101
|
He Y, Chevillet JR, Liu G, Kim TK, Wang K. The effects of microRNA on the absorption, distribution, metabolism and excretion of drugs. Br J Pharmacol 2015; 172:2733-47. [PMID: 25296724 PMCID: PMC4439871 DOI: 10.1111/bph.12968] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 12/17/2022] Open
Abstract
The importance of genetic factors (e.g. sequence variation) in the absorption, distribution, metabolism, excretion (ADME) and overall efficacy of therapeutic agents is well established. Our ability to identify, interpret and utilize these factors is the subject of much clinical investigation and therapeutic development. However, drug ADME and efficacy are also heavily influenced by epigenetic factors such as DNA/histone methylation and non-coding RNAs [especially microRNAs (miRNAs)]. Results from studies using tools, such as in silico miRNA target prediction, in vitro functional assays, nucleic acid profiling/sequencing and high-throughput proteomics, are rapidly expanding our knowledge of these factors and their effects on drug metabolism. Although these studies reveal a complex regulation of drug ADME, an increased understanding of the molecular interplay between the genome, epigenome and transcriptome has the potential to provide practically useful strategies to facilitate drug development, optimize therapeutic efficacy, circumvent adverse effects, yield novel diagnostics and ultimately become an integral component of personalized medicine.
Collapse
Affiliation(s)
- Y He
- Institute of Medical Systems Biology, Guangdong Medical CollegeDongguan, Guangdong, China
| | | | - G Liu
- Department of Chemistry and Biochemistry, North Dakota State UniversityFargo, ND, USA
| | - T K Kim
- Institute for Systems BiologySeattle, WA, USA
| | - K Wang
- Institute for Systems BiologySeattle, WA, USA
| |
Collapse
|
102
|
Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Méndez-González J, Imbeaud S, Letouzé E, Hernandez-Gea V, Cornella H, Pinyol R, Solé M, Fuster J, Zucman-Rossi J, Mazzaferro V, Esteller M, Llovet JM. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology 2015; 61:1945-56. [PMID: 25645722 DOI: 10.1002/hep.27732] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/25/2015] [Indexed: 12/07/2022]
Abstract
UNLABELLED Epigenetic deregulation has emerged as a driver in human malignancies. There is no clear understanding of the epigenetic alterations in hepatocellular carcinoma (HCC) and of the potential role of DNA methylation markers as prognostic biomarkers. Analysis of tumor tissue from 304 patients with HCC treated with surgical resection allowed us to generate a methylation-based prognostic signature using a training-validation scheme. Methylome profiling was done with the Illumina HumanMethylation450 array (Illumina, Inc., San Diego, CA), which covers 96% of known cytosine-phosphate-guanine (CpG) islands and 485,000 CpG, and transcriptome profiling was performed with Affymetrix Human Genome U219 Plate (Affymetrix, Inc., Santa Clara, CA) and miRNA Chip 2.0. Random survival forests enabled us to generate a methylation signature based on 36 methylation probes. We computed a risk score of mortality for each individual that accurately discriminated patient survival both in the training (221 patients; 47% hepatitis C-related HCC) and validation sets (n = 83; 47% alcohol-related HCC). This signature correlated with known predictors of poor outcome and retained independent prognostic capacity of survival along with multinodularity and platelet count. The subset of patients identified by this signature was enriched in the molecular subclass of proliferation with progenitor cell features. The study confirmed a high prevalence of genes known to be deregulated by aberrant methylation in HCC (e.g., Ras association [RalGDS/AF-6] domain family member 1, insulin-like growth factor 2, and adenomatous polyposis coli) and other solid tumors (e.g., NOTCH3) and describes potential candidate epidrivers (e.g., septin 9 and ephrin B2). CONCLUSIONS A validated signature of 36 DNA methylation markers accurately predicts poor survival in patients with HCC. Patients with this methylation profile harbor messenger RNA-based signatures indicating tumors with progenitor cell features.
Collapse
Affiliation(s)
- Augusto Villanueva
- Liver Cancer Research Program, Division of Liver Diseases, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Anna Portela
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Sergi Sayols
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Institute of Molecular Biology, Mainz, Germany
| | - Carlo Battiston
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, Milan, Italy
| | - Yujin Hoshida
- Liver Cancer Research Program, Division of Liver Diseases, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jesús Méndez-González
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Sandrine Imbeaud
- Inserm, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, Paris, France.,Université Paris Descartes; Université Paris Diderot, Université Paris 13, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Eric Letouzé
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Virginia Hernandez-Gea
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Helena Cornella
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Roser Pinyol
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Manel Solé
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Josep Fuster
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Jessica Zucman-Rossi
- Inserm, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, Paris, France.,Université Paris Descartes; Université Paris Diderot, Université Paris 13, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, Milan, Italy
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Josep M Llovet
- Liver Cancer Research Program, Division of Liver Diseases, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | |
Collapse
|
103
|
Bi R, Bao C, Jiang L, Liu H, Yang Y, Mei J, Ding F. MicroRNA-27b plays a role in pulmonary arterial hypertension by modulating peroxisome proliferator-activated receptor γ dependent Hsp90-eNOS signaling and nitric oxide production. Biochem Biophys Res Commun 2015; 460:469-75. [PMID: 25795136 DOI: 10.1016/j.bbrc.2015.03.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 01/26/2023]
Abstract
Pulmonary artery endothelial dysfunction is associated with pulmonary arterial hypertension (PAH). Based on recent studies showing that microRNA (miR)-27b is aberrantly expressed in PAH, we hypothesized that miR-27b may contribute to pulmonary endothelial dysfunction and vascular remodeling in PAH. The effect of miR-27b on pulmonary endothelial dysfunction and the underlying mechanism were investigated in human pulmonary artery endothelial cells (HPAECs) in vitro and in a monocrotaline (MCT)-induced model of PAH in vivo. miR-27b expression was upregulated in MCT-induced PAH and inversely correlated with the levels of peroxisome proliferator-activated receptor (PPAR)-γ, and miR-27b inhibition attenuated MCT-induced endothelial dysfunction and remodeling and prevented PAH associated right ventricular hypertrophy and systolic pressure in rats. PPARγ was confirmed as a direct target of miR-27b in HPAECs and shown to mediate the effect of miR-27b on the disruption of endothelial nitric oxide synthase (eNOS) coupling to Hsp90 and the suppression of NO production associated with the PAH phenotype. We showed that miR-27b plays a role endothelial function and NO release and elucidated a potential mechanism by which miR-27b regulates Hsp90-eNOS and NO signaling by modulating PPARγ expression, providing potential therapeutic targets for the treatment of PAH.
Collapse
Affiliation(s)
- Rui Bi
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai 200092, PR China
| | - Chunrong Bao
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai 200092, PR China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai 200092, PR China
| | - Hao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai 200092, PR China
| | - Yang Yang
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai 200092, PR China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai 200092, PR China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai 200092, PR China.
| |
Collapse
|
104
|
Liu C, Liang S, Xiao S, Lin Q, Chen X, Wu Y, Fu J. MicroRNA-27b inhibits Spry2 expression and promotes cell invasion in glioma U251 cells. Oncol Lett 2015; 9:1393-1397. [PMID: 25663918 PMCID: PMC4314966 DOI: 10.3892/ol.2015.2865] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/20/2014] [Indexed: 01/06/2023] Open
Abstract
MicroRNA (miR)-27b has been reported to participate in glioma. However, a detailed role of miR-27b and the underlying mechanism remain largely unknown. The present study found that the expression of miR-27b was significantly increased in glioma tissues compared with normal adjacent tissues. In addition, miR-27b was also upregulated in the U87, U251 and SHG44 glioma cell lines compared with normal human astrocytes. Sprouty homolog 2 (Spry2), which has been reported to be associated with invasive glioma, was identified as a novel target of miR-27b in U251 glioma cells, and the protein expression of Spry2 was negatively regulated by miR-27b in U251 cells. Additionally, inhibition of miR-27b and upregulation of Spry2 suppressed glioma cell invasion, while downregulation of Spry2 reversed the suppressive effect of miR-27b inhibition on glioma cell invasion. These data suggest that miR-27b may promote glioma cell invasion through direct inhibition of Spry2 expression. The data also suggest that miR-27b may become a promising molecular target for inhibiting the invasion and metastasis of glioma.
Collapse
Affiliation(s)
- Chenghui Liu
- Department of Neurosurgery, Nanhai Hospital of Southern Medical University, Foshan, Guangdong 528200, P.R. China
| | - Shixing Liang
- Department of Neurosurgery, Nanhai Hospital of Southern Medical University, Foshan, Guangdong 528200, P.R. China
| | - Shenghui Xiao
- Department of Neurosurgery, Nanhai Hospital of Southern Medical University, Foshan, Guangdong 528200, P.R. China
| | - Qiming Lin
- Department of Neurosurgery, Nanhai Hospital of Southern Medical University, Foshan, Guangdong 528200, P.R. China
| | - Xu Chen
- Department of Neurosurgery, Nanhai Hospital of Southern Medical University, Foshan, Guangdong 528200, P.R. China
| | - Yi Wu
- Department of Neurosurgery, Nanhai Hospital of Southern Medical University, Foshan, Guangdong 528200, P.R. China
| | - Jian Fu
- Department of Neurosurgery, Nanhai Hospital of Southern Medical University, Foshan, Guangdong 528200, P.R. China
| |
Collapse
|
105
|
Zhou JH, Zhou QZ, Lyu XM, Zhu T, Chen ZJ, Chen MK, Xia H, Wang CY, Qi T, Li X, Liu CD. The Expression of Cysteine-Rich Secretory Protein 2 (CRISP2) and Its Specific Regulator miR-27b in the Spermatozoa of Patients with Asthenozoospermia1. Biol Reprod 2015; 92:28. [DOI: 10.1095/biolreprod.114.124487] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
106
|
Wang XP, Deng XL, Li LY. MicroRNA-584 functions as a tumor suppressor and targets PTTG1IP in glioma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8573-8582. [PMID: 25674221 PMCID: PMC4314038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression at the post transcriptional level. Compelling evidence shows that there are causative links between miRNAs deregulation and cancer development and progression. In this study, we demonstrated that miR-584 was downregulated in human glioma and could suppress growth of the human glioma cell line U87-MG and U251-MG. Bioinformatics analysis indicated that PTTG1IP was a putative target of miR-584. In a Luciferase reporter system, we confirmed that PTTG1IP was a direct target gene of miR-584. These findings indicate that miR-584 suppresses glioma cell growth by negatively regulating the expression of PTTG1IP, suggesting that miR-584 has a tumor suppressive role in human glioma pathogenesis.
Collapse
Affiliation(s)
- Xiang-Peng Wang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical UniversityYunnan 650032, China
| | - Xing-Li Deng
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical UniversityYunnan 650032, China
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical UniversityYunnan 650050, China
| |
Collapse
|
107
|
Patel SAA, Bhambra U, Charalambous MP, David RM, Edwards RJ, Lightfoot T, Boobis AR, Gooderham NJ. Interleukin-6 mediated upregulation of CYP1B1 and CYP2E1 in colorectal cancer involves DNA methylation, miR27b and STAT3. Br J Cancer 2014; 111:2287-96. [PMID: 25333344 PMCID: PMC4264448 DOI: 10.1038/bjc.2014.540] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/04/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022] Open
Abstract
Background: The pro-inflammatory cytokine interleukin-6 (IL6) promotes colorectal cancer (CRC) development. It is also known to regulate cytochrome P450 (CYP450) enzymes, which are involved in CRC tumour initiation and promotion via activation of chemical carcinogens. Here, IL6 regulation of CYP450 expression was investigated in CRC. Methods: The effect of IL6 on CYP 1A1, 1B1 and 2E1 expression was determined in vitro using CRC cell lines HCT116 and SW480, and CYP450 expression was determined by immunohistochemistry in CRC tissues previously shown to have increased levels of IL6. Results: In mechanistic studies, IL6 treatment significantly induced CYP1B1 and CYP2E1, but not CYP1A1, gene expression in HCT116 and SW480 cells. CYP2E1 expression regulation occurred via a transcriptional mechanism involving STAT3. For CYP1B1 regulation, IL6 downregulated the CYP1B1-targeting microRNA miR27b through a mechanism involving DNA methylation. In clinical samples, the expression of CYP1B1 and CYP2E1, but not CYP1A1, was significantly increased in malignant tissue overexpressing IL6 compared with matched adjacent normal tissue. Conclusions: Colonic inflammation with the presence of IL6 associated with neoplastic tissue can alter metabolic competency of epithelial cells by manipulating CYP2E1 and CYP1B1 expression through transcriptional and epigenetic mechanisms. This can lead to increased activation of dietary carcinogens and DNA damage, thus promoting colorectal carcinogenesis.
Collapse
Affiliation(s)
- S A A Patel
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - U Bhambra
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - M P Charalambous
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - R M David
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - R J Edwards
- Experimental Medicine and Toxicology, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - T Lightfoot
- Department of Health Sciences, University of York, York YO10 5DD, UK
| | - A R Boobis
- Experimental Medicine and Toxicology, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - N J Gooderham
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
108
|
Jiang J, Lv X, Fan L, Huang G, Zhan Y, Wang M, Lu H. MicroRNA-27b suppresses growth and invasion of NSCLC cells by targeting Sp1. Tumour Biol 2014; 35:10019-23. [PMID: 25012245 DOI: 10.1007/s13277-014-2294-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 06/30/2014] [Indexed: 11/30/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the major cause of cancer death worldwide. Increasing evidence shows that microRNAs (miRNAs), evolutionally conserved non-coding RNAs, are widely involved in the development and progression of NSCLC. Aberrant alteration of miRNAs expression has been implicated in NSCLC initiation and progression. Herein, we studied the role of miR-27b in NSCLC cells. We found that miR-27b was significantly decreased in several NSCLC cell lines. Forced overexpression of miR-27 inhibited both the growth and invasion of NSCLC cells. Furthermore, we identified Sp1 transcription factor (Sp1) as a target of miR-27b in NSCLC cells. Moreover, we found that miR-27 suppressed growth and invasion of NSCLC cells partially by targeting Sp1. Our data indicate that miR-27b may play a critical role in the development of NSCLC.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Oncology, The Central Hospital of Wuhan, 430014, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
109
|
Vernin C, Thenoz M, Pinatel C, Gessain A, Gout O, Delfau-Larue MH, Nazaret N, Legras-Lachuer C, Wattel E, Mortreux F. HTLV-1 bZIP factor HBZ promotes cell proliferation and genetic instability by activating OncomiRs. Cancer Res 2014; 74:6082-93. [PMID: 25205102 DOI: 10.1158/0008-5472.can-13-3564] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Viruses disrupt the host cell microRNA (miRNA) network to facilitate their replication. Human T-cell leukemia virus type I (HTLV-1) replication relies on the clonal expansion of its host CD4(+) and CD8(+) T cells, yet this virus causes adult T-cell leukemia/lymphoma (ATLL) that typically has a CD4(+) phenotype. The viral oncoprotein Tax, which is rarely expressed in ATLL cells, has long been recognized for its involvement in tumor initiation by promoting cell proliferation, genetic instability, and miRNA dysregulation. Meanwhile, HBZ is expressed in both untransformed infected cells and ATLL cells and is involved in sustaining cell proliferation and silencing virus expression. Here, we show that an HBZ-miRNA axis promotes cell proliferation and genetic instability, as indicated by comet assays that showed increased numbers of DNA-strand breaks. Expression profiling of miRNA revealed that infected CD4(+) cells, but not CD8(+) T cells, overexpressed oncogenic miRNAs, including miR17 and miR21. HBZ activated these miRNAs via a posttranscriptional mechanism. These effects were alleviated by knocking down miR21 or miR17 and by ectopic expression of OBFC2A, a DNA-damage factor that is downregulated by miR17 and miR21 in HTLV-1-infected CD4(+) T cells. These findings extend the oncogenic potential of HBZ and suggest that viral expression might be involved in the remarkable genetic instability of ATLL cells.
Collapse
Affiliation(s)
- Céline Vernin
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France
| | - Morgan Thenoz
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France
| | - Christiane Pinatel
- Centre de Recherche sur le Cancer de Lyon, Centre Léon Bérard, Lyon, France
| | - Antoine Gessain
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Olivier Gout
- Fondation Rothschild, Service de Neurologie, Paris, France
| | | | - Nicolas Nazaret
- Université Lyon I, Faculté de Médecine et de Pharmacie de Lyon, ISPBL Viroscan3D-Profilexpert, UMR5557, Ecologie Microbienne, Lyon, France
| | - Catherine Legras-Lachuer
- Université Lyon I, Faculté de Médecine et de Pharmacie de Lyon, ISPBL Viroscan3D-Profilexpert, UMR5557, Ecologie Microbienne, Lyon, France
| | - Eric Wattel
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France. Université Lyon I, Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Franck Mortreux
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France.
| |
Collapse
|
110
|
Ionizing Radiation–Inducible miR-27b Suppresses Leukemia Proliferation via Targeting Cyclin A2. Int J Radiat Oncol Biol Phys 2014; 90:53-62. [DOI: 10.1016/j.ijrobp.2014.04.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/06/2014] [Accepted: 04/30/2014] [Indexed: 12/22/2022]
|
111
|
Sabatino L, Pancione M, Votino C, Colangelo T, Lupo A, Novellino E, Lavecchia A, Colantuoni V. Emerging role of the β-catenin-PPARγ axis in the pathogenesis of colorectal cancer. World J Gastroenterol 2014; 20:7137-7151. [PMID: 24966585 PMCID: PMC4064060 DOI: 10.3748/wjg.v20.i23.7137] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/15/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Multiple lines of evidence indicate that Wnt/β-catenin signaling plays a fundamental role in colorectal cancer (CRC) initiation and progression. Recent genome-wide data have confirmed that in CRC this pathway is one of the most frequently modified by genetic or epigenetic alterations affecting almost 90% of Wnt/β-catenin gene members. A major challenge is thus learning how the corrupted coordination of this pathway is tied to other signalings to enhance cell growth. Peroxisome proliferator activated receptor γ (PPARγ) is emerging as a growth-limiting and differentiation-promoting factor. In tumorigenesis it exerts a tumor suppressor role and is potentially linked with the Wnt/β-catenin pathway. Based on these results, the identification of new selective PPARγ modulators with inhibitory effects on the Wnt/β-catenin pathway is becoming an interesting perspective. Should, in fact, these molecules display such properties, new research avenues would be opened aimed at developing new molecular targeted drugs. Herein, we review the basic principles and present new hypotheses underlying the crosstalk between Wnt/β-catenin and PPARγ signaling. Furthermore, we discuss the advances in our understanding as to how their altered regulation can culminate in colon cancer and the efforts aimed at designing novel PPARγ agonists endowed with Wnt/β-catenin inhibitory effects to be used as therapeutic and/or preventive agents.
Collapse
|
112
|
Shen S, Sun Q, Liang Z, Cui X, Ren X, Chen H, Zhang X, Zhou Y. A prognostic model of triple-negative breast cancer based on miR-27b-3p and node status. PLoS One 2014; 9:e100664. [PMID: 24945253 PMCID: PMC4063964 DOI: 10.1371/journal.pone.0100664] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
Objective Triple-negative breast cancer (TNBC) is an aggressive but heterogeneous subtype of breast cancer. This study aimed to identify and validate a prognostic signature for TNBC patients to improve prognostic capability and to guide individualized treatment. Methods We retrospectively analyzed the prognostic performance of clinicopathological characteristics and miRNAs in a training set of 58 patients with invasive ductal TNBC diagnosed between 2002 and 2012. A prediction model was developed based on independent clinicopathological and miRNA covariates. The prognostic value of the model was further validated in a separate set of 41 TNBC patients diagnosed between 2007 and 2008. Results Only lymph node status was marginally significantly associated with poor prognosis of TNBC (P = 0.054), whereas other clinicopathological factors, including age, tumor size, histological grade, lymphovascular invasion, P53 status, Ki-67 index, and type of surgery, were not. The expression levels of miR-27b-3p, miR-107, and miR-103a-3p were significantly elevated in the metastatic group compared with the disease-free group (P value: 0.008, 0.005, and 0.050, respectively). The Cox proportional hazards regression analysis revealed that lymph node status and miR-27b-3p were independent predictors of poor prognosis (P value: 0.012 and 0.027, respectively). A logistic regression model was developed based on these two independent covariates, and the prognostic value of the model was subsequently confirmed in a separate validation set. The two different risk groups, which were stratified according to the model, showed significant differences in the rates of distant metastasis and breast cancer-related death not only in the training set (P value: 0.001 and 0.040, respectively) but also in the validation set (P value: 0.013 and 0.012, respectively). Conclusion This model based on miRNA and node status covariates may be used to stratify TNBC patients into different prognostic subgroups for potentially individualized therapy.
Collapse
Affiliation(s)
- Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojiang Cui
- Department of Surgery, Department of Obstetrics and Gynecology, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, California, United States of America
| | - Xinyu Ren
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Huan Chen
- Department of Microbiology, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang, China
| | - Xiao Zhang
- Biostatistics and Bioinformatics Core, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, California, United States of America
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
113
|
Significance and therapeutic value of miRNAs in embryonal neural tumors. Molecules 2014; 19:5821-62. [PMID: 24806581 PMCID: PMC6271640 DOI: 10.3390/molecules19055821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 02/07/2023] Open
Abstract
Embryonal tumors of the nervous system are the leading cause of childhood cancer-related morbidity and mortality. Medulloblastoma, supratentorial primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumor and neuroblastoma account for more than 20% of childhood malignancies and typify the current neural embryonal tumor model in pediatric oncology. Mechanisms driving the formation of these tumors point towards impaired differentiation of neuronal and neuron-associated cells during the development of the nervous system as an important factor. The importance of microRNAs (miRNAs) for proper embryonic cell function has been confirmed and their aberrant expressions have been linked to tumor development. The role of miRNAs in controlling essential regulators of key pathways implicated in tumor development makes their use in diagnostics a powerful tool to be used for early detection of cancer, risk assessment and prognosis, as well as for the design of innovative therapeutic strategies. In this review we focus on the significance of miRNAs involved in the biology of embryonal neural tumors, delineate their clinical significance and discuss their potential as a novel therapeutic target.
Collapse
|
114
|
Abel Y, Clerget G, Bourguignon-Igel V, Salone V, Rederstorff M. Les petits ARN nucléolaires nous surprennent encore ! Med Sci (Paris) 2014; 30:297-302. [DOI: 10.1051/medsci/20143003018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
115
|
Rastogi N, Gara RK, Trivedi R, Singh A, Dixit P, Maurya R, Duggal S, Bhatt MLB, Singh S, Mishra DP. (6)-Gingerolinduced myeloid leukemia cell death is initiated by reactive oxygen species and activation of miR-27b expression. Free Radic Biol Med 2014; 68:288-301. [PMID: 24378438 DOI: 10.1016/j.freeradbiomed.2013.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
The natural polyphenolic alkanone (6)-gingerol (6G) has established anti-inflammatory and antitumoral properties. However, its precise mechanism of action in myeloid leukemia cells is unclear. In this study, we investigated the effects of 6G on myeloid leukemia cells in vitro and in vivo. The results of this study showed that 6G inhibited proliferation of myeloid leukemia cell lines and primary myeloid leukemia cells while sparing the normal peripheral blood mononuclear cells, in a concentration- and time-dependent manner. Mechanistic studies using U937 and K562 cell lines revealed that 6G treatment induced reactive oxygen species (ROS) generation by inhibiting mitochondrial respiratory complex I (MRC I), which in turn increased the expression of the oxidative stress response-associated microRNA miR-27b and DNA damage. Elevated miR-27b expression inhibited PPARγ, with subsequent inhibition of the inflammatory cytokine gene expression associated with the oncogenic NF-κB pathway, whereas the increased DNA damage led to G2/M cell cycle arrest. The 6G induced effects were abolished in the presence of anti-miR-27b or the ROS scavenger N-acetylcysteine. In addition, the results of the in vivo xenograft experiments in mice indicated that 6G treatment inhibited tumor cell proliferation and induced apoptosis, in agreement with the in vitro studies. Our data provide new evidence that 6G-induced myeloid leukemia cell death is initiated by reactive oxygen species and mediated through an increase in miR-27b expression and DNA damage. The dual induction of increased miR-27b expression and DNA damage-associated cell cycle arrest by 6G may have implications for myeloid leukemia treatment.
Collapse
Affiliation(s)
- Namrata Rastogi
- Endocrinology Division, Central Drug Research Institute, Uttar Pradesh 226021, India
| | - Rishi Kumar Gara
- Endocrinology Division, Central Drug Research Institute, Uttar Pradesh 226021, India
| | - Rachana Trivedi
- Endocrinology Division, Central Drug Research Institute, Uttar Pradesh 226021, India
| | - Akanksha Singh
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Uttar Pradesh 226021, India
| | - Preety Dixit
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Uttar Pradesh 226021, India
| | - Rakesh Maurya
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Uttar Pradesh 226021, India
| | - Shivali Duggal
- Department of Radiotherapy, CSM Medical University, Lucknow, Uttar Pradesh 226003, India
| | - M L B Bhatt
- Department of Radiotherapy, CSM Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sarika Singh
- Toxicology Division, Central Drug Research Institute, Lucknow, Uttar Pradesh 226001, India
| | - Durga Prasad Mishra
- Endocrinology Division, Central Drug Research Institute, Uttar Pradesh 226021, India.
| |
Collapse
|
116
|
Mei H, Lin ZY, Tong QS. The roles of microRNAs in neuroblastoma. World J Pediatr 2014; 10:10-6. [PMID: 24464658 DOI: 10.1007/s12519-014-0448-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/26/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor in childhood and displays remarkable heterogeneity in clinical behaviors, ranging from spontaneous regression to rapid progression or resistance to multimodal treatment. Recent evidence has shown that microRNAs (miRNAs), a class of small non-coding RNAs, are involved in tumor development and progression. This article aimed to review recent advances in investigating the roles of miRNAs in NB. METHODS We searched the PubMed/MEDLINE database for articles about the expression profile, functions and target genes of miRNAs in NB. RESULTS We reviewed the most recent evidence regarding the functional roles of oncogenic and tumor suppressive miRNAs in NB and application of novel miRNA-based methods for diagnostic, prognostic and therapeutic purposes. CONCLUSIONS Deregulation of miRNAs is associated with the development and progression of NB, suggesting that miRNAs may serve as novel targets for the treatment of high-risk NB patients. However, their precise functions and underlying mechanisms still warrant further studies.
Collapse
Affiliation(s)
- Hong Mei
- Department of Pediatric Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | |
Collapse
|
117
|
Zhi F, Wang R, Wang Q, Xue L, Deng D, Wang S, Yang Y. MicroRNAs in neuroblastoma: small-sized players with a large impact. Neurochem Res 2014; 39:613-23. [PMID: 24477657 DOI: 10.1007/s11064-014-1247-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/22/2013] [Accepted: 01/21/2014] [Indexed: 12/23/2022]
Abstract
Neuroblastoma, a malignant embryonal tumor of the sympathetic nervous system, is the most common solid extracranial malignancy of childhood and accounts for 15 % of all childhood cancer deaths. The biological behavior of neuroblastoma is extensively heterogeneous, ranging from spontaneous regression to rapid progression despite multimodal aggressive therapy. Although the molecular basis of neuroblastoma has received considerable attention over the past decade, elucidating the mechanisms for the aggressive progression of neuroblastoma is needed for improving the efficacy of treatment. miRNAs (microRNAs) are small non-coding RNA molecules generally 19-22 nucleotides in length. miRNAs regulate 60 % of human gene expression at the post-transcriptional level by targeting regions of sequence complementarity on the 3'-untranslated regions (3'-UTRs) of specific mRNAs. miRNAs can either cause degradation of mRNAs or can inhibit their translation and therefore play major roles in normal growth and development. miRNA dysregulation has oncogenic or tumor-suppressive functions in virtually all forms of cancer, including neuroblastoma. The present review highlights the current insights on dysregulated miRNAs in neuroblastoma and on their roles in the diagnosis, prognosis, and treatment of this malignancy. As a rapidly evolving field of basic and biomedical sciences, miRNA research holds a great potential to impact on the management of neuroblastoma.
Collapse
Affiliation(s)
- Feng Zhi
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, 185#, Juqian Road, Changzhou, 213003, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
118
|
Wan L, Zhang L, Fan K, Wang J. MiR-27b targets LIMK1 to inhibit growth and invasion of NSCLC cells. Mol Cell Biochem 2014; 390:85-91. [PMID: 24390089 DOI: 10.1007/s11010-013-1959-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
Non-small cell lung cancer (NSCLC), which accounts for ~80 % of lung cancer cases, is one of the most common causes for cancer-related death. microRNAs (miRNAs) have been found to play critical roles in the development and progression of NSCLC. miR-27b has recently been reported as a tumor suppressor in several cancers, but its role in NSCLC remains poorly understood. In this study, we found that miR-27b was remarkably decreased in both NSCLC tissues and cell lines. Moreover, overexpression of miR-27b significantly suppressed NSCLC cells proliferation and invasion. LIM kinase 1 (LIMK1), an essential protein for malignant transformation, was found to be a target of miR-27b. Ectopic expression of LIMK1 dramatically dampened mir-27b action of cancer inhibition. Finally, LIMK1 was found to be negatively correlated with miR-27b in NSCLC patients. Our results demonstrated a tumor-suppressive role of miR-27b in NSCLC, suggesting a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Li Wan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | | | |
Collapse
|
119
|
Yuan L, Chu H, Wang M, Gu X, Shi D, Ma L, Zhong D, Du M, Li P, Tong N, Fu G, Qin C, Yin C, Zhang Z. Genetic variation in DROSHA 3'UTR regulated by hsa-miR-27b is associated with bladder cancer risk. PLoS One 2013; 8:e81524. [PMID: 24312312 PMCID: PMC3842954 DOI: 10.1371/journal.pone.0081524] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/14/2013] [Indexed: 12/02/2022] Open
Abstract
Purpose miRNAs can regulate the biological processes, including differentiation, proliferation and apoptosis. DICER and DROSHA are two members of RNase III family, playing pivotal roles in the pathway of miRNAs biogenesis. In this study, we hypothesized that genetic variations of the DICER and DROSHA genes were associated with the bladder cancer risk. Experimental Design We performed a case-control study of 685 bladder cancer cases and 730 controls to investigate the association between the seven functional SNPs of DICER and DROSHA genes and bladder cancer risk. We then evaluated the functionality of the important SNPs. Results We found that rs10719T>C polymorphism located in 3’ untranslated region (UTR) of DROSHA gene was associated with the increased risk of bladder cancer. Stratified analysis suggested that rs10719TC/CC genotype can increase risk of bladder cancer among male patients (Adjusted OR = 1.34, 95% CI = 1.05-1.70, P = 0.018), and ever smokers (1.56, 1.14-2.14, 0.006), compared with TT genotype. Furthermore, DROSHA rs10719T>C polymorphism was predicted to regulate the binding activity of hsa-miR-27a/b. Luciferase reported gene assay confirmed that rs10719 T to G substitution disrupted the binding site for hsa-miR-27b, resulting the increased levels of DROSHA protein. Conclusions Taken together, these findings suggested that DROSHA rs10719T>C polymorphism may be associated with bladder cancer risk in a Chinese population, and hsa-miR-27b can influence the expression of DROSHA protein by binding with 3’UTR.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Urology, Jiangsu Province Hospital of TCM, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaojian Gu
- Department of Urology, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Danni Shi
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Dongyan Zhong
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Pu Li
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na Tong
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guangbo Fu
- Department of Urology, the Huai-An First Affiliated Hospital of Nanjing Medical University, Huai-An, China
| | - Chao Qin
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changjun Yin
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
120
|
Wang X, Sun Y, Wong J, Conklin DS. PPARγ maintains ERBB2-positive breast cancer stem cells. Oncogene 2013; 32:5512-21. [PMID: 23770845 PMCID: PMC3898098 DOI: 10.1038/onc.2013.217] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 12/19/2022]
Abstract
Overexpression of the adverse prognostic marker ERBB2 occurs in 30% of breast cancers and is associated with aggressive disease and poor outcomes. Our recent findings have shown that NR1D1 and the peroxisome proliferator-activated receptor-γ (PPARγ)-binding protein (PBP) act through a common pathway in upregulating several genes in the de novo fatty acid synthesis network, which is highly active in ERBB2-positive breast cancer cells. NR1D1 and PBP are functionally related to PPARγ, a well-established positive regulator of adipogenesis and lipid storage. Here, we report that inhibition of the PPARγ pathway reduces the aldehyde dehydrogenase (ALDH)-positive population in ERBB2-positive breast cancer cells. Results from in vitro tumorsphere formation assays demonstrate that the PPARγ antagonists GW9662 and T0070907 decrease tumorsphere formation in ERBB2-positive cells, but not other breast cells. We show that the mechanism by which GW9662 treatment causes a reduction in ALDH-positive population cells is partially due to ROS, as it can be rescued by treatment with N-acetyl-cysteine. Furthermore, global gene expression analyses show that GW9662 treatment suppresses the expression of several lipogenic genes, including ACLY, MIG12, FASN and NR1D1, and the stem-cell related genes KLF4 and ALDH in BT474 cells. Antagonist treatment also decreases the level of acetylation in histone 3 and histone 4 in BT474 cells, compared with MCF7 cells. In vivo, GW9662 pre-treatment inhibits the tumor-seeding ability of BT474 cells. Together, these results show that the PPARγ pathway is critical for the cancer stem cell properties of ERBB2-positive breast cancer cells.
Collapse
Affiliation(s)
- X Wang
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA
| | | | | | | |
Collapse
|
121
|
Han H, Sun D, Li W, Shen H, Zhu Y, Li C, Chen Y, Lu L, Li W, Zhang J, Tian Y, Li Y. A c-Myc-MicroRNA functional feedback loop affects hepatocarcinogenesis. Hepatology 2013; 57:2378-89. [PMID: 23389829 DOI: 10.1002/hep.26302] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 01/12/2013] [Indexed: 12/24/2022]
Abstract
UNLABELLED c-Myc (Myc) plays an important role in normal liver development and tumorigenesis. We show here that Myc is pathologically activated in and essential for promoting human hepatocellular carcinoma (HCC). Myc induces HCC through a novel, microRNA (miRNA)-mediated feedback loop comprised of miR-148a-5p, miR-363-3p, and ubiquitin-specific protease 28 (USP28). Myc directly binds to conserved regions in the promoters of the two miRNAs and represses their expression. miR-148a-5p directly targets and inhibits Myc, whereas miR-363-3p destabilizes Myc by directly targeting and inhibiting USP28. Inhibition of miR-148a-5p or miR-363-3p induces hepatocellular tumorigenesis by promoting G1 to S phase progression, whereas activation of them has the opposite effects. The Myc-miRNA feedback loop is dysregulated in human HCC. CONCLUSION These results define miR-148a-5p and miR-363-3p as negative regulators of Myc, thus revealing their heretofore unappreciated roles in hepatocarcinogenesis. (HEPATOLOGY 2013;57:2378-2389).
Collapse
Affiliation(s)
- Han Han
- College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Dmitriev P, Barat A, Polesskaya A, O'Connell MJ, Robert T, Dessen P, Walsh TA, Lazar V, Turki A, Carnac G, Laoudj-Chenivesse D, Lipinski M, Vassetzky YS. Simultaneous miRNA and mRNA transcriptome profiling of human myoblasts reveals a novel set of myogenic differentiation-associated miRNAs and their target genes. BMC Genomics 2013; 14:265. [PMID: 23597168 PMCID: PMC3639941 DOI: 10.1186/1471-2164-14-265] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/26/2013] [Indexed: 01/10/2023] Open
Abstract
Background miRNA profiling performed in myogenic cells and biopsies from skeletal muscles has previously identified miRNAs involved in myogenesis. Results Here, we have performed miRNA transcriptome profiling in human affinity-purified CD56+ myoblasts induced to differentiate in vitro. In total, we have identified 60 miRNAs differentially expressed during myogenic differentiation. Many were not known for being differentially expressed during myogenic differentiation. Of these, 14 (miR-23b, miR-28, miR-98, miR-103, miR-107, miR-193a, miR-210, miR-324-5p, miR-324-3p, miR-331, miR-374, miR-432, miR-502, and miR-660) were upregulated and 6 (miR-31, miR-451, miR-452, miR-565, miR-594 and miR-659) were downregulated. mRNA transcriptome profiling performed in parallel resulted in identification of 6,616 genes differentially expressed during myogenic differentiation. Conclusions This simultaneous miRNA/mRNA transcriptome profiling allowed us to predict with high accuracy target genes of myogenesis-related microRNAs and to deduce their functions.
Collapse
Affiliation(s)
- Petr Dmitriev
- UMR 8126, Univ. Paris-Sud 11, CNRS, Institut de Cancérologie Gustave-Roussy, 39, rue Camille-Desmoulins, Villejuif 94805, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, Chen Z, Qiu F, Xu J, Huang J. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One 2013; 8:e60687. [PMID: 23593282 PMCID: PMC3625233 DOI: 10.1371/journal.pone.0060687] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/01/2013] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers globally and is one of the leading causes of cancer-related deaths due to therapy resistance and metastasis. Understanding the mechanism underlying colorectal carcinogenesis is essential for the diagnosis and treatment of CRC. microRNAs (miRNAs) can act as either oncogenes or tumor suppressors in many cancers. A tumor suppressor role for miR-27b has recently been reported in neuroblastoma, while no information about miR-27b in CRC is available. In this study, we demonstrated that miR-27b expression is decreased in most CRC tissues and determined that overexpression of miR-27b represses CRC cell proliferation, colony formation and tumor growth in vitro and in vivo. We identified vascular endothelial growth factor C (VEGFC) as a novel target gene of miR-27b and determined that miR-27b functioned as an inhibitor of tumor progression and angiogenesis through targeting VEGFC in CRC. We further determined that DNA hypermethylation of miR-27b CpG islands decreases miR-27b expression. In summary, an anti-tumor role for miR-27b and its novel target VEGFC in vivo could lead to tumor necrosis and provide a rationale for developing miR-27b as a therapeutic agent.
Collapse
Affiliation(s)
- Jun Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianguo Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pin Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuming Qiu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghong Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
124
|
Domingo-Fernandez R, Watters K, Piskareva O, Stallings RL, Bray I. The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis. Pediatr Surg Int 2013; 29:101-19. [PMID: 23274701 PMCID: PMC3557462 DOI: 10.1007/s00383-012-3239-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2012] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a highly heterogeneous tumor accounting for 15 % of all pediatric cancer deaths. Clinical behavior ranges from the spontaneous regression of localized, asymptomatic tumors, as well as metastasized tumors in infants, to rapid progression and resistance to therapy. Genomic amplification of the MYCN oncogene has been used to predict outcome in neuroblastoma for over 30 years, however, recent methodological advances including miRNA and mRNA profiling, comparative genomic hybridization (array-CGH), and whole-genome sequencing have enabled the detailed analysis of the neuroblastoma genome, leading to the identification of new prognostic markers and better patient stratification. In this review, we will describe the main genetic factors responsible for these diverse clinical phenotypes in neuroblastoma, the chronology of their discovery, and the impact on patient prognosis.
Collapse
Affiliation(s)
- Raquel Domingo-Fernandez
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Karen Watters
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Olga Piskareva
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Raymond L. Stallings
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Isabella Bray
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
125
|
The microRNA -23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PLoS One 2012; 7:e52106. [PMID: 23300597 PMCID: PMC3530545 DOI: 10.1371/journal.pone.0052106] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/09/2012] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRs) are small, endogenous, non-coding RNAs that regulate the stability and/or translation of complementary mRNA targets. MiRs have emerged not only as critical modulators of normal physiologic processes, but their deregulation may significantly impact prostate and other cancers. The expression of miR-23b and miR-27b, which are encoded by the same miR cluster (miR-23b/-27b), are downregulated in metastatic, castration-resistant tumors compared to primary prostate cancer and benign tissue; however, their possible role in prostate cancer progression is unknown. We found that ectopic expression of miR-23b/-27b in two independent castration-resistant prostate cancer cell lines resulted in suppression of invasion and migration, as well as reduced survival in soft agar (a measure of anoikis). However, there was no effect of miR-23b/-27b on cell proliferation suggesting that these miRs function as metastasis (but not growth) suppressors in prostate cancer. Conversely, inhibition of miR-23b/-27b in the less aggressive androgen-dependent LNCaP prostate cancer cell line resulted in enhanced invasion and migration also without affecting proliferation. Mechanistically, we found that introduction of miR-23b/-27b in metastatic, castration-resistant prostate cancer cell lines resulted in a significant attenuation of Rac1 activity without affecting total Rac1 levels and caused increased levels of the tumor suppressor E-cadherin. Inhibition of these miRs had the opposite effect in androgen-dependent LNCaP cells. These results suggest that miR-23b/-27b are metastasis suppressors that might serve as novel biomarkers and therapeutic agents for castration-resistant disease.
Collapse
|
126
|
Epigenetic deregulation of microRNAs in rhabdomyosarcoma and neuroblastoma and translational perspectives. Int J Mol Sci 2012; 13:16554-79. [PMID: 23443118 PMCID: PMC3546707 DOI: 10.3390/ijms131216554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed.
Collapse
|
127
|
ZHUO LIJUAN, LIU JINGFENG, WANG BIN, GAO MEIQIN, HUANG AIMIN. Differential miRNA expression profiles in hepatocellular carcinoma cells and drug-resistant sublines. Oncol Rep 2012; 29:555-62. [DOI: 10.3892/or.2012.2155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/08/2012] [Indexed: 11/06/2022] Open
|
128
|
Pentheroudakis G, Spector Y, Krikelis D, Kotoula V, Meiri E, Malamou-Mitsi V, Fountzilas G, Sanden M, Pavlidis N, Benjamin H, Aharonov R. Global microRNA profiling in favorable prognosis subgroups of cancer of unknown primary (CUP) demonstrates no significant expression differences with metastases of matched known primary tumors. Clin Exp Metastasis 2012; 30:431-9. [DOI: 10.1007/s10585-012-9548-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
129
|
Fucci A, Colangelo T, Votino C, Pancione M, Sabatino L, Colantuoni V. The role of peroxisome proliferator-activated receptors in the esophageal, gastric, and colorectal cancer. PPAR Res 2012; 2012:242498. [PMID: 22991505 PMCID: PMC3444044 DOI: 10.1155/2012/242498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/24/2012] [Indexed: 12/21/2022] Open
Abstract
Tumors of the gastrointestinal tract are among the most frequent human malignancies and account for approximately 30% of cancer-related deaths worldwide. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that control diverse cellular functions such as proliferation, differentiation, and cell death. Owing to their involvement in so many processes, they play crucial roles also in the development and physiology of the gastrointestinal tract. Consistently, PPARs deregulation has been implicated in several pathophysiological conditions, including chronic inflammation and cancer development. This paper summarizes the current knowledge on the role that the various PPAR isoforms play in the pathogenesis of the esophageal, gastric, and intestinal cancer. Elucidation of the molecular mechanisms underlying PPARs' signaling pathways will provide insights into their possible use as predictive biomarkers in the initial stages of the process. In addition, this understanding will provide the basis for new molecular targets in cancer therapy and chemoprevention.
Collapse
Affiliation(s)
- Alessandra Fucci
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Tommaso Colangelo
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Carolina Votino
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Massimo Pancione
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Lina Sabatino
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| | - Vittorio Colantuoni
- Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
130
|
PPARG Epigenetic Deregulation and Its Role in Colorectal Tumorigenesis. PPAR Res 2012; 2012:687492. [PMID: 22848209 PMCID: PMC3405724 DOI: 10.1155/2012/687492] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/21/2012] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) plays critical roles in lipid storage, glucose metabolism, energy homeostasis, adipocyte differentiation, inflammation, and cancer. Its function in colon carcinogenesis has largely been debated; accumulating evidence, however, supports a role as tumor suppressor through modulation of crucial pathways in cell differentiation, apoptosis, and metastatic dissemination. Epigenetics adds a further layer of complexity to gene regulation in several biological processes. In cancer, the relationship with epigenetic modifications has provided important insights into the underlying molecular mechanisms. These studies have highlighted how epigenetic modifications influence PPARG gene expression in colorectal tumorigenesis. In this paper, we take a comprehensive look at the current understanding of the relationship between PPARγ and cancer development. The role that epigenetic mechanisms play is also addressed disclosing novel crosstalks between PPARG signaling and the epigenetic machinery and suggesting how this dysregulation may contribute to colon cancer development.
Collapse
|
131
|
Lü MH, Li CZ, Hu CJ, Fan YH, Wang SM, Wu YY, Liang GP, Yang SM. microRNA-27b suppresses mouse MSC migration to the liver by targeting SDF-1αin vitro. Biochem Biophys Res Commun 2012; 421:389-95. [PMID: 22516754 DOI: 10.1016/j.bbrc.2012.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/24/2022]
Abstract
The SDF-1/CXCR4 axis is critical for inducing stem cell mobilization into the circulation, for homing stem cells to the site of injury, and for stem cell participation in the regeneration of liver tissue. In this study, we have gained insight into the molecular mechanisms involved in regulating the expression of SDF-1α by miRNAs. Using microarray and bioinformatics approaches, we identified six miRNAs with differential expression in damaged liver tissue (21 days after liver injury) compared to normal C57BL/6 murine liver tissue and further confirmed these observations by qPCR; miR-23a, which was identified by other researchers, was also included for comparative purposes. We found that miR-23a, miR-27a and miR-27b expression was significantly lower in the damaged liver than in the normal liver (p<0.05). We further confirmed that miR-27b could directly interact with the 3'UTR of SDF-1α to suppress SDF-1α protein expression using a luciferase reporter assay and Western blot analysis. In addition, we found that the over-expression of miR-27b significantly reduced the directional migration of primary cultured CRCX4-positive murine mesenchymal stem cells (mMSCs) in vitro using a transwell assay. These results suggest that miR-27b may be a unique signature of the stem cell niche in the damaged mouse liver and that mir-27b can suppress the directional migration of mMSCs by down-regulating SDF-1α expression by binding directly to the SDF-1α 3'UTR.
Collapse
Affiliation(s)
- Mu-Han Lü
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | |
Collapse
|