101
|
Ding Y, Wang ZC, Zheng Y, Hu Z, Li Y, Luo DF, Wang SY. C-Myc functions as a competing endogenous RNA in acute promyelocytic leukemia. Oncotarget 2018; 7:56422-56430. [PMID: 27486764 PMCID: PMC5302924 DOI: 10.18632/oncotarget.10896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022] Open
Abstract
Recent reports have described a new post-transcriptional regulation that RNA transcripts can crosstalk with each other by competing for their common microRNAs. These RNA transcripts termed competing endogenous RNAs (ceRNAs) regulate the distribution of miRNAs on their targets. One corollary from ceRNA interaction is that chromosomal translocation in acute promyelocytic leukemia (APL) would perturb ceRNA regulation due to altered expression of 3'UTRs. In our study, we demonstrate that expression of PML/RARα, the APL-associated fusion oncogene is repressed by c-Myc mRNA transcript independent of protein-coding function but dependent upon microRNA. Attenuation of c-Myc transcript results in PML/RARα-degraded cellular phenotypes in APL cells, but these Myc reduction-associated cell phenotypes are sufficient to abrogate in a microRNA dependent manner. We also show that let-7 microRNA family members promote differentiation of All-Trans-Retinoic Acid (ATRA)-induced NB4 cells and their activities are affected by expression levels of both c-Myc and PML/RARα through altering miRNA targets. These results indicate that c-Myc mRNA represses PML/RARα expression via altering the distribution of let-7 miRNAs on their targets. Our findings reveal a previously unrecognized role of c-Myc as a potential ceRNA for PML/RARα in APL.
Collapse
Affiliation(s)
- Ye Ding
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Ze-Chuan Wang
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Yi Zheng
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Zheng Hu
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Yang Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Dong-Feng Luo
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Shao-Yuan Wang
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China.,Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| |
Collapse
|
102
|
Lin CY, Shukla A, Grady JP, Fink JL, Dray E, Duijf PHG. Translocation Breakpoints Preferentially Occur in Euchromatin and Acrocentric Chromosomes. Cancers (Basel) 2018; 10:cancers10010013. [PMID: 29316705 PMCID: PMC5789363 DOI: 10.3390/cancers10010013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/11/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Chromosomal translocations drive the development of many hematological and some solid cancers. Several factors have been identified to explain the non-random occurrence of translocation breakpoints in the genome. These include chromatin density, gene density and CCCTC-binding factor (CTCF)/cohesin binding site density. However, such factors are at least partially interdependent. Using 13,844 and 1563 karyotypes from human blood and solid cancers, respectively, our multiple regression analysis only identified chromatin density as the primary statistically significant predictor. Specifically, translocation breakpoints preferentially occur in open chromatin. Also, blood and solid tumors show markedly distinct translocation signatures. Strikingly, translocation breakpoints occur significantly more frequently in acrocentric chromosomes than in non-acrocentric chromosomes. Thus, translocations are probably often generated around nucleoli in the inner nucleoplasm, away from the nuclear envelope. Importantly, our findings remain true both in multivariate analyses and after removal of highly recurrent translocations. Finally, we applied pairwise probabilistic co-occurrence modeling. In addition to well-known highly prevalent translocations, such as those resulting in BCR-ABL1 (BCR-ABL) and RUNX1-RUNX1T1 (AML1-ETO) fusion genes, we identified significantly underrepresented translocations with putative fusion genes, which are probably subject to strong negative selection during tumor evolution. Taken together, our findings provide novel insights into the generation and selection of translocations during cancer development.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Ankit Shukla
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - John P Grady
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - J Lynn Fink
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Eloise Dray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| |
Collapse
|
103
|
Militello G, Weirick T, John D, Döring C, Dimmeler S, Uchida S. Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief Bioinform 2017; 18:780-788. [PMID: 27373735 DOI: 10.1093/bib/bbw053] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Indexed: 02/07/2023] Open
Abstract
Intensive research in past two decades has uncovered the presence and importance of noncoding RNAs (ncRNAs), which includes microRNAs (miRs) and long ncRNAs (lncRNAs). These two classes of ncRNAs interact to a certain extent, as some lncRNAs bind to miRs to sequester them. Such lncRNAs are collectively called 'competing endogenous RNAs' or 'miRNA sponges'. In this study, we screened for lncRNAs that may act as miRNA sponges using the publicly available data sets and databases. To uncover the roles of miRNA sponges, loss-of-function experiments were conducted, which revealed the biological roles as miRNA sponges. LINC00324 is important for the cell survival by binding to miR-615-5p leading to the de-repression of its target BTG2. LOC400043 controls several biological functions via sequestering miR-28-3p and miR-96-5p, thereby changing the expressions of transcriptional regulators. Finally, we also screened for circular RNAs (circRNAs) that may function as miRNA sponges. The results were negative at least for the selected circRNAs in this study. In conclusion, miRNA sponges can be identified by applying a series of bioinformatics techniques and validated with biological experiments.
Collapse
|
104
|
Wang K, Jin W, Song Y, Fei X. LncRNA RP11-436H11.5, functioning as a competitive endogenous RNA, upregulates BCL-W expression by sponging miR-335-5p and promotes proliferation and invasion in renal cell carcinoma. Mol Cancer 2017; 16:166. [PMID: 29070041 PMCID: PMC5657097 DOI: 10.1186/s12943-017-0735-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play a crucial role in tumorigenesis. Here, we report a novel lncRNA, RP11-436H11.5, that regulates renal cell carcinoma (RCC) cell proliferation and invasion by sponging miR-335-5p. METHODS Expression of lncRNA RP11-436H11.5 was determined by a qRT-PCR assay in RCC tissues. RCC cell proliferation and invasion were measured by a cell proliferation assay and a transwell invasion assay. Expression of BCL-W was detected by a western blot assay. Interactions between lncRNA RP11-436H11.5 and miR-335-5p were measured by a luciferase reporter assay and a RNA-pull down assay. In vivo experiments were used to detect tumor formation. RESULTS In this study, the qRT-PCR results illustrated that lncRNA RP11-436H11.5 was more highly expressed in RCC tissues than in adjacent normal renal tissues. The results of survival analysis indicated that patients in the high lncRNA RP11-436H11.5 group presented significantly worse outcomes compared with those in the low lncRNA RP11-436H11.5 group. Downregulation of lncRNA RP11-436H11.5 suppressed RCC cell proliferation and invasion in vitro and in vivo. Luciferase reporter assay results demonstrated that lncRNA RP11-436H11.5 enhanced BCL-W expression by regulating miR-335-5p expression. LncRNA RP11-436H11.5 could function as a miR-335-5p decoy to derepress expression of BCL-W. CONCLUSIONS LncRNA RP11-436H11.5 could function as a competing endogenous RNA to promote RCC cell proliferation and invasion, which might serve as a therapeutic application to suppress RCC progression.
Collapse
Affiliation(s)
- Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yan Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
105
|
Chen S, Liang H, Yang H, Zhou K, Xu L, Liu J, Lai B, Song L, Luo H, Peng J, Liu Z, Xiao Y, Chen W, Tang H. Long non-coding RNAs: The novel diagnostic biomarkers for leukemia. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:81-86. [PMID: 28841440 DOI: 10.1016/j.etap.2017.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 06/07/2023]
Abstract
Long non-coding RNAs (LncRNAs) are a category of non-coding RNAs (ncRNAs) with a length of 200nt-100kb lacking a significant open reading frame. The study of lncRNAs is a newly established field, due in part to their capability to act as the novel biomarkers in disease. A growing body of research shows that lncRNAs may not only useful as biomarkers for the diagnosis and clinical typing and prognosis of cancers, but also as potential targets for novel therapies. Differential expression of lncRNAs has been found in leukemia in the last two years, however, the majority of the lncRNAs described here are transcripts of unknown function and their role in leukemogenesis is still unclear. Here, we summarize the lncRNAs associated with leukemia in order to find a potential classification tool for leukemia, and a new field of research is being explored.
Collapse
Affiliation(s)
- Shaoyun Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Hui Yang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Kairu Zhou
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Longmei Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Jiaxian Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Bei Lai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Li Song
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Jianming Peng
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China.
| | - Zhidong Liu
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China.
| | - Yongmei Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
106
|
Perrotti D, Silvestri G, Stramucci L, Yu J, Trotta R. Cellular and Molecular Networks in Chronic Myeloid Leukemia: The Leukemic Stem, Progenitor and Stromal Cell Interplay. Curr Drug Targets 2017; 18:377-388. [PMID: 27307150 DOI: 10.2174/1389450117666160615074120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022]
Abstract
The use of imatinib, second and third generation ABL tyrosine kinase inhibitors (TKI) (i.e. dasatinib, nilotinib, bosutinib and ponatinib) made CML a clinically manageable and, in a small percentage of cases, a cured disease. TKI therapy also turned CML blastic transformation into a rare event; however, disease progression still occurs in those patients who are refractory, not compliant with TKI therapy or develop resistance to multiple TKIs. In the past few years, it became clear that the BCRABL1 oncogene does not operate alone to drive disease emergence, maintenance and progression. Indeed, it seems that bone marrow (BM) microenvironment-generated signals and cell autonomous BCRABL1 kinase-independent genetic and epigenetic alterations all contribute to: i. persistence of a quiescent leukemic stem cell (LSC) reservoir, ii. innate or acquired resistance to TKIs, and iii. progression into the fatal blast crisis stage. Herein, we review the intricate leukemic network in which aberrant, but finely tuned, survival, mitogenic and self-renewal signals are generated by leukemic progenitors, stromal cells, immune cells and metabolic microenvironmental conditions (e.g. hypoxia) to promote LSC maintenance and blastic transformation.
Collapse
Affiliation(s)
- Danilo Perrotti
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | | | | | | |
Collapse
|
107
|
Koschmieder S, Vetrie D. Epigenetic dysregulation in chronic myeloid leukaemia: A myriad of mechanisms and therapeutic options. Semin Cancer Biol 2017; 51:180-197. [PMID: 28778403 DOI: 10.1016/j.semcancer.2017.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023]
Abstract
The onset of global epigenetic changes in chromatin that drive tumor proliferation and heterogeneity is a hallmark of many forms of cancer. Identifying the epigenetic mechanisms that govern these changes and developing therapeutic approaches to modulate them, is a well-established avenue pursued in translational cancer medicine. Chronic myeloid leukemia (CML) arises clonally when a hematopoietic stem cell (HSC) acquires the capacity to produce the constitutively active tyrosine kinase BCR-ABL1 fusion protein which drives tumor development. Treatment with tyrosine kinase inhibitors (TKI) that target BCR-ABL1 has been transformative in CML management but it does not lead to cure in the vast majority of patients. Thus novel therapeutic approaches are required and these must target changes to biological pathways that are aberrant in CML - including those that occur when epigenetic mechanisms are altered. These changes may be due to alterations in DNA or histones, their biochemical modifications and requisite 'writer' proteins, or to dysregulation of various types of non-coding RNAs that collectively function as modulators of transcriptional control and DNA integrity. Here, we review the evidence for subverted epigenetic mechanisms in CML and how these impact on a diverse set of biological pathways, on disease progression, prognosis and drug resistance. We will also discuss recent progress towards developing epigenetic therapies that show promise to improve CML patient care and may lead to improved cure rates.
Collapse
Affiliation(s)
- Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - David Vetrie
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
108
|
Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res 2017; 77:3965-3981. [PMID: 28701486 PMCID: PMC8330958 DOI: 10.1158/0008-5472.can-16-2634] [Citation(s) in RCA: 2131] [Impact Index Per Article: 266.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
In addition to mutations or aberrant expression in the protein-coding genes, mutations and misregulation of noncoding RNAs, in particular long noncoding RNAs (lncRNA), appear to play major roles in cancer. Genome-wide association studies of tumor samples have identified a large number of lncRNAs associated with various types of cancer. Alterations in lncRNA expression and their mutations promote tumorigenesis and metastasis. LncRNAs may exhibit tumor-suppressive and -promoting (oncogenic) functions. Because of their genome-wide expression patterns in a variety of tissues and their tissue-specific expression characteristics, lncRNAs hold strong promise as novel biomarkers and therapeutic targets for cancer. In this article, we have reviewed the emerging functions and association of lncRNAs in different types of cancer and discussed their potential implications in cancer diagnosis and therapy. Cancer Res; 77(15); 3965-81. ©2017 AACR.
Collapse
Affiliation(s)
- Arunoday Bhan
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas
| | - Milad Soleimani
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas.
| |
Collapse
|
109
|
MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. Blood 2017; 130:1290-1301. [PMID: 28751524 DOI: 10.1182/blood-2016-10-697698] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematologic malignancy characterized by the uncontrolled growth of immature myeloid cells. Over the past several decades, we have learned a tremendous amount regarding the genetic aberrations that govern disease development in AML. Among these are genes that encode noncoding RNAs, including the microRNA (miRNA) family. miRNAs are evolutionarily conserved small noncoding RNAs that display important physiological effects through their posttranscriptional regulation of messenger RNA targets. Over the past decade, studies have identified miRNAs as playing a role in nearly all aspects of AML disease development, including cellular proliferation, survival, and differentiation. These observations have led to the study of miRNAs as biomarkers of disease, and efforts to therapeutically manipulate miRNAs to improve disease outcome in AML are ongoing. Although much has been learned regarding the importance of miRNAs in AML disease initiation and progression, there are many unanswered questions and emerging facets of miRNA biology that add complexity to their roles in AML. Moving forward, answers to these questions will provide a greater level of understanding of miRNA biology and critical insights into the many translational applications for these small regulatory RNAs in AML.
Collapse
|
110
|
Zhu KP, Ma XL, Zhang CL. LncRNA ODRUL Contributes to Osteosarcoma Progression through the miR-3182/MMP2 Axis. Mol Ther 2017; 25:2383-2393. [PMID: 28750740 DOI: 10.1016/j.ymthe.2017.06.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/27/2017] [Accepted: 06/29/2017] [Indexed: 11/26/2022] Open
Abstract
Recent findings have shown that lncRNA dysregulation is involved in many cancers, including osteosarcoma (OS). In a previous study, we reported a novel lncRNA, ODRUL, that could promote doxorubicin resistance in OS. We now report the function and underlying mechanism of ODRUL in regulating OS progression. We show that ODRUL is upregulated in OS tissues and cell lines and correlates with poor prognosis. ODRUL knockdown significantly inhibits OS cell proliferation, migration, invasion, and tumor growth in vitro and in vivo by decreasing matrix metalloproteinase (MMP) expression. A microarray screen combined with online database analysis showed that miR-3182 is upregulated and MMP2 is downregulated in sh-ODRUL-expressing MG63 cells and that miR-3182 harbors potential binding sites for ODRUL and the 3' UTR of MMP2 mRNA. In addition, miR-3182 expression and function are inversely correlated with ODRUL expression in vitro and in vivo. A luciferase reporter assay demonstrated that ODRUL could directly interact with miR-3182 and upregulate MMP2 expression via its competing endogenous RNA activity on miR-3182 at the posttranscriptional level. Taken together, our study has elucidated the role of oncogenic ODRUL in OS progression and may provide a new target in OS therapy.
Collapse
Affiliation(s)
- Kun-Peng Zhu
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China; Institute of Bone Tumor, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Xiao-Long Ma
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China; Institute of Bone Tumor, Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Chun-Lin Zhang
- Department of Orthopaedic Surgery, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, P.R. China; Institute of Bone Tumor, Tongji University, School of Medicine, Shanghai 200072, P.R. China.
| |
Collapse
|
111
|
Abstract
Methodological advances that allow deeper characterization of non-coding elements in the genome have started to reveal the full spectrum of deregulation in cancer. We generated an inducible cell model to track transcriptional changes after induction of a well-known leukemia-inducing fusion gene, ETV6-RUNX1. Our data revealed widespread transcriptional alterations outside coding elements in the genome. This adds to the growing list of various alterations in the non-coding genome in cancer and pinpoints their role in diseased cellular state.
Collapse
Affiliation(s)
- Susanna Teppo
- a Tampere Center for Child Health Research, Faculty of Medicine and Life Sciences , University of Tampere and Tampere University Hospital , Tampere , Finland
| | - Merja Heinäniemi
- b Institute of Biomedicine, School of Medicine , University of Eastern Finland , Kuopio , Finland
| | - Olli Lohi
- a Tampere Center for Child Health Research, Faculty of Medicine and Life Sciences , University of Tampere and Tampere University Hospital , Tampere , Finland
| |
Collapse
|
112
|
circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene 2017; 36:4551-4561. [PMID: 28368401 PMCID: PMC5558096 DOI: 10.1038/onc.2017.89] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 01/17/2023]
Abstract
Circular RNAs (circRNAs) represent a class of non-coding RNAs that are widely expressed in mammals. However, it is largely unknown about the function of human circRNAs and the roles of circRNAs in human oral squamous cell carcinomas (OSCC). Here we performed a comprehensive study of circRNAs in human OSCC using circRNA and mRNA microarrays, and identified many circRNAs that are differentially expressed between OSCC tissue and paired non-cancerous matched tissue. We further found a circRNA termed circRNA_100290 that served as a critical regulator in OSCC development. We discovered that circRNA_100290 was upregulated and co-expressed with CDK6 in OSCC tissue. Knockdown of circRNA_100290 decreased expression of CDK6 and inhibited proliferation of OSCC cell lines in vitro and in vivo. Via luciferase reporter assays, circRNA_100290 was observed to directly bind to miR-29 family members. Further EGFP/RFP reporter assays showed that CDK6 was the direct target of miR-29b. Taken together, we conclude that circRNA_100290 may function as a competing endogenous RNA to regulate CDK6 expression through sponging up miR-29b family members. Taken together, it indicates that circRNAs may exert regulatory functions in OSCC and may be a potential target for OSCC therapy.
Collapse
|
113
|
Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk. Sci Rep 2017; 7:42498. [PMID: 28195197 PMCID: PMC5307339 DOI: 10.1038/srep42498] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
The inflammatory responses of vascular endothelial cells (VECs) are critical in the development of many cardio-cerebrovascular diseases. Let-7e is an important regulator of endothelial function and inflammation. However, the effects and mechanisms of let-7e on VECs inflammation have not been studied until recently. Thus, we investigated these issues and found that in addition to proliferation, apoptosis and cell adhesion, let-7e was also implicated in the regulation of inflammatory responses through a complex network, including IκBβ and lncRNA lnc-MKI67IP-3. Let-7e promoted NF-κB activation and translocation to the nucleus by inhibiting its target gene (IκBβ) expression and subsequently increased the expression of inflammatory and adhesion molecules. Meanwhile, lnc-MKI67IP-3 acted as a sponge or competing endogenous RNA (ceRNA) for let-7e, suppressing its pro-inflammatory effects, and let-7e decreased lnc-MKI67IP-3 expression, thereby forming a positive feedback loop to aggravate inflammation. Moreover, let-7e, lnc-MKI67IP-3 and IκBβ were also abnormal in oxLDL-treated VECs and atherosclerotic plaques. The present study revealed let-7e as a pro-inflammatory mediator and a novel regulatory mechanism for the NF-κB pathway through ceRNA crosstalk, comprising let-7e and its target IκBβ and the ceRNA lnc-MKI67IP-3. Thus, this molecule might play important roles in the inflammatory responses of VECs and development of atherosclerosis.
Collapse
|
114
|
Wang X, Huang S, Chen JL. Understanding of leukemic stem cells and their clinical implications. Mol Cancer 2017; 16:2. [PMID: 28137304 PMCID: PMC5282926 DOI: 10.1186/s12943-016-0574-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Since leukemic stem cells (LSCs) or cancer stem cells (CSCs) were found in acute myeloid leukemia (AML) in 1997, extensive studies have been contributed to identification and characterization of such cell populations in various tissues. LSCs are now generally recognized as a heterogeneous cell population that possesses the capacities of self-renewal, proliferation and differentiation. It has been shown that LSCs are regulated by critical surface antigens, microenvironment, intrinsic signaling pathways, and novel molecules such as some ncRNAs. To date, significant progress has been made in understanding of LSCs, leading to the development of numerous LSCs-targeted therapies. Moreover, various novel therapeutic agents targeting LSCs are undergoing clinical trials. Here, we review current knowledge of LSCs, and discuss the potential therapies and their challenges that are being tested in clinical trials for evaluation of their effects on leukemias.
Collapse
Affiliation(s)
- Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, China. .,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
115
|
Wang Y, Cheng N, Luo J. Downregulation of lncRNA ANRIL represses tumorigenicity and enhances cisplatin-induced cytotoxicity via regulating microRNA let-7a in nasopharyngeal carcinoma. J Biochem Mol Toxicol 2017; 31. [PMID: 28117929 DOI: 10.1002/jbt.21904] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Yandan Wang
- Department of Otorhinolaryngology; Huaihe Hospital of Henan University; Kaifeng 475000 People's Republic of China
| | - Nan Cheng
- Department of Otorhinolaryngology; Huaihe Hospital of Henan University; Kaifeng 475000 People's Republic of China
| | - Junpeng Luo
- Department of Oncology; Huaihe Hospital of Henan University; Kaifeng 475000 People's Republic of China
| |
Collapse
|
116
|
Chen K, Yang J, Li J, Wang X, Chen Y, Huang S, Chen JL. eIF4B is a convergent target and critical effector of oncogenic Pim and PI3K/Akt/mTOR signaling pathways in Abl transformants. Oncotarget 2017; 7:10073-89. [PMID: 26848623 PMCID: PMC4891105 DOI: 10.18632/oncotarget.7164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/24/2016] [Indexed: 11/26/2022] Open
Abstract
Activation of eIF4B correlates with Abl-mediated cellular transformation, but the precise mechanisms are largely unknown. Here we show that eIF4B is a convergent substrate of JAK/STAT/Pim and PI3K/Akt/mTOR pathways in Abl transformants. Both pathways phosphorylated eIF4B in Abl-transformed cells, and such redundant regulation was responsible for the limited effect of single inhibitor on Abl oncogenicity. Persistent inhibition of one signaling pathway induced the activation of the other pathway and thereby restored the phosphorylation levels of eIF4B. Simultaneous inhibition of the two pathways impaired eIF4B phosphorylation more effectively, and synergistically induced apoptosis in Abl transformed cells and inhibited the growth of engrafted tumors in nude mice. Similarly, the survival of Abl transformants exhibited a higher sensitivity to the pharmacological inhibition, when combined with the shRNA-based silence of the other pathway. Interestingly, such synergy was dependent on the phosphorylation status of eIF4B on Ser422, as overexpression of eIF4B phosphomimetic mutant S422E in the transformants greatly attenuated the synergistic effects of these inhibitors on Abl oncogenicity. In contrast, eIF4B knockdown sensitized Abl transformants to undergo apoptosis induced by the combined blockage. Collectively, the results indicate that eIF4B integrates the signals from Pim and PI3K/Akt/mTOR pathways in Abl-expressing leukemic cells, and is a promising therapeutic target for such cancers.
Collapse
Affiliation(s)
- Ke Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Jianling Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jianning Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
117
|
An Y, Furber KL, Ji S. Pseudogenes regulate parental gene expression via ceRNA network. J Cell Mol Med 2017; 21:185-192. [PMID: 27561207 PMCID: PMC5192809 DOI: 10.1111/jcmm.12952] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022] Open
Abstract
The concept of competitive endogenous RNA (ceRNA) was first proposed by Salmena and colleagues. Evidence suggests that pseudogene RNAs can act as a 'sponge' through competitive binding of common miRNA, releasing or attenuating repression through sequestering miRNAs away from parental mRNA. In theory, ceRNAs refer to all transcripts such as mRNA, tRNA, rRNA, long non-coding RNA, pseudogene RNA and circular RNA, because all of them may become the targets of miRNA depending on spatiotemporal situation. As binding of miRNA to the target RNA is not 100% complementary, it is possible that one miRNA can bind to multiple target RNAs and vice versa. All RNAs crosstalk through competitively binding to miRNAvia miRNA response elements (MREs) contained within the RNA sequences, thus forming a complex regulatory network. The ratio of a subset of miRNAs to the corresponding number of MREs determines repression strength on a given mRNA translation or stability. An increase in pseudogene RNA level can sequester miRNA and release repression on the parental gene, leading to an increase in parental gene expression. A massive number of transcripts constitute a complicated network that regulates each other through this proposed mechanism, though some regulatory significance may be mild or even undetectable. It is possible that the regulation of gene and pseudogene expression occurring in this manor involves all RNAs bearing common MREs. In this review, we will primarily discuss how pseudogene transcripts regulate expression of parental genes via ceRNA network and biological significance of regulation.
Collapse
Affiliation(s)
- Yang An
- Department of Biochemistry and Molecular BiologyMedical SchoolHenan UniversityHenan ProvinceChina
| | - Kendra L. Furber
- College of Pharmacy and NutritionUniversity of SaskatchewanSaskatchewanSKCanada
| | - Shaoping Ji
- Department of Biochemistry and Molecular BiologyMedical SchoolHenan UniversityHenan ProvinceChina
| |
Collapse
|
118
|
Wei S, Wang K. Long noncoding RNAs: pivotal regulators in acute myeloid leukemia. Exp Hematol Oncol 2016; 5:30. [PMID: 27999732 PMCID: PMC5153810 DOI: 10.1186/s40164-016-0059-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/03/2016] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as a class of pivotal regulators of gene expression. Recent studies have shown that lncRNAs contribute to the initiation, maintenance, and development of acute myeloid leukemia (AML). In this review, we summarize the current knowledge of the lncRNAs that play critical roles in AML. We first briefly describe the characteristics of lncRNAs, and then focus on their regulatory roles in AML, including the modulation of differentiation, proliferation, cell cycle, and apoptosis. We further emphasize the action of lncRNAs during leukemogenesis by describing how they interact with RNA, protein and chromatin DNA to exert their functions. We also highlight an urgent need to investigate the mechanisms by which lncRNAs contribute to the pathogenesis of AML. Finally, we discuss the prognostic value of lncRNAs in AML patients.
Collapse
Affiliation(s)
- Shuyong Wei
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025 China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025 China ; Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
119
|
MiR-106a: Promising biomarker for cancer. Bioorg Med Chem Lett 2016; 26:5373-5377. [PMID: 27780637 DOI: 10.1016/j.bmcl.2016.10.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/23/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs), which are characterized by highly conserved and small non-coding RNAs, have been a hot spot regarding biological processes such as cellular proliferation, apoptosis and metabolism as well as cellular differentiation, signal transduction and carcinogenesis. MiRNA-106a (miR-106a), a member of the miR-17 family, has been validated to be aberrantly regulated in the diversity of tumors. The purpose of this review is supposed to deliver an intricate overview of miR-106a, including its role in cell proliferation, apoptosis, cell cycle, invasion and metastasis, involvement in drug resistance as well as its interactions with the target proteins and signaling pathways involved.
Collapse
|
120
|
Hughes JM, Legnini I, Salvatori B, Masciarelli S, Marchioni M, Fazi F, Morlando M, Bozzoni I, Fatica A. C/EBPα-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget 2016; 6:18534-44. [PMID: 26053097 PMCID: PMC4621908 DOI: 10.18632/oncotarget.4069] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/13/2015] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidences indicate that different long non-coding RNAs (lncRNAs) might play a relevant role in tumorigenesis, with their expression and function already associated to cancer development and progression. CCAAT/enhancer-binding protein-α (CEBPA) is a critical regulator of myeloid differentiation whose inactivation contributes to the development of acute myeloid leukemia (AML). Mutations in C/EBPα occur in around 10% of AML cases, leading to the expression of a 30-kDa dominant negative isoform (C/EBPα-p30). In this study, we identified the oncogenic urothelial carcinoma associated 1 (UCA1) lncRNA as a novel target of the C/EBPα-p30. We show that wild-type C/EBPα and C/EBPα-p30 isoform can bind the UCA1 promoter but have opposite effects on UCA1 expression. While wild-type C/EBPα represses, C/EBPα-p30 can induce UCA1 transcription. Notably, we also show that UCA1 expression increases in cytogenetically normal AML cases carrying biallelic CEBPA mutations. Furthermore, we demonstrate that UCA1 sustains proliferation of AML cells by repressing the expression of the cell cycle regulator p27kip1. Thus, we identified, for the first time, an oncogenic lncRNA functioning in concert with the dominant negative isoform of C/EBPα in AML.
Collapse
Affiliation(s)
- James M Hughes
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Ivano Legnini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Beatrice Salvatori
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.,Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Marcella Marchioni
- Institute of Biology, Molecular Medicine and Nanobiotechnology, CNR, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Mariangela Morlando
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.,Institute of Biology, Molecular Medicine and Nanobiotechnology, CNR, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.,Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
121
|
Li J, Tian H, Yang J, Gong Z. Long Noncoding RNAs Regulate Cell Growth, Proliferation, and Apoptosis. DNA Cell Biol 2016; 35:459-70. [PMID: 27213978 DOI: 10.1089/dna.2015.3187] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The revolutionary findings in nonprotein-coding part of human genome analysis have revealed a large number of RNA transcripts longer than 200 nucleotides that lack coding protein function, termed long noncoding RNAs (lncRNAs). Recently, accumulating shreds of evidence suggest that lncRNAs are widely distributed in human genome and deeply involved in cellular activities such as cell growth, proliferation, and apoptosis. Generally, lncRNAs regulate cell behaviors by targeting cell cycle-associated cyclins, cyclin-dependent kinases (CDKs), and/or CDK inhibitors. Specifically, lncRNAs serve as scaffolds or guides for chromatin-modifying complexes and act as signals in response to DNA damage. In addition, lncRNAs function as protein decoys and microRNA decoys, as well as interveners in cell division by modulating oncogenes and/or tumor suppressors. In this review, we mainly focus on the current understanding of the molecular mechanisms, how lncRNAs influence cellular processes and cancer progression. Finally, we also prospect the limitations of lncRNAs in cell behaviors and the novel roles of lncRNAs in epigenetic regulations.
Collapse
Affiliation(s)
- Jingqiu Li
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine , Ningbo, China .,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine , Ningbo, China
| | - Haihua Tian
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine , Ningbo, China .,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine , Ningbo, China .,3 Department of Laboratory Medicine, Ningbo Kangning Hospital , Ningbo, China
| | - Jie Yang
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine , Ningbo, China .,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine , Ningbo, China
| | - Zhaohui Gong
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine , Ningbo, China .,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine , Ningbo, China
| |
Collapse
|
122
|
Yeh CH, Moles R, Nicot C. Clinical significance of microRNAs in chronic and acute human leukemia. Mol Cancer 2016; 15:37. [PMID: 27179712 PMCID: PMC4867976 DOI: 10.1186/s12943-016-0518-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/01/2016] [Indexed: 01/01/2023] Open
Abstract
Small non-coding microRNAs (miRNAs) are epigenetic regulators that target specific cellular mRNA to modulate gene expression patterns and cellular signaling pathways. miRNAs are involved in a wide range of biological processes and are frequently deregulated in human cancers. Numerous miRNAs promote tumorigenesis and cancer progression by enhancing tumor growth, angiogenesis, invasion and immune evasion, while others have tumor suppressive effects (Hayes, et al., Trends Mol Med 20(8): 460-9, 2014; Stahlhut and Slack, Genome Med 5 (12): 111, 2013). The expression profile of cancer miRNAs can be used to predict patient prognosis and clinical response to treatment (Bouchie, Nat Biotechnol 31(7): 577, 2013). The majority of miRNAs are intracellular localized, however circulating miRNAs have been detected in various body fluids and represent new biomarkers of solid and hematologic cancers (Fabris and Calin, Mol Oncol 10(3):503-8, 2016; Allegra, et al., Int J Oncol 41(6): 1897-912, 2012). This review describes the clinical relevance of miRNAs, lncRNAs and snoRNAs in the diagnosis, prognosis and treatment response in patients with chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML) and acute adult T-cell leukemia (ATL).
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Ramona Moles
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Christophe Nicot
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
123
|
Wang Y, Hou J, He D, Sun M, Zhang P, Yu Y, Chen Y. The Emerging Function and Mechanism of ceRNAs in Cancer. Trends Genet 2016; 32:211-224. [PMID: 26922301 PMCID: PMC4805481 DOI: 10.1016/j.tig.2016.02.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/19/2016] [Accepted: 02/02/2016] [Indexed: 01/17/2023]
Abstract
Complex diseases, such as cancer, are often associated with aberrant gene expression at both the transcriptional and post-transcriptional level. Over the past several years, competing endogenous RNAs (ceRNAs) have emerged as an important class of post-transcriptional regulators that alter gene expression through a miRNA-mediated mechanism. Recent studies in both solid tumors and hematopoietic malignancies showed that ceRNAs have significant roles in cancer pathogenesis by altering the expression of key tumorigenic or tumor-suppressive genes. Characterizing the identity, function, and mechanism of the ceRNAs will not only further our fundamental understanding of RNA-mediated cancer pathogenesis, but may also shed light on the development of new RNA-based therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiakai Hou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dandan He
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yonghao Yu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
124
|
Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death. Blood Cells Mol Dis 2016; 58:57-66. [PMID: 27067490 DOI: 10.1016/j.bcmd.2016.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 12/21/2022]
Abstract
Long noncoding RNAs (lncRNAs) interact with other RNAs, DNA and/or proteins to regulate gene expression during development. Erythropoiesis is one developmental process that is tightly controlled throughout life to ensure accurate red blood cell production and oxygen transport to tissues. Thus, homeostasis is critical and maintained by competitive outcomes of pro- and anti-apoptotic pathways. LncRNAs are expressed during blood development; however, specific functions are largely undefined. Here, a culture model of human erythropoiesis revealed that lncRNA Fas-antisense 1 (Fas-AS1 or Saf) was induced during differentiation through the activity of essential erythroid transcription factors GATA-1 and KLF1. Saf was also negatively regulated by NF-κB, where decreasing NF-κB activity levels tracked with increasing transcription of Saf. Furthermore, Saf over-expression in erythroblasts derived from CD34(+) hematopoietic stem/progenitor cells of healthy donors reduced surface levels of Fas and conferred protection against Fas-mediated cell death signals. These studies reveal a novel lncRNA-regulated mechanism that modulates a critical cell death program during human erythropoiesis.
Collapse
|
125
|
Weseslindtner L, Macheleidt I, Eischeid H, Strassl R, Hofer H, Popow-Kraupp T, Dienes HP, Holzmann H, Odenthal M. Micro RNAs mir-106a, mir-122 and mir-197 are increased in severe acute viral hepatitis with coagulopathy. Liver Int 2016; 36:353-60. [PMID: 26352910 DOI: 10.1111/liv.12961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The severity of acute viral hepatitis, which may be caused by several distinct viruses, varies among individual patients. In rare cases, severe hepatic injury with sudden loss of liver function may occur, which is clinically indicated by the occurrence of coagulopathy or encephalopathy. As the molecular mechanisms of this liver injury are largely unknown, we investigated extracellular micro RNA (miRNA) profiles in 54 patients acutely infected with one of four different hepatotropic viruses, in order to identify those miRNAs which indicate severe viral hepatitis associated with coagulopathy. METHODS First, the profile of miRNAs was extensively analysed using a microarray-based approach in highly characterized 24 patients, matched in terms of sex, age and level of liver enzymes, as well as in three healthy controls. The cohort included samples from 18 patients with moderate and six individuals with severe hepatitis, indicated by abnormal prothrombin time and higher alanine aminotransferase and bilirubin levels. miRNAs found to be upregulated in severe hepatitis were then quantified by real-time PCR in the expanded cohort of 54 patients. RESULTS Comprehensive microarray-based miRNA profiling identified upregulation of mir-106a, mir-122 and mir-197 in patients with severe acute viral hepatitis with coagulopathy, as compared to patients who did not develop coagulopathy. mir-106a, mir-122 and mir-197 were then proven to be significantly upregulated in patients with severe acute viral hepatitis by quantitative real-time PCR (P < 0.01, Mann-Whitney U-test). CONCLUSIONS mir-106a, mir-122 and mir-197 could be potential markers for severe acute viral hepatitis associated with coagulopathy.
Collapse
Affiliation(s)
| | - Iris Macheleidt
- Institute for Pathology, University Hospital of Cologne, Cologne, Germany
| | - Hannah Eischeid
- Institute for Pathology, University Hospital of Cologne, Cologne, Germany
| | - Robert Strassl
- Division of Clinical Virology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Harald Hofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Theresia Popow-Kraupp
- Division of Clinical Virology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Dienes
- Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Margarete Odenthal
- Institute for Pathology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
126
|
Saleem M, Yusoff NM. Fusion genes in malignant neoplastic disorders of haematopoietic system. ACTA ACUST UNITED AC 2016; 21:501-12. [PMID: 26871368 DOI: 10.1080/10245332.2015.1106816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The new World Health Organization's (WHO) classification of haematopoietic and lymphoid tissue neoplasms incorporating the recurrent fusion genes as the defining criteria for different haematopoietic malignant phenotypes is reviewed. The recurrent fusion genes incorporated in the new WHO's classification and other chromosomal rearrangements of haematopoietic and lymphoid tissue neoplasms are reviewed. METHODOLOGY Cytokines and transcription factors in haematopoiesis and leukaemic mechanisms are described. Genetic features and clinical implications due to the encoded chimeric neoproteins causing malignant haematopoietic disorders are reviewed. RESULTS AND DISCUSSION Multiple translocation partner genes are well known for leukaemia such as MYC, MLL, RARA, ALK, and RUNX1. With the advent of more sophisticated diagnostic tools and bioinformatics algorithms, an exponential growth in fusion genes discoveries is likely to increase. CONCLUSION Demonstration of fusion genes and their specific translocation breakpoints in malignant haematological disorders are crucial for understanding the molecular pathogenesis and clinical phenotype of cancer, determining prognostic indexes and therapeutic responses, and monitoring residual disease and relapse status.
Collapse
Affiliation(s)
- Mohamed Saleem
- a Advanced Medical and Dental Institute , Universiti Sains Malaysia , Kepala Batas , Penang , Malaysia
| | - Narazah Mohd Yusoff
- a Advanced Medical and Dental Institute , Universiti Sains Malaysia , Kepala Batas , Penang , Malaysia
| |
Collapse
|
127
|
Long noncoding RNA ENST00000434223 suppressed tumor progression in non-small cell lung cancer. Tumour Biol 2016; 37:10851-60. [PMID: 26883250 DOI: 10.1007/s13277-016-4974-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/03/2016] [Indexed: 01/17/2023] Open
Abstract
In spite of the fact that the great progress has been made in the treatment of non-small cell lung cancer (NSCLC), the prognosis of NSCLC remains comparatively dismal. Therefore, it is of great value to identify novel effective diagnostic biomarkers and therapeutic targets of NSCLC. Emerging evidence has demonstrated the vital roles of long noncoding RNAs (lncRNAs) in cancer development. ENST00000434223 was recently identified as a lncRNA that is downregulated in early stage lung adenocarcinoma in a profiling study. However, little is known about its role in the development of NSCLC. In the present study, we found that ENST00000434223 was greatly downregulated in cancer tissues compared to adjacent normal tissues. ENST00000434223 overexpression suppressed the proliferation and migration in NSCLC cell lines in vitro. Moreover, ENST00000434223 overexpression reversed the epithelial-mesenchymal transition in NSCLC cell line. Our study suggests that ENST00000434223 may be a potential biomarker and a therapeutic target of NSCLC.
Collapse
|
128
|
Nair S. Current insights into the molecular systems pharmacology of lncRNA-miRNA regulatory interactions and implications in cancer translational medicine. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.2.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
129
|
Chen Z. Progress and prospects of long noncoding RNAs in lipid homeostasis. Mol Metab 2015; 5:164-170. [PMID: 26977388 PMCID: PMC4770261 DOI: 10.1016/j.molmet.2015.12.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/10/2015] [Accepted: 12/20/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are a novel group of universally present, non-coding RNAs (>200 nt) that are increasingly recognized as key regulators of many physiological and pathological processes. SCOPE OF REVIEW Recent publications have shown that lncRNAs influence lipid homeostasis by controlling lipid metabolism in the liver and by regulating adipogenesis. lncRNAs control lipid metabolism-related gene expression by either base-pairing with RNA and DNA or by binding to proteins. MAJOR CONCLUSIONS The recent advances and future prospects in understanding the roles of lncRNAs in lipid homeostasis are discussed.
Collapse
Affiliation(s)
- Zheng Chen
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China.
| |
Collapse
|
130
|
Li Y, Wang X. Role of long noncoding RNAs in malignant disease (Review). Mol Med Rep 2015; 13:1463-9. [PMID: 26708950 DOI: 10.3892/mmr.2015.4711] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/24/2015] [Indexed: 11/06/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are endogenous transcribed RNA molecules without protein-coding potential, ranging between 200 and 100,000 nt in length. LncRNAs regulate the expression of specific genes in several ways, including guiding chromatin-remodeling, and affecting splicing, transcription or translation. The mutations and dysregulation of lncRNAs have been found to be important in various human diseases, but particularly in human cancer. Previous studies have demonstrated that changes to lncRNAs are closely associated with tumorigenesis, metastasis, prognosis and diagnosis. The current review aims to present a brief overview of the associated reports of lncRNAs in malignant neoplasms, including breast cancer, prostate cancer and hematological malignancies. LncRNAs may be evaluated as novel markers in disease diagnosis, and as prospective therapeutic targets for the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
131
|
Ouyang J, Hu J, Chen JL. lncRNAs regulate the innate immune response to viral infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:129-43. [PMID: 26667656 PMCID: PMC7169827 DOI: 10.1002/wrna.1321] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/14/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) are extensively expressed in mammalian cells and play a crucial role as RNA regulators in various cellular processes. Increasing data reveal that they function in innate antiviral immunity through complex mechanisms. Thousands of lncRNAs are regulated by RNA virus or DNA virus infection. The significant differential expression of lncRNAs is induced by virus or host antiviral signaling mediated by interferons (IFNs) and tumor necrosis factor‐α. In turn, these lncRNAs modulate the host immune response including the pathogen recognition receptor (PRR)‐related signaling, the translocation and activation of transcription factors, the production of IFNs and cytokines, the IFN‐activated JAK‐STAT signaling and the transcription of antiviral IFN‐stimulated genes (ISGs). Using gain‐ or loss‐of‐function analysis, the effect of lncRNAs on viral replication has been investigated to elucidate the essential role of lncRNA in the host–virus interaction. lncRNAs have shown specifically elevated or decreased levels in patients with viral diseases, suggesting the possibility of clinical application as biomarkers. Here we review the current advances of viral infection‐associated host lncRNAs, their functional significance in different aspects of antiviral immune response, the specific mechanisms and unsolved issues. We also summarize the regulation of lncRNAs by viruses, PRR agonists and cytokines. In addition, virus‐encoded lncRNAs and their functional involvement in host–virus interaction are addressed. WIREs RNA 2016, 7:129–143. doi: 10.1002/wrna.1321 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Jing Ouyang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiayue Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
132
|
Wang X, Chen K, Guo G, Chen JL. Noncoding RNAs and their functional involvement in regulation of chronic myeloid leukemia. Brief Funct Genomics 2015; 15:239-48. [PMID: 26647283 DOI: 10.1093/bfgp/elv059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs (ncRNAs) comprise multiple classes of transcripts that have no protein-coding ability but play critical roles as RNA regulators in various cellular processes. To date, the well-studied ncRNAs are microRNAs (miRs) that generally act as regulators of gene expression through binding to target mRNAs. Recent advances in high-throughput sequencing technologies have led to the discovery of thousands of unannotated noncoding transcripts, especially long noncoding RNAs (lncRNAs). These lncRNAs are being increasingly recognized as key regulators in diverse biological processes via a variety of mechanisms. Aberrant expression of miRs and lncRNAs has been shown to be associated with many human diseases and cancers. Increasing ncRNAs have been identified as biomarkers for patient prognosis and potential therapeutic agents for cancers. Furthermore, it is worth noting that progresses have been made in understanding the functional involvement of ncRNAs in Bcr-Abl-induced chronic myeloid leukemia (CML). Here, we highlight the pathogenesis of CML, functional significance of miRs and lncRNAs in regulation of CML development and involved mechanisms underlying their action.
Collapse
|
133
|
Abstract
Recent years have witnessed the discovery of several classes of noncoding RNAs (ncRNAs), which are indispensable for the regulation of cellular processes. Many of these RNAs are regulatory in nature with functions in gene expression regulation such as piwi-interacting RNAs, small interfering RNAs and micro RNAs. Long noncoding RNAs (lncRNAs) comprise the most recently characterized class. LncRNAs are involved in transcriptional regulation, chromatin remodeling, imprinting, splicing, and translation, among other critical functions in the cell. Recent studies have elucidated the importance of lncRNAs in hematopoietic development. Dysregulation of lncRNA expression is a feature of various diseases and cancers, and is also seen in hematopoietic malignancies. This article focuses on lncRNAs that have been implicated in the pathogenesis of hematopoietic malignancies.
Collapse
Affiliation(s)
- Norma I Rodríguez-Malavé
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles
| | - Dinesh S Rao
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, University of California Los Angeles, Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, University of California Los Angeles
| |
Collapse
|
134
|
Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b. Oncogene 2015; 35:3647-57. [PMID: 26549028 PMCID: PMC4947634 DOI: 10.1038/onc.2015.430] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/10/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) play important regulatory roles in a variety of diseases, including many tumors. However, the functional roles of these transcripts and mechanisms responsible for their deregulation in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly understood. In this study, we discovered that lncRNA MIR31HG is markedly upregulated in PDAC. Knockdown of MIR31HG significantly suppressed PDAC cell growth, induced apoptosis and G1/S arrest, and inhibited invasion, whereas enhanced expression of MIR31HG had the opposite effects. Online database analysis tools showed that miR-193b could target MIR31HG and we found an inverse correlation between MIR31HG and miR-193b in PDAC specimens. Inhibition of miR-193b expression significantly upregulated the MIR31HG level, while overexpression of miR-193b suppressed MIR31HG's expression and function, suggesting that MIR31HG is negatively regulated by miR-193b. Moreover, using luciferase reporter and RIP assays, we provide evidence that miR-193b directly targeted MIR31HG by binding to two microRNA binding sites in the MIR31HG sequence. On the other hand, MIR31HG may act as an endogenous 'sponge' by competing for miR-193b binding to regulate the miRNA targets. Collectively, these results demonstrate that MIR31HG functions as an oncogenic lncRNA that promotes tumor progression, and miR-193b targets not only protein-coding genes but also the lncRNA, MIR31HG.
Collapse
|
135
|
Xia T, Chen S, Jiang Z, Shao Y, Jiang X, Li P, Xiao B, Guo J. Long noncoding RNA FER1L4 suppresses cancer cell growth by acting as a competing endogenous RNA and regulating PTEN expression. Sci Rep 2015; 5:13445. [PMID: 26306906 PMCID: PMC4549704 DOI: 10.1038/srep13445] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 07/31/2015] [Indexed: 01/17/2023] Open
Abstract
Aberrantly expressed long noncoding RNAs (lncRNAs) are associated with various cancers. However, the roles of lncRNAs in the pathogenesis of most cancers are unclear. Here, we report that the lncRNA FER1L4 (fer-1-like family member 4, pseudogene) acts as a competing endogenous RNA (ceRNA) to regulate the expression of PTEN (a well-known tumor suppressor gene) by taking up miR-106a-5p in gastric cancer. We observed that FER1L4 was downregulated in gastric cancer and that its level corresponded with that of PTEN mRNA. Both FER1L4 and PTEN mRNA were targets of miR-106a-5p. Further experiments demonstrated that FER1L4 downregulation liberates miR-106a-5p and decreases the abundances of PTEN mRNA and protein. More importantly, FER1L4 downregulation accelerated cell proliferation by promoting the G0/G1 to S phase transition. We conclude that one mechanism by which lncRNAs function in in tumorigenesis is as ceRNAs for tumor suppressor mRNAs.
Collapse
Affiliation(s)
- Tian Xia
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Shengcan Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Zhen Jiang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Yongfu Shao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Xiaoming Jiang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Peifei Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Bingxiu Xiao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
136
|
A pathophysiological view of the long non-coding RNA world. Oncotarget 2015; 5:10976-96. [PMID: 25428918 PMCID: PMC4294373 DOI: 10.18632/oncotarget.2770] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/14/2014] [Indexed: 12/13/2022] Open
Abstract
Because cells are constantly exposed to micro-environmental changes, they require the ability to adapt to maintain a dynamic equilibrium. Proteins are considered critical for the regulation of gene expression, which is a fundamental process in determining the cellular responses to stimuli. Recently, revolutionary findings in RNA research and the advent of high-throughput genomic technologies have revealed a pervasive transcription of the human genome, which generates many long non-coding RNAs (lncRNAs) whose roles are largely undefined. However, there is evidence that lncRNAs are involved in several cellular physiological processes such as adaptation to stresses, cell differentiation, maintenance of pluripotency and apoptosis. The correct balance of lncRNA levels is crucial for the maintenance of cellular equilibrium, and the dysregulation of lncRNA expression is linked to many disorders; certain transcripts are useful prognostic markers for some of these pathologies. This review revisits the classic concept of cellular homeostasis from the perspective of lncRNAs specifically to understand how this novel class of molecules contributes to cellular balance and how its dysregulated expression can lead to the onset of pathologies such as cancer.
Collapse
|
137
|
PU.1-Regulated Long Noncoding RNA lnc-MC Controls Human Monocyte/Macrophage Differentiation through Interaction with MicroRNA 199a-5p. Mol Cell Biol 2015; 35:3212-24. [PMID: 26149389 DOI: 10.1128/mcb.00429-15] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/26/2015] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators in mammalian development, but little is known about their roles in monocyte/macrophage differentiation. Here we identified a long noncoding monocytic RNA (lnc-MC) that exhibits increased expression during monocyte/macrophage differentiation of THP-1 and HL-60 cells as well as CD34(+) hematopoietic stem/progenitor cells (HSPCs) and is transcriptionally activated by PU.1. Gain- and loss-of-function assays demonstrate that lnc-MC promotes monocyte/macrophage differentiation of THP-1 cells and CD34(+) HSPCs. Mechanistic investigation reveals that lnc-MC acts as a competing endogenous RNA to sequester microRNA 199a-5p (miR-199a-5p) and alleviate repression on the expression of activin A receptor type 1B (ACVR1B), an important regulator of monocyte/macrophage differentiation. We also noted a repressive effect of miR-199a-5p on lnc-MC expression and function, but PU.1-dominant downregulation of miR-199a-5p weakens the role of miR-199a-5p in the reciprocal regulation between miR-199a-5p and lnc-MC. Altogether, our work demonstrates that two PU.1-regulated noncoding RNAs, lnc-MC and miR-199a-5p, have opposing roles in monocyte/macrophage differentiation and that lnc-MC facilitates the differentiation process, enhancing the effect of PU.1, by soaking up miR-199a-5p and releasing ACVR1B expression. Thus, we reveal a novel regulatory mechanism, comprising PU.1, lnc-MC, miR-199a-5p, and ACVR1B, in monocyte/macrophage differentiation.
Collapse
|
138
|
Morlando M, Ballarino M, Fatica A. Long Non-Coding RNAs: New Players in Hematopoiesis and Leukemia. Front Med (Lausanne) 2015; 2:23. [PMID: 25927065 PMCID: PMC4396502 DOI: 10.3389/fmed.2015.00023] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/27/2015] [Indexed: 01/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are important regulators of gene expression that influence almost every step in the life cycle of genes, from transcription to mRNA splicing, RNA decay, and translation. Besides their participation to normal physiology, lncRNA expression and function have been already associated to cancer development and progression. Here, we review the functional role and mechanisms of action of lncRNAs in normal hematopoiesis and how their misregulation may be implicated in the development of blood cell cancer, such as leukemia.
Collapse
Affiliation(s)
- Mariangela Morlando
- Department of Biology and Biotechnology, Sapienza University of Rome , Rome , Italy
| | - Monica Ballarino
- Department of Biology and Biotechnology, Sapienza University of Rome , Rome , Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
139
|
Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol 2015; 94 Suppl 2:S107-21. [PMID: 25814077 DOI: 10.1007/s00277-015-2325-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Chronic myeloid leukaemia (CML) is a myeloproliferative disorder arising in the haemopoietic stem cell (HSC) compartment. This disease is characterised by a reciprocal t(9;22) chromosomal translocation, resulting in the formation of the Philadelphia (Ph) chromosome containing the BCR-ABL1 gene. As such, diagnosis and monitoring of disease involves detection of BCR-ABL1. It is the BCR-ABL1 protein, in particular its constitutively active tyrosine kinase activity, that forges the pathogenesis of CML. This aberrant kinase signalling activates downstream targets that reprogram the cell to cause uncontrolled proliferation and results in myeloid hyperplasia and 'indolent' symptoms of chronic phase (CP) CML. Without successful intervention, the disease will progress into blast crisis (BC), resembling an acute leukaemia. This advanced disease stage takes on an aggressive phenotype and is almost always fatal. The cell biology of CML is also centred on BCR-ABL1. The presence of BCR-ABL1 can explain virtually all the cellular features of the leukaemia (enhanced cell growth, inhibition of apoptosis, altered cell adhesion, growth factor independence, impaired genomic surveillance and differentiation). This article provides an overview of the clinical and cell biology of CML, and highlights key findings and unanswered questions essential for understanding this disease.
Collapse
MESH Headings
- Animals
- Disease Progression
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Mutation
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Prognosis
Collapse
Affiliation(s)
- Bradley Chereda
- Departments of Genetics and Molecular Pathology, and Haematology, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, 5000, Australia,
| | | |
Collapse
|
140
|
Ouyang J, Zhu X, Chen Y, Wei H, Chen Q, Chi X, Qi B, Zhang L, Zhao Y, Gao GF, Wang G, Chen JL. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host Microbe 2014; 16:616-26. [PMID: 25525793 PMCID: PMC7104942 DOI: 10.1016/j.chom.2014.10.001] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/04/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) modulate various biological processes, but their role in host antiviral responses is largely unknown. Here we identify a lncRNA as a key regulator of antiviral innate immunity. Following from the observation that a lncRNA that we call negative regulator of antiviral response (NRAV) was dramatically downregulated during infection with several viruses, we ectopically expressed NRAV in human cells or transgenic mice and found that it significantly promotes influenza A virus (IAV) replication and virulence. Conversely, silencing NRAV suppressed IAV replication and virus production, suggesting that reduction of NRAV is part of the host antiviral innate immune response to virus infection. NRAV negatively regulates the initial transcription of multiple critical interferon-stimulated genes (ISGs), including IFITM3 and MxA, by affecting histone modification of these genes. Our results provide evidence for a lncRNA in modulating the antiviral interferon response.
Collapse
Affiliation(s)
- Jing Ouyang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomei Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haitao Wei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinghuang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaojuan Chi
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baomin Qi
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Beijing 100021, China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoshun Wang
- Gene Therapy Program, Departments of Microbiology and Immunology, Medicine and Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
141
|
Chen Q, Chen K, Guo G, Li F, Chen C, Wang S, Nalepa G, Huang S, Chen JL. A critical role of CDKN3 in Bcr-Abl-mediated tumorigenesis. PLoS One 2014; 9:e111611. [PMID: 25360622 PMCID: PMC4216094 DOI: 10.1371/journal.pone.0111611] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023] Open
Abstract
CDKN3 (cyclin-dependent kinase inhibitor 3), a dual specificity protein phosphatase, dephosphorylates cyclin-dependent kinases (CDKs) and thus functions as a key negative regulator of cell cycle progression. Deregulation or mutations of CDNK3 have been implicated in various cancers. However, the role of CDKN3 in Bcr-Abl-mediated chronic myelogenous leukemia (CML) remains unknown. Here we found that CDKN3 acts as a tumor suppressor in Bcr-Abl-mediated leukemogenesis. Overexpression of CDKN3 sensitized the K562 leukemic cells to imanitib-induced apoptosis and dramatically inhibited K562 xenografted tumor growth in nude mouse model. Ectopic expression of CDKN3 significantly reduced the efficiency of Bcr-Abl-mediated transformation of FDCP1 cells to growth factor independence. In contrast, depletion of CDKN3 expression conferred resistance to imatinib-induced apoptosis in the leukemic cells and accelerated the growth of xenograph leukemia in mice. In addition, we found that CDKN3 mutant (CDKN3-C140S) devoid of the phosphatase activity failed to affect the K562 leukemic cell survival and xenografted tumor growth, suggesting that the phosphatase of CDKN3 was required for its tumor suppressor function. Furthermore, we observed that overexpression of CDKN3 reduced the leukemic cell survival by dephosphorylating CDK2, thereby inhibiting CDK2-dependent XIAP expression. Moreover, overexpression of CDKN3 delayed G1/S transition in K562 leukemic cells. Our results highlight the importance of CDKN3 in Bcr-Abl-mediated leukemogenesis, and provide new insights into diagnostics and therapeutics of the leukemia.
Collapse
Affiliation(s)
- Qinghuang Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ke Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Fang Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Chao Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Song Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Grzegorz Nalepa
- Department of Pediatrics and Division of Pediatric Hematology-Oncology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- * E-mail:
| |
Collapse
|
142
|
Pagani IS, Spinelli O, Mattarucchi E, Pirrone C, Pigni D, Amelotti E, Lilliu S, Boroni C, Intermesoli T, Giussani U, Caimi L, Bolda F, Baffelli R, Candi E, Pasquali F, Lo Curto F, Lanfranchi A, Porta F, Rambaldi A, Porta G. Genomic quantitative real-time PCR proves residual disease positivity in more than 30% samples with negative mRNA-based qRT-PCR in Chronic Myeloid Leukemia. Oncoscience 2014; 1:510-21. [PMID: 25594053 PMCID: PMC4278316 DOI: 10.18632/oncoscience.65] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 12/20/2022] Open
Abstract
Imatinib mesylate (IM) is the first line therapy against Chronic Myeloid Leukemia, effectively prolonging overall survival. Because discontinuation of treatment is associated with relapse, IM is required indefinitely to maintain operational cure. To assess minimal residual disease, cytogenetic analysis is insensitive in a high background of normal lymphocytes. The qRT-PCR provides highly sensitive detection of BCR-ABL1 transcripts, but mRNA levels are not directly related to the number of leukemic cells, and undetectable results are difficult to interpret. We developed a sensitive approach to detect the number of leukemic cells by a genomic DNA (gDNA) Q-PCR assay based on the break-point sequence, with a formula to calculate the number of Ph-positive cells. We monitored 8 CML patients treated with IM for more than 8 years. We tested each samples by patient specific gDNA Q-PCR in parallel by the conventional techniques. In all samples positive for chimeric transcripts we showed corresponding chimeric gDNA by Q-PCR, and in 32.8% (42/128) of samples with undetectable levels of mRNA we detected the persistence of leukemic cells. The gDNA Q-PCR assay could be a new diagnostic tool used in parallel to conventional techniques to support the clinician's decision to vary or to STOP IM therapy.
Collapse
Affiliation(s)
- Ilaria S Pagani
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy ; Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Orietta Spinelli
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Elia Mattarucchi
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Cristina Pirrone
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Diana Pigni
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Elisabetta Amelotti
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Silvia Lilliu
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Chiara Boroni
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Tamara Intermesoli
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Ursula Giussani
- Laboratory of Medical Genetics, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Luigi Caimi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Bolda
- Laboratory of chemical-clinical analysis, Section of Hematology and blood coagulation, Stem Cells laboratory, Spedali Civili of Brescia, Brescia, Italy
| | - Renata Baffelli
- Laboratory of chemical-clinical analysis, Section of Hematology and blood coagulation, Stem Cells laboratory, Spedali Civili of Brescia, Brescia, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Francesco Pasquali
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Francesco Lo Curto
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Arnalda Lanfranchi
- Laboratory of chemical-clinical analysis, Section of Hematology and blood coagulation, Stem Cells laboratory, Spedali Civili of Brescia, Brescia, Italy
| | - Fulvio Porta
- Laboratory of chemical-clinical analysis, Section of Hematology and blood coagulation, Stem Cells laboratory, Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Rambaldi
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Giovanni Porta
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| |
Collapse
|