101
|
Blaylock RL. Cancer microenvironment, inflammation and cancer stem cells: A hypothesis for a paradigm change and new targets in cancer control. Surg Neurol Int 2015; 6:92. [PMID: 26097771 PMCID: PMC4455122 DOI: 10.4103/2152-7806.157890] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/03/2015] [Indexed: 12/13/2022] Open
Abstract
Since President Nixon officially declared a war on cancer with the National Cancer Act, billions of dollars have been spent on research in hopes of finding a cure for cancer. Recent reviews have pointed out that over the ensuing 42 years, cancer death rates have barely changed for the major cancers. Recently, several researchers have questioned the prevailing cancer paradigm based on recent discoveries concerning the mechanism of carcinogenesis and the origins of cancer. Over the past decade we have learned a great deal concerning both of these central issues. Cell signaling has taken center stage, particularly as regards the links between chronic inflammation and cancer development. It is now evident that the common factor among a great number of carcinogenic agents is activation of genes controlling inflammation cell-signaling pathways and that these signals control all aspects of the cancer process. Of these pathways, the most important and common to all cancers is the NFκB and STAT3 pathways. The second discovery of critical importance is that mutated stem cells appear to be in charge of the cancer process. Most chemotherapy agents and radiotherapy kill daughter cells of the cancer stem cell, many of which are not tumorigenic themselves. Most cancer stem cells are completely resistant to conventional treatments, which explain dormancy and the poor cure rate with metastatic tumors. A growing number of studies are finding that several polyphenol extracts can kill cancer stem cells as well as daughter cells and can enhance the effectiveness and safety of conventional treatments. These new discoveries provide the clinician with a whole new set of targets for cancer control and cure.
Collapse
Affiliation(s)
- Russell L. Blaylock
- Theoretical Neuroscience Research, LLC, Assistant Editor-in-Chief, Surgical Neurology International, 315 Rolling Meadows Rd, Ridgeland, MS 39157, USA
| |
Collapse
|
102
|
Jeter CR, Yang T, Wang J, Chao HP, Tang DG. Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells 2015; 33:2381-90. [PMID: 25821200 DOI: 10.1002/stem.2007] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/08/2015] [Indexed: 12/22/2022]
Abstract
The homeobox domain transcription factor NANOG, a key regulator of embryonic development and cellular reprogramming, has been reported to be broadly expressed in human cancers. Functional studies have provided strong evidence that NANOG possesses protumorigenic attributes. In addition to promoting self-renewal and long-term proliferative potential of stem-like cancer cells, NANOG-mediated oncogenic reprogramming may underlie clinical manifestations of malignant disease. In this review, we examine the molecular origin, expression, biological activities, and mechanisms of action of NANOG in various malignancies. We also consider clinical implications such as correlations between NANOG expression and cancer prognosis and/or response to therapy. We surmise that NANOG potentiates the molecular circuitry of tumorigenesis, and thus may represent a novel therapeutic target or biomarker for the diagnosis, prognosis, and treatment outcome of cancer. Finally, we present critical pending questions relating NANOG to cancer stem cells and tumor development.
Collapse
Affiliation(s)
- Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, USA
| | - Tao Yang
- Cancer Stem Cell Institute, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Junchen Wang
- Cancer Stem Cell Institute, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, USA
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
103
|
Zhou Q, Jackson-Cook C, Lyon D, Perera R, Archer KJ. Identifying molecular features associated with psychoneurological symptoms in women with breast cancer using multivariate mixed models. Cancer Inform 2015; 14:139-45. [PMID: 25983548 PMCID: PMC4426955 DOI: 10.4137/cin.s17276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BC) is the second most common cancer among women. Research shows many women with BC experience anxiety, depression, and stress (ADS). Epigenetics has recently emerged as a potential mechanism for the development of depression.1 Although there are growing numbers of research studies indicating that epigenetic changes are associated with ADS, there is currently no evidence that this association is present in women with BC. The goal of this study was to identify high-throughput methylation sites (CpG sites) that are associated with three psychoneurological symptoms (ADS) in women with BC. Traditionally, univariate models have been used to examine the relationship between methylation sites and each psychoneurological symptom; nevertheless, ADS can be treated as a cluster of related symptoms and included together in a multivariate linear model. Hence, an overarching goal of this study is to compare and contrast univariate and multivariate models when identifying methylation sites associated with ADS in women with BC. When fitting separate linear regression models for each ADS scale, 3 among 285,173 CpG sites tested were significantly associated with depression. Two significant CpG sites are located on their respective genes FAM101A and FOXJ1, and the third site cannot be mapped to any known gene at this time. In contrast, the multivariate models identified 8,535 ADS-related CpG sites. In conclusion, when analyzing correlated psychoneurological symptom outcomes, multivariate models are more powerful and thus are recommended.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Debra Lyon
- College of Nursing, University of Florida, Gainesville, FL, USA
| | - Robert Perera
- Departments of Biostatistics & Social and Behavioral Health, Virginia Commonwealth University, Richmond, VA, USA
| | - Kellie J Archer
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
104
|
NANOG signaling promotes metastatic capability of immunoedited tumor cells. Clin Exp Metastasis 2015; 32:429-39. [PMID: 25899063 DOI: 10.1007/s10585-015-9717-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/06/2015] [Indexed: 12/29/2022]
Abstract
Metastatic recurrence after cancer treatments with radiation, cancer drugs, or even immunotherapeutic agents (cytokine, antibody, lymphocyte etc.) is often intractable and fatal for cancer patients. Therefore, molecular understanding of metastatic recurrence is necessary. Recently, these recurrent and metastatic tumor cells with resistance to cancer drugs have been reported to possess stem-like attributes and epithelial-mesenchymal transition (EMT) phenotype. Previously, we also found that antigen-specific cytotoxic T lymphocyte (CTL)-mediated immunotherapy conferred tumor cells with immune-resistant and stem-like phenotypes by hyper-activating NANOG/TCL1/AKT signaling axis. In this study, we report that these immunoedited cells have high metastatic capability and phenotypes. These cells exhibit enhanced migration, infiltration, and invasiveness in vitro as well as formation of metastatic lung nodules in vivo. Moreover, they display EMT-like features characterized by increased expression of BMI1 and TWIST1. Importantly, these pleiotropic phenotypes of metastasis through the expression of the EMT-associated molecules were critically dependent on the NANOG/TCL1A/AKT signaling axis, which was also conserved across multiple types of human cancer. Thus, we provide proof of the principle that inhibition of the NANOG axis is an effective strategy to control metastasis of immunoedited cancer, particularly, after CTL-based immunotherapy.
Collapse
|
105
|
Hu Q, Fu J, Luo B, Huang M, Guo W, Lin Y, Xie X, Xiao S. OY-TES-1 may regulate the malignant behavior of liver cancer via NANOG, CD9, CCND2 and CDCA3: a bioinformatic analysis combine with RNAi and oligonucleotide microarray. Oncol Rep 2015; 33:1965-75. [PMID: 25673160 DOI: 10.3892/or.2015.3792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/26/2015] [Indexed: 01/30/2023] Open
Abstract
Given its tumor-specific expression, including liver cancer, OY-TES-1 is a potential molecular marker for the diagnosis and immunotherapy of liver cancers. However, investigations of the mechanisms and the role of OY-TES-1 in liver cancer are rare. In the present study, based on a comprehensive bioinformatic analysis combined with RNA interference (RNAi) and oligonucleotide microarray, we report for the first time that downregulation of OY-TES-1 resulted in significant changes in expression of NANOG, CD9, CCND2 and CDCA3 in the liver cancer cell line BEL-7404. NANOG, CD9, CCND2 and CDCA3 may be involved in cell proliferation, migration, invasion and apoptosis, yet also may be functionally related to each other and OY-TES-1. Among these molecules, we identified that NANOG, containing a Kazal-2 binding motif and homeobox, may be the most likely candidate protein interacting with OY-TES-1 in liver cancer. Thus, the present study may provide important information for further investigation of the roles of OY-TES-1 in liver cancer.
Collapse
Affiliation(s)
- Qiping Hu
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun Fu
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Miao Huang
- Department of Radiology, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenwen Guo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yongda Lin
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shaowen Xiao
- Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
106
|
Is reduction of tumor burden sufficient for the 21st century? Cancer Lett 2015; 356:149-55. [PMID: 24632530 DOI: 10.1016/j.canlet.2014.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/11/2014] [Accepted: 03/04/2014] [Indexed: 12/21/2022]
Abstract
Currently, animal models are used to test the efficacy of tumor treatment. A significant reduction of tumor mass is lauded as great improvement. As we begin the 21st century, one wonders if this is sufficient and acceptable for cancer treatment. Although the presence of cancer stem cell (CSCs) is not a new phenomenon, their role in the initiation of the tumor for clinical resurgence is mostly ignored when testing drugs. The current treatment then poses a major limitation to aggressively target the cells most responsible for tumor initiation and resurgence. The review does not trivialize the problem since it is acknowledged that the tumors and cells within the tissue microenvironment would interact through complex mechanisms. It is quite possible that the interaction by CSCs and the microenvironment will vary, depending on the tissue, e.g., bone marrow versus brain. Research studies are needed to investigate if CSCs from the same organ differ after migrating to other tissues. If so, this will pose an economic dilemma for targeted drug development. It will not be feasible to develop drugs for each organ. Besides, the cost, there could be problems to effectively deliver the drugs to all organs, problems to assess drug distribution to particular tissues and toxicity for specific drugs. If multiple drugs are required to eradicate CSCs in different tissues, there is a problem of possible untoward effect for the simultaneous delivery of multiple drugs to a single cancer patient. As new drugs are developed, the investigators will need to pay attention for dedifferentiation of non-CSCs to CSCs. The metabolic pathways will have to be given equal attention as the stem cells genes since their pathways might show major differences rather than the stem cells genes, which are shared by the normal stem cells.
Collapse
|
107
|
Huang CE, Yu CC, Hu FW, Chou MY, Tsai LL. Enhanced chemosensitivity by targeting Nanog in head and neck squamous cell carcinomas. Int J Mol Sci 2014; 15:14935-48. [PMID: 25158233 PMCID: PMC4200775 DOI: 10.3390/ijms150914935] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/06/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023] Open
Abstract
Chemo-resistance is the major cause of high mortality in head and neck squamous cell carcinomas (HNSCC) in which HNSCC-derived cancer stem cells (CSCs) may be involved. Previously, we enriched a subpopulation of HNSCC-derived spheroid cells (SC) (HNSCC-SC) and identified Nanog as a CSCs marker. The aim of this study was to determine the role of Nanog in the chemosensitivity of HNSCC. The functional and clinicopathological studies of Nanog were investigated in HNSCC cells and specimens. Nanog expression was increased in HNSCC cell lines as compared to a normal oral epithelial cell line. Nanog upregulation in clinical tissues from HNSCC patients with recurrent and metastatic specimens relative to the mRNA levels in the samples from normal or primary tissues were examined. Targeting Nanog in HNSCC-SC significantly inhibited their tumorigenic and CSCs-like abilities and effectively increased the sensitivity of HNSCC-SC to chemotherapeutic drug cisplatin treatment. Targeting Nanog in HNSCC-SC showed a synergistic therapeutic effect with cisplatin. Our results suggest that targeting Nanog may have promising therapeutic potential for HNSCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Drug Resistance, Neoplasm
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Nanog Homeobox Protein
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Chuan-En Huang
- School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan.
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan.
| | - Fang-Wei Hu
- School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan.
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan.
| | - Lo-Lin Tsai
- School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan.
| |
Collapse
|
108
|
Bhatlekar S, Fields JZ, Boman BM. HOX genes and their role in the development of human cancers. J Mol Med (Berl) 2014; 92:811-23. [PMID: 24996520 DOI: 10.1007/s00109-014-1181-y] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/27/2014] [Accepted: 05/04/2014] [Indexed: 12/11/2022]
Abstract
In this review, we summarize published findings on the involvement of HOX genes in oncogenesis. HOX genes are developmental genes--they code for proteins that function as critical master regulatory transcription factors during embryogenesis. Many reports have shown that the protein products of HOX genes also play key roles in the development of cancers. Based on our review of the literature, we found that the expression of HOX genes is not only up- or downregulated in most solid tumors but also that the expression of specific HOX genes in cancers tends to differ based on tissue type and tumor site. It was also observed that HOXC family gene expression is upregulated in most solid tumor types, including colon, lung, and prostate cancer. The two HOX genes that were reported to be most commonly altered in solid tumors were HOXA9 and HOXB13. HOXA were often reported to have altered expression in breast and ovarian cancers, HOXB genes in colon cancers, HOXC genes in prostate and lung cancers, and HOXD genes in colon and breast cancers. It was found that HOX genes are also regulated at the nuclear-cytoplasmic transport level in carcinomas. Tumors arising from tissue having similar embryonic origin (endodermal), including colon, prostate, and lung, showed relatively similar HOXA and HOXB family gene expression patterns compared to breast tumors arising from mammary tissue, which originates from the ectoderm. The differential expression of HOX genes in various solid tumors thus provides an opportunity to advance our understanding of cancer development and to develop new therapeutic agents.
Collapse
Affiliation(s)
- Seema Bhatlekar
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, University of Delaware, 4701 Ogletown-Stanton Road, Newark, DE, 19713, USA
| | | | | |
Collapse
|
109
|
Gao S, Yang C, Jiang S, Xu XN, Lu X, He YW, Cheung A, Wang H. Applications of RNA interference high-throughput screening technology in cancer biology and virology. Protein Cell 2014; 5:805-15. [PMID: 24952721 PMCID: PMC4225462 DOI: 10.1007/s13238-014-0076-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/04/2014] [Indexed: 01/03/2023] Open
Abstract
RNA interference (RNAi) is an ancient intra-cellular mechanism that regulates gene expression and cell function. Large-scale gene silencing using RNAi high-throughput screening (HTS) has opened an exciting frontier to systematically study gene function in mammalian cells. This approach enables researchers to identify gene function in a given biological context and will provide considerable novel insight. Here, we review RNAi HTS strategies and applications using case studies in cancer biology and virology.
Collapse
Affiliation(s)
- Shan Gao
- Department of Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK,
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Song Y, Xiao L, Fu J, Huang W, Wang Q, Zhang X, Yang S. Increased expression of the pluripotency markers sex-determining region Y-box 2 and Nanog homeobox in ovarian endometriosis. Reprod Biol Endocrinol 2014; 12:42. [PMID: 24884521 PMCID: PMC4031377 DOI: 10.1186/1477-7827-12-42] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/03/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The precise etiology of endometriosis is not fully understood; the involvement of stem cells theory is a new hypothesis. Related studies mainly focus on stemness-related genes, and pluripotency markers may play a role in the etiology of endometriosis. We aimed to analyze the transcription pluripotency factors sex-determining region Y-box 2 (SOX2), Nanog homeobox (NANOG), and octamer-binding protein 4 (OCT4) in the endometrium of reproductive-age women with and without ovarian endometriosis. METHODS We recruited 26 women with laparoscopy-diagnosed ovarian endometriosis (endometriosis group) and 16 disease-free women (control group) to the study. Endometrial and endometriotic samples were collected. SOX2, NANOG, and OCT4 expression were analyzed with quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry. RESULTS Compared to the control group, SOX2 mRNA and protein expression was significantly higher in the eutopic endometrium of participants in the endometriosis group. In the endometriosis group, SOX2 and NANOG mRNA and protein expression were significantly increased in ectopic endometrium compared with eutopic endometrium; there was a trend towards lower OCT4 mRNA expression and higher OCT4 protein expression in ectopic endometrium. CONCLUSIONS The transcription pluripotency factors SOX2 and NANOG were overexpression in ovarian endometriosis, their role in pathogenesis of endometriosis should be further studied.
Collapse
Affiliation(s)
- Yong Song
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Jing Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Qiushi Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Xianghui Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Shiyuan Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, Sichuan, P. R. China
| |
Collapse
|
111
|
Wang J, Cai X, Xia L, Zhou J, Xin J, Liu M, Shang X, Liu J, Li X, Chen Z, Nie Y, Fan D. Decreased expression of FOXJ1 is a potential prognostic predictor for progression and poor survival of gastric cancer. Ann Surg Oncol 2014; 22:685-92. [PMID: 24809300 DOI: 10.1245/s10434-014-3742-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND FOXJ1 is a member of the forkhead transcription factor family, which has been mostly studied for its role in the development of ciliated epithelium and immunology. However, the role of FOXJ1 in tumorigenesis remains largely unknown or even conflicting. We thus investigated FOXJ1 expression in gastric cancer and analyzed its correlations with tumor progression and prognosis. METHODS The expression of FOXJ1 was detected by immunohistochemistry in 105 gastric cancer samples and adjacent noncancerous tissues. Staining evaluation was conducted to assess clinicopathological parameters and the survival rate. In addition, the relation between FOXJ1 and metastasis was investigated in another 40 pairs of primary lesions and corresponding lymph node metastases. Furthermore, cell proliferation, migration, and invasion were confirmed in vitro. RESULTS Decreased FOXJ1 expression was significantly correlated with clinic stage, lymph node metastasis, and distant metastasis, and lower FOXJ1 expression independently predicted shorter survival time in gastric carcinoma. Moreover, the positive incidence of FOXJ1 decreased significantly in metastatic lymph nodes compared with that in the primary lesions. Consistently, FOXJ1 overexpression significantly weakened cell proliferation, motility, migration, and invasion, while FOXJ1 knockdown induced the opposite effects. CONCLUSIONS Decreased expression of FOXJ1 is an independent prognostic predictor for gastric cancer and is critical to disease progression. FOXJ1 may be an attractive therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
The chemosensitivity of testicular germ cell tumors. Cell Oncol (Dordr) 2014; 37:79-94. [PMID: 24692098 DOI: 10.1007/s13402-014-0168-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2014] [Indexed: 12/13/2022] Open
Abstract
Although rare cancers overall, testicular germ cell tumors (TGCTs) are the most common type of cancer in young males below 40 years of age. Both subtypes of TGCTs, i.e., seminomas and non-seminomas, are highly curable and the majority of even metastatic patients may expect to be cured. These high cure rates are not due to the indolent nature of these cancers, but rather to their sensitivity to chemotherapy (and for seminomas to radiotherapy). The delineation of the cause of chemosensitivity at the molecular level is of paramount importance, because it may provide insights into the minority of TGCTs that are chemo-resistant and, thereby, provide opportunities for specific therapeutic interventions aimed at reverting them to chemosensitivity. In addition, delineation of the molecular basis of TGCT chemo-sensitivity may be informative for the cause of chemo-resistance of other more common types of cancer and, thus, may create new therapeutic leads. p53, a frequently mutated tumor suppressor in cancers in general, is not mutated in TGCTs, a fact that has implications for their chemo-sensitivity. Oct4, an embryonic transcription factor, is uniformly expressed in the seminoma and embryonic carcinoma components of non-seminomas, and its interplay with p53 may be important in the chemotherapy response of these tumors. This interplay, together with other features of TGCTs such as the gain of genetic material from the short arm of chromosome 12 and the association with disorders of testicular development, will be discussed in this paper and integrated in a unifying hypothesis that may explain their chemo-sensitivity.
Collapse
|
113
|
Liu B, Badeaux MD, Choy G, Chandra D, Shen I, Jeter CR, Rycaj K, Lee CF, Person MD, Liu C, Chen Y, Shen J, Jung SY, Qin J, Tang DG. Nanog1 in NTERA-2 and recombinant NanogP8 from somatic cancer cells adopt multiple protein conformations and migrate at multiple M.W species. PLoS One 2014; 9:e90615. [PMID: 24598770 PMCID: PMC3944193 DOI: 10.1371/journal.pone.0090615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 01/29/2014] [Indexed: 12/12/2022] Open
Abstract
Human Nanog1 is a 305-amino acid (aa) homeodomain-containing transcription factor critical for the pluripotency of embryonic stem (ES) and embryonal carcinoma (EC) cells. Somatic cancer cells predominantly express a retrogene homolog of Nanog1 called NanogP8, which is ∼99% similar to Nanog at the aa level. Although the predicted M.W of Nanog1/NanogP8 is ∼35 kD, both have been reported to migrate, on Western blotting (WB), at apparent molecular masses of 29–80 kD. Whether all these reported protein bands represent authentic Nanog proteins is unclear. Furthermore, detailed biochemical studies on Nanog1/NanogpP8 have been lacking. By combining WB using 8 anti-Nanog1 antibodies, immunoprecipitation, mass spectrometry, and studies using recombinant proteins, here we provide direct evidence that the Nanog1 protein in NTERA-2 EC cells exists as multiple M.W species from ∼22 kD to 100 kD with a major 42 kD band detectable on WB. We then demonstrate that recombinant NanogP8 (rNanogP8) proteins made in bacteria using cDNAs from multiple cancer cells also migrate, on denaturing SDS-PAGE, at ∼28 kD to 180 kD. Interestingly, different anti-Nanog1 antibodies exhibit differential reactivity towards rNanogP8 proteins, which can spontaneously form high M.W protein species. Finally, we show that most long-term cultured cancer cell lines seem to express very low levels of or different endogenous NanogP8 protein that cannot be readily detected by immunoprecipitation. Altogether, the current study reveals unique biochemical properties of Nanog1 in EC cells and NanogP8 in somatic cancer cells.
Collapse
Affiliation(s)
- Bigang Liu
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Mark D. Badeaux
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Grace Choy
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Dhyan Chandra
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Irvin Shen
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Collene R. Jeter
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Kiera Rycaj
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Chia-Fang Lee
- College of Pharmacy, University of Texas, Austin, Texas, United States of America
| | - Maria D. Person
- College of Pharmacy, University of Texas, Austin, Texas, United States of America
| | - Can Liu
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Yueping Chen
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Jianjun Shen
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jun Qin
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dean G. Tang
- Department of Molecular Carcinogenesis, University of Texas M.D Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
114
|
Iv Santaliz-Ruiz LE, Xie X, Old M, Teknos TN, Pan Q. Emerging role of nanog in tumorigenesis and cancer stem cells. Int J Cancer 2014; 135:2741-8. [PMID: 24375318 DOI: 10.1002/ijc.28690] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022]
Abstract
Nanog is a transcription factor that is well-established as a key regulator of embryonic stem cell (ESC) maintenance. Recent evidence demonstrates that Nanog is dysregulated and intimately involved in promoting tumorigenesis in part through regulation of the cancer stem cell (CSC) population. Elevated Nanog is associated with poorer outcome in numerous epithelial malignancies. Nanog is enriched in CSCs and ablation of Nanog is sufficient to reduce the CSC pool. Nanog has also been implicated to promote chemoresistance and epithelial-mesenchymal transition (EMT). Insight into the Nanog signaling cascade, upstream regulators and downstream effectors, is beginning to emerge but remains to be fully elucidated. This review highlights the current literature on the emerging role of Nanog in tumorigenesis and CSCs.
Collapse
Affiliation(s)
- Luis E Iv Santaliz-Ruiz
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH; Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | | | | | | |
Collapse
|
115
|
Esselen KM, Ng SK, Hua Y, White M, Jimenez CA, Welch WR, Drapkin R, Berkowitz RS, Ng SW. Endosalpingiosis as it relates to tubal, ovarian and serous neoplastic tissues: an immunohistochemical study of tubal and Müllerian antigens. Gynecol Oncol 2013; 132:316-21. [PMID: 24333360 DOI: 10.1016/j.ygyno.2013.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The origins and clinical significance of endosalpingiosis (ES), ectopic tubal epithelium, are not well understood. These investigations aim to characterize ES as it relates to normal fallopian tube, ovarian surface and serous neoplasms. METHODS A retrospective review of pathology reports from all prophylactic gynecologic surgeries from 2000 to 2010 was performed to assess the frequency of ES. Twenty-one archival specimens of ES, 6 normal fallopian tubes, 9 normal ovaries, 21 serous neoplasms and a commercially available ovarian tissue microarray were subjected to immunohistochemistry (IHC) with 11 tubal and Müllerian antigens. IHC staining was evaluated with a quantitative scoring system and scores were analyzed using MINITAB statistical software. RESULTS ES was noted in 3.5% of pathologic specimens from 464 prophylactic surgeries. The majority of antigens showed no significant differences (p > 0.05) in median IHC scores between ES and normal fallopian tube epithelium (nFTE), while they were significantly different (p < 0.05) from the ovarian surface epithelium (OSE). Median IHC scores were unchanged in ES tissues regardless of the location of ES or the presence of a concurrent serous neoplasm. Three antigens emerged as contemporary tubal and ES biomarkers: phospho-Smad2, BCL2 and FOXJ1. All 3 biomarkers were expressed in ES, nFTE and serous neoplasms, but not in OSE or other tumor types. CONCLUSION This study provides immunophenotypic evidence that ES is more similar to the nFTE than OSE. Further, ES biomarker expression closely resembles serous neoplasms strengthening the growing body of evidence that all Müllerian serous carcinomas arise from tubal-like epithelium.
Collapse
Affiliation(s)
- Katharine M Esselen
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shu-Kay Ng
- School of Medicine, Griffith Health Institute, Griffith University, Meadowbrook, QLD 4131, Australia
| | - Yuanyuan Hua
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Miranda White
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cynthia A Jimenez
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William R Welch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronny Drapkin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ross S Berkowitz
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shu-Wing Ng
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
116
|
Wang ML, Chiou SH, Wu CW. Targeting cancer stem cells: emerging role of Nanog transcription factor. Onco Targets Ther 2013; 6:1207-20. [PMID: 24043946 PMCID: PMC3772775 DOI: 10.2147/ott.s38114] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the therapeutic efficacy of targeting Nanog as a cancer treatment method, current animal experiments using siNanog or shNanog have shown the promising therapeutic potential of Nanog targeting in several types of cancer.
Collapse
Affiliation(s)
- Mong-Lien Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
117
|
Badeaux MA, Jeter CR, Gong S, Liu B, Suraneni MV, Rundhaug J, Fischer SM, Yang T, Kusewitt D, Tang DG. In vivo functional studies of tumor-specific retrogene NanogP8 in transgenic animals. Cell Cycle 2013; 12:2395-408. [PMID: 23839044 PMCID: PMC3841319 DOI: 10.4161/cc.25402] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The current study was undertaken to investigate potential oncogenic functions of NanogP8, a tumor-specific retrogene homolog of Nanog (expressed in pluripotent cells), in transgenic animal models. To this end, human primary prostate tumor-derived NanogP8 was targeted to the cytokeratin 14 (K14) cellular compartment, and two lines of K14-NanogP8 mice were derived. The line 1 animals, expressing high levels of NanogP8, experienced perinatal lethality and developmental abnormalities in multiple organs, including the skin, tongue, eye, and thymus in surviving animals. On postnatal day 5 transgenic skin, for example, there was increased c-Myc expression and Ki-67(+) cells accompanied by profound abnormalities in skin development such as thickened interfollicular epidermis and dermis and lack of hypodermis and sebaceous glands. The line 3 mice, expressing low levels of NanogP8, were grossly normal except cataract development by 4-6 mo of age. Surprisingly, both lines of mice do not develop spontaneous tumors related to transgene expression. Even more unexpectedly, high levels of NanogP8 expression in L1 mice actually inhibited tumor development in a two-stage chemical carcinogenesis model. Mechanistic studies revealed that constitutive NanogP8 overexpression in adult L1 mice reduced CD34(+)α6(+) and Lrig-1(+) bulge stem cells, impaired keratinocyte migration, and repressed the expression of many stem cell-associated genes, including Bmp5, Fgfr2, Jmjd1a, and Jun. Our study, for the first time, indicates that transgenically expressed human NanogP8 is biologically functional, but suggests that high levels of NanogP8 may disrupt normal developmental programs and inhibit tumor development by depleting stem cells.
Collapse
Affiliation(s)
- Mark A Badeaux
- Department of Molecular Carcinogenesis; University of Texas MD Anderson Cancer Center; Smithville, TX USA; Program in Molecular Carcinogenesis; University of Texas Graduate School of Biomedical Sciences (GSBS); Houston, TX USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Lu X, Mazur SJ, Lin T, Appella E, Xu Y. The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene 2013; 33:2655-64. [PMID: 23770853 DOI: 10.1038/onc.2013.209] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/05/2013] [Accepted: 04/15/2013] [Indexed: 12/18/2022]
Abstract
Nanog is a transcription factor required for maintaining the pluripotency of embryonic stem cells, and is not expressed in most normal adult tissues. However, recent studies have indicated that Nanog is overexpressed in many types of human cancers, including breast cancer. To elucidate the physiological roles of Nanog in tumorigenesis, we developed an inducible Nanog transgenic mouse model, in which the expression of Nanog in adult tissues can be induced via LoxP/Cre-mediated deletion. Our findings indicate that overexpression of Nanog in the mammary gland is not sufficient to induce mammary tumor. However, when coexpressed with Wnt-1 in the mouse mammary gland, it promotes mammary tumorigenesis and metastasis. In this context, Nanog promotes the migration and invasion of breast cancer cells. Microarray analysis has shown that the ectopic expression of Nanog deregulates the expression of numerous genes associated with tumorigenesis and metastasis, such as the PDGFRα gene. Our findings demonstrate the involvement of Nanog in breast cancer metastasis, and provide the basis for the reported correlation between Nanog expression and poor prognosis of human breast cancer patients. As Nanog is not expressed in most adult tissues, these findings identify Nanog as a potential therapeutic target in the treatment of Nanog-expressing metastatic breast cancer.
Collapse
Affiliation(s)
- X Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - S J Mazur
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Lin
- Center for Regenerative Medicine and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - E Appella
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Y Xu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
119
|
Yang Y, Niu CS, Cheng CD. Pin1-Nanog expression in human glioma is correlated with advanced tumor progression. Oncol Rep 2013; 30:560-6. [PMID: 23708493 PMCID: PMC3776722 DOI: 10.3892/or.2013.2481] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/24/2013] [Indexed: 11/20/2022] Open
Abstract
The stemness gene Nanog has been shown to play an important role in tumor development, including glioma. Nanog is phosphorylated at multiple Ser/Thr-Pro motifs, which promotes the interaction between Nanog and the prolyl isomerase Pin1, leading to Nanog stabilization by suppressing its ubiquitination. The present study investigated the expression and relationship of Pin1 and Nanog in human gliomas. Significantly higher mRNA and protein expression levels of Pin1 and Nanog were demonstrated in 120 glioma specimens of different pathological grades by RT-PCR, immunohistochemistry staining and western blot analysis. The relative levels of Pin1 expression, as well as Nanog expression, were significantly positively correlated with pathological grade. Moreover, a positive correlation of Pin1 and Nanog expression in human gliomas was noted. Co-localization of Pin1 and Nanog was observed in the perinuclear space in the cytoplasm of glioma cells detected by immunofluorescence staining. Significantly positive correlation between Pin1 and Nanog in gliomas indicated that Pin1 and Nanog may be related to tumorigenesis and development of glioma cells.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, PR China
| | | | | |
Collapse
|
120
|
Kwon MJ, Shin YK. Regulation of ovarian cancer stem cells or tumor-initiating cells. Int J Mol Sci 2013; 14:6624-48. [PMID: 23528891 PMCID: PMC3645658 DOI: 10.3390/ijms14046624] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells or tumor-initiating cells (CSC/TICs), which can undergo self-renewal and differentiation, are thought to play critical roles in tumorigenesis, therapy resistance, tumor recurrence and metastasis. Tumor recurrence and chemoresistance are major causes of poor survival rates of ovarian cancer patients, which may be due in part to the existence of CSC/TICs. Therefore, elucidating the molecular mechanisms responsible for the ovarian CSC/TICs is required to develop a cure for this malignancy. Recent studies have indicated that the properties of CSC/TICs can be regulated by microRNAs, genes and signaling pathways which also function in normal stem cells. Moreover, emerging evidence suggests that the tumor microenvironments surrounding CSC/TICs are crucial for the maintenance of these cells. Similarly, efforts are now being made to unravel the mechanism involved in the regulation of ovarian CSC/TICs, although much work is still needed. This review considers recent advances in identifying the genes and pathways involved in the regulation of ovarian CSC/TICs. Furthermore, current approaches targeting ovarian CSC/TICs are described. Targeting both CSC/TICs and bulk tumor cells is suggested as a more effective approach to eliminating ovarian tumors. Better understanding of the regulation of ovarian CSC/TICs might facilitate the development of improved therapeutic strategies for recurrent ovarian cancer.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
- Authors to whom correspondence should be addressed: E-Mails: (M.J.K.); (Y.K.S.); Tel.: +82-53-950-8581 (M.J.K.); +82-2-880-9126 (Y.K.S.); Fax: +82-53-950-8557 (M.J.K.); +82-2-883-9126 (Y.K.S.)
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
- Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 443-270, Korea
- Authors to whom correspondence should be addressed: E-Mails: (M.J.K.); (Y.K.S.); Tel.: +82-53-950-8581 (M.J.K.); +82-2-880-9126 (Y.K.S.); Fax: +82-53-950-8557 (M.J.K.); +82-2-883-9126 (Y.K.S.)
| |
Collapse
|
121
|
The molecular fingerprint of high grade serous ovarian cancer reflects its fallopian tube origin. Int J Mol Sci 2013; 14:6571-96. [PMID: 23528888 PMCID: PMC3645655 DOI: 10.3390/ijms14046571] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 01/06/2023] Open
Abstract
High grade serous ovarian cancer (HGSC), the most lethal and frequent type of epithelial ovarian cancer (EOC), has poor long term prognosis due to a combination of factors: late detection, great metastatic potential and the capacity to develop resistance to available therapeutic drugs. Furthermore, there has been considerable controversy concerning the etiology of this malignancy. New studies, both clinical and molecular, strongly suggest that HGSC originates not from the surface of the ovary, but from the epithelial layer of the neighboring fallopian tube fimbriae. In this paper we summarize data supporting the central role of fallopian tube epithelium in the development of HGSC. Specifically, we address cellular pathways and regulatory mechanisms which are modulated in the process of transformation, but also genetic changes which accumulate during disease progression. Similarities between fallopian tube mucosa and the malignant tissue of HGSC warrant a closer analysis of homeostatic mechanisms in healthy epithelium in order to elucidate key steps in disease development. Finally, we highlight the importance of the cancer stem cell (CSC) identification and understanding of its niche regulation for improvement of therapeutic strategies.
Collapse
|
122
|
Man YG, Stojadinovic A, Mason J, Avital I, Bilchik A, Bruecher B, Protic M, Nissan A, Izadjoo M, Zhang X, Jewett A. Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J Cancer 2013; 4:84-95. [PMID: 23386907 PMCID: PMC3564249 DOI: 10.7150/jca.5482] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022] Open
Abstract
It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.
Collapse
Affiliation(s)
- Yan-gao Man
- 1. Diagnostic and Translational Research Center, Henry Jackson Foundation, Gaithersburg, MD, USA
- 2. College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Alexander Stojadinovic
- 3. Surgical Oncology, Walter Reed National Military Medical Center, and Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jeffrey Mason
- 4. Veterans Affair Medical Center, Washington, DC, USA
| | - Itzhak Avital
- 5. Bon Secours National Cancer Institute (BSNCI), Richmond VA, USA
| | - Anton Bilchik
- 6. John Wayne Cancer Institute; California Oncology Research Institute; and, David Geffen School of Medicine, University of California, Los Angeles, USA
| | | | - Mladjan Protic
- 8. Clinic of Abdominal, Endocrine, and Transplantation Surgery, Clinical Center of Vojvodina, University of Novi Sad - Medical Faculty, Novi Sad, Serbia
| | - Aviram Nissan
- 9. The Surgical Oncology Laboratory, Department of Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Mina Izadjoo
- 1. Diagnostic and Translational Research Center, Henry Jackson Foundation, Gaithersburg, MD, USA
| | - Xichen Zhang
- 2. College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Anahid Jewett
- 10. Division of Oral Biology and Medicine, Jonsson Comprehensive Cancer Center, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
123
|
Muñoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncol 2012; 6:620-36. [PMID: 23141800 PMCID: PMC5528346 DOI: 10.1016/j.molonc.2012.10.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 02/07/2023] Open
Abstract
Current hypotheses suggest that tumors originate from cells that carry out a process of "malignant reprogramming" driven by genetic and epigenetic alterations. Multiples studies reported the existence of stem-cell-like cells that acquire the ability to self-renew and are able to generate the bulk of more differentiated cells that form the tumor. This population of cancer cells, called cancer stem cells (CSC), is responsible for sustaining the tumor growth and, under determined conditions, can disseminate and migrate to give rise to secondary tumors or metastases to distant organs. Furthermore, CSCs have shown to be more resistant to anti-tumor treatments than the non-stem cancer cells, suggesting that surviving CSCs could be responsible for tumor relapse after therapy. These important properties have raised the interest in understanding the mechanisms that govern the generation and maintenance of this special population of cells, considered to lie behind the on/off switches of gene expression patterns. In this review, we summarize the most relevant epigenetic alterations, from DNA methylation and histone modifications to the recently discovered miRNAs that contribute to the regulation of cancer stem cell features in tumor progression, metastasis and response to chemotherapy.
Collapse
Affiliation(s)
- Purificación Muñoz
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | | | | |
Collapse
|