101
|
Bhattacharya D, Scimè A. Metabolic Regulation of Epithelial to Mesenchymal Transition: Implications for Endocrine Cancer. Front Endocrinol (Lausanne) 2019; 10:773. [PMID: 31849832 PMCID: PMC6901924 DOI: 10.3389/fendo.2019.00773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
The last few decades have witnessed an outstanding advancement in our understanding of the hallmarks of endocrine cancers. This includes the epithelial to mesenchymal transition (EMT), a process that alters the morphology and functional characteristics of carcinoma cells. The mesenchymal stem cell like phenotype produced by EMT allows the dislocation of cancer cells from the primary tumor site with inheritance of motility, metastatic and invasive properties. A fundamental driver thought to initiate and propagate EMT is metabolic reprogramming that occur during these transitions. Though there remains a paucity of data regarding the alterations that occur during EMT in endocrine cancers, the contribution of deregulated metabolism is a prominent feature. This mini review focuses on metabolic reprogramming events that occur in cancer cells and in particular those of endocrine origin. It highlights the main metabolic reprogramming outcomes of EMT, encompassing glycolysis, mitochondria oxidative phosphorylation and function, glutamine and lipid metabolism. Comprehending the metabolic changes that occur during EMT will help formulate potential bioenergetic targets as therapies for endocrine cancer metastasis.
Collapse
|
102
|
Penfold L, Woods A, Muckett P, Nikitin AY, Kent TR, Zhang S, Graham R, Pollard A, Carling D. CAMKK2 Promotes Prostate Cancer Independently of AMPK via Increased Lipogenesis. Cancer Res 2018; 78:6747-6761. [PMID: 30242113 PMCID: PMC6295249 DOI: 10.1158/0008-5472.can-18-0585] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/09/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
: New targets are required for treating prostate cancer, particularly castrate-resistant disease. Previous studies reported that calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) expression is increased in human prostate cancer. Here, we show that Camkk2 deletion or pharmacologic inhibition protects against prostate cancer development in a preclinical mouse model that lacks expression of prostate-specific Pten. In contrast, deletion of AMP-activated protein kinase (Ampk) β1 resulted in earlier onset of adenocarcinoma development. These findings suggest for the first time that Camkk2 and Ampk have opposing effects in prostate cancer progression. Loss of CAMKK2 in vivo or in human prostate cancer cells reduced the expression of two key lipogenic enzymes, acetyl-CoA carboxylase and fatty acid synthase. This reduction was mediated via a posttranscriptional mechanism, potentially involving a decrease in protein translation. Moreover, either deletion of CAMKK2 or activation of AMPK reduced cell growth in human prostate cancer cells by inhibiting de novo lipogenesis. Activation of AMPK in a panel of human prostate cancer cells inhibited cell proliferation, migration, and invasion as well as androgen-receptor signaling. These findings demonstrate that CAMKK2 and AMPK have opposing effects on lipogenesis, providing a potential mechanism for their contrasting effects on prostate cancer progression in vivo. They also suggest that inhibition of CAMKK2 combined with activation of AMPK would offer an efficacious therapeutic strategy in treatment of prostate cancer. SIGNIFICANCE: These findings show that CAMKK2 and its downstream target AMPK have opposing effects on prostate cancer development and raise the possibility of a new combined therapeutic approach that inhibits CAMKK2 and activates AMPK.
Collapse
Affiliation(s)
- Lucy Penfold
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Angela Woods
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Phillip Muckett
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Alexander Yu Nikitin
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, New York
| | - Tera R Kent
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, New York
| | - Shuai Zhang
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Rebecca Graham
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Alice Pollard
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
103
|
Eidelman E, Tripathi H, Fu DX, Siddiqui MM. Linking cellular metabolism and metabolomics to risk-stratification of prostate cancer clinical aggressiveness and potential therapeutic pathways. Transl Androl Urol 2018; 7:S490-S497. [PMID: 30363493 PMCID: PMC6178321 DOI: 10.21037/tau.2018.04.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer treatment is based on the stratification of disease as low-, intermediate- or high-risk. This stratification has been largely based on anatomic pathology of the disease, as well as through the use of prostate specific antigen (PSA). However, despite this stratification, there remains heterogeneity within the current classification schema. Utilizing a metabolic approach may help to further establish novel biomolecular markers of disease aggressiveness. These markers may eventually be useful in not only the diagnosis of disease but in creating tumor specific targeted therapy for improved clinical outcomes.
Collapse
Affiliation(s)
- Eric Eidelman
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hemantkumar Tripathi
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - De-Xue Fu
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Minhaj Siddiqui
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
104
|
Poulose N, Mills IG, Steele RE. The impact of transcription on metabolism in prostate and breast cancers. Endocr Relat Cancer 2018; 25:R435-R452. [PMID: 29760165 DOI: 10.1530/erc-18-0048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Metabolic dysregulation is regarded as an important driver in cancer development and progression. The impact of transcriptional changes on metabolism has been intensively studied in hormone-dependent cancers, and in particular, in prostate and breast cancer. These cancers have strong similarities in the function of important transcriptional drivers, such as the oestrogen and androgen receptors, at the level of dietary risk and epidemiology, genetics and therapeutically. In this review, we will focus on the function of these nuclear hormone receptors and their downstream impact on metabolism, with a particular focus on lipid metabolism. We go on to discuss how lipid metabolism remains dysregulated as the cancers progress. We conclude by discussing the opportunities that this presents for drug repurposing, imaging and the development and testing of new therapeutics and treatment combinations.
Collapse
Affiliation(s)
- Ninu Poulose
- Centre for Cancer Research and Cell BiologyQueen's University of Belfast, Belfast, UK
| | - Ian G Mills
- Centre for Cancer Research and Cell BiologyQueen's University of Belfast, Belfast, UK
- Nuffield Department of Surgical SciencesJohn Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rebecca E Steele
- Centre for Cancer Research and Cell BiologyQueen's University of Belfast, Belfast, UK
| |
Collapse
|
105
|
Skvortsov S, Skvortsova II, Tang DG, Dubrovska A. Concise Review: Prostate Cancer Stem Cells: Current Understanding. Stem Cells 2018; 36:1457-1474. [PMID: 29845679 DOI: 10.1002/stem.2859] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 05/01/2018] [Indexed: 12/29/2022]
Abstract
Prostate cancer (PCa) is heterogeneous, harboring phenotypically diverse cancer cell types. PCa cell heterogeneity is caused by genomic instability that leads to the clonal competition and evolution of the cancer genome and by epigenetic mechanisms that result in subclonal cellular differentiation. The process of tumor cell differentiation is initiated from a population of prostate cancer stem cells (PCSCs) that possess many phenotypic and functional properties of normal stem cells. Since the initial reports on PCSCs in 2005, there has been much effort to elucidate their biological properties, including unique metabolic characteristics. In this Review, we discuss the current methods for PCSC enrichment and analysis, the hallmarks of PCSC metabolism, and the role of PCSCs in tumor progression. Stem Cells 2018;36:1457-1474.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
106
|
Audet-Walsh É, Vernier M, Yee T, Laflamme C, Li S, Chen Y, Giguère V. SREBF1 Activity Is Regulated by an AR/mTOR Nuclear Axis in Prostate Cancer. Mol Cancer Res 2018; 16:1396-1405. [PMID: 29784665 DOI: 10.1158/1541-7786.mcr-17-0410] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/21/2017] [Accepted: 05/09/2018] [Indexed: 11/16/2022]
Abstract
Reprogramming of cellular metabolism is an important feature of prostate cancer, including altered lipid metabolism. Recently, it was observed that the nuclear fraction of mTOR is essential for the androgen-mediated metabolic reprogramming of prostate cancer cells. Herein, it is demonstrated that the androgen receptor (AR) and mTOR bind to regulatory regions of sterol regulatory element-binding transcription factor 1 (SREBF1) to control its expression, whereas dual activation of these signaling pathways also promotes SREBF1 cleavage and its translocation to the nucleus. Consequently, SREBF1 recruitment to regulatory regions of its target genes is induced upon treatment with the synthetic androgen R1881, an effect abrogated upon inhibition of the mTOR signaling pathway. In turn, pharmacologic and genetic inhibition of SREBF1 activity impairs the androgen-mediated induction of the key lipogenic genes fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD1). Consistent with these observations, the expression of the SREBF1, FASN, and SCD1 genes is significantly correlated in human prostate cancer tumor clinical specimens. Functionally, blockade of SREBF1 activity reduces the androgen-driven lipid accumulation. Interestingly, decreased triglyceride accumulation observed upon SREBF1 inhibition is paralleled by an increase in mitochondrial respiration, indicating a potential rewiring of citrate metabolism in prostate cancer cells. Altogether, these data define an AR/mTOR nuclear axis, in the context of prostate cancer, as a novel pathway regulating SREBF1 activity and citrate metabolism.Implications: The finding that an AR/mTOR complex promotes SREBF1 expression and activity enhances our understanding of the metabolic adaptation necessary for prostate cancer cell growth and suggests novel therapeutic approaches to target metabolic vulnerabilities in tumors. Mol Cancer Res; 16(9); 1396-405. ©2018 AACR.
Collapse
Affiliation(s)
| | - Mathieu Vernier
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Tracey Yee
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Chloé Laflamme
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Susan Li
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada. .,Departments of Medicine and Oncology, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
107
|
PGC1α promotes cholangiocarcinoma metastasis by upregulating PDHA1 and MPC1 expression to reverse the Warburg effect. Cell Death Dis 2018; 9:466. [PMID: 29700317 PMCID: PMC5919932 DOI: 10.1038/s41419-018-0494-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
Abstract
PGC1α acts as a central regulator of mitochondrial metabolism, whose role in cancer progression has been highlighted but remains largely undefined. Especially, it is completely unknown about the effect of PGC1α on cholangiocarcinoma (CCA). Here we showed that PGC1α overexpression had no impact on CCA growth despite the decreased expression of PGC1α in CCA compared with adjacent normal tissue. Instead, PGC1α overexpression-promoted CCA metastasis both in vitro and in vivo. Mechanistically, for the first time, we illuminated that PGC1α reversed the Warburg effect by upregulating the expression of pyruvate dehydrogenase E1 alpha 1 subunit and mitochondrial pyruvate carrier 1 to increase pyruvate flux into the mitochondria for oxidation, whereas simultaneously promoting mitochondrial biogenesis and fusion to mediate the metabolic switch to oxidative phosphorylation. On the one hand, enhanced mitochondrial oxidation metabolism correlated with elevated reactive oxygen species (ROS) production; on the other hand, increased PGC1α expression upregulated the expression levels of mRNA for several ROS-detoxifying enzymes. To this end, the ROS levels, which were elevated but below a critical threshold, did not inhibit CCA cells proliferation. And the moderately increased ROS facilitated metastatic dissemination of CCA cells, which can be abrogated by antioxidants. Our study suggests the potential utility of developing the PGC1α-targeted therapies or blocking PGC1α signaling axis for inhibiting CCA metastasis.
Collapse
|
108
|
Gonzalez-Menendez P, Hevia D, Alonso-Arias R, Alvarez-Artime A, Rodriguez-Garcia A, Kinet S, Gonzalez-Pola I, Taylor N, Mayo JC, Sainz RM. GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress. Redox Biol 2018; 17:112-127. [PMID: 29684818 PMCID: PMC6007175 DOI: 10.1016/j.redox.2018.03.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023] Open
Abstract
Glucose, chief metabolic support for cancer cell survival and growth, is mainly imported into cells by facilitated glucose transporters (GLUTs). The increase in glucose uptake along with tumor progression is due to an increment of facilitative glucose transporters as GLUT1. GLUT1 prevents cell death of cancer cells caused by growth factors deprivation, but there is scarce information about its role on the damage caused by glucose deprivation, which usually occurs within the core of a growing tumor. In prostate cancer (PCa), GLUT1 is found in the most aggressive tumors, and it is regulated by androgens. To study the response of androgen-sensitive and insensitive PCa cells to glucose deprivation and the role of GLUT1 on survival mechanisms, androgen-sensitive LNCaP and castration-resistant LNCaP-R cells were employed. Results demonstrated that glucose deprivation induced a necrotic type of cell death which is prevented by antioxidants. Androgen-sensitive cells show a higher resistance to cell death triggered by glucose deprivation than castration-resistant cells. Glucose removal causes an increment of H2O2, an activation of androgen receptor (AR) and a stimulation of AMP-activated protein kinase activity. In addition, glucose removal increases GLUT1 production in androgen sensitive PCa cells. GLUT1 ectopic overexpression makes PCa cells more resistant to glucose deprivation and oxidative stress-induced cell death. Under glucose deprivation, GLUT1 overexpressing PCa cells sustains mitochondrial SOD2 activity, compromised after glucose removal, and significantly increases reduced glutathione (GSH). In conclusion, androgen-sensitive PCa cells are more resistant to glucose deprivation-induced cell death by a GLUT1 upregulation through an enhancement of reduced glutathione levels. Glucose deprivation carries an increase of free radicals in prostate cancer cells. The androgen receptor activation after glucose deprivation proceeds with GLUT1 overproduction. Treatment with hydrogen peroxide mimics the response to glucose deprivation. GLUT1-overexpressing prostate cancer cells are more resistant to glucose deprivation. Glutathione is more reduced in GLUT1-overexpressing cells under glucose deprivation.
Collapse
Affiliation(s)
- Pedro Gonzalez-Menendez
- Department of Morphology and Cell Biology, Redox Biology Unit. University Institute of Oncology of Asturias (IUOPA), University of Oviedo. Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain
| | - David Hevia
- Department of Morphology and Cell Biology, Redox Biology Unit. University Institute of Oncology of Asturias (IUOPA), University of Oviedo. Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Avenida de Roma, 33011 Oviedo, Spain
| | - Alejandro Alvarez-Artime
- Department of Morphology and Cell Biology, Redox Biology Unit. University Institute of Oncology of Asturias (IUOPA), University of Oviedo. Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain
| | - Aida Rodriguez-Garcia
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, Tomtebodavägen 12C, Iastkajen, 171 65 Stockholm, Sweden
| | - Sandrina Kinet
- Institut de Genetique Moleculaire de Montpellier, Centre National de la Recherche Scientifique UMR5535, Universite de Montpellier 1 et 2, F-34293 Montpellier, France; Laboratory of Excellence GR-Ex, Paris 75015, France
| | - Ivan Gonzalez-Pola
- Department of Morphology and Cell Biology, Redox Biology Unit. University Institute of Oncology of Asturias (IUOPA), University of Oviedo. Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain
| | - Naomi Taylor
- Institut de Genetique Moleculaire de Montpellier, Centre National de la Recherche Scientifique UMR5535, Universite de Montpellier 1 et 2, F-34293 Montpellier, France; Laboratory of Excellence GR-Ex, Paris 75015, France
| | - Juan C Mayo
- Department of Morphology and Cell Biology, Redox Biology Unit. University Institute of Oncology of Asturias (IUOPA), University of Oviedo. Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain.
| | - Rosa M Sainz
- Department of Morphology and Cell Biology, Redox Biology Unit. University Institute of Oncology of Asturias (IUOPA), University of Oviedo. Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain.
| |
Collapse
|
109
|
White MA, Tsouko E, Lin C, Rajapakshe K, Spencer JM, Wilkenfeld SR, Vakili SS, Pulliam TL, Awad D, Nikolos F, Katreddy RR, Kaipparettu BA, Sreekumar A, Zhang X, Cheung E, Coarfa C, Frigo DE. GLUT12 promotes prostate cancer cell growth and is regulated by androgens and CaMKK2 signaling. Endocr Relat Cancer 2018; 25:453-469. [PMID: 29431615 PMCID: PMC5831527 DOI: 10.1530/erc-17-0051] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 12/16/2022]
Abstract
Despite altered metabolism being an accepted hallmark of cancer, it is still not completely understood which signaling pathways regulate these processes. Given the central role of androgen receptor (AR) signaling in prostate cancer, we hypothesized that AR could promote prostate cancer cell growth in part through increasing glucose uptake via the expression of distinct glucose transporters. Here, we determined that AR directly increased the expression of SLC2A12, the gene that encodes the glucose transporter GLUT12. In support of these findings, gene signatures of AR activity correlated with SLC2A12 expression in multiple clinical cohorts. Functionally, GLUT12 was required for maximal androgen-mediated glucose uptake and cell growth in LNCaP and VCaP cells. Knockdown of GLUT12 also decreased the growth of C4-2, 22Rv1 and AR-negative PC-3 cells. This latter observation corresponded with a significant reduction in glucose uptake, indicating that additional signaling mechanisms could augment GLUT12 function in an AR-independent manner. Interestingly, GLUT12 trafficking to the plasma membrane was modulated by calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2)-5'-AMP-activated protein kinase (AMPK) signaling, a pathway we previously demonstrated to be a downstream effector of AR. Inhibition of CaMKK2-AMPK signaling decreased GLUT12 translocation to the plasma membrane by inhibiting the phosphorylation of TBC1D4, a known regulator of glucose transport. Further, AR increased TBC1D4 expression. Correspondingly, expression of TBC1D4 correlated with AR activity in prostate cancer patient samples. Taken together, these data demonstrate that prostate cancer cells can increase the functional levels of GLUT12 through multiple mechanisms to promote glucose uptake and subsequent cell growth.
Collapse
Affiliation(s)
- Mark A. White
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Efrosini Tsouko
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Chenchu Lin
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jeffrey M. Spencer
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sandi R. Wilkenfeld
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Sheiva S. Vakili
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Thomas L. Pulliam
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Dominik Awad
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Fotis Nikolos
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoliu Zhang
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Edwin Cheung
- Biology and Pharmacology, Genome Institute of Singapore, A*STAR, Singapore
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel E. Frigo
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
- Molecular Medicine Program, The Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
110
|
Awad D, Pulliam TL, Lin C, Wilkenfeld SR, Frigo DE. Delineation of the androgen-regulated signaling pathways in prostate cancer facilitates the development of novel therapeutic approaches. Curr Opin Pharmacol 2018; 41:1-11. [PMID: 29609138 DOI: 10.1016/j.coph.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 02/08/2023]
Abstract
Although androgen deprivation therapy (ADT) is initially effective for the treatment of progressive prostate cancer, it inevitably fails due to the onset of diverse resistance mechanisms that restore androgen receptor (AR) signaling. Thus, AR remains a desired therapeutic target even in the relapsed stages of the disease. Given the difficulties in stopping all AR reactivation mechanisms, we propose that the identification of the driver signaling events downstream of the receptor offer viable, alternative therapeutic targets. Here, we summarize recently described, AR-regulated processes that have been demonstrated to promote prostate cancer. By highlighting these signaling events and describing some of the ongoing efforts to pharmacologically modulate these pathways, our goal is to advocate potential new therapeutic targets that would represent an alternative approach for blocking AR actions.
Collapse
Affiliation(s)
- Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
111
|
Gravel SP. Deciphering the Dichotomous Effects of PGC-1α on Tumorigenesis and Metastasis. Front Oncol 2018; 8:75. [PMID: 29629336 PMCID: PMC5876244 DOI: 10.3389/fonc.2018.00075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022] Open
Abstract
Metabolic reprogramming confers cancer cells the ability to grow and survive under nutrient-depleted or stressful microenvironments. The amplification of oncogenes, the loss of tumor suppressors, as well as context- and lineage-specific determinants can converge and profoundly affect the metabolic status of cancer cells. Cumulating evidences suggest that highly glycolytic cells under the influence of oncogenes such as BRAF, or evolving in hypoxic microenvironments, will promote metastasis through modulation of multiple steps of tumorigenesis such as the epithelial-to-mesenchymal transition (EMT). On the contrary, increased reliance on mitochondrial respiration is associated with hyperplasic rather than metastatic disease. The PGC-1α transcriptional coactivator, a master regulator of mitochondrial biogenesis, has recently been shown to exert antimetastatic effects in cancer, notably through inhibition of EMT. Besides, PGC-1α has the opposite role in specific cancer subtypes, in which it appears to provide growth advantages. Thus, the regulation and role of PGC-1α in cancer is not univocal, and its use as a prognostic marker appears limited given its highly dynamic nature and its multifaceted regulation by transcriptional and posttranslational mechanisms. Herein, we expose key oncogenic and lineage-specific modules that finely regulate PGC-1α to promote or dampen the metastatic process. We propose a unifying model based on the systematic analysis of its controversial implication in cancer from cell proliferation to EMT and metastasis. This short review will provide a good understanding of current challenges associated with the study of PGC-1α.
Collapse
Affiliation(s)
- Simon-Pierre Gravel
- Laboratory of Metabolic Immunopharmacology, Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
112
|
Yu G, Cheng CJ, Lin SC, Lee YC, Frigo DE, Yu-Lee LY, Gallick GE, Titus MA, Nutt LK, Lin SH. Organelle-Derived Acetyl-CoA Promotes Prostate Cancer Cell Survival, Migration, and Metastasis via Activation of Calmodulin Kinase II. Cancer Res 2018. [PMID: 29535221 DOI: 10.1158/0008-5472.can-17-2392] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although emerging evidence suggests a potential role of calcium/calmodulin-dependent kinase II (CaMKII) in prostate cancer, its role in prostate cancer tumorigenesis is largely unknown. Here, we examine whether the acetyl CoA-CaMKII pathway, first described in frog oocytes, promotes prostate cancer tumorigenesis. In human prostate cancer specimens, metastatic prostate cancer expressed higher levels of active CaMKII compared with localized prostate cancer. Correspondingly, basal CaMKII activity was significantly higher in the more tumorigenic PC3 and PC3-mm2 cells relative to the less tumorigenic LNCaP and C4-2B4 cells. Deletion of CaMKII by CRISPR/Cas9 in PC3-mm2 cells abrogated cell survival under low-serum conditions, anchorage-independent growth and cell migration; overexpression of constitutively active CaMKII in C4-2B4 cells promoted these phenotypes. In an animal model of prostate cancer metastasis, genetic ablation of CaMKII reduced PC3-mm2 cell metastasis from the prostate to the lymph nodes. Knockdown of the acetyl-CoA transporter carnitine acetyltransferase abolished CaMKII activation, providing evidence that acetyl-CoA generated from organelles is a major activator of CaMKII. Genetic deletion of the β-oxidation rate-limiting enzyme ACOX family proteins decreased CaMKII activation, whereas overexpression of ACOXI increased CaMKII activation. Overall, our studies identify active CaMKII as a novel connection between organelle β-oxidation and acetyl-CoA transport with cell survival, migration, and prostate cancer metastasis.Significance: This study identifies a cell metabolic pathway that promotes prostate cancer metastasis and suggests prostate cancer may be susceptible to β-oxidation inhibitors. Cancer Res; 78(10); 2490-502. ©2018 AACR.
Collapse
Affiliation(s)
- Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chien-Jui Cheng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark A Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Leta K Nutt
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
113
|
Das B, Neilsen BK, Fisher KW, Gehring D, Hu Y, Volle DJ, Kim HS, McCall JL, Kelly DL, MacMillan JB, White MA, Lewis RE. A Functional Signature Ontology (FUSION) screen detects an AMPK inhibitor with selective toxicity toward human colon tumor cells. Sci Rep 2018; 8:3770. [PMID: 29491475 PMCID: PMC5830883 DOI: 10.1038/s41598-018-22090-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
AMPK is a serine threonine kinase composed of a heterotrimer of a catalytic, kinase-containing α and regulatory β and γ subunits. Here we show that individual AMPK subunit expression and requirement for survival varies across colon cancer cell lines. While AMPKα1 expression is relatively consistent across colon cancer cell lines, AMPKα1 depletion does not induce cell death. Conversely, AMPKα2 is expressed at variable levels in colon cancer cells. In high expressing SW480 and moderate expressing HCT116 colon cancer cells, siRNA-mediated depletion induces cell death. These data suggest that AMPK kinase inhibition may be a useful component of future therapeutic strategies. We used Functional Signature Ontology (FUSION) to screen a natural product library to identify compounds that were inhibitors of AMPK to test its potential for detecting small molecules with preferential toxicity toward human colon tumor cells. FUSION identified 5'-hydroxy-staurosporine, which competitively inhibits AMPK. Human colon cancer cell lines are notably more sensitive to 5'-hydroxy-staurosporine than are non-transformed human colon epithelial cells. This study serves as proof-of-concept for unbiased FUSION-based detection of small molecule inhibitors of therapeutic targets and highlights its potential to identify novel compounds for cancer therapy development.
Collapse
Affiliation(s)
- Binita Das
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Pharmacology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Beth K Neilsen
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kurt W Fisher
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Drew Gehring
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Youcai Hu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peeking Union Medical College, 1 Xian Nong Tan Street, Beijing, China
| | - Deanna J Volle
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hyun Seok Kim
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Avison Biomedical Research Center, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jamie L McCall
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - David L Kelly
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - John B MacMillan
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Michael A White
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Robert E Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
114
|
PGC1α: Friend or Foe in Cancer? Genes (Basel) 2018; 9:genes9010048. [PMID: 29361779 PMCID: PMC5793199 DOI: 10.3390/genes9010048] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
The PGC1 family (Peroxisome proliferator-activated receptor γ (PPARγ) coactivators) of transcriptional coactivators are considered master regulators of mitochondrial biogenesis and function. The PGC1α isoform is expressed especially in metabolically active tissues, such as the liver, kidneys and brain, and responds to energy-demanding situations. Given the altered and highly adaptable metabolism of tumor cells, it is of interest to investigate PGC1α in cancer. Both high and low levels of PGC1α expression have been reported to be associated with cancer and worse prognosis, and PGC1α has been attributed with oncogenic as well as tumor suppressive features. Early in carcinogenesis PGC1α may be downregulated due to a protective anticancer role, and low levels likely reflect a glycolytic phenotype. We suggest mechanisms of PGC1α downregulation and how these might be connected to the increased cancer risk that obesity is now known to entail. Later in tumor progression PGC1α is often upregulated and is reported to contribute to increased lipid and fatty acid metabolism and/or a tumor cell phenotype with an overall metabolic plasticity that likely supports drug resistance as well as metastasis. We conclude that in cancer PGC1α is neither friend nor foe, but rather the obedient servant reacting to metabolic and environmental cues to benefit the tumor cell.
Collapse
|
115
|
Peroxisome Proliferator-Activated Receptor γ and PGC-1 α in Cancer: Dual Actions as Tumor Promoter and Suppressor. PPAR Res 2018; 2018:6727421. [PMID: 29599799 PMCID: PMC5828371 DOI: 10.1155/2018/6727421] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is part of a nuclear receptor superfamily that regulates gene expression involved in cell differentiation, proliferation, immune/inflammation response, and lipid metabolism. PPARγ coactivator-1α (PGC-1α), initially identified as a PPARγ-interacting protein, is an important regulator of diverse metabolic pathways, such as oxidative metabolism and energy homeostasis. The role of PGC-1α in diabetes, neurodegeneration, and cardiovascular disease is particularly well known. PGC-1α is also now known to play important roles in cancer, independent of the role of PPARγ in cancer. Though many researchers have studied the expression and clinical implications of PPARγ and PGC-1α in cancer, there are still many controversies about the role of PPARγ and PGC-1α in cancer. This review examines and summarizes some recent data on the role and action mechanisms of PPARγ and PGC-1α in cancer, respectively, particularly the recent progress in understanding the role of PPARγ in several cancers since our review was published in 2012.
Collapse
|
116
|
Luo C, Widlund HR, Puigserver P. PGC-1 Coactivators: Shepherding the Mitochondrial Biogenesis of Tumors. Trends Cancer 2018; 2:619-631. [PMID: 28607951 DOI: 10.1016/j.trecan.2016.09.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As coordinators of energy demands and nutritional supplies, the PGC-1 family of transcriptional coactivators regulates mitochondrial biogenesis to control the cellular bioenergetic state. Aside from maintaining normal and adapted cell physiology, recent studies indicate that PGC-1 coactivators also serve important functions in cancer cells. In fact, by balancing mitochondrial energy production with demands for cell proliferation, these factors are involved in almost every step of tumorigenesis. In this review, we discuss the interplay between PGC-1 coactivators and cancer pathogenesis, including tumor initiation, metastatic spread, and response to treatment. Given their involvement in the functional biology of cancers, identification of regulatory targets that influence PGC-1 expression and activity may reveal novel strategies suitable for mono- or combinatorial cancer therapies.
Collapse
Affiliation(s)
- Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston MA 02115, USA
| | - Hans R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston MA 02115, USA
| |
Collapse
|
117
|
Targeting of stress response pathways in the prevention and treatment of cancer. Biotechnol Adv 2018; 36:583-602. [PMID: 29339119 DOI: 10.1016/j.biotechadv.2018.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The hallmarks of tumor tissue are not only genetic aberrations but also the presence of metabolic and oxidative stress as a result of hypoxia and lactic acidosis. The stress activates several prosurvival pathways including metabolic remodeling, autophagy, antioxidant response, mitohormesis, and glutaminolysis, whose upregulation in tumors is associated with a poor survival of patients, while their activation in healthy tissue with statins, metformin, physical activity, and natural compounds prevents carcinogenesis. This review emphasizes the dual role of stress response pathways in cancer and suggests the integrative understanding as a basis for the development of rational therapy targeting the stress response.
Collapse
|
118
|
Gonzalez-Menendez P, Hevia D, Mayo JC, Sainz RM. The dark side of glucose transporters in prostate cancer: Are they a new feature to characterize carcinomas? Int J Cancer 2017; 142:2414-2424. [DOI: 10.1002/ijc.31165] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Pedro Gonzalez-Menendez
- Department of Morphology and Cell Biology; Redox Biology Unit, University Institute of Oncology of Asturias (IUOPA). University of Oviedo. Facultad de Medicina.; Oviedo Spain
| | - David Hevia
- Department of Morphology and Cell Biology; Redox Biology Unit, University Institute of Oncology of Asturias (IUOPA). University of Oviedo. Facultad de Medicina.; Oviedo Spain
| | - Juan C. Mayo
- Department of Morphology and Cell Biology; Redox Biology Unit, University Institute of Oncology of Asturias (IUOPA). University of Oviedo. Facultad de Medicina.; Oviedo Spain
| | - Rosa M. Sainz
- Department of Morphology and Cell Biology; Redox Biology Unit, University Institute of Oncology of Asturias (IUOPA). University of Oviedo. Facultad de Medicina.; Oviedo Spain
| |
Collapse
|
119
|
Crosstalk between the Androgen Receptor and PPAR Gamma Signaling Pathways in the Prostate. PPAR Res 2017; 2017:9456020. [PMID: 29181019 PMCID: PMC5664321 DOI: 10.1155/2017/9456020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 01/07/2023] Open
Abstract
Nuclear receptors are a superfamily of ligand-activated transcription factors that play critical roles in the regulation of normal biological processes and several disease states. Of the nuclear receptors expressed within the prostate, the androgen receptor (AR) promotes the differentiation of prostatic epithelial cells and stimulates production of enzymes needed for liquefaction of semen. Multiple forms of AR also promote the growth of both early and late stage prostate cancers. As a result, drugs that target the AR signaling pathway are routinely used to treat patients with advanced forms of prostate cancer. Data also suggest that a second member of the nuclear receptor superfamily, the peroxisome proliferator activated receptor gamma (PPARγ), is a tumor suppressor that regulates growth of normal prostate and prostate cancers. Recent studies indicate there is a bidirectional interaction between AR and PPARγ, with each receptor influencing the expression and/or activity of the other within prostatic tissues. In this review, we examine how AR and PPARγ each regulate the growth and development of normal prostatic epithelial cells and prostate cancers. We also discuss interactions between the AR and PPARγ signaling pathways and how those interactions may influence prostate biology.
Collapse
|
120
|
Yu L, Chen X, Sun X, Wang L, Chen S. The Glycolytic Switch in Tumors: How Many Players Are Involved? J Cancer 2017; 8:3430-3440. [PMID: 29151926 PMCID: PMC5687156 DOI: 10.7150/jca.21125] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023] Open
Abstract
Reprogramming of cellular metabolism is a hallmark of cancers. Cancer cells more readily use glycolysis, an inefficient metabolic pathway for energy metabolism, even when sufficient oxygen is available. This reliance on aerobic glycolysis is called the Warburg effect, and promotes tumorigenesis and malignancy progression. The mechanisms of the glycolytic shift in tumors are not fully understood. Growing evidence demonstrates that many signal molecules, including oncogenes and tumor suppressors, are involved in the process, but how oncogenic signals attenuate mitochondrial function and promote the switch to glycolysis remains unclear. Here, we summarize the current information on several main mediators and discuss their possible mechanisms for triggering the Warburg effect.
Collapse
Affiliation(s)
- Li Yu
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xun Chen
- Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Xueqi Sun
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Liantang Wang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory for Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
121
|
Ling Z, Liu D, Zhang G, Liang Q, Xiang P, Xu Y, Han C, Tao T. miR-361-5p modulates metabolism and autophagy via the Sp1-mediated regulation of PKM2 in prostate cancer. Oncol Rep 2017; 38:1621-1628. [PMID: 29094170 DOI: 10.3892/or.2017.5852] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/05/2017] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of death among men. The dysregulation of metabolism and autophagy contributes to the progression of PCa. The transcription factor specificity protein 1 (Sp1) is implicated in the regulation of metabolism and autophagy. We confirmed that Sp1 is overexpressed in castration-resistant prostate cancer (CRPC) cells. However, the roles of Sp1 in PCa metabolism and autophagy remain unclear. Thus, in the present study, we retrieved the GSE35988 dataset from Gene Expression Omnibus (GEO) database to reinvestigate Sp1 expression and its role in PCa.We found that in PCa, Sp1 knockdown significantly inhibited cell growth, aerobic glycolysis, and hypoxia-induced autophagy, which were accompanied by an increased G1 cell cycle arrest. Pearson correlation indicated that pyruvate kinase isoenzyme type M2 (PKM2) is positively correlated with Sp1 expression. Western blot analysis demonstrated that Sp1 directly regulates PKM2; therefore, Sp1 modulates metabolism and autophagy in CRPC. Western blot analysis and luciferase reporter assay also indicated that the tumor suppressor miR-361-5p inversely regulates Sp1 by directly targeting the binding site in the 3'UTR of Sp1. miR-361-5p overexpression presented effects that are similar to Sp1 depletion in PCa. In summary, this study is the first to demonstrate that miR-361-5p suppresses the Sp1/PKM2 axis, consequently affecting the progression of PCa and the metabolism and autophagy of PCa cells. Therefore, targeting the miR-361-5p/Sp1/PKM2 pathway has considerable clinical significance in preventing the malignant progression of PCa.
Collapse
Affiliation(s)
- Zhixin Ling
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dachuang Liu
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Qing Liang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Ping Xiang
- Department of Urology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Yan Xu
- Department of Urology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Tao Tao
- Department of Urology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
122
|
Flaig TW, Salzmann-Sullivan M, Su LJ, Zhang Z, Joshi M, Gijón MA, Kim J, Arcaroli JJ, Van Bokhoven A, Lucia MS, La Rosa FG, Schlaepfer IR. Lipid catabolism inhibition sensitizes prostate cancer cells to antiandrogen blockade. Oncotarget 2017; 8:56051-56065. [PMID: 28915573 PMCID: PMC5593544 DOI: 10.18632/oncotarget.17359] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among Western men and the second leading-cause of cancer related deaths. For men who develop metastatic castration resistant PCa (mCRPC), survival is limited, making the identification of novel therapies for mCRPC critical. We have found that deficient lipid oxidation via carnitine palmitoyltransferase (CPT1) results in decreased growth and invasion, underscoring the role of lipid oxidation to fuel PCa growth. Using immunohistochemistry we have found that the CPT1A isoform is abundant in PCa compared to benign tissue (n=39, p<0.001) especially in those with high-grade tumors. Since lipid oxidation is stimulated by androgens, we have evaluated the synergistic effects of combining CPT1A inhibition and anti-androgen therapy. Mechanistically, we have found that decreased CPT1A expression is associated with decreased AKT content and activation, likely driven by a breakdown of membrane phospholipids and activation of the INPP5K phosphatase. This results in increased androgen receptor (AR) action and increased sensitivity to the anti-androgen enzalutamide. To better understand the clinical implications of these findings, we have evaluated fat oxidation inhibitors (etomoxir, ranolazine and perhexiline) in combination with enzalutamide in PCa cell models. We have observed a robust growth inhibitory effect of the combinations, including in enzalutamide-resistant cells and mouse TRAMPC1 cells, a more neuroendocrine PCa model. Lastly, using a xenograft mouse model, we have observed decreased tumor growth with a systemic combination treatment of enzalutamide and ranolazine. In conclusion, our results show that improved anti-cancer efficacy can be achieved by co-targeting the AR axis and fat oxidation via CPT1A, which may have clinical implications, especially in the mCRPC setting.
Collapse
Affiliation(s)
- Thomas W. Flaig
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maren Salzmann-Sullivan
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lih-Jen Su
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zhiyong Zhang
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miguel A. Gijón
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jihye Kim
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - John J. Arcaroli
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adrie Van Bokhoven
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - M. Scott Lucia
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Francisco G. La Rosa
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Isabel R. Schlaepfer
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
123
|
Audet-Walsh É, Dufour CR, Yee T, Zouanat FZ, Yan M, Kalloghlian G, Vernier M, Caron M, Bourque G, Scarlata E, Hamel L, Brimo F, Aprikian AG, Lapointe J, Chevalier S, Giguère V. Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer. Genes Dev 2017; 31:1228-1242. [PMID: 28724614 PMCID: PMC5558925 DOI: 10.1101/gad.299958.117] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/19/2017] [Indexed: 11/30/2022]
Abstract
Audet-Walsh et al. reveal the existence of a nuclear mTOR–androgen receptor transcriptional axis integral to the metabolic rewiring of prostate cancer cells. Androgen receptor (AR) signaling reprograms cellular metabolism to support prostate cancer (PCa) growth and survival. Another key regulator of cellular metabolism is mTOR, a kinase found in diverse protein complexes and cellular localizations, including the nucleus. However, whether nuclear mTOR plays a role in PCa progression and participates in direct transcriptional cross-talk with the AR is unknown. Here, via the intersection of gene expression, genomic, and metabolic studies, we reveal the existence of a nuclear mTOR–AR transcriptional axis integral to the metabolic rewiring of PCa cells. Androgens reprogram mTOR–chromatin associations in an AR-dependent manner in which activation of mTOR-dependent metabolic gene networks is essential for androgen-induced aerobic glycolysis and mitochondrial respiration. In models of castration-resistant PCa cells, mTOR was capable of transcriptionally regulating metabolic gene programs in the absence of androgens, highlighting a potential novel castration resistance mechanism to sustain cell metabolism even without a functional AR. Remarkably, we demonstrate that increased mTOR nuclear localization is indicative of poor prognosis in patients, with the highest levels detected in castration-resistant PCa tumors and metastases. Identification of a functional mTOR targeted multigene signature robustly discriminates between normal prostate tissues, primary tumors, and hormone refractory metastatic samples but is also predictive of cancer recurrence. This study thus underscores a paradigm shift from AR to nuclear mTOR as being the master transcriptional regulator of metabolism in PCa.
Collapse
Affiliation(s)
- Étienne Audet-Walsh
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Catherine R Dufour
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Tracey Yee
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Fatima Z Zouanat
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, Québec H4A 3J1, Canada
| | - Ming Yan
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Georges Kalloghlian
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, Québec H4A 3J1, Canada
| | - Mathieu Vernier
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Maxime Caron
- Génome Québec Innovation Centre, McGill University, Montréal, Québec H3A 0G1, Canada
| | - Guillaume Bourque
- Génome Québec Innovation Centre, McGill University, Montréal, Québec H3A 0G1, Canada.,Department of Human Genetics, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Eleonora Scarlata
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, Québec H4A 3J1, Canada
| | - Lucie Hamel
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, Québec H4A 3J1, Canada
| | - Fadi Brimo
- Department of Human Genetics, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Armen G Aprikian
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, Québec H4A 3J1, Canada.,Department of Pathology, McGill University and MUHC, Montréal, Québec H4A 3J1, Canada
| | - Jacques Lapointe
- Department of Surgery (Urology), McGill University and MUHC, Montréal, Québec H4A 3J1, Canada.,Department of Oncology, McGill University and MUHC, Montréal, Québec H4A 3J1, Canada
| | - Simone Chevalier
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, Québec H4A 3J1, Canada.,Department of Pathology, McGill University and MUHC, Montréal, Québec H4A 3J1, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Oncology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Oncology, McGill University, Montréal, Québec H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
124
|
Response Detection of Castrate-Resistant Prostate Cancer to Clinically Utilised and Novel Treatments by Monitoring Phospholipid Metabolism. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4793465. [PMID: 28717648 PMCID: PMC5498927 DOI: 10.1155/2017/4793465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022]
Abstract
Androgen receptor (AR) activation is the primary driving factor in prostate cancer which is initially responsive to castration but then becomes resistant (castration-resistant prostate cancer (CRPC)). CRPC cells still retain the functioning AR which can be targeted by other therapies. A recent promising development is the use of inhibitors (Epi-1) of protein-protein interaction to inhibit AR-activated signalling. Translating novel therapies into the clinic requires sensitive early response indicators. Here potential response markers are explored. Growth inhibition of prostate cancer cells with flutamide, paclitaxel, and Epi-1 was measured using the MTT assay. To simulate choline-PET scans, pulse-chase experiments were carried out with [3H-methyl]choline and proportion of phosphorylated activity was determined after treatment with growth inhibitory concentrations of each drug. Extracts from treated cells were also subject to 31P-NMR spectroscopy. Cells treated with flutamide demonstrated decreased [3H-methyl]choline phosphorylation, whilst the proportion of phosphorylated [3H-methyl]choline that was present in the lipid fraction was increased in Epi-1-treated cells. Phospholipid breakdown products, glycerophosphorylcholine and glycerophosphoethanolamine levels, were shown by 31P-NMR spectroscopy to be decreased to undetectable levels in cells treated with Epi-1. LNCaP cells responding to treatment with novel protein-protein interaction inhibitors suggest that 31P-NMR spectroscopy may be useful in detecting response to this promising therapy.
Collapse
|
125
|
Eidelman E, Twum-Ampofo J, Ansari J, Siddiqui MM. The Metabolic Phenotype of Prostate Cancer. Front Oncol 2017; 7:131. [PMID: 28674679 PMCID: PMC5474672 DOI: 10.3389/fonc.2017.00131] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the most common non-cutaneous cancer in men in the United States. Cancer metabolism has emerged as a contemporary topic of great interest for improved mechanistic understanding of tumorigenesis. Prostate cancer is a disease model of great interest from a metabolic perspective. Prostatic tissue exhibits unique metabolic activity under baseline conditions. Benign prostate cells accumulate zinc, and this excess zinc inhibits citrate oxidation and metabolism within the citric acid cycle, effectively resulting in citrate production. Malignant cells, however, actively oxidize citrate and resume more typical citric acid cycle function. Of further interest, prostate cancer does not exhibit the Warburg effect, an increase in glucose uptake, seen in many other cancers. These cellular metabolic differences and others are of clinical interest as they present a variety of potential therapeutic targets. Furthermore, understanding of the metabolic profile differences between benign prostate versus low- and high-grade prostate cancers also represents an avenue to better understand cancer progression and potentially develop new diagnostic testing. In this paper, we review the current state of knowledge on the metabolic phenotypes of prostate cancer.
Collapse
Affiliation(s)
- Eric Eidelman
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore MD, United States
| | - Jeffrey Twum-Ampofo
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore MD, United States
| | - Jamal Ansari
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore MD, United States
| | - Mohummad Minhaj Siddiqui
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore MD, United States.,The Veterans Health Administration Research and Development Service, Baltimore, MD, United States.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore MD, United States
| |
Collapse
|
126
|
Tonry C, Armstrong J, Pennington S. Probing the prostate tumour microenvironment II: Impact of hypoxia on a cell model of prostate cancer progression. Oncotarget 2017; 8:15307-15337. [PMID: 28410543 PMCID: PMC5362488 DOI: 10.18632/oncotarget.14574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Approximately one in six men are diagnosed with Prostate Cancer every year in the Western world. Although it can be well managed and non-life threatening in the early stages, over time many patients cease to respond to treatment and develop castrate resistant prostate cancer (CRPC). CRPC represents a clinically challenging and lethal form of prostate cancer. Progression of CRPC is, in part, driven by the ability of cancer cells to alter their metabolic profile during the course of tumourgenesis and metastasis so that they can survive in oxygen and nutrient-poor environments and even withstand treatment. This work was carried out as a continuation of a study aimed towards gaining greater mechanistic understanding of how conditions within the tumour microenvironment impact on both androgen sensitive (LNCaP) and androgen independent (LNCaP-abl and LNCaP-abl-Hof) prostate cancer cell lines. Here we have applied technically robust and reproducible label-free liquid chromatography mass spectrometry analysis for comprehensive proteomic profiling of prostate cancer cell lines under hypoxic conditions. This led to the identification of over 4,000 proteins - one of the largest protein datasets for prostate cancer cell lines established to date. The biological and clinical significance of proteins showing a significant change in expression as result of hypoxic conditions was established. Novel, intuitive workflows were subsequently implemented to enable robust, reproducible and high throughput verification of selected proteins of interest. Overall, these data suggest that this strategy supports identification of protein biomarkers of prostate cancer progression and potential therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Claire Tonry
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | | - Stephen Pennington
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
127
|
White MA, Lin C, Rajapakshe K, Dong J, Shi Y, Tsouko E, Mukhopadhyay R, Jasso D, Dawood W, Coarfa C, Frigo DE. Glutamine Transporters Are Targets of Multiple Oncogenic Signaling Pathways in Prostate Cancer. Mol Cancer Res 2017; 15:1017-1028. [PMID: 28507054 DOI: 10.1158/1541-7786.mcr-16-0480] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/11/2017] [Accepted: 05/09/2017] [Indexed: 01/07/2023]
Abstract
Despite the known importance of androgen receptor (AR) signaling in prostate cancer, the processes downstream of AR that drive disease development and progression remain poorly understood. This knowledge gap has thus limited the ability to treat cancer. Here, it is demonstrated that androgens increase the metabolism of glutamine in prostate cancer cells. This metabolism was required for maximal cell growth under conditions of serum starvation. Mechanistically, AR signaling promoted glutamine metabolism by increasing the expression of the glutamine transporters SLC1A4 and SLC1A5, genes commonly overexpressed in prostate cancer. Correspondingly, gene expression signatures of AR activity correlated with SLC1A4 and SLC1A5 mRNA levels in clinical cohorts. Interestingly, MYC, a canonical oncogene in prostate cancer and previously described master regulator of glutamine metabolism, was only a context-dependent regulator of SLC1A4 and SLC1A5 levels, being unable to regulate either transporter in PTEN wild-type cells. In contrast, rapamycin was able to decrease the androgen-mediated expression of SLC1A4 and SLC1A5 independent of PTEN status, indicating that mTOR complex 1 (mTORC1) was needed for maximal AR-mediated glutamine uptake and prostate cancer cell growth. Taken together, these data indicate that three well-established oncogenic drivers (AR, MYC, and mTOR) function by converging to collectively increase the expression of glutamine transporters, thereby promoting glutamine uptake and subsequent prostate cancer cell growth.Implications: AR, MYC, and mTOR converge to increase glutamine uptake and metabolism in prostate cancer through increasing the levels of glutamine transporters. Mol Cancer Res; 15(8); 1017-28. ©2017 AACR.
Collapse
Affiliation(s)
- Mark A White
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Chenchu Lin
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jianrong Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Yan Shi
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Efrosini Tsouko
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Ratna Mukhopadhyay
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Diana Jasso
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Wajahat Dawood
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Daniel E Frigo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas. .,Molecular Medicine Program, The Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
128
|
Li J, Zhong L, Wang F, Zhu H. Dissecting the role of AMP-activated protein kinase in human diseases. Acta Pharm Sin B 2017; 7:249-259. [PMID: 28540163 PMCID: PMC5430814 DOI: 10.1016/j.apsb.2016.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/12/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
AMP-activated protein kinase (AMPK), known as a sensor and a master of cellular energy balance, integrates various regulatory signals including anabolic and catabolic metabolic processes. Accompanying the application of genetic methods and a plethora of AMPK agonists, rapid progress has identified AMPK as an attractive therapeutic target for several human diseases, such as cancer, type 2 diabetes, atherosclerosis, myocardial ischemia/reperfusion injury and neurodegenerative disease. The role of AMPK in metabolic and energetic modulation both at the intracellular and whole body levels has been reviewed elsewhere. In the present review, we summarize and update the paradoxical role of AMPK implicated in the diseases mentioned above and put forward the challenge encountered. Thus it will be expected to provide important clues for exploring rational methods of intervention in human diseases.
Collapse
Affiliation(s)
- Jin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Liping Zhong
- Life Science College of Tarim University, Xinjiang 843300, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Corresponding author. Tel./fax: +86 10 62810295.
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing 100050, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Corresponding author at: Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China. Tel./fax: +86 10 63188106.
| |
Collapse
|
129
|
Zhang X, Han K, Yuan DH, Meng CY. Overexpression of NAD(P)H: Quinone Oxidoreductase 1 Inhibits Hepatocellular Carcinoma Cell Proliferation and Induced Apoptosis by Activating AMPK/PGC-1α Pathway. DNA Cell Biol 2017; 36:256-263. [PMID: 28191864 DOI: 10.1089/dna.2016.3588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Xin Zhang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, China
| | - Kun Han
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, China
| | - Dong-hong Yuan
- Department of Gastroenterology, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Cun-ying Meng
- Department of Gastroenterology, Affiliated Hospital of Yan'an University, Yan'an, China
| |
Collapse
|
130
|
Khan AS, Frigo DE. A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Nat Rev Urol 2017; 14:164-180. [PMID: 28169991 PMCID: PMC5672799 DOI: 10.1038/nrurol.2016.272] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 5'-AMP-activated protein kinase (AMPK) is a master regulator of cellular homeostasis. Despite AMPK's known function in physiology, its role in pathological processes such as prostate cancer is enigmatic. However, emerging evidence is now beginning to decode the paradoxical role of AMPK in cancer and, therefore, inform clinicians if - and how - AMPK could be therapeutically targeted. Spatiotemporal regulation of AMPK complexes could be one of the mechanisms that governs this kinase's role in cancer. We hypothesize that different upstream stimuli will activate select subcellular AMPK complexes. This hypothesis is supported by the distinct subcellular locations of the various AMPK subunits. Each of these unique AMPK complexes regulates discrete downstream processes that can be tumour suppressive or oncogenic. AMPK's final biological output is then determined by the weighted net function of these downstream signalling events, influenced by additional prostate-specific signalling.
Collapse
Affiliation(s)
- Ayesha S. Khan
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX USA
| | - Daniel E. Frigo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX USA
- Genomic Medicine Program, The Houston Methodist Research Institute, Houston, TX USA
| |
Collapse
|
131
|
Cutruzzolà F, Giardina G, Marani M, Macone A, Paiardini A, Rinaldo S, Paone A. Glucose Metabolism in the Progression of Prostate Cancer. Front Physiol 2017; 8:97. [PMID: 28270771 PMCID: PMC5318430 DOI: 10.3389/fphys.2017.00097] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/06/2017] [Indexed: 01/23/2023] Open
Abstract
Prostate cancer is one of the most common types of cancer in western country males but the mechanisms involved in the transformation processes have not been clearly elucidated. Alteration in cellular metabolism in cancer cells is recognized as a hallmark of malignant transformation, although it is becoming clear that the biological features of metabolic reprogramming not only differ in different cancers, but also among different cells in a type of cancer. Normal prostate epithelial cells have a peculiar and very inefficient energy metabolism as they use glucose to synthesize citrate that is secreted as part of the seminal liquid. During the transformation process, prostate cancer cells modify their energy metabolism from inefficient to highly efficient, often taking advantage of the interaction with other cell types in the tumor microenvironment that are corrupted to produce and secrete metabolic intermediates used by cancer cells in catabolic and anabolic processes. We recapitulate the metabolic transformations occurring in the prostate from the normal cell to the metastasis, highlighting the role of the microenvironment and summarizing what is known on the molecular mechanisms involved in the process.
Collapse
Affiliation(s)
- Francesca Cutruzzolà
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome Rome, Italy
| | - Marina Marani
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome Rome, Italy
| | - Alessandro Paiardini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza Università di Roma Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome Rome, Italy
| |
Collapse
|
132
|
Zhao K, Li D, Xu W, Ding J, Jiang W, Li M, Wang C, Chen X. Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. Biomaterials 2017; 116:82-94. [PMID: 27914269 DOI: 10.1016/j.biomaterials.2016.11.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/16/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022]
|
133
|
Combination of sorafenib and enzalutamide as a potential new approach for the treatment of castration-resistant prostate cancer. Cancer Lett 2017; 385:108-116. [DOI: 10.1016/j.canlet.2016.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 12/12/2022]
|
134
|
Blessing AM, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Cortes CJ, Cheung E, La Spada AR, Bast RC, Merchant FA, Coarfa C, Frigo DE. Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression. Autophagy 2016; 13:506-521. [PMID: 27977328 DOI: 10.1080/15548627.2016.1268300] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AR (androgen receptor) signaling is crucial for the development and maintenance of the prostate as well as the initiation and progression of prostate cancer. Despite the AR's central role in prostate cancer progression, it is still unclear which AR-mediated processes drive the disease. Here, we identified 4 core autophagy genes: ATG4B, ATG4D, ULK1, and ULK2, in addition to the transcription factor TFEB, a master regulator of lysosomal biogenesis and function, as transcriptional targets of AR in prostate cancer. These findings were significant in light of our recent observation that androgens promoted prostate cancer cell growth in part through the induction of autophagy. Expression of these 5 genes was essential for maximal androgen-mediated autophagy and cell proliferation. In addition, expression of each of these 5 genes alone or in combination was sufficient to increase prostate cancer cell growth independent of AR activity. Further, bioinformatic analysis demonstrated that the expression of these genes correlated with disease progression in 3 separate clinical cohorts. Collectively, these findings demonstrate a functional role for increased autophagy in prostate cancer progression, provide a mechanism for how autophagy is augmented, and highlight the potential of targeting this process for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Alicia M Blessing
- a Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry , University of Houston , Houston , TX , USA.,b Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Kimal Rajapakshe
- c Department of Molecular and Cellular Biology , Baylor College of Medicine , Houston , TX , USA
| | - Lakshmi Reddy Bollu
- d Department of Clinical Cancer Prevention , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Yan Shi
- a Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry , University of Houston , Houston , TX , USA
| | - Mark A White
- a Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry , University of Houston , Houston , TX , USA
| | - Alexander H Pham
- a Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry , University of Houston , Houston , TX , USA
| | - Chenchu Lin
- a Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry , University of Houston , Houston , TX , USA
| | - Philip Jonsson
- a Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry , University of Houston , Houston , TX , USA
| | - Constanza J Cortes
- e Departments of Cellular and Molecular Medicine , Neurosciences, and Pediatrics, Division of Biological Sciences, Institute for Genomic Medicine, Sanford Consortium for Regenerative Medicine, University of California , San Diego, La Jolla , CA , USA
| | - Edwin Cheung
- f Faculty of Health Sciences, University of Macau , Taipa , Macau , China
| | - Albert R La Spada
- e Departments of Cellular and Molecular Medicine , Neurosciences, and Pediatrics, Division of Biological Sciences, Institute for Genomic Medicine, Sanford Consortium for Regenerative Medicine, University of California , San Diego, La Jolla , CA , USA
| | - Robert C Bast
- b Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Fatima A Merchant
- g Department of Engineering Technology , University of Houston , Houston , TX , USA
| | - Cristian Coarfa
- c Department of Molecular and Cellular Biology , Baylor College of Medicine , Houston , TX , USA
| | - Daniel E Frigo
- a Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry , University of Houston , Houston , TX , USA.,h Genomic Medicine Program, The Houston Methodist Research Institute , Houston , TX , USA
| |
Collapse
|
135
|
Audet-Walsh É, Yee T, McGuirk S, Vernier M, Ouellet C, St-Pierre J, Giguère V. Androgen-Dependent Repression of ERRγ Reprograms Metabolism in Prostate Cancer. Cancer Res 2016; 77:378-389. [PMID: 27821488 DOI: 10.1158/0008-5472.can-16-1204] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/12/2016] [Accepted: 10/16/2016] [Indexed: 11/16/2022]
Abstract
How androgen signaling contributes to the oncometabolic state of prostate cancer remains unclear. Here, we show how the estrogen-related receptor γ (ERRγ) negatively controls mitochondrial respiration in prostate cancer cells. Sustained treatment of prostate cancer cells with androgens increased the activity of several metabolic pathways, including aerobic glycolysis, mitochondrial respiration, and lipid synthesis. An analysis of the intersection of gene expression, binding events, and motif analyses after androgen exposure identified a metabolic gene expression signature associated with the action of ERRγ. This metabolic state paralleled the loss of ERRγ expression. It occurred in both androgen-dependent and castration-resistant prostate cancer and was associated with cell proliferation. Clinically, we observed an inverse relationship between ERRγ expression and disease severity. These results illuminate a mechanism in which androgen-dependent repression of ERRγ reprograms prostate cancer cell metabolism to favor mitochondrial activity and cell proliferation. Furthermore, they rationalize strategies to reactivate ERRγ signaling as a generalized therapeutic approach to manage prostate cancer. Cancer Res; 77(2); 378-89. ©2016 AACR.
Collapse
Affiliation(s)
| | - Tracey Yee
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Shawn McGuirk
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Mathieu Vernier
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Carlo Ouellet
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Julie St-Pierre
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Departments of Medicine and Oncology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
136
|
Leach DA, Powell SM, Bevan CL. WOMEN IN CANCER THEMATIC REVIEW: New roles for nuclear receptors in prostate cancer. Endocr Relat Cancer 2016; 23:T85-T108. [PMID: 27645052 DOI: 10.1530/erc-16-0319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022]
Abstract
Prostate cancer has, for decades, been treated by inhibiting androgen signalling. This is effective in the majority of patients, but inevitably resistance develops and patients progress to life-threatening metastatic disease - hence the quest for new effective therapies for 'castrate-resistant' prostate cancer (CRPC). Studies into what pathways can drive tumour recurrence under these conditions has identified several other nuclear receptor signalling pathways as potential drivers or modulators of CRPC.The nuclear receptors constitute a large (48 members) superfamily of transcription factors sharing a common modular functional structure. Many of them are activated by the binding of small lipophilic molecules, making them potentially druggable. Even those for which no ligand exists or has yet been identified may be tractable to activity modulation by small molecules. Moreover, genomic studies have shown that in models of CRPC, other nuclear receptors can potentially drive similar transcriptional responses to the androgen receptor, while analysis of expression and sequencing databases shows disproportionately high mutation and copy number variation rates among the superfamily. Hence, the nuclear receptor superfamily is of intense interest in the drive to understand how prostate cancer recurs and how we may best treat such recurrent disease. This review aims to provide a snapshot of the current knowledge of the roles of different nuclear receptors in prostate cancer - a rapidly evolving field of research.
Collapse
Affiliation(s)
- Damien A Leach
- Division of CancerImperial Centre for Translational & Experimental Medicine, Imperial, College London, Hammersmith Hospital Campus, London, UK
| | - Sue M Powell
- Division of CancerImperial Centre for Translational & Experimental Medicine, Imperial, College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Division of CancerImperial Centre for Translational & Experimental Medicine, Imperial, College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
137
|
Shafi AA, Putluri V, Arnold JM, Tsouko E, Maity S, Roberts JM, Coarfa C, Frigo DE, Putluri N, Sreekumar A, Weigel NL. Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells. Oncotarget 2016; 6:31997-2012. [PMID: 26378018 PMCID: PMC4741655 DOI: 10.18632/oncotarget.5585] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/19/2015] [Indexed: 11/25/2022] Open
Abstract
Metastatic prostate cancer (PCa) is primarily an androgen-dependent disease, which is treated with androgen deprivation therapy (ADT). Tumors usually develop resistance (castration-resistant PCa [CRPC]), but remain androgen receptor (AR) dependent. Numerous mechanisms for AR-dependent resistance have been identified including expression of constitutively active AR splice variants lacking the hormone-binding domain. Recent clinical studies show that expression of the best-characterized AR variant, AR-V7, correlates with resistance to ADT and poor outcome. Whether AR-V7 is simply a constitutively active substitute for AR or has novel gene targets that cause unique downstream changes is unresolved. Several studies have shown that AR activation alters cell metabolism. Using LNCaP cells with inducible expression of AR-V7 as a model system, we found that AR-V7 stimulated growth, migration, and glycolysis measured by ECAR (extracellular acidification rate) similar to AR. However, further analyses using metabolomics and metabolic flux assays revealed several differences. Whereas AR increased citrate levels, AR-V7 reduced citrate mirroring metabolic shifts observed in CRPC patients. Flux analyses indicate that the low citrate is a result of enhanced utilization rather than a failure to synthesize citrate. Moreover, flux assays suggested that compared to AR, AR-V7 exhibits increased dependence on glutaminolysis and reductive carboxylation to produce some of the TCA (tricarboxylic acid cycle) metabolites. These findings suggest that these unique actions represent potential therapeutic targets.
Collapse
Affiliation(s)
- Ayesha A Shafi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - James M Arnold
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Efrosini Tsouko
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Suman Maity
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Justin M Roberts
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Daniel E Frigo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.,Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
138
|
Wu D, Cheung A, Wang Y, Yu S, Chan FL. The emerging roles of orphan nuclear receptors in prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1866:23-36. [PMID: 27264242 DOI: 10.1016/j.bbcan.2016.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/25/2022]
Abstract
Orphan nuclear receptors are members of the nuclear receptor (NR) superfamily and are so named because their endogenous physiological ligands are either unknown or may not exist. Because of their important regulatory roles in many key physiological processes, dysregulation of signalings controlled by these receptors is associated with many diseases including cancer. Over years, studies of orphan NRs have become an area of great interest because their specific physiological and pathological roles have not been well-defined, and some of them are promising drug targets for diseases. The recently identified synthetic small molecule ligands, acting as agonists or antagonists, to these orphan NRs not only help to understand better their functional roles but also highlight that the signalings mediated by these ligand-independent NRs in diseases could be therapeutically intervened. This review is a summary of the recent advances in elucidating the emerging functional roles of orphan NRs in cancers, especially prostate cancer. In particular, some orphan NRs, RORγ, TR2, TR4, COUP-IFII, ERRα, DAX1 and SHP, exhibit crosstalk or interference with androgen receptor (AR) signaling in either normal or malignant prostatic cells, highlighting their involvement in prostate cancer progression as androgen and AR signaling pathway play critical roles in this process. We also propose that a better understanding of the mechanism of actions of these orphan NRs in prostate gland or prostate cancer could help to evaluate their potential value as therapeutic targets for prostate cancer.
Collapse
Affiliation(s)
- Dinglan Wu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alyson Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yuliang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shan Yu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Franky L Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
139
|
Corbin JM, Ruiz-Echevarría MJ. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling. Int J Mol Sci 2016; 17:E1208. [PMID: 27472325 PMCID: PMC5000606 DOI: 10.3390/ijms17081208] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023] Open
Abstract
Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR) plays an essential role in the establishment and progression of prostate cancer (PCa), and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context.
Collapse
Affiliation(s)
- Joshua M Corbin
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Maria J Ruiz-Echevarría
- Department of Pathology, Oklahoma University Health Sciences Center and Stephenson Cancer Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
140
|
Shah S, Carriveau WJ, Li J, Campbell SL, Kopinski PK, Lim HW, Daurio N, Trefely S, Won KJ, Wallace DC, Koumenis C, Mancuso A, Wellen KE. Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism. Oncotarget 2016; 7:43713-43730. [PMID: 27248322 PMCID: PMC5190055 DOI: 10.18632/oncotarget.9666] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/08/2016] [Indexed: 01/18/2023] Open
Abstract
The androgen receptor (AR) plays a central role in prostate tumor growth. Inappropriate reactivation of the AR after androgen deprivation therapy promotes development of incurable castration-resistant prostate cancer (CRPC). In this study, we provide evidence that metabolic features of prostate cancer cells can be exploited to sensitize CRPC cells to AR antagonism. We identify a feedback loop between ATP-citrate lyase (ACLY)-dependent fatty acid synthesis, AMPK, and the AR in prostate cancer cells that could contribute to therapeutic resistance by maintaining AR levels. When combined with an AR antagonist, ACLY inhibition in CRPC cells promotes energetic stress and AMPK activation, resulting in further suppression of AR levels and target gene expression, inhibition of proliferation, and apoptosis. Supplying exogenous fatty acids can restore energetic homeostasis; however, this rescue does not occur through increased β-oxidation to support mitochondrial ATP production. Instead, concurrent inhibition of ACLY and AR may drive excess ATP consumption as cells attempt to cope with endoplasmic reticulum (ER) stress, which is prevented by fatty acid supplementation. Thus, fatty acid metabolism plays a key role in coordinating ER and energetic homeostasis in CRPC cells, thereby sustaining AR action and promoting proliferation. Consistent with a role for fatty acid metabolism in sustaining AR levels in prostate cancer in vivo, AR mRNA levels in human prostate tumors correlate positively with expression of ACLY and other fatty acid synthesis genes. The ACLY-AMPK-AR network can be exploited to sensitize CRPC cells to AR antagonism, suggesting novel therapeutic opportunities for prostate cancer.
Collapse
Affiliation(s)
- Supriya Shah
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Whitney J Carriveau
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jinyang Li
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sydney L Campbell
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Piotr K Kopinski
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Natalie Daurio
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anthony Mancuso
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
141
|
Testosterone Replacement Modulates Cardiac Metabolic Remodeling after Myocardial Infarction by Upregulating PPARα. PPAR Res 2016; 2016:4518754. [PMID: 27413362 PMCID: PMC4927959 DOI: 10.1155/2016/4518754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/17/2016] [Accepted: 05/24/2016] [Indexed: 01/04/2023] Open
Abstract
Despite the importance of testosterone as a metabolic hormone, its effects on myocardial metabolism in the ischemic heart remain unclear. Myocardial ischemia leads to metabolic remodeling, ultimately resulting in ATP deficiency and cardiac dysfunction. In the present study, the effects of testosterone replacement on the ischemic heart were assessed in a castrated rat myocardial infarction model established by ligating the left anterior descending coronary artery 2 weeks after castration. The results of real-time PCR and Western blot analyses showed that peroxisome proliferator-activated receptor α (PPARα) decreased in the ischemic myocardium of castrated rats, compared with the sham-castration group, and the mRNA expression of genes involved in fatty acid metabolism (the fatty acid translocase CD36, carnitine palmitoyltransferase I, and medium-chain acyl-CoA dehydrogenase) and glucose transporter-4 also decreased. A decline in ATP levels in the castrated rats was accompanied by increased cardiomyocyte apoptosis and fibrosis and impaired cardiac function, compared with the sham-castration group, and these detrimental effects were reversed by testosterone replacement. Taken together, our findings suggest that testosterone can modulate myocardial metabolic remodeling by upregulating PPARα after myocardial infarction, exerting a protective effect on cardiac function.
Collapse
|
142
|
Torrano V, Valcarcel-Jimenez L, Cortazar AR, Liu X, Urosevic J, Castillo-Martin M, Fernández-Ruiz S, Morciano G, Caro-Maldonado A, Guiu M, Zúñiga-García P, Graupera M, Bellmunt A, Pandya P, Lorente M, Martín-Martín N, Sutherland JD, Sanchez-Mosquera P, Bozal-Basterra L, Zabala-Letona A, Arruabarrena-Aristorena A, Berenguer A, Embade N, Ugalde-Olano A, Lacasa-Viscasillas I, Loizaga-Iriarte A, Unda-Urzaiz M, Schultz N, Aransay AM, Sanz-Moreno V, Barrio R, Velasco G, Pinton P, Cordon-Cardo C, Locasale JW, Gomis RR, Carracedo A. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol 2016; 18:645-656. [PMID: 27214280 PMCID: PMC4884178 DOI: 10.1038/ncb3357] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment.
Collapse
Affiliation(s)
- Veronica Torrano
- CIC bioGUNE, Bizkaia Technology Park, 801 bld., 48160 Derio, Bizkaia, Spain
| | | | - Ana Rosa Cortazar
- CIC bioGUNE, Bizkaia Technology Park, 801 bld., 48160 Derio, Bizkaia, Spain
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Jelena Urosevic
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain
| | - Mireia Castillo-Martin
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Fundação Champalimaud, Lisboa, Portugal
| | | | - Giampaolo Morciano
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Italy
| | | | - Marc Guiu
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain
| | | | - Mariona Graupera
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Bellmunt
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain
| | - Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Mar Lorente
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University and Instituto de Investigaciones Sanitarias San Carlos (IdISSC) 28040 Madrid, Spain
| | | | | | | | | | | | | | - Antonio Berenguer
- Biostatistics / Bioinformatics Unit, - IRB Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Nieves Embade
- CIC bioGUNE, Bizkaia Technology Park, 801 bld., 48160 Derio, Bizkaia, Spain
| | | | | | | | | | - Nikolaus Schultz
- Computational Biology, Memorial Sloan-Kettering Cancer Center, NY, 10065, USA
| | - Ana Maria Aransay
- CIC bioGUNE, Bizkaia Technology Park, 801 bld., 48160 Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, 801 bld., 48160 Derio, Bizkaia, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University and Instituto de Investigaciones Sanitarias San Carlos (IdISSC) 28040 Madrid, Spain
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Italy
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Roger R. Gomis
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, 801 bld., 48160 Derio, Bizkaia, Spain
- Ikerbasque, Basque foundation for science, 48011 Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P. O. Box 644, E-48080 Bilbao, Spain
| |
Collapse
|
143
|
Engel PA. Is age-related failure of metabolic reprogramming a principal mediator in idiopathic Parkinson's disease? Implications for treatment and inverse cancer risk. Med Hypotheses 2016; 93:154-60. [PMID: 27372878 DOI: 10.1016/j.mehy.2016.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/16/2016] [Accepted: 05/29/2016] [Indexed: 02/06/2023]
Abstract
Idiopathic Parkinson's disease (IPD) is a neurodegenerative disorder characterized by selective degeneration of the substantia nigra pars compacta (SNc), dorsal motor nucleus of the vagus and other vulnerable nervous system regions characterized by extensive axonal arborization and intense energy requirements. Systemic age-related depression of mitochondrial function, oxidative phosphorylation (OXPHOS) and depressed expression of genes supporting energy homeostasis is more severe in IPD than normal aging such that energy supply may exceed regional demand. In IPD, the overall risk of malignancy is reduced. Cancer is a collection of proliferative diseases marked by malignant transformation, dysregulated mitosis, invasion and metastasis. Many cancers demonstrate normal mitochondrial function, preserved OXPHOS, competent mechanisms of energy homeostasis, and metabolic reprogramming capacities that are lacking in IPD. Metabolic reprogramming adjusts OXPHOS and glycolytic pathways in response to changing metabolic needs. These opposite metabolic features form the basis of a two component hypothesis. First, that depressed mitochondrial function, OXPHOS deficiency and impaired metabolic reprogramming contribute to focal energy failure, neurodegeneration and disease expression in IPD. Second, that the same systemic metabolic deficits inhibit development and proliferation of malignancies in IPD. Studies of mitochondrial aging, familial PD (FPD), the lysosomal storage disorder, Gaucher's disease, Parkinson's disease cybrids, the mitochondrial cytopathies, and disease-related metabolic reprogramming both in IPD and cancer provide support for this model.
Collapse
Affiliation(s)
- Peter A Engel
- Geriatric Research, Education and Clinical Center, VA Boston Healthcare System and Harvard Medical School, USA.
| |
Collapse
|
144
|
Li H, Mohamed AA, Sharad S, Umeda E, Song Y, Young D, Petrovics G, McLeod DG, Sesterhenn IA, Sreenath T, Dobi A, Srivastava S. Silencing of PMEPA1 accelerates the growth of prostate cancer cells through AR, NEDD4 and PTEN. Oncotarget 2016; 6:15137-49. [PMID: 25883222 PMCID: PMC4558141 DOI: 10.18632/oncotarget.3526] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/09/2015] [Indexed: 12/26/2022] Open
Abstract
Androgen Receptor (AR) is the male hormone receptor and a nuclear transcription factor which plays a central role in the growth of normal and malignant prostate gland. Our earlier studies defined a mechanistic model for male hormone dependent regulation of AR protein levels in prostate cancer (CaP) cells through a negative feed-back loop between AR and PMEPA1, an androgen induced NEDD4 E3 ubiquitin ligase binding protein. This report focuses on the impact of PMEPA1 silencing on CaP biology. PMEPA1 knockdown accelerated the growth of CaP tumor cells in athymic nude mice. In cell culture models knockdown of PMEPA1 resulted in resistance to AR inhibitors enzalutamide and bicalutamide. While, AR protein down regulation by NEDD4 was PMEPA1 dependent, we also noted a PMEPA1 independent downregulation of PTEN by NEDD4. In a subset of human CaP, decreased PMEPA1 mRNA expression significantly correlated with increased levels of AR transcription target PSA, as a surrogate for elevated AR. This study highlights that silencing of PMEPA1 accelerates the growth of CaP cells through AR, NEDD4 and PTEN. Thus, the therapeutic restoration of PMEPA1 represents a promising complementary strategy correcting for AR and PTEN defects in CaP. Statement of significance: Here we define that silencing of PMEPA1 facilitates the growth of CaP cells and modulates AR through NEDD4 and PTEN. The restoration of PMEPA1 represents a promising complementary therapeutic strategy correcting for AR and PTEN defects.
Collapse
Affiliation(s)
- Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Elizabeth Umeda
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yingjie Song
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Denise Young
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - David G McLeod
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.,Urology Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | | | - Taduru Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
145
|
Tan Z, Luo X, Xiao L, Tang M, Bode AM, Dong Z, Cao Y. The Role of PGC1α in Cancer Metabolism and its Therapeutic Implications. Mol Cancer Ther 2016; 15:774-82. [DOI: 10.1158/1535-7163.mct-15-0621] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
|
146
|
Inhibition of Lipid Oxidation Increases Glucose Metabolism and Enhances 2-Deoxy-2-[(18)F]Fluoro-D-Glucose Uptake in Prostate Cancer Mouse Xenografts. Mol Imaging Biol 2016; 17:529-38. [PMID: 25561013 PMCID: PMC4493937 DOI: 10.1007/s11307-014-0814-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose Prostate cancer (PCa) is the second most common cause of cancer-related death among men in the United States. Due to the lipid-driven metabolic phenotype of PCa, imaging with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) is suboptimal, since tumors tend to have low avidity for glucose. Procedures We have used the fat oxidation inhibitor etomoxir (2-[6-(4-chlorophenoxy)-hexyl]oxirane-2-carboxylate) that targets carnitine-palmitoyl-transferase-1 (CPT-1) to increase glucose uptake in PCa cell lines. Small hairpin RNA specific for CPT1A was used to confirm the glycolytic switch induced by etomoxir in vitro. Systemic etomoxir treatment was used to enhance [18F]FDG-positron emission tomography ([18F]FDG-PET) imaging in PCa xenograft mouse models in 24 h. Results PCa cells significantly oxidize more of circulating fatty acids than benign cells via CPT-1 enzyme, and blocking this lipid oxidation resulted in activation of the Warburg effect and enhanced [18F]FDG signal in PCa mouse models. Conclusions Inhibition of lipid oxidation plays a major role in elevating glucose metabolism of PCa cells, with potential for imaging enhancement that could also be extended to other cancers. Electronic supplementary material The online version of this article (doi:10.1007/s11307-014-0814-4) contains supplementary material, which is available to authorized users.
Collapse
|
147
|
Audet-Walsh É, Papadopoli DJ, Gravel SP, Yee T, Bridon G, Caron M, Bourque G, Giguère V, St-Pierre J. The PGC-1α/ERRα Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer. Cell Rep 2016; 14:920-931. [PMID: 26804918 DOI: 10.1016/j.celrep.2015.12.086] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/02/2015] [Accepted: 12/18/2015] [Indexed: 01/18/2023] Open
Abstract
Reprogramming of cellular metabolism plays a central role in fueling malignant transformation, and AMPK and the PGC-1α/ERRα axis are key regulators of this process. The intersection of gene-expression and binding-event datasets for breast cancer cells shows that activation of AMPK significantly increases the expression of PGC-1α/ERRα and promotes the binding of ERRα to its cognate sites. Unexpectedly, the data also reveal that ERRα, in concert with PGC-1α, negatively regulates the expression of several one-carbon metabolism genes, resulting in substantial perturbations in purine biosynthesis. This PGC-1α/ERRα-mediated repression of one-carbon metabolism promotes the sensitivity of breast cancer cells and tumors to the anti-folate drug methotrexate. These data implicate the PGC-1α/ERRα axis as a core regulatory node of folate cycle metabolism and further suggest that activators of AMPK could be used to modulate this pathway in cancer.
Collapse
Affiliation(s)
- Étienne Audet-Walsh
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - David J Papadopoli
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Simon-Pierre Gravel
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - Tracey Yee
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Gaëlle Bridon
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - Maxime Caron
- McGill University and Génome Québec Innovation Centre, Montréal, QC H3A 0G1, Canada
| | - Guillaume Bourque
- McGill University and Génome Québec Innovation Centre, Montréal, QC H3A 0G1, Canada; Department of Human Genetics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Departments of Medicine and Oncology, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Julie St-Pierre
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
148
|
Abstract
The AMP-protein kinase (AMPK) pathway is very versatile as it regulates cellular energetic homeostasis in many different tissue types. An appreciation for the importance of AMPK signalling and regulation in cardiovascular and tumor biology is increasing. Recently, a link has been established between anti-cancer therapy and susceptibility to cardiac disease. It has been shown that some anti-cancer drugs lead to an increased risk of cardiac disease, underlined by de-regulation of AMPK signalling. This review explores the AMPK signalling axis in both cardiac and tumor metabolism. We then examine off-target AMPK inhibition by cancer drugs and how this may translate into increased risk of cardiovascular disease. Finally, we discuss the implication of deregulated AMPK signalling during different stages of cardiac hypertrophy. Better understanding of the molecular pathways behind pathological processes will lead to the development of more effective therapeutics for cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Yulia Lipovka
- Department of Physiology, University of Arizona, Sarver Molecular Cardiovascular Research Program, USA
| | - John P Konhilas
- Department of Physiology, University of Arizona, Sarver Molecular Cardiovascular Research Program, USA
| |
Collapse
|
149
|
Choi SYC, Xue H, Wu R, Fazli L, Lin D, Collins CC, Gleave ME, Gout PW, Wang Y. The MCT4 Gene: A Novel, Potential Target for Therapy of Advanced Prostate Cancer. Clin Cancer Res 2016; 22:2721-33. [PMID: 26755530 DOI: 10.1158/1078-0432.ccr-15-1624] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/06/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The management of castration-resistant prostate cancer (CRPC) is a major challenge in the clinic. Androgen receptor signaling-directed strategies are not curative in CRPC therapy, and new strategies targeting alternative, key cancer properties are needed. Using reprogrammed glucose metabolism (aerobic glycolysis), cancer cells typically secrete excessive amounts of lactic acid into their microenvironment, promoting cancer development, survival, and progression. Cellular lactic acid secretion is thought to be predominantly mediated by MCT4, a plasma membrane transporter protein. As such, the MCT4 gene provides a unique, potential therapeutic target for cancer. EXPERIMENTAL DESIGN A tissue microarray of various Gleason grade human prostate cancers was stained for MCT4 protein. Specific, MCT4-targeting antisense oligonucleotides (MCT4 ASO) were designed and candidate MCT4 ASOs checked for effects on (i) MCT4 expression, lactic acid secretion/content, glucose consumption, glycolytic gene expression, and proliferation of human CRPC cells and (ii) growth of PC-3 tumors in nude mice. RESULTS Elevated MCT4 expression was associated with human CRPC and an earlier time to relapse. The treatment of PC-3, DU145, and C4-2 CRPC cultures with candidate MCT4 ASOs led to marked inhibition of MCT4 expression, lactic acid secretion, to increased intracellular lactic acid levels, and markedly reduced aerobic glycolysis and cell proliferation. Treatment of PC-3 tumor-bearing nude mice with the MCT4 ASOs markedly inhibited tumor growth without inducing major host toxicity. CONCLUSIONS MCT4-targeting ASOs that inhibit lactic acid secretion may be useful for therapy of CRPC and other cancers, as they can interfere with reprogrammed energy metabolism of cancers, an emerging hallmark of cancer. Clin Cancer Res; 22(11); 2721-33. ©2016 AACR.
Collapse
Affiliation(s)
- Stephen Yiu Chuen Choi
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada. Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Hui Xue
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada. Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Dong Lin
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada. Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Colin C Collins
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E Gleave
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada. Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
150
|
Dasgupta B, Chhipa RR. Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer. Trends Pharmacol Sci 2015; 37:192-206. [PMID: 26711141 DOI: 10.1016/j.tips.2015.11.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 02/08/2023]
Abstract
AMP kinase (AMPK) is an evolutionarily conserved enzyme required for adaptive responses to various physiological and pathological conditions. AMPK executes numerous cellular functions, some of which are often perceived at odds with each other. While AMPK is essential for embryonic growth and development, its full impact in adult tissues is revealed under stressful situations that organisms face in the real world. Conflicting reports about its cellular functions, particularly in cancer, are intriguing and a growing number of AMPK activators are being developed to treat human diseases such as cancer and diabetes. Whether these drugs will have only context-specific benefits or detrimental effects in the treatment of human cancer will be a subject of intense research. Here we review the current state of AMPK research with an emphasis on cancer and discuss the yet unresolved context-dependent functions of AMPK in human cancer.
Collapse
Affiliation(s)
- Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Rishi Raj Chhipa
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|