101
|
Vekariya U, Toma M, Nieborowska-Skorska M, Le BV, Caron MC, Kukuyan AM, Sullivan-Reed K, Podszywalow-Bartnicka P, Chitrala KN, Atkins J, Drzewiecka M, Feng W, Chan J, Chatla S, Golovine K, Jelinek J, Sliwinski T, Ghosh J, Matlawska-Wasowska K, Chandramouly G, Nejati R, Wasik M, Sykes SM, Piwocka K, Hadzijusufovic E, Valent P, Pomerantz RT, Morton G, Childers W, Zhao H, Paietta EM, Levine RL, Tallman MS, Fernandez HF, Litzow MR, Gupta GP, Masson JY, Skorski T. DNA polymerase θ protects leukemia cells from metabolically induced DNA damage. Blood 2023; 141:2372-2389. [PMID: 36580665 PMCID: PMC10273171 DOI: 10.1182/blood.2022018428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Monika Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Bac Viet Le
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Marie-Christine Caron
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Kumaraswamy N. Chitrala
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Malgorzata Drzewiecka
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joe Chan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Konstantin Golovine
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Mariusz Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Stephen M. Sykes
- Division of Hematology/Oncology, Department of Pediatrics, Washington University at St. Louis, St. Louis, MO
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals & Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - George Morton
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Wayne Childers
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Elisabeth M. Paietta
- Department of Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
| | - Ross L. Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S. Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hugo F. Fernandez
- Moffitt Malignant Hematology & Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL
| | - Mark R. Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Gaorav P. Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jean-Yves Masson
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
102
|
Fleury H, MacEachern MK, Stiefel CM, Anand R, Sempeck C, Nebenfuehr B, Maurer-Alcalá K, Ball K, Proctor B, Belan O, Taylor E, Ortega R, Dodd B, Weatherly L, Dansoko D, Leung JW, Boulton SJ, Arnoult N. The APE2 nuclease is essential for DNA double-strand break repair by microhomology-mediated end joining. Mol Cell 2023; 83:1429-1445.e8. [PMID: 37044098 PMCID: PMC10164096 DOI: 10.1016/j.molcel.2023.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Abstract
Microhomology-mediated end joining (MMEJ) is an intrinsically mutagenic pathway of DNA double-strand break (DSB) repair essential for proliferation of homologous recombination (HR)-deficient tumors. Although targeting MMEJ has emerged as a powerful strategy to eliminate HR-deficient (HRD) cancers, this is limited by an incomplete understanding of the mechanism and factors required for MMEJ repair. Here, we identify the APE2 nuclease as an MMEJ effector. We show that loss of APE2 inhibits MMEJ at deprotected telomeres and at intra-chromosomal DSBs and is epistatic with Pol Theta for MMEJ activity. Mechanistically, we demonstrate that APE2 possesses intrinsic flap-cleaving activity, that its MMEJ function in cells depends on its nuclease activity, and further identify an uncharacterized domain required for its recruitment to DSBs. We conclude that this previously unappreciated role of APE2 in MMEJ contributes to the addiction of HRD cells to APE2, which could be exploited in the treatment of cancer.
Collapse
Affiliation(s)
- Hubert Fleury
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Myles K MacEachern
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Clara M Stiefel
- Department of Radiation Oncology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Colin Sempeck
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin Nebenfuehr
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Kelper Maurer-Alcalá
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Kerri Ball
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Bruce Proctor
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Erin Taylor
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Raquel Ortega
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin Dodd
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Laila Weatherly
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Djelika Dansoko
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK; Artios Pharma Ltd, Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Nausica Arnoult
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
103
|
Pismataro MC, Astolfi A, Barreca ML, Pacetti M, Schenone S, Bandiera T, Carbone A, Massari S. Small Molecules Targeting DNA Polymerase Theta (POLθ) as Promising Synthetic Lethal Agents for Precision Cancer Therapy. J Med Chem 2023; 66:6498-6522. [PMID: 37134182 DOI: 10.1021/acs.jmedchem.2c02101] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Synthetic lethality (SL) is an innovative strategy in targeted anticancer therapy that exploits tumor genetic vulnerabilities. This topic has come to the forefront in recent years, as witnessed by the increased number of publications since 2007. The first proof of concept for the effectiveness of SL was provided by the approval of poly(ADP-ribose)polymerase inhibitors, which exploit a SL interaction in BRCA-deficient cells, although their use is limited by resistance. Searching for additional SL interactions involving BRCA mutations, the DNA polymerase theta (POLθ) emerged as an exciting target. This review summarizes, for the first time, the POLθ polymerase and helicase inhibitors reported to date. Compounds are described focusing on chemical structure and biological activity. With the aim to enable further drug discovery efforts in interrogating POLθ as a target, we propose a plausible pharmacophore model for POLθ-pol inhibitors and provide a structural analysis of the known POLθ ligand binding sites.
Collapse
Affiliation(s)
- Maria Chiara Pismataro
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Martina Pacetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
104
|
Keane F, Bajwa R, Selenica P, Park W, Roehrl MH, Reis-Filho JS, Mandelker D, O'Reilly EM. Dramatic, durable response to therapy in gBRCA2-mutated pancreas neuroendocrine carcinoma: opportunity and challenge. NPJ Precis Oncol 2023; 7:40. [PMID: 37087482 PMCID: PMC10122663 DOI: 10.1038/s41698-023-00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/30/2023] [Indexed: 04/24/2023] Open
Abstract
Poorly differentiated pancreatic neuroendocrine tumors (PDNEC), are a subtype of pancreatic cancer encompassing both small cell and large cell neuroendocrine carcinoma subtypes, and are characterized as distinct in terms of biology and prognosis compared to the more common pancreatic adenocarcinoma. Until recently, there has been a paucity of data on the genomic features of this cancer type. We describe a male patient diagnosed with PDNEC and extensive metastatic disease in the liver at diagnosis. Genomic analysis demonstrated a germline pathogenic variant in BRCA2 with somatic loss-of-heterozygosity of the BRCA2 wild-type allele. Following a favorable response to platinum-based chemotherapy (and the addition of immunotherapy), the patient received maintenance therapy with olaparib, which resulted in a further reduction on follow-up imaging (Fig. 1). After seventeen months of systemic control with olaparib, the patient developed symptomatic central nervous system metastases, which harboured a BRCA2 reversion mutation. No other sites of disease progression were observed. Herein, we report an exceptional outcome through the incorporation of a personalized management approach for a patient with a pancreatic PDNEC, guided by comprehensive genomic sequencing.
Collapse
Affiliation(s)
- Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
| | - Raazi Bajwa
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Michael H Roehrl
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Diagnostic Molecular Genetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
105
|
Rogers CB, Kram RE, Lin K, Myers CL, Sobeck A, Hendrickson EA, Bielinsky AK. Fanconi anemia-associated chromosomal radial formation is dependent on POLθ-mediated alternative end joining. Cell Rep 2023; 42:112428. [PMID: 37086407 DOI: 10.1016/j.celrep.2023.112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/25/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
Activation of the Fanconi anemia (FA) pathway after treatment with mitomycin C (MMC) is essential for preventing chromosome translocations termed "radials." When replication forks stall at MMC-induced interstrand crosslinks (ICLs), the FA pathway is activated to orchestrate ICL unhooking and repair of the DNA break intermediates. However, in FA-deficient cells, how ICL-associated breaks are resolved in a manner that leads to radials is unclear. Here, we demonstrate that MMC-induced radials are dependent on DNA polymerase theta (POLθ)-mediated alternative end joining (A-EJ). Specifically, we show that radials observed in FANCD2-/- cells are dependent on POLθ and DNA ligase III and occur independently of classical non-homologous end joining. Furthermore, treatment of FANCD2-/- cells with POLθ inhibitors abolishes radials and leads to the accumulation of breaks co-localizing with common fragile sites. Uniformly, these observations implicate A-EJ in radial formation and provide mechanistic insights into the treatment of FA pathway-deficient cancers with POLθ inhibitors.
Collapse
Affiliation(s)
- Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachel E Kram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Lin
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
106
|
Rodriguez-Berriguete G, Ranzani M, Prevo R, Puliyadi R, Machado N, Bolland HR, Millar V, Ebner D, Boursier M, Cerutti A, Cicconi A, Galbiati A, Grande D, Grinkevich V, Majithiya JB, Piscitello D, Rajendra E, Stockley ML, Boulton SJ, Hammond EM, Heald RA, Smith GC, Robinson HM, Higgins GS. Small-Molecule Polθ Inhibitors Provide Safe and Effective Tumor Radiosensitization in Preclinical Models. Clin Cancer Res 2023; 29:1631-1642. [PMID: 36689546 PMCID: PMC10102842 DOI: 10.1158/1078-0432.ccr-22-2977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/19/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy. EXPERIMENTAL DESIGN We characterized the response to Polθ inhibition in combination with ionizing radiation in different cancer cell models in vitro and in vivo. RESULTS Here, we show that ART558 and ART899, two novel and specific allosteric inhibitors of the Polθ DNA polymerase domain, potently radiosensitize tumor cells, particularly when combined with fractionated radiation. Importantly, noncancerous cells were not radiosensitized by Polθ inhibition. Mechanistically, we show that the radiosensitization caused by Polθ inhibition is most effective in replicating cells and is due to impaired DNA damage repair. We also show that radiosensitization is still effective under hypoxia, suggesting that these inhibitors may help overcome hypoxia-induced radioresistance. In addition, we describe for the first time ART899 and characterize it as a potent and specific Polθ inhibitor with improved metabolic stability. In vivo, the combination of Polθ inhibition using ART899 with fractionated radiation is well tolerated and results in a significant reduction in tumor growth compared with radiation alone. CONCLUSIONS These results pave the way for future clinical trials of Polθ inhibitors in combination with radiotherapy.
Collapse
Affiliation(s)
| | - Marco Ranzani
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Remko Prevo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Rathi Puliyadi
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicole Machado
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Hannah R. Bolland
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Val Millar
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marie Boursier
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Aurora Cerutti
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Diego Grande
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Vera Grinkevich
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Eeson Rajendra
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Simon J. Boulton
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Ester M. Hammond
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Robert A. Heald
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Geoff S. Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
107
|
Li H, Chatla S, Liu X, Vekariya U, Kim D, Walt M, Lian Z, Morton G, Feng Z, Yang D, Liu H, Reed K, Childers W, Yu X, Madzo J, Chitrala KN, Skorski T, Huang J. Haploinsufficiency of ZNF251 causes DNA-PKcs-dependent resistance to PARP inhibitors in BRCA1-mutated cancer cells. RESEARCH SQUARE 2023:rs.3.rs-2688694. [PMID: 37066268 PMCID: PMC10104263 DOI: 10.21203/rs.3.rs-2688694/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors represent a promising new class of agents that have demonstrated efficacy in treating various cancers, particularly those that carry BRCA1/2 mutations. The cancer associated BRCA1/2 mutations disrupt DNA double strand break (DSB) repair by homologous recombination (HR). PARP inhibitors (PARPis) have been applied to trigger synthetic lethality in BRCA1/2-mutated cancer cells by promoting the accumulation of toxic DSBs. Unfortunately, resistance to PARPis is common and can occur through multiple mechanisms, including the restoration of HR and/or the stabilization of replication forks. To gain a better understanding of the mechanisms underlying PARPi resistance, we conducted an unbiased CRISPR-pooled genome-wide library screen to identify new genes whose deficiency confers resistance to the PARPi olaparib. Our study revealed that ZNF251, a transcription factor, is a novel gene whose haploinsufficiency confers PARPi resistance in multiple breast and ovarian cancer lines harboring BRCA1 mutations. Mechanistically, we discovered that ZNF251 haploinsufficiency leads to constitutive stimulation of DNA-PKcs-dependent non-homologous end joining (NHEJ) repair of DSBs and DNA-PKcs-mediated fork protection in BRCA1-mutated cancer cells (BRCA1mut + ZNF251KD). Moreover, we demonstrated that DNA-PKcs inhibitors can restore PARPi sensitivity in BRCA1mut + ZNF251KD cells ex vivo and in vivo. Our findings provide important insights into the mechanisms underlying PARPi resistance and highlight the unexpected role of DNA-PKcs in this phenomenon.
Collapse
Affiliation(s)
- Huan Li
- Coriell Institue for Medical Research
| | | | - Xiaolei Liu
- University of Pennsylavania School of Medecine
| | | | | | | | | | | | - Zijie Feng
- University of Pennsylavania School of Medecine
| | - Dan Yang
- Coriell Institue for Medical Research
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Brambati A, Sacco O, Porcella S, Heyza J, Kareh M, Schmidt JC, Sfeir A. RHINO restricts MMEJ activity to mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532763. [PMID: 36993461 PMCID: PMC10055031 DOI: 10.1101/2023.03.16.532763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
DNA double-strand breaks (DSBs) are toxic lesions that can lead to genome instability if not properly repaired. Breaks incurred in G1 phase of the cell cycle are predominantly fixed by non-homologous end-joining (NHEJ), while homologous recombination (HR) is the primary repair pathway in S and G2. Microhomology-mediated end-joining (MMEJ) is intrinsically error-prone and considered a backup DSB repair pathway that becomes essential when HR and NHEJ are compromised. In this study, we uncover MMEJ as the major DSB repair pathway in M phase. Using CRISPR/Cas9-based synthetic lethal screens, we identify subunits of the 9-1-1 complex (RAD9A-HUS1-RAD1) and its interacting partner, RHINO, as critical MMEJ factors. Mechanistically, we show that the function of 9-1-1 and RHINO in MMEJ is inconsistent with their well-established role in ATR signaling. Instead, RHINO plays an unexpected and essential role in directing mutagenic repair to M phase by directly binding to Polymerase theta (Polθ) and promoting its recruitment to DSBs in mitosis. In addition, we provide evidence that mitotic MMEJ repairs persistent DNA damage that originates in S phase but is not repaired by HR. The latter findings could explain the synthetic lethal relationship between POLQ and BRCA1/2 and the synergistic effect of Polθ and PARP inhibitors. In summary, our study identifies MMEJ as the primary pathway for repairing DSBs during mitosis and highlights an unanticipated role for RHINO in directing mutagenic repair to M phase.
Collapse
|
109
|
Patterson-Fortin J, Jadhav H, Pantelidou C, Phan T, Grochala C, Mehta AK, Guerriero JL, Wulf GM, Wolpin BM, Stanger BZ, Aguirre AJ, Cleary JM, D'Andrea AD, Shapiro GI. Polymerase θ inhibition activates the cGAS-STING pathway and cooperates with immune checkpoint blockade in models of BRCA-deficient cancer. Nat Commun 2023; 14:1390. [PMID: 36914658 PMCID: PMC10011609 DOI: 10.1038/s41467-023-37096-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Recently developed inhibitors of polymerase theta (POLθ) have demonstrated synthetic lethality in BRCA-deficient tumor models. To examine the contribution of the immune microenvironment to antitumor efficacy, we characterized the effects of POLθ inhibition in immunocompetent models of BRCA1-deficient triple-negative breast cancer (TNBC) or BRCA2-deficient pancreatic ductal adenocarcinoma (PDAC). We demonstrate that genetic POLQ depletion or pharmacological POLθ inhibition induces both innate and adaptive immune responses in these models. POLθ inhibition resulted in increased micronuclei, cGAS/STING pathway activation, type I interferon gene expression, CD8+ T cell infiltration and activation, local paracrine activation of dendritic cells and upregulation of PD-L1 expression. Depletion of CD8+ T cells compromised the efficacy of POLθ inhibition, whereas antitumor effects were augmented in combination with anti-PD-1 immunotherapy. Collectively, our findings demonstrate that POLθ inhibition induces immune responses in a cGAS/STING-dependent manner and provide a rationale for combining POLθ inhibition with immune checkpoint blockade for the treatment of HR-deficient cancers.
Collapse
Affiliation(s)
- Jeffrey Patterson-Fortin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Heta Jadhav
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Constantia Pantelidou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Bayer Pharmaceuticals, Cambridge, MA, USA
| | - Tin Phan
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Carter Grochala
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Arpeggio, Boulder, CO, USA
| | - Anita K Mehta
- Department of Surgical Oncology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Sanofi, Cambridge, MA, USA
| | - Jennifer L Guerriero
- Department of Surgical Oncology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Gerburg M Wulf
- Department of Medicine, Division of Hematology-Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Hale Family Center for Pancreatic Cancer Research, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ben Z Stanger
- Department of Medicine, Division of Gastroenterology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Hale Family Center for Pancreatic Cancer Research, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Hale Family Center for Pancreatic Cancer Research, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
110
|
Wang L, Wang P, Chen X, Yang H, Song S, Song Z, Jia L, Chen H, Bao X, Guo N, Huan X, Xi Y, Shen Y, Yang X, Su Y, Sun Y, Gao Y, Chen Y, Ding J, Lang J, Miao Z, Zhang A, He J. Thioparib inhibits homologous recombination repair, activates the type I IFN response, and overcomes olaparib resistance. EMBO Mol Med 2023; 15:e16235. [PMID: 36652375 PMCID: PMC9994488 DOI: 10.15252/emmm.202216235] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have shown great promise for treating BRCA-deficient tumors. However, over 40% of BRCA-deficient patients fail to respond to PARPi. Here, we report that thioparib, a next-generation PARPi with high affinity against multiple PARPs, including PARP1, PARP2, and PARP7, displays high antitumor activities against PARPi-sensitive and -resistant cells with homologous recombination (HR) deficiency both in vitro and in vivo. Thioparib treatment elicited PARP1-dependent DNA damage and replication stress, causing S-phase arrest and apoptosis. Conversely, thioparib strongly inhibited HR-mediated DNA repair while increasing RAD51 foci formation. Notably, the on-target inhibition of PARP7 by thioparib-activated STING/TBK1-dependent phosphorylation of STAT1, triggered a strong induction of type I interferons (IFNs), and resulted in tumor growth retardation in an immunocompetent mouse model. However, the inhibitory effect of thioparib on tumor growth was more pronounced in PARP1 knockout mice, suggesting that a specific PARP7 inhibitor, rather than a pan inhibitor such as thioparib, would be more relevant for clinical applications. Finally, genome-scale CRISPR screening identified PARP1 and MCRS1 as genes capable of modulating thioparib sensitivity. Taken together, thioparib, a next-generation PARPi acting on both DNA damage response and antitumor immunity, serves as a therapeutic potential for treating hyperactive HR tumors, including those resistant to earlier-generation PARPi.
Collapse
Affiliation(s)
- Li‐Min Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pingyuan Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- Pharm‐X Center, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Xiao‐Min Chen
- University of Chinese Academy of SciencesBeijingChina
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Hui Yang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shan‐Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zilan Song
- Pharm‐X Center, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Li Jia
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hua‐Dong Chen
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xu‐Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ne Guo
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia‐Juan Huan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong Xi
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan‐Yan Shen
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xin‐Ying Yang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Su
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi‐Ming Sun
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ying‐Lei Gao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Chen
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian Ding
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing‐Yu Lang
- University of Chinese Academy of SciencesBeijingChina
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Ze‐Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ao Zhang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Pharm‐X Center, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Jin‐Xue He
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
111
|
The Landscape and Therapeutic Targeting of BRCA1, BRCA2 and Other DNA Damage Response Genes in Pancreatic Cancer. Curr Issues Mol Biol 2023; 45:2105-2120. [PMID: 36975505 PMCID: PMC10047276 DOI: 10.3390/cimb45030135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Genes participating in the cellular response to damaged DNA have an important function to protect genetic information from alterations due to extrinsic and intrinsic cellular insults. In cancer cells, alterations in these genes are a source of genetic instability, which is advantageous for cancer progression by providing background for adaptation to adverse environments and attack by the immune system. Mutations in BRCA1 and BRCA2 genes have been known for decades to predispose to familial breast and ovarian cancers, and, more recently, prostate and pancreatic cancers have been added to the constellation of cancers that show increased prevalence in these families. Cancers associated with these genetic syndromes are currently treated with PARP inhibitors based on the exquisite sensitivity of cells lacking BRCA1 or BRCA2 function to inhibition of the PARP enzyme. In contrast, the sensitivity of pancreatic cancers with somatic BRCA1 and BRCA2 mutations and with mutations in other homologous recombination (HR) repair genes to PARP inhibitors is less established and the subject of ongoing investigations. This paper reviews the prevalence of pancreatic cancers with HR gene defects and treatment of pancreatic cancer patients with defects in HR with PARP inhibitors and other drugs in development that target these molecular defects.
Collapse
|
112
|
Guantay L, Garro C, Siri S, Pansa MF, Ghidelli-Disse S, Paviolo N, Racca A, Nicotra V, Radu C, Bocco JL, Felice R, Jansson KH, Remlinger K, Amador A, Stronach E, Coleman K, Muelbaier M, Drewes G, Gloger I, Madauss K, García M, Gottifredi V, Soria G. Deoxycytidine kinase (dCK) inhibition is synthetic lethal with BRCA2 deficiency. Drug Resist Updat 2023; 67:100932. [PMID: 36706533 DOI: 10.1016/j.drup.2023.100932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
BRCA2 is a well-established cancer driver in several human malignancies. While the remarkable success of PARP inhibitors proved the clinical potential of targeting BRCA deficiencies, the emergence of resistance mechanisms underscores the importance of seeking novel Synthetic Lethal (SL) targets for future drug development efforts. In this work, we performed a BRCA2-centric SL screen with a collection of plant-derived compounds from South America. We identified the steroidal alkaloid Solanocapsine as a selective SL inducer, and we were able to substantially increase its potency by deriving multiple analogs. The use of two complementary chemoproteomic approaches led to the identification of the nucleotide salvage pathway enzyme deoxycytidine kinase (dCK) as Solanocapsine's target responsible for its BRCA2-linked SL induction. Additional confirmatory evidence was obtained by using the highly specific dCK inhibitor (DI-87), which induces SL in multiple BRCA2-deficient and KO contexts. Interestingly, dCK-induced SL is mechanistically different from the one induced by PARP inhibitors. dCK inhibition generates substantially lower levels of DNA damage, and cytotoxic phenotypes are associated exclusively with mitosis, thus suggesting that the fine-tuning of nucleotide supply in mitosis is critical for the survival of BRCA2-deficient cells. Moreover, by using a xenograft model of contralateral tumors, we show that dCK impairment suffices to trigger SL in-vivo. Taken together, our findings unveil dCK as a promising new target for BRCA2-deficient cancers, thus setting the ground for future therapeutic alternatives to PARP inhibitors.
Collapse
Affiliation(s)
- Laura Guantay
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Sebastián Siri
- Fundación Instituto Leloir - CONICET, Buenos Aires, Argentina
| | - María Florencia Pansa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | | | - Natalia Paviolo
- Fundación Instituto Leloir - CONICET, Buenos Aires, Argentina
| | - Ana Racca
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viviana Nicotra
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Caius Radu
- University of California, Los Angeles, CA, United States
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rosana Felice
- GlaxoSmithKline, Southern Cone LatAm, Buenos Aires, Argentina
| | - Keith H Jansson
- GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | - Katja Remlinger
- GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | - Alejandro Amador
- GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | - Euan Stronach
- GlaxoSmithKline, Global Health R&D, Stevenage, United Kingdom
| | - Kevin Coleman
- GlaxoSmithKline, Synthetic Lethal RU, Waltham, MA, United States
| | | | - Gerard Drewes
- Cellzome GmbH - a GSK Company, 69117 Heidelberg, Germany
| | - Isro Gloger
- GlaxoSmithKline, Global Health R&D, Stevenage, United Kingdom
| | - Kevin Madauss
- GlaxoSmithKline, Global Health R&D, Upper Providence, PA, United States
| | - Manuela García
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
113
|
Veneziani AC, Scott C, Wakefield MJ, Tinker AV, Lheureux S. Fighting resistance: post-PARP inhibitor treatment strategies in ovarian cancer. Ther Adv Med Oncol 2023; 15:17588359231157644. [PMID: 36872947 PMCID: PMC9983116 DOI: 10.1177/17588359231157644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) represent a therapeutic milestone in the management of epithelial ovarian cancer. The concept of 'synthetic lethality' is exploited by PARPi in tumors with defects in DNA repair pathways, particularly homologous recombination deficiency. The use of PARPis has been increasing since its approval as maintenance therapy, particularly in the first-line setting. Therefore, resistance to PARPi is an emerging issue in clinical practice. It brings an urgent need to elucidate and identify the mechanisms of PARPi resistance. Ongoing studies address this challenge and investigate potential therapeutic strategies to prevent, overcome, or re-sensitize tumor cells to PARPi. This review aims to summarize the mechanisms of resistance to PARPi, discuss emerging strategies to treat patients post-PARPi progression, and discuss potential biomarkers of resistance.
Collapse
Affiliation(s)
- Ana C. Veneziani
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical
Research, Parkville, VIC, Australia
- Department of Medical Biology, University of
Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC,
Australia
- Sir Peter MacCallum Department of Oncology,
Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | | | - Stephanie Lheureux
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5B 2M9,
Canada
| |
Collapse
|
114
|
Schimmel J, Muñoz-Subirana N, Kool H, van Schendel R, van der Vlies S, Kamp JA, de Vrij FMS, Kushner SA, Smith GCM, Boulton SJ, Tijsterman M. Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways. Cell Rep 2023; 42:112019. [PMID: 36701230 DOI: 10.1016/j.celrep.2023.112019] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/18/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Gene editing through repair of CRISPR-Cas9-induced chromosomal breaks offers a means to correct a wide range of genetic defects. Directing repair to produce desirable outcomes by modulating DNA repair pathways holds considerable promise to increase the efficiency of genome engineering. Here, we show that inhibition of non-homologous end joining (NHEJ) or polymerase theta-mediated end joining (TMEJ) can be exploited to alter the mutational outcomes of CRISPR-Cas9. We show robust inhibition of TMEJ activity at CRISPR-Cas9-induced double-strand breaks (DSBs) using ART558, a potent polymerase theta (Polϴ) inhibitor. Using targeted sequencing, we show that ART558 suppresses the formation of microhomology-driven deletions in favor of NHEJ-specific outcomes. Conversely, NHEJ deficiency triggers the formation of large kb-sized deletions, which we show are the products of mutagenic TMEJ. Finally, we show that combined chemical inhibition of TMEJ and NHEJ increases the efficiency of homology-driven repair (HDR)-mediated precise gene editing. Our work reports a robust strategy to improve the fidelity and safety of genome engineering.
Collapse
Affiliation(s)
- Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Núria Muñoz-Subirana
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Hanneke Kool
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sven van der Vlies
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Juliette A Kamp
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Graeme C M Smith
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Simon J Boulton
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK; The Francis Crick Institute, London, UK
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
115
|
Multifaceted Nature of DNA Polymerase θ. Int J Mol Sci 2023; 24:ijms24043619. [PMID: 36835031 PMCID: PMC9962433 DOI: 10.3390/ijms24043619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
DNA polymerase θ belongs to the A family of DNA polymerases and plays a key role in DNA repair and damage tolerance, including double-strand break repair and DNA translesion synthesis. Pol θ is often overexpressed in cancer cells and promotes their resistance to chemotherapeutic agents. In this review, we discuss unique biochemical properties and structural features of Pol θ, its multiple roles in protection of genome stability and the potential of Pol θ as a target for cancer treatment.
Collapse
|
116
|
Maloisel L, Ma E, Phipps J, Deshayes A, Mattarocci S, Marcand S, Dubrana K, Coïc E. Rad51 filaments assembled in the absence of the complex formed by the Rad51 paralogs Rad55 and Rad57 are outcompeted by translesion DNA polymerases on UV-induced ssDNA gaps. PLoS Genet 2023; 19:e1010639. [PMID: 36749784 PMCID: PMC9937489 DOI: 10.1371/journal.pgen.1010639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 02/17/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
The bypass of DNA lesions that block replicative polymerases during DNA replication relies on DNA damage tolerance pathways. The error-prone translesion synthesis (TLS) pathway depends on specialized DNA polymerases that incorporate nucleotides in front of base lesions, potentially inducing mutagenesis. Two error-free pathways can bypass the lesions: the template switching pathway, which uses the sister chromatid as a template, and the homologous recombination pathway (HR), which also can use the homologous chromosome as template. The balance between error-prone and error-free pathways controls the mutagenesis level. Therefore, it is crucial to precisely characterize factors that influence the pathway choice to better understand genetic stability at replication forks. In yeast, the complex formed by the Rad51 paralogs Rad55 and Rad57 promotes HR and template-switching at stalled replication forks. At DNA double-strand breaks (DSBs), this complex promotes Rad51 filament formation and stability, notably by counteracting the Srs2 anti-recombinase. To explore the role of the Rad55-Rad57 complex in error-free pathways, we monitored the genetic interactions between Rad55-Rad57, the translesion polymerases Polζ or Polη, and Srs2 following UV radiation that induces mostly single-strand DNA gaps. We found that the Rad55-Rad57 complex was involved in three ways. First, it protects Rad51 filaments from Srs2, as it does at DSBs. Second, it promotes Rad51 filament stability independently of Srs2. Finally, we observed that UV-induced HR is almost abolished in Rad55-Rad57 deficient cells, and is partially restored upon Polζ or Polη depletion. Hence, we propose that the Rad55-Rad57 complex is essential to promote Rad51 filament stability on single-strand DNA gaps, notably to counteract the error-prone TLS polymerases and mutagenesis.
Collapse
Affiliation(s)
- Laurent Maloisel
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
- * E-mail: (LM); (EC)
| | - Emilie Ma
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Jamie Phipps
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Alice Deshayes
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Stefano Mattarocci
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Stéphane Marcand
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Karine Dubrana
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Eric Coïc
- Université de Paris and Université Paris-Saclay, INSERM, CEA, Institut de Biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
- * E-mail: (LM); (EC)
| |
Collapse
|
117
|
Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 2023; 23:78-94. [PMID: 36471053 DOI: 10.1038/s41568-022-00535-5] [Citation(s) in RCA: 245] [Impact Index Per Article: 245.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
118
|
Systemic Therapy for Hereditary Breast Cancers. Hematol Oncol Clin North Am 2023; 37:203-224. [PMID: 36435611 DOI: 10.1016/j.hoc.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Approximately 5% to 10% of all breast cancers are hereditary; many of which are caused by pathogenic variants in genes required for homologous recombination, including BRCA1 and BRCA2. Here we discuss systemic treatment for such breast cancers, including approved chemotherapeutic approaches and also targeted treatment approaches using poly-(ADP ribose) polymerase inhibitors. We also discuss experimental approaches to treating hereditary breast cancer, including new small molecule DNA repair inhibitors and also immunomodulatory agents. Finally, we discuss how drug resistance emerges in patients with hereditary breast cancer, how this might be delayed or prevented, and how biomarker-adapted treatment is molding the future management of hereditary breast cancer.
Collapse
|
119
|
Li C, Zhu H, Jin S, Maksoud LM, Jain N, Sun J, Gao Y. Structural basis of DNA polymerase θ mediated DNA end joining. Nucleic Acids Res 2023; 51:463-474. [PMID: 36583344 PMCID: PMC9841435 DOI: 10.1093/nar/gkac1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
DNA polymerase θ (Pol θ) plays an essential role in the microhomology-mediated end joining (MMEJ) pathway for repairing DNA double-strand breaks. However, the mechanisms by which Pol θ recognizes microhomologous DNA ends and performs low-fidelity DNA synthesis remain unclear. Here, we present cryo-electron microscope structures of the polymerase domain of Lates calcarifer Pol θ with long and short duplex DNA at up to 2.4 Å resolution. Interestingly, Pol θ binds to long and short DNA substrates similarly, with extensive interactions around the active site. Moreover, Pol θ shares a similar active site as high-fidelity A-family polymerases with its finger domain well-closed but differs in having hydrophilic residues surrounding the nascent base pair. Computational simulations and mutagenesis studies suggest that the unique insertion loops of Pol θ help to stabilize short DNA binding and assemble the active site for MMEJ repair. Taken together, our results illustrate the structural basis of Pol θ-mediated MMEJ.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shikai Jin
- Department of Biosciences, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Leora M Maksoud
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Nikhil Jain
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ji Sun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
120
|
Polλ promotes microhomology-mediated end-joining. Nat Struct Mol Biol 2023; 30:107-114. [PMID: 36536104 DOI: 10.1038/s41594-022-00895-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022]
Abstract
The double-strand break (DSB) repair pathway called microhomology-mediated end-joining (MMEJ) is thought to be dependent on DNA polymerase theta (Polθ) and occur independently of nonhomologous end-joining (NHEJ) factors. An unresolved question is whether MMEJ is facilitated by a single Polθ-mediated end-joining pathway or consists of additional undiscovered pathways. We find that human X-family Polλ, which functions in NHEJ, additionally exhibits robust MMEJ activity like Polθ. Polλ promotes MMEJ in mammalian cells independently of essential NHEJ factors LIG4/XRCC4 and Polθ, which reveals a distinct Polλ-dependent MMEJ mechanism. X-ray crystallography employing in situ photo-induced DSB formation captured Polλ in the act of stabilizing a microhomology-mediated DNA synapse with incoming nucleotide at 2.0 Å resolution and reveals how Polλ performs replication across a DNA synapse joined by minimal base-pairing. Last, we find that Polλ is semisynthetic lethal with BRCA1 and BRCA2. Together, these studies indicate Polλ MMEJ as a distinct DSB repair mechanism.
Collapse
|
121
|
Wang YH, Sheetz MP. Transcription-independent functions of p53 in DNA repair pathway selection. Bioessays 2023; 45:e2200122. [PMID: 36404121 DOI: 10.1002/bies.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
Abstract
Recently discovered transcription-independent features of p53 involve the choice of DNA damage repair pathway after PARylation, and p53's complex formation with phosphoinositide lipids, PI(4,5)P2 . PARylation-mediated rapid accumulation of p53 at DNA damage sites is linked to the recruitment of downstream repair factors and tumor suppression. This links p53's capability to sense damaged DNA in vitro and its relevant functions in cells. Further, PI(4,5)P2 rapidly accumulates at damage sites like p53 and complexes with p53, while it is required for ATR recruitment. These findings help explain how p53 and PI(4,5)P2 maintain genome stability by directing DNA repair pathway choice. Additionally, there is a strong correlation between p53 sequence homology, genome mutation rates as well as lifespans across various mammalian species. Further investigation is required to better understand the connections between genome stability, tumor suppression, longevity and the transcriptional-independent function of p53.
Collapse
Affiliation(s)
- Yu-Hsiu Wang
- Biochemistry and Molecular Biology Department University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Michael P Sheetz
- Biochemistry and Molecular Biology Department University of Texas Medical Branch, Galveston, TX, 77555, United States
| |
Collapse
|
122
|
Shapiro GI, Barry SM. Combining PARP Inhibition and Immunotherapy in BRCA-Associated Cancers. Cancer Treat Res 2023; 186:207-221. [PMID: 37978138 DOI: 10.1007/978-3-031-30065-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have significantly improved treatment outcomes of homologous recombination (HR) repair-deficient cancers. While the activity of these agents is largely linked to multiple mechanisms underlying the synthetic lethality of PARP inhibition and HR deficiency, emerging data suggest that their efficacy is also tied to their effects on the immune microenvironment and dependent upon cytotoxic T-cell activation. Effects observed in preclinical models are currently being validated in on-treatment biopsy samples procured from patients enrolled in clinical trials. Although this work has stimulated the development of combinations of PARP inhibitors with immunomodulatory agents, results to date have not demonstrated the superiority of combined PARP inhibition and immune checkpoint blockade compared with PARP inhibition alone. These results have stimulated a more comprehensive assessment of the immunosuppressive components of the tumor microenvironment that must be addressed so that the efficacy of PARP inhibitor agents can be maximized.
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Department of Medical Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA.
| | - Suzanne M Barry
- Department of Medical Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| |
Collapse
|
123
|
Patterson-Fortin J, D'Andrea AD. Targeting Polymerase Theta (POLθ) for Cancer Therapy. Cancer Treat Res 2023; 186:285-298. [PMID: 37978141 DOI: 10.1007/978-3-031-30065-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polymerase theta (POLθ) is the critical multi-domain enzyme in microhomology-mediated end-joining DNA double-stranded break repair. POLθ is expressed at low levels in normal tissue but is often overexpressed in cancers, especially in DNA repair deficient cancers, such as homologous-recombination cancers, rendering them exquisitely sensitive to POLθ inhibition secondary to synthetic lethality. Development of POLθ inhibitors is an active area of investigation with inhibitors of the N-terminal helicase domain or the C-terminal polymerase domain currently in clinical trial. Here, we review POLθ-mediated microhomology-mediated end-joining, the development of POLθ inhibitors, and the potential clinical uses of POLθ inhibitors.
Collapse
Affiliation(s)
- Jeffrey Patterson-Fortin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Harvard Medical School, Center for DNA Damage and Repair, Susan F. Smith Center for Women's Cancers (SFSCWC), The Fuller-American Cancer Society, Dana-Farber Cancer Institute, HIM 243, 450 Brookline Ave., Boston, MA, 02215, USA.
| |
Collapse
|
124
|
Nasioudis D, George EM, Xu H, Kim H, Simpkins F. Combination DNA Damage Response (DDR) Inhibitors to Overcome Drug Resistance in Ovarian Cancer. Cancer Treat Res 2023; 186:189-206. [PMID: 37978137 DOI: 10.1007/978-3-031-30065-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The DNA damage response (DDR) results in activation of a series of key target kinases that respond to different DNA damage insults. DDR inhibitors such as PARP inhibitors lead to the accumulation of DNA damage in tumor cells and ultimately apoptosis. However, responses to DDRi monotherapy in the clinic are not durable and resistance ultimately develops. DDRi-DDRi combinations such as PARPi-ATRi, PAPRi-WEE1i and PARPi-AsiDNA can overcome multiple resistance mechanisms to PARP inhibition. In addition, DDRi-DDRi combinations can provide viable treatment options for patients with platinum-resistant disease. In the present chapter we discuss rationale of DDRi-DDRi strategies that capitalize on genomic alterations found in ovarian cancer and other solid tumors and may provide in the near future new treatment options for these patients.
Collapse
Affiliation(s)
- Dimitrios Nasioudis
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erin M George
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Haineng Xu
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyoung Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fiona Simpkins
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
125
|
Pettitt SJ, Ryan CJ, Lord CJ. Exploiting Cancer Synthetic Lethality in Cancer-Lessons Learnt from PARP Inhibitors. Cancer Treat Res 2023; 186:13-23. [PMID: 37978128 DOI: 10.1007/978-3-031-30065-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PARP inhibitors now have proven utility in the treatment of homologous recombination (HR) defective cancers. These drugs, and the synthetic lethality effect they exploit, have not only taught us how to approach the treatment of HR defective cancers but have also illuminated how resistance to a synthetic lethal approach can occur, how cancer-associated synthetic lethal effects are perhaps more complex than we imagine, how the better use of biomarkers could improve the success of treatment and even how drug resistance might be targeted. Here, we discuss some of the lessons learnt from the study of PARP inhibitor synthetic lethality and how these lessons might have wider application. Specifically, we discuss the concept of synthetic lethal penetrance, phenocopy effects in cancer such as BRCAness, synthetic lethal resistance, the polygenic and complex nature of synthetic lethal interactions, how evolutionary double binds could be exploited in treatment as well as future horizons for the field.
Collapse
Affiliation(s)
- Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Colm J Ryan
- School of Computer Science and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
126
|
Barszczewska-Pietraszek G, Drzewiecka M, Czarny P, Skorski T, Śliwiński T. Polθ Inhibition: An Anticancer Therapy for HR-Deficient Tumours. Int J Mol Sci 2022; 24:ijms24010319. [PMID: 36613762 PMCID: PMC9820168 DOI: 10.3390/ijms24010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
DNA polymerase theta (Polθ)-mediated end joining (TMEJ) is, along with homologous recombination (HR) and non-homologous end-joining (NHEJ), one of the most important mechanisms repairing potentially lethal DNA double-strand breaks (DSBs). Polθ is becoming a new target in cancer research because it demonstrates numerous synthetically lethal interactions with other DNA repair mechanisms, e.g., those involving PARP1, BRCA1/2, DNA-PK, ATR. Inhibition of Polθ could be achieved with different methods, such as RNA interference (RNAi), CRISPR/Cas9 technology, or using small molecule inhibitors. In the context of this topic, RNAi and CRISPR/Cas9 are still more often applied in the research itself rather than clinical usage, different than small molecule inhibitors. Several Polθ inhibitors have been already generated, and two of them, novobiocin (NVB) and ART812 derivative, are being tested in clinical trials against HR-deficient tumors. In this review, we describe the significance of Polθ and the Polθ-mediated TMEJ pathway. In addition, we summarize the current state of knowledge about Polθ inhibitors and emphasize the promising role of Polθ as a therapeutic target.
Collapse
Affiliation(s)
| | - Małgorzata Drzewiecka
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: ; Tel.: +48-42-635-44-86
| |
Collapse
|
127
|
Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010104. [PMID: 36612100 PMCID: PMC9817764 DOI: 10.3390/cancers15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high rate of systemic metastasis, insensitivity to conventional treatment and susceptibility to drug resistance, resulting in a poor patient prognosis. The immune checkpoint inhibitors (ICIs) represented by antibodies of programmed death receptor 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have provided new therapeutic options for TNBC. However, the efficacy of PD-1/PD-L1 blockade monotherapy is suboptimal immune response, which may be caused by reduced antigen presentation, immunosuppressive tumor microenvironment, interplay with other immune checkpoints and aberrant activation of oncological signaling in tumor cells. Therefore, to improve the sensitivity of TNBC to ICIs, suitable patients are selected based on reliable predictive markers and treated with a combination of ICIs with other therapies such as chemotherapy, radiotherapy, targeted therapy, oncologic virus and neoantigen-based therapies. This review discusses the current mechanisms underlying the resistance of TNBC to PD-1/PD-L1 inhibitors, the potential biomarkers for predicting the efficacy of anti-PD-1/PD-L1 immunotherapy and recent advances in the combination therapies to increase response rates, the depth of remission and the durability of the benefit of TNBC to ICIs.
Collapse
|
128
|
Evolving DNA repair synthetic lethality targets in cancer. Biosci Rep 2022; 42:232162. [PMID: 36420962 PMCID: PMC9760629 DOI: 10.1042/bsr20221713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022] Open
Abstract
DNA damage signaling response and repair (DDR) is a critical defense mechanism against genomic instability. Impaired DNA repair capacity is an important risk factor for cancer development. On the other hand, up-regulation of DDR mechanisms is a feature of cancer chemotherapy and radiotherapy resistance. Advances in our understanding of DDR and its complex role in cancer has led to several translational DNA repair-targeted investigations culminating in clinically viable precision oncology strategy using poly(ADP-ribose) polymerase (PARP) inhibitors in breast, ovarian, pancreatic, and prostate cancers. While PARP directed synthetic lethality has improved outcomes for many patients, the lack of sustained clinical response and the development of resistance pose significant clinical challenges. Therefore, the search for additional DDR-directed drug targets and novel synthetic lethality approaches is highly desirable and is an area of intense preclinical and clinical investigation. Here, we provide an overview of the mammalian DNA repair pathways and then focus on current state of PARP inhibitors (PARPi) and other emerging DNA repair inhibitors for synthetic lethality in cancer.
Collapse
|
129
|
Belan O, Sebald M, Adamowicz M, Anand R, Vancevska A, Neves J, Grinkevich V, Hewitt G, Segura-Bayona S, Bellelli R, Robinson HMR, Higgins GS, Smith GCM, West SC, Rueda DS, Boulton SJ. POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells. Mol Cell 2022; 82:4664-4680.e9. [PMID: 36455556 DOI: 10.1016/j.molcel.2022.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
POLQ is a key effector of DSB repair by microhomology-mediated end-joining (MMEJ) and is overexpressed in many cancers. POLQ inhibitors confer synthetic lethality in HR and Shieldin-deficient cancer cells, which has been proposed to reflect a critical dependence on the DSB repair pathway by MMEJ. Whether POLQ also operates independent of MMEJ remains unexplored. Here, we show that POLQ-deficient cells accumulate post-replicative ssDNA gaps upon BRCA1/2 loss or PARP inhibitor treatment. Biochemically, cooperation between POLQ helicase and polymerase activities promotes RPA displacement and ssDNA-gap fill-in, respectively. POLQ is also capable of microhomology-mediated gap skipping (MMGS), which generates deletions during gap repair that resemble the genomic scars prevalent in POLQ overexpressing cancers. Our findings implicate POLQ in mutagenic post-replicative gap sealing, which could drive genome evolution in cancer and whose loss places a critical dependency on HR for gap protection and repair and cellular viability.
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marie Sebald
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marek Adamowicz
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aleksandra Vancevska
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Joana Neves
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Vera Grinkevich
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Graeme Hewitt
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sandra Segura-Bayona
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Helen M R Robinson
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Geoff S Higgins
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Graeme C M Smith
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK.
| |
Collapse
|
130
|
BRCA1/2 Reversion Mutations in Patients Treated with Poly ADP-Ribose Polymerase (PARP) Inhibitors or Platinum Agents. Medicina (B Aires) 2022; 58:medicina58121818. [PMID: 36557020 PMCID: PMC9785940 DOI: 10.3390/medicina58121818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Reversion mutations in BRCA1/2, resulting in restoration of the open reading frame, have been identified as a mechanism of resistance to platinum-based chemotherapy or PARP inhibition. We sought to explore the incidence of BRCA1/2 reversion mutations in different tumor types. Methods: We retrospectively analyzed molecular profiling results from primary and/or metastatic tumor samples submitted by multiple institutions. The samples underwent DNA and RNA sequencing at a CLIA/CAP-certified clinical lab. Reversion mutations were called only in patients whose available clinical records showed the use of PARP inhibitors or platinum agents prior to tumor profiling. Results: Reversion mutations were identified in 75 of 247,926 samples profiled across all tumor types. Among patients carrying pathogenic or likely pathogenic BRCA1/2 mutations, reversion mutations in BRCA1/2 genes were seen in ovarian cancer (OC) (30/3424), breast cancer (BC) (27/1460), endometrial cancer (4/564), pancreatic cancer (2/340), cholangiocarcinoma (2/178), prostate cancer (5/461), cervical cancer (1/117), cancer of unknown primary (1/244), bladder cancer (1/300), malignant pleural mesothelioma (1/10), and a neuroendocrine tumor of the prostate. We identified 22 reversion mutations in BRCA1 and 8 in BRCA2 in OC. In BC, we detected 6 reversion mutations in BRCA1 and 21 in BRCA2. We compared molecular profile results of 14 high-grade serous ovarian cancers (HGSOC) with reversion mutations against 87 control HGSOC with pathogenic BRCA1/2 mutations without reversion mutations. Tumors with reversion mutations trended to have had lower ER expression (25% vs. 64%, p = 0.024, q = 0.82) and higher KDM6A mutation rate (15% vs. 0, p = 0.016, q = 0.82). Conclusions: We present one of the largest datasets reporting reversion mutations in BRCA1/2 genes across various tumor types. These reversion mutations were rare; this may be because some patients may not have had repeat profiling post-treatment. Repeat tumor profiling at times of treatment resistance can help inform therapy selection in the refractory disease setting.
Collapse
|
131
|
Bhat DS, Spies MA, Spies M. A moving target for drug discovery: Structure activity relationship and many genome (de)stabilizing functions of the RAD52 protein. DNA Repair (Amst) 2022; 120:103421. [PMID: 36327799 PMCID: PMC9888176 DOI: 10.1016/j.dnarep.2022.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
BRCA-ness phenotype, a signature of many breast and ovarian cancers, manifests as deficiency in homologous recombination, and as defects in protection and repair of damaged DNA replication forks. A dependence of such cancers on DNA repair factors less important for survival of BRCA-proficient cells, offers opportunities for development of novel chemotherapeutic interventions. The first drugs targeting BRCA-deficient cancers, poly-ADP-ribose polymerase (PARP) inhibitors have been approved for the treatment of advanced, chemotherapy resistant cancers in patients with BRCA1/2 germline mutations. Nine additional proteins that can be targeted to selectively kill BRCA-deficient cancer cells have been identified. Among them, a DNA repair protein RAD52 is an especially attractive target due to general tolerance of the RAD52 loss of function, and protective role of an inactivating mutation. Yet, the effective pharmacological inhibitors of RAD52 have not been forthcoming. In this review, we discuss advances in the state of our knowledge of the RAD52 structure, activities and cellular functions, with a specific focus on the features that make RAD52 an attractive, but difficult drug target.
Collapse
Affiliation(s)
- Divya S Bhat
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA; Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
132
|
Washington CR, Moore KN. Resistance to Poly (ADP-Ribose) Polymerase Inhibitors (PARPi): Mechanisms and Potential to Reverse. Curr Oncol Rep 2022; 24:1685-1693. [PMID: 36346509 DOI: 10.1007/s11912-022-01337-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE OF REVIEW This review will focus on the most common mechanisms for poly (ADP-ribose) polymerase inhibitors' (PARPi) resistance and the main strategies for overcoming acquired or de novo PARPi resistance. RECENT FINDINGS Initial approvals for PARPi as part of treatment for advanced epithelial ovarian cancer (EOC) started in 2014 with patient with recurrent cancer characterized by BRCA mutations in the 3rd and 4th line and now have approvals for front-line maintenance in both the BRCA mutated and BRCAwt populations. As with all therapies, patients will eventually develop resistance to treatment. The most common mechanisms for PARPi resistance include reversion mutations, methylation events, and restoration of homologous recombination deficiency (HRD) through combinations and targeting replication stress. As more and more patients receive initial treatment (and potential retreatment with PARPi), we need to better understand the mechanisms in which tumors acquire PARPi resistance.
Collapse
Affiliation(s)
- Christina R Washington
- Stephenson Cancer Center, University of Oklahoma HSC, 800 NE 10th St, Suite 5050, Oklahoma City, OK, 73104, USA.
| | - Kathleen N Moore
- Stephenson Cancer Center, University of Oklahoma HSC, 800 NE 10th St, Suite 5050, Oklahoma City, OK, 73104, USA
| |
Collapse
|
133
|
Jackson LM, Moldovan GL. Mechanisms of PARP1 inhibitor resistance and their implications for cancer treatment. NAR Cancer 2022; 4:zcac042. [PMID: 36568963 PMCID: PMC9773381 DOI: 10.1093/narcan/zcac042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The discovery of synthetic lethality as a result of the combined loss of PARP1 and BRCA has revolutionized the treatment of DNA repair-deficient cancers. With the development of PARP inhibitors, patients displaying germline or somatic mutations in BRCA1 or BRCA2 were presented with a novel therapeutic strategy. However, a large subset of patients do not respond to PARP inhibitors. Furthermore, many of those who do respond eventually acquire resistance. As such, combating de novo and acquired resistance to PARP inhibitors remains an obstacle in achieving durable responses in patients. In this review, we touch on some of the key mechanisms of PARP inhibitor resistance, including restoration of homologous recombination, replication fork stabilization and suppression of single-stranded DNA gap accumulation, as well as address novel approaches for overcoming PARP inhibitor resistance.
Collapse
Affiliation(s)
- Lindsey M Jackson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
134
|
Abstract
DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.
Collapse
Affiliation(s)
- Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA;
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
135
|
di Micco P, Antolin AA, Mitsopoulos C, Villasclaras-Fernandez E, Sanfelice D, Dolciami D, Ramagiri P, Mica I, Tym J, Gingrich P, Hu H, Workman P, Al-Lazikani B. canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res 2022; 51:D1212-D1219. [PMID: 36624665 PMCID: PMC9825411 DOI: 10.1093/nar/gkac1004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
canSAR (https://cansar.ai) is the largest public cancer drug discovery and translational research knowledgebase. Now hosted in its new home at MD Anderson Cancer Center, canSAR integrates billions of experimental measurements from across molecular profiling, pharmacology, chemistry, structural and systems biology. Moreover, canSAR applies a unique suite of machine learning algorithms designed to inform drug discovery. Here, we describe the latest updates to the knowledgebase, including a focus on significant novel data. These include canSAR's ligandability assessment of AlphaFold; mapping of fragment-based screening data; and new chemical bioactivity data for novel targets. We also describe enhancements to the data and interface.
Collapse
Affiliation(s)
| | | | - Costas Mitsopoulos
- Centre for Cancer Drug Discovery, The Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | | | - Domenico Sanfelice
- The Department of Data Science, The Institute of Cancer Research, London, UK,Centre for Cancer Drug Discovery, The Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Daniela Dolciami
- The Department of Data Science, The Institute of Cancer Research, London, UK
| | - Pradeep Ramagiri
- Centre for Cancer Drug Discovery, The Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Ioan L Mica
- The Department of Genomic Medicine & The Institute of Data Science in Oncology, MD Anderson Cancer Center, Houston, TX, USA,The Department of Data Science, The Institute of Cancer Research, London, UK
| | - Joseph E Tym
- The Department of Data Science, The Institute of Cancer Research, London, UK
| | - Philip W Gingrich
- The Department of Genomic Medicine & The Institute of Data Science in Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Huabin Hu
- Centre for Cancer Drug Discovery, The Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Paul Workman
- Correspondence may also be addressed to Paul Workman.
| | - Bissan Al-Lazikani
- To whom correspondence should be addressed. Tel: +1 713 794 4965; Fax: +1 713 745 2119;
| |
Collapse
|
136
|
Pre-Existing and Acquired Resistance to PARP Inhibitor-Induced Synthetic Lethality. Cancers (Basel) 2022; 14:cancers14235795. [PMID: 36497275 PMCID: PMC9741207 DOI: 10.3390/cancers14235795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The advanced development of synthetic lethality has opened the doors for specific anti-cancer medications of personalized medicine and efficient therapies against cancers. One of the most popular approaches being investigated is targeting DNA repair pathways as the implementation of the PARP inhibitor (PARPi) into individual or combinational therapeutic schemes. Such treatment has been effectively employed against homologous recombination-defective solid tumors as well as hematopoietic malignancies. However, the resistance to PARPi has been observed in both preclinical research and clinical treatment. Therefore, elucidating the mechanisms responsible for the resistance to PARPi is pivotal for the further success of this intervention. Apart from mechanisms of acquired resistance, the bone marrow microenvironment provides a pre-existing mechanism to induce the inefficiency of PARPi in leukemic cells. Here, we describe the pre-existing and acquired mechanisms of the resistance to PARPi-induced synthetic lethality. We also discuss the potential rationales for developing effective therapies to prevent/repress the PARPi resistance in cancer cells.
Collapse
|
137
|
Mann A, Ramirez-Otero MA, De Antoni A, Hanthi YW, Sannino V, Baldi G, Falbo L, Schrempf A, Bernardo S, Loizou J, Costanzo V. POLθ prevents MRE11-NBS1-CtIP-dependent fork breakage in the absence of BRCA2/RAD51 by filling lagging-strand gaps. Mol Cell 2022; 82:4218-4231.e8. [PMID: 36400008 DOI: 10.1016/j.molcel.2022.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/16/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
POLθ promotes repair of DNA double-strand breaks (DSBs) resulting from collapsed forks in homologous recombination (HR) defective tumors. Inactivation of POLθ results in synthetic lethality with the loss of HR genes BRCA1/2, which induces under-replicated DNA accumulation. However, it is unclear whether POLθ-dependent DNA replication prevents HR-deficiency-associated lethality. Here, we isolated Xenopus laevis POLθ and showed that it processes stalled Okazaki fragments, directly visualized by electron microscopy, thereby suppressing ssDNA gaps accumulating on lagging strands in the absence of RAD51 and preventing fork reversal. Inhibition of POLθ DNA polymerase activity leaves fork gaps unprotected, enabling their cleavage by the MRE11-NBS1-CtIP endonuclease, which produces broken forks with asymmetric single-ended DSBs, hampering BRCA2-defective cell survival. These results reveal a POLθ-dependent genome protection function preventing stalled forks rupture and highlight possible resistance mechanisms to POLθ inhibitors.
Collapse
Affiliation(s)
- Anjali Mann
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Miguel Angel Ramirez-Otero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Anna De Antoni
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Yodhara Wijesekara Hanthi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Vincenzo Sannino
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Giorgio Baldi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Lucia Falbo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Anna Schrempf
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Sara Bernardo
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Joanna Loizou
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Vincenzo Costanzo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
138
|
Soni A, Lin X, Mladenov E, Mladenova V, Stuschke M, Iliakis G. BMN673 Is a PARP Inhibitor with Unique Radiosensitizing Properties: Mechanisms and Potential in Radiation Therapy. Cancers (Basel) 2022; 14:cancers14225619. [PMID: 36428712 PMCID: PMC9688666 DOI: 10.3390/cancers14225619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
BMN673 is a relatively new PARP inhibitor (PARPi) that exhibits superior efficacy in vitro compared to olaparib and other clinically relevant PARPi. BMN673, similar to most clinical PARPi, inhibits the catalytic activities of PARP-1 and PARP-2 and shows impressive anticancer potential as monotherapy in several pre-clinical and clinical studies. Tumor resistance to PARPi poses a significant challenge in the clinic. Thus, combining PARPi with other treatment modalities, such as radiotherapy (RT), is being actively pursued to overcome such resistance. However, the modest to intermediate radiosensitization exerted by olaparib, rucaparib, and veliparib, limits the rationale and the scope of such combinations. The recently reported strong radiosensitizing potential of BMN673 forecasts a paradigm shift on this front. Evidence accumulates that BMN673 may radiosensitize via unique mechanisms causing profound shifts in the balance among DNA double-strand break (DSB) repair pathways. According to one of the emerging models, BMN673 strongly inhibits classical non-homologous end-joining (c-NHEJ) and increases reciprocally and profoundly DSB end-resection, enhancing error-prone DSB processing that robustly potentiates cell killing. In this review, we outline and summarize the work that helped to formulate this model of BMN673 action on DSB repair, analyze the causes of radiosensitization and discuss its potential as a radiosensitizer in the clinic. Finally, we highlight strategies for combining BMN673 with other inhibitors of DNA damage response for further improvements.
Collapse
Affiliation(s)
- Aashish Soni
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Xixi Lin
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-4152
| |
Collapse
|
139
|
Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51. Nat Commun 2022; 13:6722. [PMID: 36344511 PMCID: PMC9640580 DOI: 10.1038/s41467-022-34519-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Sister chromatid exchanges (SCEs) are products of joint DNA molecule resolution, and are considered to form through homologous recombination (HR). Indeed, SCE induction upon irradiation requires the canonical HR factors BRCA1, BRCA2 and RAD51. In contrast, replication-blocking agents, including PARP inhibitors, induce SCEs independently of BRCA1, BRCA2 and RAD51. PARP inhibitor-induced SCEs are enriched at difficult-to-replicate genomic regions, including common fragile sites (CFSs). PARP inhibitor-induced replication lesions are transmitted into mitosis, suggesting that SCEs can originate from mitotic processing of under-replicated DNA. Proteomics analysis reveals mitotic recruitment of DNA polymerase theta (POLQ) to synthetic DNA ends. POLQ inactivation results in reduced SCE numbers and severe chromosome fragmentation upon PARP inhibition in HR-deficient cells. Accordingly, analysis of CFSs in cancer genomes reveals frequent allelic deletions, flanked by signatures of POLQ-mediated repair. Combined, we show PARP inhibition generates under-replicated DNA, which is processed into SCEs during mitosis, independently of canonical HR factors.
Collapse
|
140
|
Wilson J, Loizou JI. Exploring the genetic space of the DNA damage response for cancer therapy through CRISPR-based screens. Mol Oncol 2022; 16:3778-3791. [PMID: 35708734 PMCID: PMC9627789 DOI: 10.1002/1878-0261.13272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage response for the treatment of cancer. Historically, interactions between two genes have had a longstanding presence in genetics and have been identified through forward genetic screens that rely on the molecular basis of the characterized phenotypes, typically caused by mutations in single genes. While such complex genetic interactions between genes have been studied extensively in model organisms, they have only recently been prioritized as therapeutic strategies due to technological advancements in genetic screens. Here, we discuss synthetic lethal and viable interactions within the DNA damage response and present how CRISPR-based genetic screens and chemical compounds have allowed for the systematic identification and targeting of such interactions for the treatment of cancer.
Collapse
Affiliation(s)
- Jordan Wilson
- Center for Cancer Research, Comprehensive Cancer CentreMedical University of ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Joanna I. Loizou
- Center for Cancer Research, Comprehensive Cancer CentreMedical University of ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
141
|
Baxter JS, Zatreanu D, Pettitt SJ, Lord CJ. Resistance to DNA repair inhibitors in cancer. Mol Oncol 2022; 16:3811-3827. [PMID: 35567571 PMCID: PMC9627783 DOI: 10.1002/1878-0261.13224] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The DNA damage response (DDR) represents a complex network of proteins which detect and repair DNA damage, thereby maintaining the integrity of the genome and preventing the transmission of mutations and rearranged chromosomes to daughter cells. Faults in the DDR are a known driver and hallmark of cancer. Furthermore, inhibition of DDR enzymes can be used to treat the disease. This is exemplified by PARP inhibitors (PARPi) used to treat cancers with defects in the homologous recombination DDR pathway. A series of novel DDR targets are now also under pre-clinical or clinical investigation, including inhibitors of ATR kinase, WRN helicase or the DNA polymerase/helicase Polθ (Pol-Theta). Drug resistance is a common phenomenon that impairs the overall effectiveness of cancer treatments and there is already some understanding of how resistance to PARPi occurs. Here, we discuss how an understanding of PARPi resistance could inform how resistance to new drugs targeting the DDR emerges. We also discuss potential strategies that could limit the impact of these therapy resistance mechanisms in cancer.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
142
|
Stockley ML, Ferdinand A, Benedetti G, Blencowe P, Boyd SM, Calder M, Charles MD, Edwardes LV, Ekwuru T, Finch H, Galbiati A, Geo L, Grande D, Grinkevich V, Holliday ND, Krajewski WW, MacDonald E, Majithiya JB, McCarron H, McWhirter CL, Patel V, Pedder C, Rajendra E, Ranzani M, Rigoreau LJM, Robinson HMR, Schaedler T, Sirina J, Smith GCM, Swarbrick ME, Turnbull AP, Willis S, Heald RA. Discovery, Characterization, and Structure-Based Optimization of Small-Molecule In Vitro and In Vivo Probes for Human DNA Polymerase Theta. J Med Chem 2022; 65:13879-13891. [PMID: 36200480 DOI: 10.1021/acs.jmedchem.2c01142] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human DNA polymerase theta (Polθ), which is essential for microhomology-mediated DNA double strand break repair, has been proposed as an attractive target for the treatment of BRCA deficient and other DNA repair pathway defective cancers. As previously reported, we recently identified the first selective small molecule Polθ in vitro probe, 22 (ART558), which recapitulates the phenotype of Polθ loss, and in vivo probe, 43 (ART812), which is efficacious in a model of PARP inhibitor resistant TNBC in vivo. Here we describe the discovery, biochemical and biophysical characterization of these probes including small molecule ligand co-crystal structures with Polθ. The crystallographic data provides a basis for understanding the unique mechanism of inhibition of these compounds which is dependent on stabilization of a "closed" enzyme conformation. Additionally, the structural biology platform provided a basis for rational optimization based primarily on reduced ligand conformational flexibility.
Collapse
Affiliation(s)
- Martin L Stockley
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Amanda Ferdinand
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Giovanni Benedetti
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Peter Blencowe
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Susan M Boyd
- CompChem Solutions Ltd, St John's Innovation Centre, Cowley Rd, CambridgeCB4 0WS, U. K
| | - Mat Calder
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Mark D Charles
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Lucy V Edwardes
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Tennyson Ekwuru
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Harry Finch
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | | | - Lerin Geo
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Diego Grande
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Vera Grinkevich
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd., BioCity, Pennyfoot Street, NottinghamNG1 1GF, U. K
| | - Wojciech W Krajewski
- Cancer Research Horizons Therapeutic Innovation, The Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, U. K
| | - Ellen MacDonald
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Jayesh B Majithiya
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Hollie McCarron
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Claire L McWhirter
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Viral Patel
- Excellerate Bioscience Ltd., BioCity, Pennyfoot Street, NottinghamNG1 1GF, U. K
| | - Chris Pedder
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Eeson Rajendra
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Marco Ranzani
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Laurent J M Rigoreau
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Helen M R Robinson
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Theresia Schaedler
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Julija Sirina
- Excellerate Bioscience Ltd., BioCity, Pennyfoot Street, NottinghamNG1 1GF, U. K
| | - Graeme C M Smith
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| | - Martin E Swarbrick
- Cancer Research Horizons Therapeutic Innovation, Jonas Webb Building, Babraham Research Campus, CambridgeCB22 3AT, U. K
| | - Andrew P Turnbull
- Cancer Research Horizons Therapeutic Innovation, The Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, U. K
| | - Simon Willis
- Cancer Research Horizons Therapeutic Innovation, The Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, U. K
| | - Robert A Heald
- Artios Pharma Ltd., B940, Babraham Research Campus, CambridgeCB22 3FH, U. K
| |
Collapse
|
143
|
Jiang Y. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress. Int J Mol Sci 2022; 23:12937. [PMID: 36361724 PMCID: PMC9657218 DOI: 10.3390/ijms232112937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2023] Open
Abstract
Microhomology-mediated end joining (MMEJ) is a highly mutagenic pathway to repair double-strand breaks (DSBs). MMEJ was thought to be a backup pathway of homologous recombination (HR) and canonical nonhomologous end joining (C-NHEJ). However, it attracts more attention in cancer research due to its special function of microhomology in many different aspects of cancer. In particular, it is initiated with DNA end resection and upregulated in homologous recombination-deficient cancers. In this review, I summarize the following: (1) the recent findings and contributions of MMEJ to genome instability, including phenotypes relevant to MMEJ; (2) the interaction between MMEJ and other DNA repair pathways; (3) the proposed mechanistic model of MMEJ in DNA DSB repair and a new connection with microhomology-mediated break-induced replication (MMBIR); and (4) the potential clinical application by targeting MMEJ based on synthetic lethality for cancer therapy.
Collapse
Affiliation(s)
- Yuning Jiang
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
144
|
Chu YY, Yam C, Yamaguchi H, Hung MC. Biomarkers beyond BRCA: promising combinatorial treatment strategies in overcoming resistance to PARP inhibitors. J Biomed Sci 2022; 29:86. [PMID: 36284291 PMCID: PMC9594904 DOI: 10.1186/s12929-022-00870-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) exploit the concept of synthetic lethality and offer great promise in the treatment of tumors with deficiencies in homologous recombination (HR) repair. PARPi exert antitumor activity by blocking Poly(ADP-ribosyl)ation (PARylation) and trapping PARP1 on damaged DNA. To date, the U.S. Food and Drug Administration (FDA) has approved four PARPi for the treatment of several cancer types including ovarian, breast, pancreatic and prostate cancer. Although patients with HR-deficient tumors benefit from PARPi, majority of tumors ultimately develop acquired resistance to PARPi. Furthermore, even though BRCA1/2 mutations are commonly used as markers of PARPi sensitivity in current clinical practice, not all patients with BRCA1/2 mutations have PARPi-sensitive disease. Thus, there is an urgent need to elucidate the molecular mechanisms of PARPi resistance to support the development of rational effective treatment strategies aimed at overcoming resistance to PARPi, as well as reliable biomarkers to accurately identify patients who will most likely benefit from treatment with PARPi, either as monotherapy or in combination with other agents, so called marker-guided effective therapy (Mget). In this review, we summarize the molecular mechanisms driving the efficacy of and resistance to PARPi as well as emerging therapeutic strategies to overcome PARPi resistance. We also highlight the identification of potential markers to predict PARPi resistance and guide promising PARPi-based combination strategies.
Collapse
Affiliation(s)
- Yu-Yi Chu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hirohito Yamaguchi
- Research Center for Cancer Biology, and Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, 100, Sec 1, Jingmao Rd., Beitun, Taichung, 40402, Taiwan, ROC
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Research Center for Cancer Biology, and Center for Molecular Medicine, Graduate Institute of Biomedical Sciences, China Medical University, 100, Sec 1, Jingmao Rd., Beitun, Taichung, 40402, Taiwan, ROC. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
145
|
Bubenik M, Mader P, Mochirian P, Vallée F, Clark J, Truchon JF, Perryman AL, Pau V, Kurinov I, Zahn KE, Leclaire ME, Papp R, Mathieu MC, Hamel M, Duffy NM, Godbout C, Casas-Selves M, Falgueyret JP, Baruah PS, Nicolas O, Stocco R, Poirier H, Martino G, Fortin AB, Roulston A, Chefson A, Dorich S, St-Onge M, Patel P, Pellerin C, Ciblat S, Pinter T, Barabé F, Bakkouri ME, Parikh P, Gervais C, Sfeir A, Mamane Y, Morris SJ, Black WC, Sicheri F, Gallant M. Identification of RP-6685, an Orally Bioavailable Compound that Inhibits the DNA Polymerase Activity of Polθ. J Med Chem 2022; 65:13198-13215. [PMID: 36126059 PMCID: PMC9942948 DOI: 10.1021/acs.jmedchem.2c00998] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA polymerase theta (Polθ) is an attractive synthetic lethal target for drug discovery, predicted to be efficacious against breast and ovarian cancers harboring BRCA-mutant alleles. Here, we describe our hit-to-lead efforts in search of a selective inhibitor of human Polθ (encoded by POLQ). A high-throughput screening campaign of 350,000 compounds identified an 11 micromolar hit, giving rise to the N2-substituted fused pyrazolo series, which was validated by biophysical methods. Structure-based drug design efforts along with optimization of cellular potency and ADME ultimately led to the identification of RP-6685: a potent, selective, and orally bioavailable Polθ inhibitor that showed in vivo efficacy in an HCT116 BRCA2-/- mouse tumor xenograft model.
Collapse
Affiliation(s)
- Monica Bubenik
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Pavel Mader
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Philippe Mochirian
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Fréderic Vallée
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Jillian Clark
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Jean-François Truchon
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Alexander L. Perryman
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Victor Pau
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, Illinois 60439, USA
| | - Karl E. Zahn
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Marie-Eve Leclaire
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Robert Papp
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Marie-Claude Mathieu
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Martine Hamel
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Nicole M. Duffy
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Claude Godbout
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Matias Casas-Selves
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Jean-Pierre Falgueyret
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Prasamit S. Baruah
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Olivier Nicolas
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Rino Stocco
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Hugo Poirier
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Giovanni Martino
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | | | - Anne Roulston
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Amandine Chefson
- Ventus Therapeutics 7150 Frederick-Banting suite 200, Montréal, Québec, H4S 2A1, Canada
| | - Stéphane Dorich
- Ventus Therapeutics 7150 Frederick-Banting suite 200, Montréal, Québec, H4S 2A1, Canada
| | - Miguel St-Onge
- Ventus Therapeutics 7150 Frederick-Banting suite 200, Montréal, Québec, H4S 2A1, Canada
| | - Purvish Patel
- Ventus Therapeutics 7150 Frederick-Banting suite 200, Montréal, Québec, H4S 2A1, Canada
| | - Charles Pellerin
- Ventus Therapeutics 7150 Frederick-Banting suite 200, Montréal, Québec, H4S 2A1, Canada
| | - Stéphane Ciblat
- Ventus Therapeutics 7150 Frederick-Banting suite 200, Montréal, Québec, H4S 2A1, Canada
- Paraza Pharma Inc., 2525 Ave. Marie Curie, Montréal, Québec, H4S 1Z9, Canada
| | - Thomas Pinter
- Paraza Pharma Inc., 2525 Ave. Marie Curie, Montréal, Québec, H4S 1Z9, Canada
| | - Francis Barabé
- Paraza Pharma Inc., 2525 Ave. Marie Curie, Montréal, Québec, H4S 1Z9, Canada
| | - Majida El Bakkouri
- Paraza Pharma Inc., 2525 Ave. Marie Curie, Montréal, Québec, H4S 1Z9, Canada
- National Research Council of Canada, 6100 Royalmount Ave, Montréal, Québec, H4P 2R2, Canada
| | - Paranjay Parikh
- Piramal Pharma Ltd., Plot No. 18, Village Matoda, Taluka: Sanand, Ahmedabad-382213, Gujarat, India
| | - Christian Gervais
- National Research Council of Canada, 6100 Royalmount Ave, Montréal, Québec, H4P 2R2, Canada
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, MSKCC, 430 E 67th Street, New York, NY 10065, USA
| | - Yael Mamane
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Stephen J. Morris
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - W. Cameron Black
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Michel Gallant
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| |
Collapse
|
146
|
Wilson C, Murnane JP. High-throughput screen to identify compounds that prevent or target telomere loss in human cancer cells. NAR Cancer 2022; 4:zcac029. [PMID: 36196242 PMCID: PMC9527662 DOI: 10.1093/narcan/zcac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022] Open
Abstract
Chromosome instability (CIN) is an early step in carcinogenesis that promotes tumor cell progression and resistance to therapy. Using plasmids integrated adjacent to telomeres, we have previously demonstrated that the sensitivity of subtelomeric regions to DNA double-strand breaks (DSBs) contributes to telomere loss and CIN in cancer. A high-throughput screen was created to identify compounds that affect telomere loss due to subtelomeric DSBs introduced by I-SceI endonuclease, as detected by cells expressing green fluorescent protein (GFP). A screen of a library of 1832 biologically-active compounds identified a variety of compounds that increase or decrease the number of GFP-positive cells following activation of I-SceI. A curated screen done in triplicate at various concentrations found that inhibition of classical nonhomologous end joining (C-NHEJ) increased DSB-induced telomere loss, demonstrating that C-NHEJ is functional in subtelomeric regions. Compounds that decreased DSB-induced telomere loss included inhibitors of mTOR, p38 and tankyrase, consistent with our earlier hypothesis that the sensitivity of subtelomeric regions to DSBs is a result of inappropriate resection during repair. Although this assay was also designed to identify compounds that selectively target cells experiencing telomere loss and/or chromosome instability, no compounds of this type were identified in the current screen.
Collapse
Affiliation(s)
- Chris Wilson
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA 94143, USA
| | - John P Murnane
- To whom correspondence should be addressed. Tel: +1 415 680 4434;
| |
Collapse
|
147
|
Thada V, Greenberg RA. Unpaved roads: How the DNA damage response navigates endogenous genotoxins. DNA Repair (Amst) 2022; 118:103383. [PMID: 35939975 PMCID: PMC9703833 DOI: 10.1016/j.dnarep.2022.103383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/03/2023]
Abstract
Accurate DNA repair is essential for cellular and organismal homeostasis, and DNA repair defects result in genetic diseases and cancer predisposition. Several environmental factors, such as ultraviolet light, damage DNA, but many other molecules with DNA damaging potential are byproducts of normal cellular processes. In this review, we highlight some of the prominent sources of endogenous DNA damage as well as their mechanisms of repair, with a special focus on repair by the homologous recombination and Fanconi anemia pathways. We also discuss how modulating DNA damage caused by endogenous factors may augment current approaches used to treat BRCA-deficient cancers. Finally, we describe how synthetic lethal interactions may be exploited to exacerbate DNA repair deficiencies and cause selective toxicity in additional types of cancers.
Collapse
|
148
|
Foo TK, Xia B. BRCA1-Dependent and Independent Recruitment of PALB2-BRCA2-RAD51 in the DNA Damage Response and Cancer. Cancer Res 2022; 82:3191-3197. [PMID: 35819255 PMCID: PMC9481714 DOI: 10.1158/0008-5472.can-22-1535] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
The BRCA1-PALB2-BRCA2 axis plays essential roles in the cellular response to DNA double-strand breaks (DSB), maintenance of genome integrity, and suppression of cancer development. Upon DNA damage, BRCA1 is recruited to DSBs, where it facilitates end resection and recruits PALB2 and its associated BRCA2 to load the central recombination enzyme RAD51 to initiate homologous recombination (HR) repair. In recent years, several BRCA1-independent mechanisms of PALB2 recruitment have also been reported. Collectively, these available data illustrate a series of hierarchical, context-dependent, and cooperating mechanisms of PALB2 recruitment that is critical for HR and therapy response either in the presence or absence of BRCA1. Here, we review these BRCA1-dependent and independent mechanisms and their importance in DSB repair, cancer development, and therapy. As BRCA1-mutant cancer cells regain HR function, for which PALB2 is generally required, and become resistant to targeted therapies, such as PARP inhibitors, targeting BRCA1-independent mechanisms of PALB2 recruitment represents a potential new avenue to improve treatment of BRCA1-mutant tumors.
Collapse
Affiliation(s)
- Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
149
|
Liddiard K, Aston-Evans AN, Cleal K, Hendrickson E, Baird D. POLQ suppresses genome instability and alterations in DNA repeat tract lengths. NAR Cancer 2022; 4:zcac020. [PMID: 35774233 PMCID: PMC9241439 DOI: 10.1093/narcan/zcac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
DNA polymerase theta (POLQ) is a principal component of the alternative non-homologous end-joining (ANHEJ) DNA repair pathway that ligates DNA double-strand breaks. Utilizing independent models of POLQ insufficiency during telomere-driven crisis, we found that POLQ - /- cells are resistant to crisis-induced growth deceleration despite sustaining inter-chromosomal telomere fusion frequencies equivalent to wild-type (WT) cells. We recorded longer telomeres in POLQ - / - than WT cells pre- and post-crisis, notwithstanding elevated total telomere erosion and fusion rates. POLQ - /- cells emerging from crisis exhibited reduced incidence of clonal gross chromosomal abnormalities in accordance with increased genetic heterogeneity. High-throughput sequencing of telomere fusion amplicons from POLQ-deficient cells revealed significantly raised frequencies of inter-chromosomal fusions with correspondingly depreciated intra-chromosomal recombinations. Long-range interactions culminating in telomere fusions with centromere alpha-satellite repeats, as well as expansions in HSAT2 and HSAT3 satellite and contractions in ribosomal DNA repeats, were detected in POLQ - / - cells. In conjunction with the expanded telomere lengths of POLQ - /- cells, these results indicate a hitherto unrealized capacity of POLQ for regulation of repeat arrays within the genome. Our findings uncover novel considerations for the efficacy of POLQ inhibitors in clinical cancer interventions, where potential genome destabilizing consequences could drive clonal evolution and resistant disease.
Collapse
Affiliation(s)
- Kate Liddiard
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Alys N Aston-Evans
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
150
|
Ngoi NYL, Westin SN, Yap TA. Targeting the DNA damage response beyond poly(ADP-ribose) polymerase inhibitors: novel agents and rational combinations. Curr Opin Oncol 2022; 34:559-569. [PMID: 35787597 PMCID: PMC9371461 DOI: 10.1097/cco.0000000000000867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed treatment paradigms in multiple cancer types defined by homologous recombination deficiency (HRD) and have become the archetypal example of synthetic lethal targeting within the DNA damage response (DDR). Despite this success, primary and acquired resistance to PARP inhibition inevitability threaten the efficacy and durability of response to these drugs. Beyond PARP inhibitors, recent advances in large-scale functional genomic screens have led to the identification of a steadily growing list of genetic dependencies across the DDR landscape. This has led to a wide array of novel synthetic lethal targets and corresponding inhibitors, which hold promise to widen the application of DDR inhibitors beyond HRD and potentially address PARP inhibitor resistance. RECENT FINDINGS In this review, we describe key synthetic lethal interactions that have been identified across the DDR landscape, summarize the early phase clinical development of the most promising DDR inhibitors, and highlight relevant combinations of DDR inhibitors with chemotherapy and other novel cancer therapies, which are anticipated to make an impact in rationally selected patient populations. SUMMARY The DDR landscape holds multiple opportunities for synthetic lethal targeting with multiple novel DDR inhibitors being evaluated on early phase clinical trials. Key challenges remain in optimizing the therapeutic window of ATR and WEE1 inhibitors as monotherapy and in combination approaches.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine
- The Institute for Applied Cancer Science
- Khalifa Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|