttranscriptional modifications. Both of these facets dictate their RNA-binding protein partners and ultimately their function. mncRNAs have already been implicated in translation, catalysis, as guides for RNA modification, as spliceosome components and regulatory RNA. However, recent studies are adding new mncRNA functions including regulation of gene expression and alternative splicing. In this review, we describe the different classes, characteristics and emerging functions of mncRNAs and their relative expression patterns. Finally, we provide a portrait of the challenges facing their detection and annotation in databases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Vincent Boivin
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Laurence Faucher-Giguère
- Department of Microbiology and Infectious Disease, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Michelle Scott
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sherif Abou-Elela
- Department of Microbiology and Infectious Disease, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
112
|
Zhu Q, Yang H, Cheng P, Han Q. Bioinformatic analysis of the prognostic value of the lncRNAs encoding snoRNAs in hepatocellular carcinoma. Biofactors 2019; 45:244-252. [PMID: 30537372 DOI: 10.1002/biof.1478] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Some lncRNAs can encode small nucleolar RNAs (snoRNAs), called small nucleolar RNA host genes (SNHGs), which exert diverse regulatory effects on cellular processes. In this study, using RNA-seq and survival data in the Cancer Genome Atlas (TCGA)-Liver Hepatocellular Carcinoma (LIHC), we examined the expression profile of some SNHG genes and explored their prognostic value in hepatocellular carcinoma (HCC). Level-3 RNA-sequencing data, the clinicopathological and survival data of patients with primary HCC were downloaded from the UCSC Xena browser (https://xenabrowser.net/), for a secondary analysis. Results showed that SNHG1, GAS5, SNHG3-7 and SNHG10-12 were significantly upregulated in HCC tissues (N = 49) compared with adjacent normal tissues (N = 49). After adjustment for confounding factors, the multivariate analysis confirmed that increased SNHG4 expression was independently associated with shorter OS (HR: 1.319, 95%CI: 1.131-1.537, P < 0.001), while increased GAS5 expression was an independent predictor of shorter RFS (HR: 1.287, 95% CI: 1.027-1.612, P = 0.028). Using the methylation data obtained from the Infinium HumanMethylation450 BeadChip, we found that SNHG4 expression was not likely to be modulated by methylation in HCC. In comparison, the methylation status of 5 CpG sites (cg07177756, cg17025683, cg16290996, cg03044573 and cg06644515) showed a moderately negative correlation (Pearson's r = -0.54, P < 0.001) with GAS5 expression. Based on these findings, we infer that SNHG4 and GAS5 might be valuable prognostic markers in HCC. DNA hypomethylation might play an important role in elevated GAS5 transcription in HCC. © 2018 BioFactors, 45(2):244-252, 2019.
Collapse
Affiliation(s)
- Qingyao Zhu
- Department of Oncology Radiotherapy, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongjie Yang
- Department of Oncology Radiotherapy, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Peng Cheng
- Department of Oncology Radiotherapy, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Qian Han
- Department of Oncology Radiotherapy, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
113
|
New Insights into Connection of Nucleolar Functions and Cancer. TANAFFOS 2019; 18:173-179. [PMID: 32411258 PMCID: PMC7210567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The nucleolus is an intranuclear membrane-less organelle. It is involved in ribosome biogenesis and protein synthesis. When the demand for protein synthesis increases in cell growth and proliferation (e.g., tumors), the cell upregulates ribosome biogenesis. Changes in nucleolar size and number have been recognized as known features of many tumor types. Recent evidence suggests that overproduction of ribosome, decreased ribosome biogenesis, and quantitative and qualitative changes in the nucleolus function, may result in oncogenesis. Today, it is clear that the nucleolus is involved in processes other than ribosome biogenesis. Other functions of the nucleolus include detecting and responding to endogenous and exogenous stress, maintaining genome stability, and regulating cell cycle progression, telomere function, cellular senescence, gene expression, and chromatin structure. Alterations in many of these fundamental nucleolar processes may contribute to the formation of cancer cell phenotypes. This phenomenon suggests that normal nucleolar functions are a safeguard against the development of malignancies and have potential therapeutic effects, as reported in non-small-cell lung carcinoma and other malignancies.
Collapse
|
114
|
Li Y, Yu S, Wang X, Ye X, He B, Quan M, Gao Y. SRPK1 facilitates tumor cell growth via modulating the small nucleolar RNA expression in gastric cancer. J Cell Physiol 2019; 234:13582-13591. [PMID: 30633341 DOI: 10.1002/jcp.28036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/30/2018] [Indexed: 01/11/2023]
Abstract
Serine-arginine protein kinase 1 (SRPK1) is the main regulator in alternative splicing by phosphorylating splicing factors rich in serine/arginine repeats. Its overexpression has been found in multiple cancer types and contributes to cancer development. Here we report the role of SRPK1 and underlying mechanism in gastric cancer (GC) cell growth. We found that SRPK1 was frequently upregulated in GC samples compared with their adjacent corresponding normal tissues by immunohistochemistry and western blot analysis. Knockdown of SRPK1 in GC cells suppressed cell growth in cell viability assays, colony formation assays and nude mice xenograft model, whereas overexpression of SRPK1 promotes opposite phenotypes in these assays. By a complementary DNA microarray analysis, we found that SRPK1 knockdown had significant inhibitory effects on a majority of small nucleolar RNAs expression. Among them, snoRA42, snoRA74A, and snoRD10 were selected for further functional experiments. Cell growth curves on a plate and in soft agar indicated that the three snoRNAs play potential oncogenic function in GC. In addition, SRPK1 could co-immunoprecipitated with NCL, a nucleolar phosphoprotein involved in the synthesis and maturation of ribosomes. These results suggested that SRPK1 contributes to GC development by a new possible mechanism involving snoRNAs mediated signaling.
Collapse
Affiliation(s)
- Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojuan Ye
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Hematology & Oncology, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School of Zhejiang University, Ningbo, China
| | - Bin He
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ming Quan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
115
|
Guide snoRNAs: Drivers or Passengers in Human Disease? BIOLOGY 2018; 8:biology8010001. [PMID: 30577491 PMCID: PMC6466398 DOI: 10.3390/biology8010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
Abstract
In every domain of life, RNA-protein interactions play a significant role in co- and post-transcriptional modifications and mRNA translation. RNA performs diverse roles inside the cell, and therefore any aberrancy in their function can cause various diseases. During maturation from its primary transcript, RNA undergoes several functionally important post-transcriptional modifications including pseudouridylation and ribose 2′-O-methylation. These modifications play a critical role in the stability of the RNA. In the last few decades, small nucleolar RNAs (snoRNAs) were revealed to be one of the main components to guide these modifications. Due to their active links to the nucleoside modification, deregulation in the snoRNA expressions can cause multiple disorders in humans. Additionally, host genes carrying snoRNA-encoding sequences in their introns also show differential expression in disease. Although few reports support a causal link between snoRNA expression and disease manifestation, this emerging field will have an impact on the way we think about biomarkers or identify novel targets for therapy. This review focuses on the intriguing aspect of snoRNAs that function as a guide in post-transcriptional RNA modification, and regulation of their host genes in human disease.
Collapse
|
116
|
Chow RD, Chen S. Sno-derived RNAs are prevalent molecular markers of cancer immunity. Oncogene 2018; 37:6442-6462. [PMID: 30072739 PMCID: PMC6294694 DOI: 10.1038/s41388-018-0420-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
Small nucleolar RNAs (snoRNAs) constitute a family of noncoding RNAs that are classically known as guide RNAs for processing and modification of ribosomal RNAs. Recently, it was discovered that snoRNAs can be further processed into sno-derived RNAs (sdRNAs), some of which are known to exhibit microRNA-like properties. SdRNAs have been implicated in human cancer; however, a systems-level sdRNA landscape in human cancers is lacking. Through integrative analysis of ~22 nt size-selected smRNA-seq datasets from 10,262 patient samples across 32 cancer types, we mapped a pan-cancer sdRNAome and interrogated its signatures in multiple clinically relevant features, particularly cancer immunity and clinical outcome. Aggregating sdRNA abundances by parental snoRNAs, these expression signatures alone are sufficient to distinguish patients with distinct cancer types. Interestingly, a large panel of sdRNAs are significantly correlated with features of the tumor-immune microenvironment, such as immunosuppressive markers, CD8+ T cell infiltration, cytolytic T cell activity, and tumor vasculature. A set of individual sdRNAs with tumor-immune signatures can also stratify patient survival. These findings implicate snoRNAs and their derivative sdRNAs as a class of prevalent noncoding molecular markers of human cancer immunity.
Collapse
Affiliation(s)
- Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University School of Medicine, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University School of Medicine, West Haven, CT, USA.
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA.
- Biological and Biomedical Sciences Program, Yale University School of Medicine, New Haven, CT, USA.
- Immunobiology Program, Yale University School of Medicine, New Haven, CT, USA.
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
117
|
Jiang X, Yang Z, Li Z. Zinc finger antisense 1: A long noncoding RNA with complex roles in human cancers. Gene 2018; 688:26-33. [PMID: 30503395 DOI: 10.1016/j.gene.2018.11.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 12/20/2022]
Abstract
Zinc finger antisense 1 (ZFAS1), a newly identified long non-coding RNA, is a transcript antisense to the 5' end of the protein-coding gene zinc finger NFX1-type containing 1 which hosts three C/D-box small nucleolar RNAs (SNORDs) within sequential introns: Snord12, Snord12b, and Snord12c. ZFAS1 is dysregulated and acts as either an oncogene or a tumor suppressor in different human malignancies. ZFAS1 has been implicated in many aspects of carcinogenesis, including proliferation, invasion, metastasis, apoptosis, cell cycle, and drug resistance. The mechanisms underlying the effects of ZFAS1 are complex and involve multiple signaling pathways. In this review, the multiple pathological functions of ZFAS1 in diverse malignancies are systematically reviewed to elucidate the molecular basis of its biological roles and to provide new directions for future research.
Collapse
Affiliation(s)
- Xiaodi Jiang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Hospital of China Medical University, Shenyang, China
| | - Zhiwei Li
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
118
|
Kitagawa T, Taniuchi K, Tsuboi M, Sakaguchi M, Kohsaki T, Okabayashi T, Saibara T. Circulating pancreatic cancer exosomal RNAs for detection of pancreatic cancer. Mol Oncol 2018; 13:212-227. [PMID: 30358104 PMCID: PMC6360365 DOI: 10.1002/1878-0261.12398] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 12/13/2022] Open
Abstract
Diagnostic biomarkers for the early diagnosis of pancreatic cancer are needed to improve prognosis for this disease. The aim of this study was to investigate differences in the expression of four messenger RNAs (mRNAs: CCDC88A,ARF6, Vav3, and WASF2) and five small nucleolar RNAs (snoRNAs: SNORA14B,SNORA18,SNORA25,SNORA74A, and SNORD22) in serum of patients with pancreatic cancer and control participants for use in the diagnosis of pancreatic cancer. Results were compared with the expression of sialylated Lewis (a) blood group antigen CA19‐9, the standard clinical tumor biomarker. Reverse transcription quantitative real‐time PCR showed that all of the mRNAs and snoRNAs, except CCDC88A, were encapsulated in exosomes and secreted from cultured pancreatic cancer cells, and present in cell culture medium. In a discovery‐stage clinical study involving 27 pancreatic cancer patients and 13 controls, the area under the receiver operating characteristic curve (AUC) of two mRNAs (WASF2 and ARF6) and two snoRNAs (SNORA74A and SNORA25) was > 0.9 for distinguishing pancreatic cancer patients from controls; the AUC of CA19‐9 was 0.897. Comparing serum levels of WASF2,ARF6,SNORA74A,SNORA25, and CA19‐9 revealed that levels of WASF2 were the most highly correlated with the risk of pancreatic cancer. The AUCs of WASF2,ARF6,SNORA74A, and SNORA25 in serum from patients in the early stages of pancreatic cancer (stages 0, I, and IIA) were > 0.9, compared with an AUC of 0.93 for the level of CA19‐9. The results of this study suggest that WASF2,ARF6,SNORA74A, and SNORA25 may be useful tools for the early detection of pancreatic cancer. Monitoring serum levels of WASF2 mRNA may be particularly useful, as it was the most highly correlated with pancreatic cancer risk.
Collapse
Affiliation(s)
- Tatsuya Kitagawa
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Keisuke Taniuchi
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Makiko Tsuboi
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Masahiko Sakaguchi
- Department of Integrated Center for Advanced Medical Technologies, Kochi Medical School, Kochi University, Nankoku, Japan.,Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Takuhiro Kohsaki
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | | | - Toshiji Saibara
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
119
|
Shender VO, Arapidi GP, Pavlyukov MS, Shnaider PV, Anufrieva KS, Stepanov GA, Govorun VM. The Role of Intercellular Communication in Cancer Progression. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
120
|
Bullard WL, Flemington EK, Renne R, Tibbetts SA. Connivance, Complicity, or Collusion? The Role of Noncoding RNAs in Promoting Gammaherpesvirus Tumorigenesis. Trends Cancer 2018; 4:729-740. [PMID: 30352676 DOI: 10.1016/j.trecan.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
EBV and KSHV are etiologic agents of multiple types of lymphomas and carcinomas. The frequency of EBV+ or KSHV+ malignancies arising in immunocompromised individuals reflects the intricate evolutionary balance established between these viruses and their immunocompetent hosts. However, the specific mechanisms by which these pathogens drive tumorigenesis remain poorly understood. In recent years an enormous array of cellular and viral noncoding RNAs (ncRNAs) have been discovered, and host ncRNAs have been revealed as contributory factors to every single cancer hallmark cellular process. As new evidence emerges that gammaherpesvirus ncRNAs also alter host processes and viral factors dysregulate host ncRNA expression, and as novel viral ncRNAs continue to be discovered, we examine the contribution of small, non-miRNA ncRNAs and long ncRNAs to gammaherpesvirus tumorigenesis.
Collapse
Affiliation(s)
- Whitney L Bullard
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Erik K Flemington
- Department of Pathology, Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
121
|
Lim MCJ, Baird AM, Aird J, Greene J, Kapoor D, Gray SG, McDermott R, Finn SP. RNAs as Candidate Diagnostic and Prognostic Markers of Prostate Cancer-From Cell Line Models to Liquid Biopsies. Diagnostics (Basel) 2018; 8:E60. [PMID: 30200254 PMCID: PMC6163368 DOI: 10.3390/diagnostics8030060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022] Open
Abstract
The treatment landscape of prostate cancer has evolved rapidly over the past five years. The explosion in treatment advances has been witnessed in parallel with significant progress in the field of molecular biomarkers. The advent of next-generation sequencing has enabled the molecular profiling of the genomic and transcriptomic architecture of prostate and other cancers. Coupled with this, is a renewed interest in the role of non-coding RNA (ncRNA) in prostate cancer biology. ncRNA consists of several different classes including small non-coding RNA (sncRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). These families are under active investigation, given their essential roles in cancer initiation, development and progression. This review focuses on the evidence for the role of RNAs in prostate cancer, and their use as diagnostic and prognostic markers, and targets for treatment in this disease.
Collapse
Affiliation(s)
- Marvin C J Lim
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland.
- Department of Medical Oncology, Tallaght University Hospital, Dublin D24 NR0A, Ireland.
| | - Anne-Marie Baird
- Cancer and Ageing Research Programme, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Department of Clinical Medicine, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland.
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin 08 W9RT, Ireland.
| | - John Aird
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland.
| | - John Greene
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland.
| | - Dhruv Kapoor
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland.
| | - Steven G Gray
- Department of Clinical Medicine, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland.
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin 08 W9RT, Ireland.
- School of Biological Sciences, Dublin Institute of Technology, Dublin D08 NF82, Ireland.
| | - Ray McDermott
- Department of Medical Oncology, Tallaght University Hospital, Dublin D24 NR0A, Ireland.
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin D04 YN26, Ireland.
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland.
- Department of Histopathology, St. James's Hospital, P.O. Box 580, James's Street, Dublin D08 X4RX, Ireland.
| |
Collapse
|
122
|
Cao P, Yang A, Wang R, Xia X, Zhai Y, Li Y, Yang F, Cui Y, Xie W, Liu Y, Liu T, Jia W, Jiang Z, Li Z, Han Y, Gao C, Song Q, Xie B, Zhang L, Zhang H, Zhang J, Shen X, Yuan Y, Yu F, Wang Y, Xu J, Ma Y, Mo Z, Yu W, He F, Zhou G. Germline Duplication of SNORA18L5 Increases Risk for HBV-related Hepatocellular Carcinoma by Altering Localization of Ribosomal Proteins and Decreasing Levels of p53. Gastroenterology 2018; 155:542-556. [PMID: 29702115 DOI: 10.1053/j.gastro.2018.04.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Single nucleotide polymorphisms could affect risk for hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). We performed a germline copy number variation (CNV)-based genome-wide association study (GWAS) in populations of Chinese ancestry to search for germline CNVs that increase risk of HCC. METHODS We conducted a CNV-based GWAS of 1583 HCC cases (persons with chronic HBV infection and HCC) and 1540 controls (persons with chronic HBV infection without HCC) in Chinese populations. Identified candidates were expressed in L-02, HepG2, or TP53-/- or wild-type HCT116 cells, and knocked down with short hairpin RNAs in HepG2, Bel-7402, and SMMC-7721 cells; proliferation, colony formation, and apoptosis were measured. Formation of xenograft tumors from cell lines was monitored in nude mice. Subcellular localization of ribosome proteins and levels or activity of p53 were investigated by co-immunoprecipitation, immunofluorescence, and immunoblot analyses. Levels of small nucleolar RNA H/ACA box 18-like 5 (SNORA18L5) were quantified by quantitative reverse transcription polymerase chain reaction. RESULTS We identified a low-frequency duplication at chromosome 15q13.3 strongly associated with risk of HBV-related HCC (overall P = 3.17 × 10-8; odds ratio, 12.02). Copy numbers of the 15q13.3 duplication correlated with the expression of SNORA18L5 in liver tissues. Overexpression of SNORA18L5 increased HCC cell proliferation and growth of xenograft tumors in mice; knockdown reduced HCC proliferation and tumor growth. SNORA18L5 overexpression in HepG2 and SMMC-7721 cells inhibited p53-dependent cell cycle arrest and apoptosis. Overexpression of SNORA18L5 led to hyperactive ribosome biogenesis, increasing levels of mature 18S and 28S ribosomal RNAs and causing the ribosomal proteins RPL5 and RPL11 to stay in the nucleolus, which kept them from binding to MDM2. This resulted in increased MDM2-mediated ubiquitination and degradation of p53. Levels of SNORA18L5 were increased in HCC tissues compared with nontumor liver tissues and associated with shorter survival times of patients. CONCLUSIONS In a CNV-based GWAS, we associated duplication at 15q13.3 with increased risk of HBV-related HCC. We found SNORA18L5 at this location to promote HCC cell proliferation and tumor growth in mice. SNORA18L5 increases ribosome biogenesis, facilitates ribosomal RNA maturation, and alters localization of RPL5 and RPL11, allowing for increased MDM2-mediated proteolysis of p53 and cell cycle arrest.
Collapse
Affiliation(s)
- Pengbo Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Aiqing Yang
- School of Life Sciences, Tsinghua University, Beijing, P. R. China
| | - Rui Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China; Clinical Medical Institute of General Hospital of Xinjiang Military Area, PLA, Urumqi, Xinjiang, P. R. China
| | - Xia Xia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Yun Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Fei Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Ying Cui
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Weimin Xie
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Ying Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Beijing, P. R. China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Weihua Jia
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhengwen Jiang
- Center for Genetics and Genomics Analysis, Genesky Biotechnologies Inc., Shanghai, P. R. China
| | - Zhuo Li
- Department of Infectious Diseases, Affiliated Youan Hospital, Capital University of Medical Science, Beijing, P. R. China
| | - Yuqing Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Chengming Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Qingfeng Song
- Interventional Radiology Department of Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Bobo Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Luo Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Hongxing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Jinxu Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yunfei Yuan
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Feng Yu
- Center for Genetics and Genomics Analysis, Genesky Biotechnologies Inc., Shanghai, P. R. China
| | - Ying Wang
- Center for Genetics and Genomics Analysis, Genesky Biotechnologies Inc., Shanghai, P. R. China
| | - Jing Xu
- Center for Genetics and Genomics Analysis, Genesky Biotechnologies Inc., Shanghai, P. R. China
| | - Yilong Ma
- Interventional Radiology Department of Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Zengnan Mo
- Department of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Wuzhong Yu
- Clinical Medical Institute of General Hospital of Xinjiang Military Area, PLA, Urumqi, Xinjiang, P. R. China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China; School of Life Sciences, Tsinghua University, Beijing, P. R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P. R. China; National Engineering Research Center for Protein Drugs, Beijing, P. R. China; National Center for Protein Sciences at Beijing, Beijing, P. R. China.
| |
Collapse
|
123
|
Yi C, Wan X, Zhang Y, Fu F, Zhao C, Qin R, Wu H, Li Y, Huang Y. SNORA42 enhances prostate cancer cell viability, migration and EMT and is correlated with prostate cancer poor prognosis. Int J Biochem Cell Biol 2018; 102:138-150. [PMID: 30053504 DOI: 10.1016/j.biocel.2018.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/21/2023]
Abstract
Prostate cancer (PCa) is one of the most common invasive cancers and the second leading cause of cancer-related death in male worldwide, reflecting the needs of diagnostic and prognostic biomarkers for PCa. Emerging evidence has revealed small nucleolar RNAs (snoRNAs) playing a significant role in tumorigenesis and cancer progression. However, there are few reports about snoRNAs in PCa. Here, we found SNORA42 rather than its host gene (KIAA0907) was up-regulated in PCa cell lines. Meanwhile, an obvious up-regulation of SNORA42 was observed in cancer tissues compared to their adjacent normal tissues. SNORA42 could be induced by DHT stimulation. Over-expression of SNORA42 increased prostate cancer cell proliferation and inhibited apoptosis. Importantly, SNORA42 increased prostate cancer cell migration and invasion. Higher SNORA42 expression level was found to be correlated with shorter survival in metastatic PCa tissues by Kaplan-Meier survival analysis, but this effect was not found in primary PCa tissues. In conclusion, over-expression of SNORA42 could have an oncogenic effect on the progression of PCa. SNORA42 might serve as a prognostic biomarker in PCa.
Collapse
Affiliation(s)
- Chuanyou Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Xuechao Wan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Yufeng Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Fangqiu Fu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Chen Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Rui Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Hai Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
124
|
Donlic A, Hargrove AE. Targeting RNA in mammalian systems with small molecules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1477. [PMID: 29726113 PMCID: PMC6002909 DOI: 10.1002/wrna.1477] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022]
Abstract
The recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target. This potential was first recognized in bacteria and viruses, but discoveries of new RNA classes following the sequencing of the human genome have invigorated exploration of its disease-related functions in mammals. As stable structure formation is evolving as a hallmark of mammalian RNAs, the prospect of utilizing small molecules to specifically probe the function of RNA structural domains and their interactions is gaining increased recognition. To date, researchers have discovered bioactive small molecules that modulate phenotypes by binding to expanded repeats, microRNAs, G-quadruplex structures, and RNA splice sites in neurological disorders, cancers, and other diseases. The lessons learned from achieving these successes both call for additional studies and encourage exploration of the plethora of mammalian RNAs whose precise mechanisms of action remain to be elucidated. Efforts toward understanding fundamental principles of small molecule-RNA recognition combined with advances in methodology development should pave the way toward targeting emerging RNA classes such as long noncoding RNAs. Together, these endeavors can unlock the full potential of small molecule-based probing of RNA-regulated processes and enable us to discover new biology and underexplored avenues for therapeutic intervention in human disease. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anita Donlic
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
125
|
Diamantopoulos MA, Tsiakanikas P, Scorilas A. Non-coding RNAs: the riddle of the transcriptome and their perspectives in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:241. [PMID: 30069443 DOI: 10.21037/atm.2018.06.10] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) constitute a heterogeneous group of RNA molecules in terms of biogenesis, biological function as well as length and structure. These biological molecules have gained attention recently as a potentially crucial layer of tumor cell progression or regulation. ncRNAs are expressed in a broad spectrum of tumors, and they play an important role not only in maintaining but also in promoting cancer development and progression. Recent discoveries have revealed that ncRNAs may act as key signal transduction mediators in tumor signaling pathways by interacting with RNA or proteins. These results reinforce the hypothesis, that ncRNAs constitute therapeutic targets, and point out their clinical potential as stratification markers. The major purpose of this review is to mention the emergence of the importance of ncRNAs, as molecules which are correlated with cancer, and to discuss their clinical implicit as prognostic diagnostic indicators, biomarkers, and therapeutic targets.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
126
|
Yang B, Xu B, Zhao H, Wang YB, Zhang J, Li CW, Wu Q, Cao YK, Li Y, Cao F. Dioscin protects against coronary heart disease by reducing oxidative stress and inflammation via Sirt1/Nrf2 and p38 MAPK pathways. Mol Med Rep 2018; 18:973-980. [PMID: 29845299 DOI: 10.3892/mmr.2018.9024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/11/2018] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular diseases are common diseases in Sweden as in most countries. In 2016, 25,700 persons suffered from coronary heart disease (CHD) and 25% of these died within 28 days. The present study investigated whether dioscin may exert protective effects against CHD‑induced heart apoptosis, oxidative stress and inflammation in a pig model and the potential underlying mechanisms. Adult pigs were used to establish a CHD model group and 80 mg/kg dioscin was administered for 4 weeks. Histological analysis and measurement of serum levels of heart injury markers demonstrated that 80 mg/kg dioscin markedly alleviated CHD, while left ventricular ejection fraction and left ventricular systolic internal diameter measurements indicated that 80 mg/kg dioscin also increased heart function in the CHD pig model. Furthermore, western blotting demonstrated that 80 mg/kg dioscin significantly reduced protein levels of apoptosis markers in the heart of CHD model pigs, including Bcl‑2‑associated X and caspase‑3, potentially via the suppression of poly (ADP‑ribose) polymerase 1 (PARP)/p53 expression. Additionally, the results of ELISA and western blotting demonstrated that 80 mg/kg dioscin may reduce oxidative stress and inflammation in CHD model pigs through the promotion of sirtuin 1 (Sirt1)/nuclear factor erythroid 2‑related factor 2 (Nrf2) protein expression and the suppression of PARP/p53 and p38 mitogen‑activated protein kinase (MAPK) expression. The results of the current study indicate that dioscin may protect against CHD by regulating oxidative stress and inflammation via Sirt1/Nrf2 and p38 MAPK pathways.
Collapse
Affiliation(s)
- Bo Yang
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Bin Xu
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hua Zhao
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Ya-Bin Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jian Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Chuan-Wei Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Qing Wu
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yu-Kang Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yang Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
127
|
Abstract
The ribosome has long been considered as a consistent molecular factory, with a rather passive role in the translation process. Recent findings have shifted this obsolete view, revealing a remarkably complex and multifaceted machinery whose role is to orchestrate spatiotemporal control of gene expression. Ribosome specialization discovery has raised the interesting possibility of the existence of its malignant counterpart, an 'oncogenic' ribosome, which may promote tumor progression. Here we weigh the arguments supporting the existence of an 'oncogenic' ribosome and evaluate its role in cancer evolution. In particular, we provide an analysis and perspective on how the ribosome may play a critical role in the acquisition and maintenance of cancer stem cell phenotype.
Collapse
|
128
|
Fang X, Yang D, Luo H, Wu S, Dong W, Xiao J, Yuan S, Ni A, Zhang KJ, Liu XY, Chu L. SNORD126 promotes HCC and CRC cell growth by activating the PI3K-AKT pathway through FGFR2. J Mol Cell Biol 2018; 9:243-255. [PMID: 27913571 DOI: 10.1093/jmcb/mjw048] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023] Open
Abstract
Small nucleolar RNA (snoRNA) dysfunctions have been associated with cancer development. SNORD126 is an orphan C/D box snoRNA that is encoded within introns 5-6 of its host gene, cyclin B1-interacting protein 1 (CCNB1IP1). The cancer-associated molecular mechanisms triggered by SNORD126 are not fully understood. Here, we demonstrate that SNORD126 is highly expressed in hepatocellular carcinoma (HCC) and colorectal cancer (CRC) patient samples. SNORD126 increased Huh-7 and SW480 cell growth and tumorigenicity in nude mice. Knockdown of SNORD126 inhibited HepG2 and LS174T cell growth. We verified that SNORD126 was not processed into small RNAs with miRNA activity. Moreover, SNORD126 did not show a significant expression correlation with CCNB1IP1 in HCC samples or regulate CCNB1IP1 expression. Our gene expression profile analysis indicated that SNORD126-upregulated genes frequently mapped to the PI3K-AKT pathway. SNORD126 overexpression increased the levels of phosphorylated AKT, GSK-3β, and p70S6K and elevated fibroblast growth factor receptor 2 (FGFR2) expression. siRNA-mediated knockdown or AZD4547-mediated inactivation of FGFR2 in SNORD126-overexpressing Huh-7 cells inhibited AKT phosphorylation and suppressed cell growth. These findings indicate an oncogenic role for SNORD126 in cancer and suggest its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xianlong Fang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongmei Yang
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Hongping Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai Wu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjie Dong
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sujing Yuan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Aimin Ni
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kang-Jian Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
129
|
SNORD47, a box C/D snoRNA, suppresses tumorigenesis in glioblastoma. Oncotarget 2018; 8:43953-43966. [PMID: 28410200 PMCID: PMC5546453 DOI: 10.18632/oncotarget.16693] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
SNORD47 is a member of the C/D box small nucleolar RNAs, which have been implicated in cancer development. We intended to investigate the therapeutic potential of SNORD47 in glioma. We found that the expression of SNORD47 was downregulated in glioma tissues samples and inversely associated with advanced tumor stage (WHO grade IV). Kaplan-Meier survival analysis revealed that glioma patients with high SNORD47 expression had longer overall survival than those with low SNORD47 expression. SNORD47 suppressed the proliferation of glioma cells and induced G2 phase arrest. In addition, upregulation of SNORD47 suppressed invasion and epithelial-mesenchymal transition in glioma cells, and combination treatment with lenti-SNORD47 could augment the anti-tumor effect of temozolomide. These results showed that SNORD47 acted as a tumor suppressor in glioma, and provided the potential anti-tumor function in glioma treatment.
Collapse
|
130
|
Sonea L, Buse M, Gulei D, Onaciu A, Simon I, Braicu C, Berindan-Neagoe I. Decoding the Emerging Patterns Exhibited in Non-coding RNAs Characteristic of Lung Cancer with Regard to their Clinical Significance. Curr Genomics 2018; 19:258-278. [PMID: 29755289 PMCID: PMC5930448 DOI: 10.2174/1389202918666171005100124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/14/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Lung cancer continues to be the leading topic concerning global mortality rate caused by can-cer; it needs to be further investigated to reduce these dramatic unfavorable statistic data. Non-coding RNAs (ncRNAs) have been shown to be important cellular regulatory factors and the alteration of their expression levels has become correlated to extensive number of pathologies. Specifically, their expres-sion profiles are correlated with development and progression of lung cancer, generating great interest for further investigation. This review focuses on the complex role of non-coding RNAs, namely miR-NAs, piwi-interacting RNAs, small nucleolar RNAs, long non-coding RNAs and circular RNAs in the process of developing novel biomarkers for diagnostic and prognostic factors that can then be utilized for personalized therapies toward this devastating disease. To support the concept of personalized medi-cine, we will focus on the roles of miRNAs in lung cancer tumorigenesis, their use as diagnostic and prognostic biomarkers and their application for patient therapy.
Collapse
Affiliation(s)
- Laura Sonea
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihail Buse
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Onaciu
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan Simon
- Surgery Department IV, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Surgery Department, Romanian Railway (CF) University Hospital, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, "Prof. Dr. Ion Chiricuta" The Oncology Institute, Republicii Street, No. 34-36, 401015, Cluj-Napoca, Romania
| |
Collapse
|
131
|
Ciribilli Y, Singh P, Inga A, Borlak J. c-Myc targeted regulators of cell metabolism in a transgenic mouse model of papillary lung adenocarcinoma. Oncotarget 2018; 7:65514-65539. [PMID: 27602772 PMCID: PMC5323172 DOI: 10.18632/oncotarget.11804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
c-Myc's role in pulmonary cancer metabolism is uncertain. We therefore investigated c-Myc activity in papillary lung adenocarcinomas (PLAC). Genomics revealed 90 significantly regulated genes (> 3-fold) coding for cell growth, DNA metabolism, RNA processing and ribosomal biogenesis and bioinformatics defined c-Myc binding sites (TFBS) at > 95% of up-regulated genes. EMSA assays at 33 novel TFBS evidenced DNA binding activity and ChIP-seq data retrieved from public repositories confirmed these to be c-Myc bound. Dual-luciferase gene reporter assays developed for RNA-Terminal-Phosphate-Cyclase-Like-1(RCL1), Ribosomal-Protein-SA(RPSA), Nucleophosmin/Nucleoplasmin-3(NPM3) and Hexokinase-1(HK1) confirmed c-Myc functional relevance and ChIP assays with HEK293T cells over-expressing ectopic c-Myc demonstrated enriched c-Myc occupancy at predicted TFBS for RCL1, NPM3, HK1 and RPSA. Note, c-Myc recruitment on chromatin was comparable to the positive controls CCND2 and CDK4. Computational analyses defined master regulators (MR), i.e. heterogeneous nuclear ribonucleoprotein A1, nucleolin, the apurinic/apyrimidinic endonuclease 1, triosephosphate-isomerase 1, folate transporter (SLC19A1) and nucleophosmin to influence activity of up to 90% of PLAC-regulated genes. Their expression was induced by 3-, 3-, 6-, 3-, 11- and 7-fold, respectively. STRING analysis confirmed protein-protein-interactions of regulated genes and Western immunoblotting of fatty acid synthase, serine hydroxyl-methyltransferase 1, arginine 1 and hexokinase 2 showed tumor specific induction. Published knock down studies confirmed these proteins to induce apoptosis by disrupting neoplastic lipogenesis, by endorsing uracil accumulation and by suppressing arginine metabolism and glucose-derived ribonucleotide biosynthesis. Finally, translational research demonstrated high expression of MR and of 47 PLAC up-regulated genes to be associated with poor survival in lung adenocarcinoma patients (HR 3.2 p < 0.001) thus, providing a rationale for molecular targeted therapies in PLACs.
Collapse
Affiliation(s)
- Yari Ciribilli
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Povo (TN), Italy
| | - Prashant Singh
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Alberto Inga
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Povo (TN), Italy
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
132
|
Baral D, Wu L, Katwal G, Yan X, Wang Y, Ye Q. Clinical significance and biological roles of small nucleolar RNAs in hepatocellular carcinoma. Biomed Rep 2018. [PMID: 29541452 PMCID: PMC5838311 DOI: 10.3892/br.2018.1063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common and fatal cancers. It is a multistage and multifactorial carcinoma, in which a number of factors serve roles in its initiation and progression. Small nucleolar RNAs (snoRNAs), considered to serve a role in various cancers, have recently been identified to have significant contributions to HCC tumorigenesis. Recent studies suggest that snoRNAs have a critical role in the pathogenesis of HCC. Moreover, detailed studies have demonstrated that various snoRNAs are involved in a range of biological processes associated with HCC, including initiation, proliferation, tumor growth, the cell cycle, apoptosis and metastasis. In the present review, an overview of recent studies to date has been provided, focusing on the association of snoRNAs with HCC. Based on the findings, further studies focusing on the association of snoRNAs with HCC are required to verify the diagnostic and therapeutic capacities of snoRNAs in HCC.
Collapse
Affiliation(s)
- Dilip Baral
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Long Wu
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Gaurav Katwal
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Xiong Yan
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yanfeng Wang
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
133
|
Wu L, Chang L, Wang H, Ma W, Peng Q, Yuan Y. Clinical significance of C/D box small nucleolar RNA U76 as an oncogene and a prognostic biomarker in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2018; 42:82-91. [PMID: 28578939 DOI: 10.1016/j.clinre.2017.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/06/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent evidence has suggested novel roles of small nucleolar RNAs (snoRNAs) in tumorigenicity. However, the roles of C/D box snoRNA U76 (SNORD76) in the development of hepatocellular carcinoma (HCC) remain unknown. Herein, we systematically evaluated dysregulation of snoRNAs in HCC and clarified the biomarker potential and biological significance of SNORD76 in HCC. METHODS We performed quantitative analyses of the expression of SNORD76 in 66 HCC specimens to compare its expression pattern between tumor tissue and matched non-tumor tissue. The effects of SNORD76 on HCC tumorigenicity were investigated in SK-Hep1 and Huh7 cells as well as in a xenograft nude mouse model. RESULTS SNORD76 expression was significantly upregulated in HCC tissues compared to corresponding non-tumor tissues. This upregulation of SNORD76 in HCC tumors was significantly associated with poorer patient survival. Furthermore, inhibiting SNORD76 expression suppressed cell proliferation by inducing G0/G1 cell cycle arrest and apoptosis. Low SNORD76 expression also resulted in decreased HCC growth in an animal model. Conversely, overexpressing SNORD76 promoted cell proliferation. SNORD76 increased HCC cell invasion by inducing epithelial-mesenchymal transition (EMT). Finally, we found that SNORD76 promoted HCC tumorigenicity through activation of the Wnt/β-catenin pathway. CONCLUSIONS Therefore, we demonstrated for the first time that SNORD76 may function as a novel tumor promoter in HCC and may serve as a promising prognostic biomarker in patients with HCC.
Collapse
Affiliation(s)
- Long Wu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Lei Chang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Haitao Wang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Weijie Ma
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Qin Peng
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Yufeng Yuan
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China.
| |
Collapse
|
134
|
Langhendries JL, Nicolas E, Doumont G, Goldman S, Lafontaine DLJ. The human box C/D snoRNAs U3 and U8 are required for pre-rRNA processing and tumorigenesis. Oncotarget 2018; 7:59519-59534. [PMID: 27517747 PMCID: PMC5312328 DOI: 10.18632/oncotarget.11148] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/30/2016] [Indexed: 01/05/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) are emerging as a novel class of proto-oncogenes and tumor suppressors; their involvement in tumorigenesis remains unclear. The box C/D snoRNAs U3 and U8 are upregulated in breast cancers. Here we characterize the function of human U3 and U8 in ribosome biogenesis, nucleolar structure, and tumorigenesis. We show in breast (MCF-7) and lung (H1944) cancer cells that U3 and U8 are required for pre-rRNA processing reactions leading, respectively, to synthesis of the small and large ribosomal subunits. U3 or U8 depletion triggers a remarkably potent p53-dependent anti-tumor stress response involving the ribosomal proteins uL5 (RPL11) and uL18 (RPL5). Interestingly, the nucleolar structure is more sensitive to perturbations in lung cancer than in breast cancer cells. We reveal in a mouse xenograft model that the tumorigenic potential of cancer cells is reduced in the case of U3 suppression and totally abolished upon U8 depletion. Tumors derived from U3-knockdown cells displayed markedly lower metabolic volume and activity than tumors derived from aggressive control cancer cells. Unexpectedly, metabolic tracer uptake by U3-suppressed tumors appeared more heterogeneous, indicating distinctive tumor growth properties that may reflect non-conventional regulatory functions of U3 (or fragments derived from it) in mRNA metabolism.
Collapse
Affiliation(s)
- Jean-Louis Langhendries
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles (ULB), BioPark Campus, Gosselies, Belgium
| | - Emilien Nicolas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles (ULB), BioPark Campus, Gosselies, Belgium
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging (CMMI), BioPark campus, Université Libre de Bruxelles, Belgium
| | - Serge Goldman
- Nuclear Medecine, Erasme Hospital, Université Libre de Bruxelles, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), BioPark campus, Université Libre de Bruxelles, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles (ULB), BioPark Campus, Gosselies, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), BioPark campus, Université Libre de Bruxelles, Belgium
| |
Collapse
|
135
|
Mayer RL, Schwarzmeier JD, Gerner MC, Bileck A, Mader JC, Meier-Menches SM, Gerner SM, Schmetterer KG, Pukrop T, Reichle A, Slany A, Gerner C. Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. Mol Cell Proteomics 2017; 17:290-303. [PMID: 29196338 DOI: 10.1074/mcp.ra117.000425] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 01/07/2023] Open
Abstract
B cell chronic lymphocytic leukemia (B-CLL), the most common type of leukemia in adults, is still essentially incurable despite the development of novel therapeutic strategies. This reflects the incomplete understanding of the pathophysiology of this disease. A comprehensive proteome analysis of primary human B-CLL cells and B cells from younger as well as elderly healthy donors was performed. For comparison, the chronic B cell leukemia cell line JVM-13 was also included. A principal component analysis comprising 6,945 proteins separated these four groups, placing B cells of aged-matched controls between those of young donors and B-CLL patients, while identifying JVM-13 as poorly related cells. Mass spectrometric proteomics data have been made fully accessible via ProteomeXchange with identifier PXD006570-PXD006572, PXD006576, PXD006578, and PXD006589-PXD006591. Remarkably, B cells from aged controls displayed significant regulation of proteins related to stress management in mitochondria and ROS stress such as DLAT, FIS1, and NDUFAB1, and DNA repair, including RAD9A, MGMT, and XPA. ROS levels were indeed found significantly increased in B cells but not in T cells or monocytes from aged individuals. These alterations may be relevant for tumorigenesis and were observed similarly in B-CLL cells. In B-CLL cells, some remarkable unique features like the loss of tumor suppressor molecules PNN and JARID2, the stress-related serotonin transporter SLC6A4, and high expression of ZNF207, CCDC88A, PIGR and ID3, otherwise associated with stem cell phenotype, were determined. Alterations of metabolic enzymes were another outstanding feature in comparison to normal B cells, indicating increased beta-oxidation of fatty acids and increased consumption of glutamine. Targeted metabolomics assays corroborated these results. The present findings identify a potential proteome signature for immune senescence in addition to previously unrecognized features of B-CLL cells and suggest that aging may be accompanied by cellular reprogramming functionally relevant for predisposing B cells to transform to B-CLL cells.
Collapse
Affiliation(s)
- Rupert L Mayer
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | - Josef D Schwarzmeier
- §Karl Landsteiner Institute for Bioanalytical Oncology, Karl Landsteiner Society, Vienna, Austria
| | - Marlene C Gerner
- ¶Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Andrea Bileck
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | - Johanna C Mader
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | | | - Samuel M Gerner
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | | | - Tobias Pukrop
- ‖Department of Internal Medicine III, Haematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- ‖Department of Internal Medicine III, Haematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Astrid Slany
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry
| | - Christopher Gerner
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, .,**Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
136
|
Jacob R, Zander S, Gutschner T. The Dark Side of the Epitranscriptome: Chemical Modifications in Long Non-Coding RNAs. Int J Mol Sci 2017; 18:ijms18112387. [PMID: 29125541 PMCID: PMC5713356 DOI: 10.3390/ijms18112387] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
The broad application of next-generation sequencing technologies in conjunction with improved bioinformatics has helped to illuminate the complexity of the transcriptome, both in terms of quantity and variety. In humans, 70–90% of the genome is transcribed, but only ~2% carries the blueprint for proteins. Hence, there is a huge class of non-translated transcripts, called long non-coding RNAs (lncRNAs), which have received much attention in the past decade. Several studies have shown that lncRNAs are involved in a plethora of cellular signaling pathways and actively regulate gene expression via a broad selection of molecular mechanisms. Only recently, sequencing-based, transcriptome-wide studies have characterized different types of post-transcriptional chemical modifications of RNAs. These modifications have been shown to affect the fate of RNA and further expand the variety of the transcriptome. However, our understanding of their biological function, especially in the context of lncRNAs, is still in its infancy. In this review, we will focus on three epitranscriptomic marks, namely pseudouridine (Ψ), N6-methyladenosine (m6A) and 5-methylcytosine (m5C). We will introduce writers, readers, and erasers of these modifications, and we will present methods for their detection. Finally, we will provide insights into the distribution and function of these chemical modifications in selected, cancer-related lncRNAs.
Collapse
Affiliation(s)
- Roland Jacob
- Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Sindy Zander
- Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Tony Gutschner
- Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| |
Collapse
|
137
|
Yang Y, Zhang H, Xie Y, Zhang S, Zhu J, Yin G, Shu G, Zhang Y. Preliminary screening and identification of differentially expressed metastasis-related ncRNAs in ovarian cancer. Oncol Lett 2017; 15:368-374. [PMID: 29387224 PMCID: PMC5769367 DOI: 10.3892/ol.2017.7338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/19/2017] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer (OC) is an aggressive disease with few valuable biomarkers and effective therapies. In this study, we aimed to elucidate biomarkers associated with OC metastasis into the omentum. We performed comprehensive screening of non-coding RNAs (ncRNAs) between matched primary OC and omental metastasis using the Agilent human lncRNA Array V3.0 microarray. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to validate the microarray results at the mRNA level. Microarray revealed 235 ncRNAs changes, and we validated the top four differential changed genes in an additional 27 paired samples with RT-qPCR. We found that myocardial infarction associated transcript (MIAT) expression increased in the omentum tissue, while small nucleolar RNA, C/D Box 114 cluster (SNORD114) family members SNORD114-10, SNORD114-2 and SNORD114-11 were downregulated when compared with OC tissue. However, there is no significant difference in SNORD114-2 and SNORD114-11 levels. We thus infer that differential expression of MIAT and SNORD114-10 could play an important role during OC metastasis. These ncRNAs might be useful as pre-diagnostic biomarkers at the early stage of cancer metastasis.
Collapse
Affiliation(s)
- Yu Yang
- School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410006, P.R. China
| | - Hui Zhang
- School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yajiao Xie
- School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410006, P.R. China
| | - Shufen Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Junyou Zhu
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Gang Yin
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guang Shu
- Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
138
|
Mao YQ, Houry WA. The Role of Pontin and Reptin in Cellular Physiology and Cancer Etiology. Front Mol Biosci 2017; 4:58. [PMID: 28884116 PMCID: PMC5573869 DOI: 10.3389/fmolb.2017.00058] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
Pontin (RUVBL1, TIP49, TIP49a, Rvb1) and Reptin (RUVBL2, TIP48, TIP49b, Rvb2) are highly conserved ATPases of the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various cellular processes that are important for oncogenesis. First identified as being upregulated in hepatocellular carcinoma and colorectal cancer, their overexpression has since been shown in multiple cancer types such as breast, lung, gastric, esophageal, pancreatic, kidney, bladder as well as lymphatic, and leukemic cancers. However, their exact functions are still quite unknown as they interact with many molecular complexes with vastly different downstream effectors. Within the nucleus, Pontin and Reptin participate in the TIP60 and INO80 complexes important for chromatin remodeling. Although not transcription factors themselves, Pontin and Reptin modulate the transcriptional activities of bona fide proto-oncogenes such as MYC and β-catenin. They associate with proteins involved in DNA damage repair such as PIKK complexes as well as with the core complex of Fanconi anemia pathway. They have also been shown to be important for cell cycle progression, being involved in assembly of telomerase, mitotic spindle, RNA polymerase II, and snoRNPs. When the two ATPases localize to the cytoplasm, they were reported to promote cancer cell invasion and metastasis. Due to their various roles in carcinogenesis, it is not surprising that Pontin and Reptin are proving to be important biomarkers for diagnosis and prognosis of various cancers. They are also current targets for the development of new therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of TorontoToronto, ON, Canada.,Department of Chemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
139
|
Nogueira Jorge NA, Wajnberg G, Ferreira CG, de Sa Carvalho B, Passetti F. snoRNA and piRNA expression levels modified by tobacco use in women with lung adenocarcinoma. PLoS One 2017; 12:e0183410. [PMID: 28817650 PMCID: PMC5560661 DOI: 10.1371/journal.pone.0183410] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is one of the most frequent types of cancer worldwide. Most patients are diagnosed at advanced stage and thus have poor prognosis. Smoking is a risk factor for lung cancer, however most smokers do not develop lung cancer while 20% of women with lung adenocarcinoma are non-smokers. Therefore, it is possible that these two groups present differences besides the smoking status, including differences in their gene expression signature. The altered expression patterns of non-coding RNAs in complex diseases make them potential biomarkers for diagnosis and treatment. We analyzed data from differentially and constitutively expressed PIWI-interacting RNAs and small nucleolar RNAs from publicly available small RNA high-throughput sequencing data in search of an expression pattern of non-coding RNA that could differentiate these two groups. Here, we report two sets of differentially expressed small non-coding RNAs identified in normal and tumoral tissues of women with lung adenocarcinoma, that discriminate between smokers and non-smokers. Our findings may offer new insights on metabolic alterations caused by tobacco and may be used for early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Natasha Andressa Nogueira Jorge
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Gabriel Wajnberg
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | - Fabio Passetti
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
140
|
Cao T, Rajasingh S, Samanta S, Dawn B, Bittel DC, Rajasingh J. Biology and clinical relevance of noncoding sno/scaRNAs. Trends Cardiovasc Med 2017; 28:81-90. [PMID: 28869095 DOI: 10.1016/j.tcm.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are a group of noncoding RNAs that perform various biological functions, including biochemical modifications of other RNAs, precursors of miRNA, splicing, and telomerase activity. The small Cajal body-associated RNAs (scaRNAs) are a subset of the snoRNA family and collect in the Cajal body where they perform their canonical function to biochemically modify spliceosomal RNAs prior to maturation. Failure of sno/scaRNAs have been implicated in pathology such as congenital heart anomalies, neuromuscular disorders, and various malignancies. Thus, understanding of sno/scaRNAs demonstrates the clinical value.
Collapse
Affiliation(s)
- Thuy Cao
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Sheeja Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Saheli Samanta
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | | | - Johnson Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS.
| |
Collapse
|
141
|
Yoshida K, Toden S, Weng W, Shigeyasu K, Miyoshi J, Turner J, Nagasaka T, Ma Y, Takayama T, Fujiwara T, Goel A. SNORA21 - An Oncogenic Small Nucleolar RNA, with a Prognostic Biomarker Potential in Human Colorectal Cancer. EBioMedicine 2017; 22:68-77. [PMID: 28734806 PMCID: PMC5552212 DOI: 10.1016/j.ebiom.2017.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/29/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Emerging evidence indicates that small nucleolar RNAs (snoRNAs) play a central role in oncogenesis. Herein, we systematically evaluated expression profiles of snoRNAs in colorectal cancer (CRC) and investigated their clinical and functional role in this malignancy. METHODS We compared expression levels of snoRNAs between cancer and normal tissues using publicly available datasets and identified the most differentially expressed and commonly upregulated snoRNAs in CRC. These results were examined in 489 colorectal tissues to assess their clinical significance, followed by a series of in vitro and in vivo experiments to evaluate the functional role of candidate snoRNAs. RESULTS Using multiple RNA profiling datasets, we identified consistent overexpression of SNORA21 in CRC. In the clinical validation cohorts, the expression level of SNORA21 was upregulated in colorectal adenomas and cancers. Furthermore, elevated SNORA21 emerged as an independent factor for predicting poor survival. Both in vitro and in vivo experiments revealed that CRISPR/Cas9-mediated inhibition of SNORA21 expression resulted in decreased cell proliferation and invasion through modulation of multiple cancer related pathways. CONCLUSIONS We systematically identified SNORA21 as a key oncogenic snoRNA in CRC, which plays an important role in cancer progression, and might serve as an important prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Kazuhiro Yoshida
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Shusuke Toden
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Wenhao Weng
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Kunitoshi Shigeyasu
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA; Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jinsei Miyoshi
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA; Department of Gastroenterology and Oncology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Jacob Turner
- Center of Biostatistics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Takeshi Nagasaka
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yanlei Ma
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| |
Collapse
|
142
|
Patterson DG, Roberts JT, King VM, Houserova D, Barnhill EC, Crucello A, Polska CJ, Brantley LW, Kaufman GC, Nguyen M, Santana MW, Schiller IA, Spicciani JS, Zapata AK, Miller MM, Sherman TD, Ma R, Zhao H, Arora R, Coley AB, Zeidan MM, Tan M, Xi Y, Borchert GM. Human snoRNA-93 is processed into a microRNA-like RNA that promotes breast cancer cell invasion. NPJ Breast Cancer 2017; 3:25. [PMID: 28702505 PMCID: PMC5503938 DOI: 10.1038/s41523-017-0032-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
Genetic searches for tumor suppressors have recently linked small nucleolar RNA misregulations with tumorigenesis. In addition to their classically defined functions, several small nucleolar RNAs are now known to be processed into short microRNA-like fragments called small nucleolar RNA-derived RNAs. To determine if any small nucleolar RNA-derived RNAs contribute to breast malignancy, we recently performed a RNA-seq-based comparison of the small nucleolar RNA-derived RNAs of two breast cancer cell lines (MCF-7 and MDA-MB-231) and identified small nucleolar RNA-derived RNAs derived from 13 small nucleolar RNAs overexpressed in MDA-MB-231s. Importantly, we find that inhibiting the most differentially expressed of these small nucleolar RNA-derived RNAs (sdRNA-93) in MDA-MB-231 cells results primarily in a loss of invasiveness, whereas increased sdRNA-93 expression in either cell line conversely results in strikingly enhanced invasion. Excitingly, we recently determined sdRNA-93 expressions in small RNA-seq data corresponding to 116 patient tumors and normal breast controls, and while we find little sdRNA-93 expression in any of the controls and only sporadic expression in most subtypes, we find robust expression of sdRNA-93 in 92.8% of Luminal B Her2+tumors. Of note, our analyses also indicate that at least one of sdRNA-93's endogenous roles is to regulate the expression of Pipox, a sarcosine metabolism-related protein whose expression significantly correlates with distinct molecular subtypes of breast cancer. We find sdRNA-93 can regulate the Pipox 3'UTR via standard reporter assays and that manipulating endogenous sdRNA-93 levels inversely correlates with altered Pipox expression. In summary, our results strongly indicate that sdRNA-93 expression actively contributes to the malignant phenotype of breast cancer through participating in microRNA-like regulation.
Collapse
Affiliation(s)
- Dillon G Patterson
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Justin T Roberts
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA.,Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Valeria M King
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Dominika Houserova
- Department of Pharmacology, USA College of Medicine, Mobile, AL 36688 USA
| | | | - Aline Crucello
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Caroline J Polska
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Lucas W Brantley
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Garrett C Kaufman
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Michael Nguyen
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Megann W Santana
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Ian A Schiller
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Julius S Spicciani
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Anastasia K Zapata
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Molly M Miller
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Timothy D Sherman
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Ruixia Ma
- Department of Genetics, LSUHSC, New Orleans, LA 70112 USA.,Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA 70112 USA
| | - Hongyou Zhao
- Department of Genetics, LSUHSC, New Orleans, LA 70112 USA.,Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA 70112 USA
| | - Ritu Arora
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604 USA
| | - Alexander B Coley
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Melody M Zeidan
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA
| | - Ming Tan
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604 USA.,Department of Biochemistry and Molecular Biology, USA College of Medicine, Mobile, AL 36688 USA
| | - Yaguang Xi
- Department of Genetics, LSUHSC, New Orleans, LA 70112 USA.,Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA 70112 USA
| | - Glen M Borchert
- Department of Biology, University of South Alabama, Mobile, AL 36688 USA.,Department of Pharmacology, USA College of Medicine, Mobile, AL 36688 USA
| |
Collapse
|
143
|
Cui L, Nakano K, Obchoei S, Setoguchi K, Matsumoto M, Yamamoto T, Obika S, Shimada K, Hiraoka N. Small Nucleolar Noncoding RNA SNORA23, Up-Regulated in Human Pancreatic Ductal Adenocarcinoma, Regulates Expression of Spectrin Repeat-Containing Nuclear Envelope 2 to Promote Growth and Metastasis of Xenograft Tumors in Mice. Gastroenterology 2017; 153:292-306.e2. [PMID: 28390868 DOI: 10.1053/j.gastro.2017.03.050] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Small nucleolar noncoding RNAs (snoRNAs) regulate function of ribosomes, and specific snoRNAs are dysregulated in some cancer cells. We investigated dysregulation of snoRNAs in pancreatic ductal adenocarcinoma (PDAC) cells. METHODS We investigated snoRNA expression in PDAC cell lines by complementary DNA microarray and quantitative reverse transcription polymerase chain reaction. In PDAC (n = 133), intraductal papillary mucinous neoplasm (n = 16), mucinous cystic neoplasm-associated PDAC (n = 1), and non-tumor pancreas (n = 8) and liver (n = 3) tissues from subjects who underwent surgical resection, levels of snoRNA were measured by quantitative reverse transcription polymerase chain reaction and compared with clinicopathologic parameters and survival times determined by Kaplan-Meier analysis. To examine snoRNA function, PDAC cells were transfected with snoRNA-antisense oligonucleotides flanked with amido-bridged nucleic acids, or snoRNA-expression plasmids, and analyzed in proliferation, colony formation, spheroid formation, and invasion assays. To identify snoRNA-related factors, cells were analyzed by gene expression and proteomic profiling and immunoblot assays. Mice were given intrasplenic injections of MIA PaCa2- or Suit2-HLMC cells; tumor-bearing nude mice were then given 3 weekly injections of an antisense oligonucleotides against SNORA23, a H/ACA-box type snoRNA, and tumor growth and metastasis to liver, blood, and pancreas were analyzed. RESULTS Levels of SNORA23 increased and accumulated at the nucleolus in highly metastatic MIA PaCa2- or Suit2-HLMC cells compared with their parental cells. We detected SNORA23 in human PDAC specimens but not in non-tumor pancreatic tissue. PDAC level of SNORA23 correlated with invasion grade and correlated inversely with disease-free survival time of patients. Expression of SNORA23 in PDAC cells increased their invasive activity and colony formation, and spheroid formation was inhibited by SNORA23 knockdown. In gene expression and proteomic profile analyses, we found SNORA23 to increase expression of spectrin repeat-containing nuclear envelope 2 (SYNE2) messenger RNA and protein. Knockdown of SYNE2 in PDAC cells reduced their invasive activities and anchor-independent survival. Administration of SNORA23 antisense oligonucleotides to mice slowed growth of xenograft tumors, tumor expression of SYNE2, tumor cell dissemination, and metastasis to liver. CONCLUSIONS We found expression of the snoRNA SNORA23, which mediates sequence-specific pseudouridylation of ribosomal RNAs, to be increased in human PDAC tissues compared with non-tumor tissues, and levels to correlate with tumor invasion grade and patient survival time. SNORA23 increases expression of SYNE2, possibly through modulation of ribosome biogenesis, to promote PDAC cell survival and invasion, and growth and metastasis of xenograft tumors in mice.
Collapse
Affiliation(s)
- Lin Cui
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Kenji Nakano
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan.
| | - Sumalee Obchoei
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Kiyoko Setoguchi
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tsuyoshi Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kazuaki Shimada
- Surgery Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Pathology Division, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
144
|
Abstract
PIWI-interacting RNA Likes (piR-Ls) were recently reported to regulate functions of their target phospho-Proteins (p-Proteins) in somatic lung cells. However, the mechanism underlying this functionality remains unclear. piR-Ls interact with their targets through direct binding but do not follow base-pairing rules, known to have important roles at levels of transcription, RNA processing and translation for small non-coding RNA (sncRNA). These observations imply a fundamentally different type of sncRNA with behavior that causes a molecular response in their target p-Proteins. Furthermore, the interaction of piR-Ls with their targets regulates the functional efficacy of target p-Proteins. In addition, except for writers (kinase) and erasers (phosphatase), the functional efficacy of p-Proteins on their readers still remains unknown. It is reasonable to consider the existence of protein functional effector sncRNAs (pfeRNAs), which were identified by deep sequencing the immunoprecipitation products of antibodies targeting phosphorylated residues in proteins, as well as by functional analysis. pfeRNAs harbor unique features in size distribution, 3' terminal modification, shared core sequences, and functional manner, and could be new players in lung physiological and pathological conditions.
Collapse
Affiliation(s)
- Malcolm Brock
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, 1650 Orleans Street, Baltimore, MD 21287, USA.
| | - Yuping Mei
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, 650 W Baltimore St, Baltimore, MD 21201, USA.
| |
Collapse
|
145
|
Abstract
The accuracy and efficiency of tumor treatment depends mainly on early and precise diagnosis. Although histopathology is always the gold standard for cancer diagnosis, noninvasive biomarkers represent an opportunity for early detection and molecular staging of cancer. Besides the classical tumor markers, noncoding RNAs (ncRNAs) emerge to be a novel category of biomarker for cancer diagnosis since the dysregulation of ncRNAs is closely associated with the development and progression of human cancers such as liver, lung, breast, gastric, and other kinds of cancers. In this chapter, we will summarize the different types of ncRNAs in the diagnosis of major human cancers. In addition, we will introduce the recent advances in the detection and applications of circulating serum or plasma ncRNAs and non-blood fluid ncRNAs because the noninvasive body fluid-based assays are easy to examine for cancer diagnosis and monitoring.
Collapse
|
146
|
Romano G, Veneziano D, Acunzo M, Croce CM. Small non-coding RNA and cancer. Carcinogenesis 2017; 38:485-491. [PMID: 28449079 PMCID: PMC6248440 DOI: 10.1093/carcin/bgx026] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
The ENCODE project has reported that at least 80% of the human genome is biologically active, yet only a small part of human DNA encodes for protein. The massive amount of RNA transcribed but not translated into protein can be classified as housekeeping RNA (such as rRNA, tRNA) and regulatory RNA (such as miRNA, piRNA, lncRNA). Small non-coding RNAs, in particular, have been the focus of many studies in the last 20 years and their fundamental role in many human diseases is currently well established. Inter alia, their role in cancer development and progression, as well as in drug resistance, is being increasingly investigated. In this review, focusing our attention on recent research results, we provide an overview of the four large classes of small non-coding RNAs, namely, miRNAs, piRNAs, snoRNA and the new class of tRNA-derived fragments, highlighting their fundamental role in cancer and their potential as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Giulia Romano
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Dario Veneziano
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Mario Acunzo
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
147
|
Small nucleolar RNA ACA11 promotes proliferation, migration and invasion in hepatocellular carcinoma by targeting the PI3K/AKT signaling pathway. Biomed Pharmacother 2017; 90:705-712. [PMID: 28419966 DOI: 10.1016/j.biopha.2017.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 11/21/2022] Open
Abstract
Emerging evidence suggests that tumorigenesis involves dysregulation of small nucleolar RNAs (snoRNAs). However, the role of small nucleolar RNA ACA11 (ACA11) in the development of hepatocellular carcinoma (HCC) remains unknown. Expression of ACA11 was measured using quantitative RT-PCR in 92 HCC specimens and 7 HCC cell lines. We found that ACA11 expression was significantly upregulated in HCC tissues and hepatoma cell lines. This upregulation of ACA11 in HCC tumors was significantly associated with histological grade, HBV infection, Barcelona Clinic Liver Cancer stage, portal vein tumor thrombus and poorer patient survival. Knockdown of ACA11 induced G0/G1 phase arrest and suppressed proliferation, migration and invasion of HCCLM9 and SK-Hep1 cells. Low ACA11 expression resulted in decreased HCC growth in an animal model. Conversely, transgenic expression of ACA11 induced S phase progression and enhanced proliferation, migration and invasion of Huh7 cells in vitro and in vivo. Finally, we found that ACA11 promoted cell growth, migration and invasion through activation of the PI3K/AKT pathway, subsequently increasing cyclinD1 expression and inducing EMT. These results suggest that ACA11 has an oncogenic role in HCC and may serve as a promising prognostic biomarker and therapeutic target for patients with HCC.
Collapse
|
148
|
Qin Y, Meng L, Fu Y, Quan Z, Ma M, Weng M, Zhang Z, Gao C, Shi X, Han K. SNORA74B gene silencing inhibits gallbladder cancer cells by inducing PHLPP and suppressing Akt/mTOR signaling. Oncotarget 2017; 8:19980-19996. [PMID: 28212545 PMCID: PMC5386738 DOI: 10.18632/oncotarget.15301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/08/2017] [Indexed: 01/17/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) have been implicated in the development of many cancers. We therefore examined the differential expression of snoRNAs between gallbladder cancer (GBC) tissues and matched adjacent non-tumor tissues using expression microarray analysis with confirmation by quantitative real-time PCR (qRT-PCR). Western blot analysis showed that SNORA74B levels were higher in GBC than non-tumor tissues. SNORA74B expression was positively associated with local invasion, advanced TNM stage, CA19-9 level, and Ki67 expression in patients with GBC, while it was negatively associated with expression of PHLPP, an endogenous Akt inhibitor. Moreover, SNORA74B expression was prognostic for overall survival (OS) and disease-free survival (DFS). Functional studies revealed that silencing SNORA74B in GBC cells using sh-SNORA74B suppressed cell proliferation, induced G1 arrest, and promoted apoptosis. Preliminary molecular investigation revealed that SNORA74B silencing inhibited activation of the AKT/mTOR signaling pathway, while increasing PHLPP expression. PHLPP depletion using shRNA abrogated sh-SNORA74B suppression of GBC cell proliferation, indicating that the antitumor effects of SNORA74B silencing were mediated by PHLPP. These findings define the important role of SNORA74B in cell proliferation, cell cycle, and apoptosis of GBC, and suggest that it may serve as a novel target for GBC treatment.
Collapse
Affiliation(s)
- Yiyu Qin
- Clinical College, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224000, China
- Research Centre of Biomedical Technology, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224000, China
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Li Meng
- Research Centre of Biomedical Technology, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224000, China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Mingzhe Ma
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Mingzhe Weng
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Cuixiang Gao
- Research Centre of Biomedical Technology, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224000, China
| | - Xinghua Shi
- Research Centre of Biomedical Technology, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224000, China
| | - Koulan Han
- Clinical College, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224000, China
| |
Collapse
|
149
|
Gable T, Wang Y, Clark D, Kumari P, Shetty AC, Li M, Mei Y. A phosphorylation-wide sncRNA screen reveals Protein Functional Effector sncRNAs (pfeRNAs) in human lung somatic cells. Cancer Lett 2017; 396:85-93. [PMID: 28323037 DOI: 10.1016/j.canlet.2017.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022]
Abstract
We recently reported that PIWI-interacting RNAs likes (piR-Ls) could regulate functions of the interacting phosphorylated proteins (p-Proteins). In addition, except for writers and erasers, functional efficacy of p-Proteins on their readers still remains unknown. We, therefore, reasoned there was a type of sncRNAs which could regulate functional efficacy of p-Proteins. Here, we profiled sncRNAs interacting with phosphorylated -Ser, -Thr and -Tyr residues in 3 HBE and 4 lung SCC cell lines, investigated effects and mechanisms of phosphorylated-residue-interacting sncRNAs. Our results demonstrated sncRNAs regulating functional efficacy of p-Proteins and we thus referred them as Protein Functional Effector sncRNAs (pfeRNAs). pfeRNAs were distributed among 26 to 50 nucleotides, shared some core sequences and showed distinctive expression patterns between HBE and SCC cells. Core sequences 417 (CS417), showing consistent upregulation in all 4 SCC cells, bound directly to p-Nucleolin (NCL), which was dependent on the key elements CGCG of CS417 and p-Ser619 of NCL. The CS417/p-NCL interaction was critical for functional efficacy of p-NCL in basic activities of lung normal and cancer cells. Thus, we revealed a novel type of pfeRNAs controlling functional efficacy of p-Proteins in lung somatic cells.
Collapse
Affiliation(s)
- Tyler Gable
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, University of Maryland, 650 W Baltimore St, Baltimore, MD, 21201, USA
| | - Yuyan Wang
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, University of Maryland, 650 W Baltimore St, Baltimore, MD, 21201, USA; Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Beijing Institute for Cancer Research, Beijing, 100142, China
| | - David Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Priti Kumari
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amol Carl Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Mao Li
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, University of Maryland, 650 W Baltimore St, Baltimore, MD, 21201, USA
| | - Yuping Mei
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, University of Maryland, 650 W Baltimore St, Baltimore, MD, 21201, USA.
| |
Collapse
|
150
|
Noncoding RNAs in the development, diagnosis, and prognosis of colorectal cancer. Transl Res 2017; 181:108-120. [PMID: 27810413 DOI: 10.1016/j.trsl.2016.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
More than 90% of the human genome is actively transcribed, but less than 2% of the total genome encodes protein-coding RNA, and thus, noncoding RNA (ncRNA) is a major component of the human transcriptome. Recently, ncRNA was demonstrated to play important roles in multiple biological processes by directly or indirectly interfering with gene expression, and the dysregulation of ncRNA is associated with a variety of diseases, including cancer. In this review, we summarize the function and mechanism of miRNA, long intergenic ncRNA, and some other types of ncRNAs, such as small nucleolar RNA, circular ncRNA, pseudogene RNA, and even protein-coding mRNA, in the progression of colorectal cancer (CRC). We also presented their clinical application in the diagnosis and prognosis of CRC. The summary of the current state of ncRNA in CRC will contribute to our understanding of the complex processes of CRC initiation and development and will help in the discovery of novel biomarkers and therapeutic targets for CRC diagnosis and treatment.
Collapse
|