101
|
Wang D, Lu X, Yang M, Wu J, Wee ATS. On-Surface Synthesis of Variable Bandgap Nanoporous Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102246. [PMID: 34535956 DOI: 10.1002/smll.202102246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Tuning the bandgap of nanoporous graphene is desirable for applications such as the charge transport layer in organic-hybrid devices. The holy grail in the field is the ability to synthesize 2D nanoporous graphene with variable pore sizes, and hence tunable band gaps. Herein, the on-surface synthesis of nanoporous graphene with variable bandgaps is demonstrated. Two types of nanoporous graphene are synthesized via hierarchical CC coupling, and are verified by low-temperature scanning tunneling microscopy and non-contact atomic force microscopy. Nanoporous graphene-1 is non-planar, and nanoporous graphene-2 is a single-atom thick planar sheet. Scanning tunneling spectroscopy measurements reveal that nanoporous graphene-2 has a bandgap of 3.8 eV, while nanoporous graphene-1 has a larger bandgap of 5.0 eV. Corroborated by first-principles calculations, it is proposed that the large bandgap opening is governed by the confinement of π-electrons induced by pore generation and the non-planar structure. The finding shows that by introducing nanopores or a twisted structure, semi metallic graphene is converted into semiconducting nanoporous graphene-2 or insulating wide-bandgap nanoporous graphene-1.
Collapse
Affiliation(s)
- Dingguan Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xuefeng Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Department of Materials Science, Fudan University, Shanghai, 200438, China
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| |
Collapse
|
102
|
Zhou Z, Springer MA, Geng W, Zhu X, Li T, Li M, Jing Y, Heine T. Rational Design of Two-Dimensional Binary Polymers from Heterotriangulenes for Photocatalytic Water Splitting. J Phys Chem Lett 2021; 12:8134-8140. [PMID: 34410139 DOI: 10.1021/acs.jpclett.1c02109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
On the basis of first-principles calculations, we report the design of three two-dimensional (2D) binary honeycomb-kagome polymers composed of B- and N-centered heterotriangulenes with a periodically alternate arrangement as in hexagonal boron nitride. The 2D binary polymers with donor-acceptor characteristics are semiconductors with a direct band gap of 1.98-2.28 eV. The enhanced in-plane electron conjugation contributes to high charge carrier mobilities for both electrons and holes, about 6.70 and 0.24 × 103 cm2 V-1 s-1, respectively, for the 2D binary polymer with carbonyl bridges (2D CTPAB). With appropriate band edge alignment to match the water redox potentials and pronounced light adsorption for the ultraviolet and visible range of spectra, 2D CTPAB is predicted to be an effective photocatalyst/photoelectrocatalyst to promote overall water splitting.
Collapse
Affiliation(s)
- Zhenpei Zhou
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Maximilian A Springer
- Fakultät Chemie und Lebensmittelchemie, TU Dresden, Bergstraße 66c, 01062 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Weixiang Geng
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyue Zhu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianchun Li
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Manman Li
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Jing
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Thomas Heine
- Fakultät Chemie und Lebensmittelchemie, TU Dresden, Bergstraße 66c, 01062 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
103
|
Serafini P, Milani A, Proserpio DM, Casari CS. Designing All Graphdiyne Materials as Graphene Derivatives: Topologically Driven Modulation of Electronic Properties. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:18456-18466. [PMID: 34476043 PMCID: PMC8404194 DOI: 10.1021/acs.jpcc.1c04238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Indexed: 05/24/2023]
Abstract
Designing new 2D systems with tunable properties is an important subject for science and technology. Starting from graphene, we developed an algorithm to systematically generate 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and sp/sp2 carbon ratios. We analyze how structural and topological effects can tune the relative stability and the electronic behavior, to propose a rationale for the development of new systems with tailored properties. A total of 26 structures have been generated, including the already known polymorphs such as α-, β-, and γ-GDY. Periodic density functional theory calculations have been employed to optimize the 2D crystal structures and to compute the total energy, the band structure, and the density of states. Relative energies with respect to graphene have been found to increase when the values of the carbon sp/sp2 ratio increase, following however different trends based on the peculiar topologies present in the crystals. These topologies also influence the band structure, giving rise to semiconductors with a finite band gap, zero-gap semiconductors displaying Dirac cones, or metallic systems. The different trends allow identifying some topological effects as possible guidelines in the design of new 2D carbon materials beyond graphene.
Collapse
Affiliation(s)
- Patrick Serafini
- Dipartimento
di Energia, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| | - Alberto Milani
- Dipartimento
di Energia, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| | - Davide M. Proserpio
- Dipartimento
di Chimica, Università degli Studi
di Milano, 20133 Milano, Italy
- Samara
Center for Theoretical Materials Science (SCTMS), Samara State Technical University, 443100 Samara, Russia
| | - Carlo S. Casari
- Dipartimento
di Energia, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| |
Collapse
|
104
|
Li DY, Qiu X, Li SW, Ren YT, Zhu YC, Shu CH, Hou XY, Liu M, Shi XQ, Qiu X, Liu PN. Ladder Phenylenes Synthesized on Au(111) Surface via Selective [2+2] Cycloaddition. J Am Chem Soc 2021; 143:12955-12960. [PMID: 34397213 DOI: 10.1021/jacs.1c05586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ladder phenylenes (LPs) composed of alternating fused benzene and cyclobutadiene rings have been synthesized in solution with a maximum length no longer than five units. Longer polymeric LPs have not been obtained so far because of their poor stability and insolubility. Here, we report the synthesis of linear LP chains on the Au(111) surface via dehalogenative [2+2] cycloaddition, in which the steric hindrance of the methyl groups in the 1,2,4,5-tetrabromo-3,6-dimethylbenzene precursor improves the chemoselectivity as well as the orientation orderliness. By combining scanning tunneling microscopy and noncontact atomic force microscopy, we determined the atomic structure and the electronic properties of the LP chains on the metallic substrate and NaCl/Au(111). The tunneling spectroscopy measurements revealed the charged state of chains on the NaCl layer, and this finding is supported by density functional theory calculations, which predict an indirect bandgap and antiferromagnetism in the polymeric LP chains.
Collapse
Affiliation(s)
- Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xia Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shi-Wen Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yin-Ti Ren
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Ya-Cheng Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chen-Hui Shu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiao-Yu Hou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengxi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Qiang Shi
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
105
|
On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat Chem 2021; 13:730-736. [PMID: 34083780 DOI: 10.1038/s41557-021-00709-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/19/2021] [Indexed: 02/04/2023]
Abstract
The use of solid supports and ultra-high vacuum conditions for the synthesis of two-dimensional polymers is attractive, as it can enable thorough characterization, often with submolecular resolution, and prevent contamination. However, most on-surface polymerizations are thermally activated, which often leads to high defect densities and relatively small domain sizes. Here, we have obtained a porous two-dimensional polymer that is ordered on the mesoscale by the two-staged topochemical photopolymerization of fluorinated anthracene triptycene (fantrip) monomers on alkane-passivated graphite surfaces under ultra-high vacuum. First, the fantrip monomers self-assemble into highly ordered monolayer structures, where all anthracene moieties adopt a suitable arrangement for photopolymerization. Irradiation with violet light then induces complete covalent crosslinking by [4+4] photocycloaddition to form a two-dimensional polymer, while fully preserving the long-range order of the self-assembled structure. The extent of the polymerization is confirmed by local infrared spectroscopy and scanning tunnelling microscopy characterization, in agreement with density functional theory calculations, which also gives mechanistic insights.
Collapse
|
106
|
Jourshabani M, Lee BK. Unmasking the Role of an Amorphous/Amorphous Interface and a Crystalline/Amorphous Interface in the Transition of Charge Carriers on the CN/SiO 2/WO 3 Photocatalyst. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31785-31798. [PMID: 34223765 DOI: 10.1021/acsami.1c10307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Making heterojunctions between semiamorphous carbon nitride (CN) and other well-matched semiconductors (or even insulators) can solve many photocatalytic problems such as the recombination of charge carriers. However, many researchers encounter intrinsic problems including the lack of detailed information on contact boundaries in their heterojunctions, particularly in the amorphous/amorphous interface. In addition, the roles of contact boundaries in the photocatalytic mechanisms of many heterojunctions are still obscure. This study synthesized a novel CN/SiO2/WO3 photocatalyst having two different contact features by constructing an amorphous/amorphous (CN/SiO2) interface and a crystalline/amorphous (WO3/CN) interface to provide deep insights into heterojunction interfaces. SiO2 plays an exceptional role as a major component in the separation and migration of charge carriers. It not only modifies the texture but also transfers electrons. Surprisingly, the amorphous/amorphous interface shows an unpredicted capability for decreasing the recombination of electron-hole pairs. Based on capturing experiments and photoluminescence investigations, the amorphous/amorphous interface is unprecedently present in the production of hydroxyl radicals, while the crystalline/amorphous interface gives more superoxide radicals. This work provides a platform that opens a new perspective on the selection of mutual photocatalysts. It extends boundaries of conventional heterojunctions.
Collapse
Affiliation(s)
- Milad Jourshabani
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 680-749, Republic of Korea
| | - Byeong-Kyu Lee
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 680-749, Republic of Korea
| |
Collapse
|
107
|
Ortega-Guerrero A, Sahabudeen H, Croy A, Dianat A, Dong R, Feng X, Cuniberti G. Multiscale Modeling Strategy of 2D Covalent Organic Frameworks Confined at an Air-Water Interface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26411-26420. [PMID: 34034486 DOI: 10.1021/acsami.1c05967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) have attracted attention as versatile active materials in many applications. Recent advances have demonstrated the synthesis of monolayer 2D COF via an air-water interface. However, the interfacial 2D polymerization mechanism has been elusive. In this work, we have used a multiscale modeling strategy to study dimethylmethylene-bridged triphenylamine building blocks confined at the air-water interface to form a 2D COF via Schiff-base reaction. A synergy between the computational investigations and experiments allowed the synthesis of a 2D-COF with one of the linkers considered. Our simulations complement the experimental characterization and show the preference of the building blocks to be at the interface with a favorable orientation for the polymerization. The air-water interface is shown to be a key factor to stabilize a flat conformation when a dimer molecule is considered. The structural and electronic properties of the monolayer COFs based on the two monomers are calculated and show a semiconducting nature with direct bandgaps. Our strategy provides a first step toward the in silico polymerization of 2D COFs at air-water interfaces capturing the initial steps of the synthesis up to the prediction of electronic properties of the 2D material.
Collapse
Affiliation(s)
- Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland
| | - Hafeesudeen Sahabudeen
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, 01062 Dresden, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow 14513, Germany
| | - Alexander Croy
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany
| | - Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany
| | - Renhao Dong
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, 01062 Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
108
|
Steiner C, Fromm L, Gebhardt J, Liu Y, Heidenreich A, Hammer N, Görling A, Kivala M, Maier S. Host guest chemistry and supramolecular doping in triphenylamine-based covalent frameworks on Au(111). NANOSCALE 2021; 13:9798-9807. [PMID: 34028477 DOI: 10.1039/d0nr09140e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The post-synthetic modification of covalent organic frameworks (COFs) via host-guest chemistry is an important method to tailor their electronic properties for applications. Due to the limited structural control in the assembly of two-dimensional surface-supported COFs, supramolecular networks are traditionally used at present for host-guest experiments on surfaces, which lack structural and thermal stability, however. Here, we present a combined scanning tunneling microscopy and density functional theory study to understand the host-guest interaction in triphenylamine-based covalently-linked macrocycles and networks on Au(111). These triphenylamine-based structures feature carbonyl and hydrogen functionalized pores that create preferred adsorption sites for trimesic acid (TMA) and halogen atoms. The binding of the TMA through optimized hydrogen-bond interactions is corroborated by selective adsorption positions within the pores. Band structure calculations reveal that the strong intermolecular charge transfer through the TMA bonding reduces the band gap in the triphenylamine COFs, demonstrating the concept of supramolecular doping by host-guest interactions in surface-supported COFs. Halogen atoms selectively adsorb between two carbonyl groups at Au hollow sites. The mainly dispersive interaction of the halogens with the triphenylamine COF leads to a small downshift of the bands. Most of the halogens change their adsorption position selectively upon annealing near the desorption temperature. In conclusion, we demonstrate evidence for supramolecular doping via post-synthetic modification and to track chemical reactions in confined space.
Collapse
Affiliation(s)
- Christian Steiner
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Mohammadifar E, Ahmadi V, Gholami MF, Oehrl A, Kolyvushko O, Nie C, Donskyi IS, Herziger S, Radnik J, Ludwig K, Böttcher C, Rabe JP, Osterrieder K, Azab W, Haag R, Adeli M. Graphene-Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2009003. [PMID: 34230823 PMCID: PMC8250216 DOI: 10.1002/adfm.202009003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/08/2021] [Indexed: 05/12/2023]
Abstract
2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.
Collapse
Affiliation(s)
- Ehsan Mohammadifar
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Vahid Ahmadi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Mohammad Fardin Gholami
- Department of Physics and Integrative Research Institute for the Sciences IRIS AdlershofHumboldt‐Universität zu BerlinNewtonstrasse 15 and Zum Großen Windkanal 212489BerlinGermany
| | - Alexander Oehrl
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Oleksandr Kolyvushko
- Institut für VirologieRobert von Ostertag‐HausZentrum für InfektionsmedizinFreie Universität BerlinRobert‐von‐Ostertag‐Str. 7‐1314163BerlinGermany
| | - Chuanxiong Nie
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Ievgen S. Donskyi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
- BAM – Federal Institute for Material Science and Testing Division of Surface Analysis, and Interfacial ChemistryUnter den Eichen 44‐4612205BerlinGermany
| | - Svenja Herziger
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMolInstitut für Chemie und Biochemie Freie Universität BerlinFabeckstrasse 36a14195BerlinGermany
| | - Jörg Radnik
- BAM – Federal Institute for Material Science and Testing Division of Surface Analysis, and Interfacial ChemistryUnter den Eichen 44‐4612205BerlinGermany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMolInstitut für Chemie und Biochemie Freie Universität BerlinFabeckstrasse 36a14195BerlinGermany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMolInstitut für Chemie und Biochemie Freie Universität BerlinFabeckstrasse 36a14195BerlinGermany
| | - Jürgen P. Rabe
- Department of Physics and Integrative Research Institute for the Sciences IRIS AdlershofHumboldt‐Universität zu BerlinNewtonstrasse 15 and Zum Großen Windkanal 212489BerlinGermany
| | - Klaus Osterrieder
- Institut für VirologieRobert von Ostertag‐HausZentrum für InfektionsmedizinFreie Universität BerlinRobert‐von‐Ostertag‐Str. 7‐1314163BerlinGermany
- Department of Infectious Diseases and Public HealthJockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongKowloon TongHong Kong
| | - Walid Azab
- Institut für VirologieRobert von Ostertag‐HausZentrum für InfektionsmedizinFreie Universität BerlinRobert‐von‐Ostertag‐Str. 7‐1314163BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Mohsen Adeli
- Department of ChemistryFaculty of ScienceLorestan UniversityKhorramabadIran
| |
Collapse
|
110
|
Frimpong J, Liu ZF. Quasiparticle electronic structure of two-dimensional heterotriangulene-based covalent organic frameworks adsorbed on Au(111). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:254004. [PMID: 33848999 DOI: 10.1088/1361-648x/abf7a0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The modular nature and unique electronic properties of two-dimensional (2D) covalent organic frameworks (COFs) make them an attractive option for applications in catalysis, optoelectronics, and spintronics. The fabrications of such devices often involve interfaces formed between COFs and substrates. In this work, we employ the first-principlesGWapproach to accurately determine the quasiparticle electronic structure of three 2D carbonyl bridged heterotriangulene-based COFs featuring honeycomb-kagome lattice, with their properties ranging from a semi-metal to a wide-gap semiconductor. Moreover, we study the adsorption of these COFs on Au(111) surface and characterize the quasiparticle electronic structure at the heterogeneous COF/Au(111) interfaces. To reduce the computational cost, we apply the recently developed dielectric embeddingGWapproach and show that our results agree with existing experimental measurement on the interfacial energy level alignment. Our calculations illustrate how the many-body dielectric screening at the interface modulates the energies and shapes of the Dirac bands, the effective masses of semiconducting COFs, as well as the Fermi velocity of the semi-metallic COF.
Collapse
Affiliation(s)
- Joseph Frimpong
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States of America
| | - Zhen-Fei Liu
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States of America
| |
Collapse
|
111
|
Manzhos S, Chueh CC, Giorgi G, Kubo T, Saianand G, Lüder J, Sonar P, Ihara M. Materials Design and Optimization for Next-Generation Solar Cell and Light-Emitting Technologies. J Phys Chem Lett 2021; 12:4638-4657. [PMID: 33974435 DOI: 10.1021/acs.jpclett.1c00714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We review some of the most potent directions in the design of materials for next-generation solar cell and light-emitting technologies that go beyond traditional solid-state inorganic semiconductor-based devices, from both the experimental and computational standpoints. We focus on selected recent conceptual advances in tackling issues which are expected to significantly impact applied literature in the coming years. Specifically, we consider solution processability, design of dopant-free charge transport materials, two-dimensional conjugated polymeric semiconductors, and colloidal quantum dot assemblies in the fields of experimental synthesis, characterization, and device fabrication. Key modeling issues that we consider are calculations of optical properties and of effects of aggregation, including recent advances in methods beyond linear-response time-dependent density functional theory and recent insights into the effects of correlation when going beyond the single-particle ansatz as well as in the context of modeling of thermally activated fluorescence.
Collapse
Affiliation(s)
- Sergei Manzhos
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Giacomo Giorgi
- Department of Civil & Environmental Engineering (DICA), Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy
- CNR-SCITEC, 06123 Perugia, Italy
| | - Takaya Kubo
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Gopalan Saianand
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4001 Brisbane, Australia
- Global Center for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Johann Lüder
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, 80424, No. 70, Lien-Hai Road, Kaohsiung, Taiwan R.O.C
- Center of Crystal Research, National Sun Yat-sen University, 80424, No. 70, Lien-Hai Road, Kaohsiung, Taiwan R.O.C
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4001 Brisbane, Australia
| | - Manabu Ihara
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
112
|
Understanding Topological Insulators in Real Space. Molecules 2021; 26:molecules26102965. [PMID: 34067586 PMCID: PMC8156361 DOI: 10.3390/molecules26102965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
A real space understanding of the Su–Schrieffer–Heeger model of polyacetylene is introduced thanks to delocalization indices defined within the quantum theory of atoms in molecules. This approach enables to go beyond the analysis of electron localization usually enabled by topological insulator indices—such as IPR—enabling to differentiate between trivial and topological insulator phases. The approach is based on analyzing the electron delocalization between second neighbors, thus highlighting the relevance of the sublattices induced by chiral symmetry. Moreover, the second neighbor delocalization index, δi,i+2, also enables to identify the presence of chirality and when it is broken by doping or by eliminating atom pairs (as in the case of odd number of atoms chains). Hints to identify bulk behavior thanks to δ1,3 are also provided. Overall, we present a very simple, orbital invariant visualization tool that should help the analysis of chirality (independently of the crystallinity of the system) as well as spreading the concepts of topological behavior thanks to its relationship with well-known chemical concepts.
Collapse
|
113
|
Jing Y, Zhou Z, Geng W, Zhu X, Heine T. 2D Honeycomb-Kagome Polymer Tandem as Effective Metal-Free Photocatalysts for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008645. [PMID: 33942398 PMCID: PMC11468641 DOI: 10.1002/adma.202008645] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Indexed: 06/12/2023]
Abstract
On the basis of first-principles calculations, the potential of applying 2D honeycomb-kagome polymers made of heteroatom-centered triangulene derivatives to photocatalyze water splitting is explored. The designed 2D polymers possess indirect bandgaps in the range of 1.80-2.84 eV and show pronounced light absorption in the ultraviolet and visible region of the solar spectrum. With suitable band edge alignment, the examined N- and B-center polymers can generate sufficient photon-excited electrons and holes to activate the hydrogen and oxygen evolution reactions, respectively. The combination of lattice-inherent band features (flat bands) with chemical functionalization (potential shift due to heteroatoms) makes it possible to construct tandem cells with suppressed electron/hole recombination for effective overall water splitting. In addition, there is a potential difference between the half-electrodes that can be utlized to power auxiliary components in self-sufficient photocatalyzers.
Collapse
Affiliation(s)
- Yu Jing
- Jiangsu Co‐Innovation Centre of Efficient Processing and Utilization of Forest ResourcesCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
- TU Dresden Fakultät für Chemie und LebensmittelchemieBergstraße 66c01062DresdenGermany
| | - Zhenpei Zhou
- Jiangsu Co‐Innovation Centre of Efficient Processing and Utilization of Forest ResourcesCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
| | - Weixiang Geng
- Jiangsu Co‐Innovation Centre of Efficient Processing and Utilization of Forest ResourcesCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
| | - Xinyue Zhu
- Jiangsu Co‐Innovation Centre of Efficient Processing and Utilization of Forest ResourcesCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
| | - Thomas Heine
- TU Dresden Fakultät für Chemie und LebensmittelchemieBergstraße 66c01062DresdenGermany
- Helmholtz‐Zentrum Dresden‐RossendorfForschungsstelle LeipzigPermoserstraße 1504318LeipzigGermany
- Department of ChemistryYonsei UniversitySeodaemun‐guSeoul120‐749Republic of Korea
| |
Collapse
|
114
|
Pawlak R, Liu X, Ninova S, D'Astolfo P, Drechsel C, Liu JC, Häner R, Decurtins S, Aschauer U, Liu SX, Meyer E. On-Surface Synthesis of Nitrogen-Doped Kagome Graphene. Angew Chem Int Ed Engl 2021; 60:8370-8375. [PMID: 33507589 DOI: 10.1002/anie.202016469] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Indexed: 11/08/2022]
Abstract
Nitrogen-doped Kagome graphene (N-KG) has been theoretically predicted as a candidate for the emergence of a topological band gap as well as unconventional superconductivity. However, its physical realization still remains very elusive. Here, we report on a substrate-assisted reaction on Ag(111) for the synthesis of two-dimensional graphene sheets possessing a long-range honeycomb Kagome lattice. Low-temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM) with a CO-terminated tip supported by density functional theory (DFT) are employed to scrutinize the structural and electronic properties of the N-KG down to the atomic scale. We demonstrate its semiconducting character due to the nitrogen doping as well as the emergence of Kagome flat bands near the Fermi level which would open new routes towards the design of graphene-based topological materials.
Collapse
Affiliation(s)
- Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Xunshan Liu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Silviya Ninova
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Philipp D'Astolfo
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Carl Drechsel
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Jung-Ching Liu
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Silvio Decurtins
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Ulrich Aschauer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| |
Collapse
|
115
|
Pawlak R, Liu X, Ninova S, D'Astolfo P, Drechsel C, Liu J, Häner R, Decurtins S, Aschauer U, Liu S, Meyer E. On‐Surface Synthesis of Nitrogen‐Doped Kagome Graphene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rémy Pawlak
- Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
| | - Xunshan Liu
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Silviya Ninova
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Philipp D'Astolfo
- Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
| | - Carl Drechsel
- Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
| | - Jung‐Ching Liu
- Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Silvio Decurtins
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Ulrich Aschauer
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Shi‐Xia Liu
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Ernst Meyer
- Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
| |
Collapse
|
116
|
Anindya KN, Rochefort A. Collective Magnetism in 2D Polymer Made of C‐Doped Triangular Boron Nitride Nanoflakes. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Khalid N. Anindya
- Engineering Physics Department Polytechnique Montréal Québec H3C 3A7 Canada
| | - Alain Rochefort
- Engineering Physics Department Polytechnique Montréal Québec H3C 3A7 Canada
| |
Collapse
|
117
|
Rejinold NS, Choi G, Choy JH. Recent Developments on Semiconducting Polymer Nanoparticles as Smart Photo-Therapeutic Agents for Cancer Treatments-A Review. Polymers (Basel) 2021; 13:981. [PMID: 33806912 PMCID: PMC8004612 DOI: 10.3390/polym13060981] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Semiconducting polymer nanoparticles (SPN) have been emerging as novel functional nano materials for phototherapy which includes PTT (photo-thermal therapy), PDT (photodynamic therapy), and their combination. Therefore, it is important to look into their recent developments and further explorations specifically in cancer treatment. Therefore, the present review describes novel semiconducting polymers at the nanoscale, along with their applications and limitations with a specific emphasis on future perspectives. Special focus is given on emerging and trending semiconducting polymeric nanoparticles in this review based on the research findings that have been published mostly within the last five years.
Collapse
Affiliation(s)
- N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (N.S.R.); (G.C.)
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (N.S.R.); (G.C.)
- College of Science and Technology, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (N.S.R.); (G.C.)
- Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
118
|
Hernández-López L, Piquero-Zulaica I, Downing CA, Piantek M, Fujii J, Serrate D, Ortega JE, Bartolomé F, Lobo-Checa J. Searching for kagome multi-bands and edge states in a predicted organic topological insulator. NANOSCALE 2021; 13:5216-5223. [PMID: 33661272 DOI: 10.1039/d0nr08558h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, mixed honeycomb-kagome lattices featuring metal-organic networks have been theoretically proposed as topological insulator materials capable of hosting nontrivial edge states. This new family of so-called "organic topological insulators" are purely two-dimensional and combine polyaromatic-flat molecules with metal adatoms. However, their experimental validation is still pending given the generalized absence of edge states. Here, we generate one such proposed network on a Cu(111) substrate and study its morphology and electronic structure with the purpose of confirming its topological properties. The structural techniques reveal a practically flawless network that results in a kagome network multi-band observed by angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy. However, at the network island borders we notice the absence of edge states. Bond-resolved imaging of the network exhibits an unexpected structural symmetry alteration that explains such disappearance. This collective lifting of the network symmetry could be more general than initially expected and provide a simple explanation for the recurrent experimental absence of edge states in predicted organic topological insulators.
Collapse
Affiliation(s)
- Leyre Hernández-López
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Ignacio Piquero-Zulaica
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018 San Sebastián, Spain and Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Charles A Downing
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain and Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - Marten Piantek
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain and Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018, Zaragoza, Spain
| | - Jun Fujii
- Istituto Officina dei Materiali (IOM)-CNR Laboratorio TASC, 34149 Trieste, Italy
| | - David Serrate
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - J Enrique Ortega
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018 San Sebastián, Spain and Departamento Física Aplicada I, Universidad del País Vasco, 20018-San Sebastian, Spain and Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 San Sebastian, Spain
| | - Fernando Bartolomé
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Jorge Lobo-Checa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| |
Collapse
|
119
|
Ji P, MacLean O, Galeotti G, Dettmann D, Berti G, Sun K, Zhang H, Rosei F, Chi L. Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu(111). Sci China Chem 2021. [DOI: 10.1007/s11426-021-9966-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
120
|
Han Y, Wang J, Song L, Zheng Y, Li Y, Lin H, Li Q, Chi L. A Fundamental Role of the Molecular Length in Forming Metal-Organic Hybrids of Phenol Derivatives on Silver Surfaces. J Phys Chem Lett 2021; 12:1869-1875. [PMID: 33586446 DOI: 10.1021/acs.jpclett.1c00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In on-surface chemistry, the efficient preparation of metal-organic hybrids is regarded as a primary path to mediate controlled synthesis of well-ordered low-dimensional organic nanostructures. The fundamental mechanisms in forming these hybrid structures, however, are so far insufficiently explored. Here, with scanning tunneling microscopy, we studied the bonding behavior of the adsorbed phenol derivatives with different molecular lengths. We reveal that shorter molecules favor bonding with extracted metal adatoms and result in metal-organic hybrids, whereas longer molecules prefer to bond with lattice metal atoms. The conclusions are further confirmed by density functional theory calculations.
Collapse
Affiliation(s)
- Yangyang Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Junbo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Luying Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Yuanjing Zheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Haiping Lin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Qing Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
121
|
Cojocariu I, Carlotto S, Sturmeit HM, Zamborlini G, Cinchetti M, Cossaro A, Verdini A, Floreano L, Jugovac M, Puschnig P, Piamonteze C, Casarin M, Feyer V, Schneider CM. Ferrous to Ferric Transition in Fe-Phthalocyanine Driven by NO 2 Exposure. Chemistry 2021; 27:3526-3535. [PMID: 33264485 PMCID: PMC7898877 DOI: 10.1002/chem.202004932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 01/10/2023]
Abstract
Due to its unique magnetic properties offered by the open‐shell electronic structure of the central metal ion, and for being an effective catalyst in a wide variety of reactions, iron phthalocyanine has drawn significant interest from the scientific community. Nevertheless, upon surface deposition, the magnetic properties of the molecular layer can be significantly affected by the coupling occurring at the interface, and the more reactive the surface, the stronger is the impact on the spin state. Here, we show that on Cu(100), indeed, the strong hybridization between the Fe d‐states of FePc and the sp‐band of the copper substrate modifies the charge distribution in the molecule, significantly influencing the magnetic properties of the iron ion. The FeII ion is stabilized in the low singlet spin state (S=0), leading to the complete quenching of the molecule magnetic moment. By exploiting the FePc/Cu(100) interface, we demonstrate that NO2 dissociation can be used to gradually change the magnetic properties of the iron ion, by trimming the gas dosage. For lower doses, the FePc film is decoupled from the copper substrate, restoring the gas phase triplet spin state (S=1). A higher dose induces the transition from ferrous to ferric phthalocyanine, in its intermediate spin state, with enhanced magnetic moment due to the interaction with the atomic ligands. Remarkably, in this way, three different spin configurations have been observed within the same metalorganic/metal interface by exposing it to different doses of NO2 at room temperature.
Collapse
Affiliation(s)
- Iulia Cojocariu
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52428, Jülich, Germany
| | - Silvia Carlotto
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via F. Marzolo 1, 35131, Padova, Italy
| | | | - Giovanni Zamborlini
- Technische Universität Dortmund, Experimentelle Physik VI, Otto-Hahn-Straße 4, 44227, Dortmund, Germany
| | - Mirko Cinchetti
- Technische Universität Dortmund, Experimentelle Physik VI, Otto-Hahn-Straße 4, 44227, Dortmund, Germany
| | - Albano Cossaro
- CNR-IOM, Lab. TASC, S.S. 14, Km. 163,5, 34149, Trieste, Italy
| | - Alberto Verdini
- CNR-IOM, Lab. TASC, S.S. 14, Km. 163,5, 34149, Trieste, Italy
| | - Luca Floreano
- CNR-IOM, Lab. TASC, S.S. 14, Km. 163,5, 34149, Trieste, Italy
| | - Matteo Jugovac
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52428, Jülich, Germany.,Present address: Istituto di Struttura della Materia-CNR (ISM-CNR), S.S. 14, Km. 163,5, 34149, Trieste, Italy
| | - Peter Puschnig
- Institute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010, Graz, Austria
| | - Cinthia Piamonteze
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Maurizio Casarin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via F. Marzolo 1, 35131, Padova, Italy
| | - Vitaliy Feyer
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52428, Jülich, Germany.,Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Carl-Benz-Straße 199, 47047, Duisburg, Germany
| | - Claus Michael Schneider
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52428, Jülich, Germany.,Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Carl-Benz-Straße 199, 47047, Duisburg, Germany
| |
Collapse
|
122
|
Zhang T, Zhu L. Two dimensional honeycomb-kagome Be 3Pb 2: a mechanically flexible topological insulator with high intrinsic carrier mobilities. Phys Chem Chem Phys 2021; 23:1292-1297. [PMID: 33367312 DOI: 10.1039/d0cp04512h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We theoretically predict a stable 2D nanosheet consisting of Pb and Be atoms sited at the honeycomb and kagome sites, respectively, forming a mixed honeycomb-kagome phase of Be3Pb2. Without the spin-orbit interaction, its band structure resembles that of honeycomb-structured graphene, namely, the valence and conduction bands touch at isolated points, whose energies linearly depend on the momentum. The presence of spin-orbit coupling (SOC), however, would result in a small bandgap opening, ∼116 meV. So, the SOC induces an electronic phase transition from a semimetal to a semiconductor. A coarse estimation based on the deformation potential method gives rise to very high carrier mobilities which are at least comparable to those of black phosphorene. Most interestingly, the 2D Be3Pb2 shows a non-trivial topology in the electronic structure accompanying the SOC induced band gap opening. Hence, 2D Be3Pb2 would be a versatile candidate for many applications, e.g., nanoelectronic devices.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Physics and Electronic & Electrical Engineering, and Jiangsu Key Laboratory of Modern Measurement Technology and Intelligent Systems, Huaiyin Normal University, Huai'an, Jiangsu 223300, P. R. China.
| | - Liyan Zhu
- School of Physics and Electronic & Electrical Engineering, and Jiangsu Key Laboratory of Modern Measurement Technology and Intelligent Systems, Huaiyin Normal University, Huai'an, Jiangsu 223300, P. R. China.
| |
Collapse
|
123
|
Jiang W, Ni X, Liu F. Exotic Topological Bands and Quantum States in Metal-Organic and Covalent-Organic Frameworks. Acc Chem Res 2021; 54:416-426. [PMID: 33400497 DOI: 10.1021/acs.accounts.0c00652] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ConspectusMetal-organic and covalent-organic frameworks (MOFs/COFs) have been extensively studied for fundamental interests and their promising applications, taking advantage of their unique structural properties, i.e., high porosity and large surface-to-volume ratio. However, their electronic and magnetic properties have been somewhat overlooked because of their relatively poor performance as conductive and/or magnetic materials. Recent experimental breakthroughs in synthesizing two-dimensional (2D) π-conjugated MOFs/COFs with high conductivity and robust magnetism through doping have generated renewed and increasing interest in their electronic properties. Meanwhile, comprehensive theoretical studies of the underlying physical principles have led to discovery of many exotic quantum states, such as topological insulating states, which were only observed in inorganic systems. Especially, the diversity and high tunability of MOFs/COFs have provided a playground to explore novel quantum physics and quantum chemistry as well as promising applications.The band theory has empowered us to understand the most fundamental electronic properties of inorganic crystalline materials, which can also be used to better understand MOFs/COFs. The first obvious difference between the two is that instead of atomic orbitals residing at lattice sites of inorganic crystals, molecular orbitals of organic ligands are predominant in MOFs/COFs. The second key difference is that usually all atomic orbitals in an inorganic crystal are subject to one common group of lattice symmetry, while atomic orbitals of metal ion and molecular orbitals of different organic ligands in MOFs/COFs belong to different subgroups of lattice symmetries. Both these differences will impact the band structure of MOFs/COFs, in particular making it more complex. Consequently, which subset of bands are of most importance depends strongly on the location of Fermi level, i.e., electron counting and charge doping. Furthermore, there are usually two types of characteristic electrons coupled in MOFs, i.e., strongly correlated localized d and f electrons and diffusive s and p electrons, which interplay with lattice, orbital, and spin degrees of freedom, leading to more exotic topological and magnetic band structures.In this Account, we present an up-to-date review of recent theoretical developments to better understand the exotic band structures of MOFs/COFs. Starting from three fundamental 2D lattice models, i.e., honeycomb, Kagome, and Lieb lattices, exotic Dirac and flat bands as well as the intriguing topological quantum states they host, e.g., quantum spin Hall and quantum anomalous Hall states, are outlined. In addition to the single-lattice models, we further elaborate on combined lattice model Hamiltonians, which give rise to overlapping bands hosting novel quantum states, such as nodal-line Dirac semimetal and unconventional superconducting states. Also, first-principles predictions of candidate MOFs/COFs that host these exotic bands and hence quantum phases are reviewed, which greatly extends the pool of materials beyond inorganic crystals for hosting exotic band structures.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaojuan Ni
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
124
|
Kasbe PS, Luo X, Xu W. Interface engineering and integration of two-dimensional polymeric and inorganic materials for advanced hybrid structures. NEW J CHEM 2021. [DOI: 10.1039/d1nj04022g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress and future directions in the creation of hybrid structures based on 2D polymers and inorganic 2D materials are discussed.
Collapse
Affiliation(s)
- Pratik S. Kasbe
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Xiongyu Luo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
125
|
Schneemann A, Dong R, Schwotzer F, Zhong H, Senkovska I, Feng X, Kaskel S. 2D framework materials for energy applications. Chem Sci 2020; 12:1600-1619. [PMID: 34163921 PMCID: PMC8179301 DOI: 10.1039/d0sc05889k] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years a massive increase in publications on conventional 2D materials (graphene, h-BN, MoS2) is documented, accompanied by the transfer of the 2D concept to porous (crystalline) materials, such as ordered 2D layered polymers, covalent-organic frameworks, and metal-organic frameworks. Over the years, the 3D frameworks have gained a lot of attention for use in applications, ranging from electronic devices to catalysis, and from information to separation technologies, mostly due to the modular construction concept and exceptionally high porosity. A key challenge lies in the implementation of these materials into devices arising from the deliberate manipulation of properties upon delamination of their layered counterparts, including an increase in surface area, higher diffusivity, better access to surface sites and a change in the band structure. Within this minireview, we would like to highlight recent achievements in the synthesis of 2D framework materials and their advantages for certain applications, and give some future perspectives.
Collapse
Affiliation(s)
- Andreas Schneemann
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Friedrich Schwotzer
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Irena Senkovska
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| |
Collapse
|
126
|
Wang M, Wang M, Lin HH, Ballabio M, Zhong H, Bonn M, Zhou S, Heine T, Cánovas E, Dong R, Feng X. High-Mobility Semiconducting Two-Dimensional Conjugated Covalent Organic Frameworks with p-Type Doping. J Am Chem Soc 2020; 142:21622-21627. [PMID: 33332109 DOI: 10.1021/jacs.0c10482] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are emerging as a unique class of semiconducting 2D conjugated polymers for (opto)electronics and energy storage. Doping is one of the common, reliable strategies to control the charge carrier transport properties, but the precise mechanism underlying COF doping has remained largely unexplored. Here we demonstrate molecular iodine doping of a metal-phthalocyanine-based pyrazine-linked 2D c-COF. The resultant 2D c-COF ZnPc-pz-I2 maintains its structural integrity and displays enhanced conductivity by 3 orders of magnitude, which is the result of elevated carrier concentrations. Remarkably, Hall effect measurements reveal enhanced carrier mobility reaching ∼22 cm2 V-1 s-1 for ZnPc-pz-I2, which represents a record value for 2D c-COFs in both the direct-current and alternating-current limits. This unique transport phenomenon with largely increased mobility upon doping can be traced to increased scattering time for free charge carriers, indicating that scattering mechanisms limiting the mobility are mitigated by doping. Our work provides a guideline on how to assess doping effects in COFs and highlights the potential of 2D c-COFs to display high conductivities and mobilities toward novel (opto)electronic devices.
Collapse
Affiliation(s)
- Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Mao Wang
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Hung-Hsuan Lin
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Marco Ballabio
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shengqiang Zhou
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Thomas Heine
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Enrique Cánovas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Faraday 9, 28049 Madrid, Spain
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| |
Collapse
|
127
|
Balch HB, Evans AM, Dasari RR, Li H, Li R, Thomas S, Wang D, Bisbey RP, Slicker K, Castano I, Xun S, Jiang L, Zhu C, Gianneschi N, Ralph DC, Brédas JL, Marder SR, Dichtel WR, Wang F. Electronically Coupled 2D Polymer/MoS 2 Heterostructures. J Am Chem Soc 2020; 142:21131-21139. [PMID: 33284624 PMCID: PMC9836045 DOI: 10.1021/jacs.0c10151] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Emergent quantum phenomena in electronically coupled two-dimensional heterostructures are central to next-generation optical, electronic, and quantum information applications. Tailoring electronic band gaps in coupled heterostructures would permit control of such phenomena and is the subject of significant research interest. Two-dimensional polymers (2DPs) offer a compelling route to tailored band structures through the selection of molecular constituents. However, despite the promise of synthetic flexibility and electronic design, fabrication of 2DPs that form electronically coupled 2D heterostructures remains an outstanding challenge. Here, we report the rational design and optimized synthesis of electronically coupled semiconducting 2DP/2D transition metal dichalcogenide van der Waals heterostructures, demonstrate direct exfoliation of the highly crystalline and oriented 2DP films down to a few nanometers, and present the first thickness-dependent study of 2DP/MoS2 heterostructures. Control over the 2DP layers reveals enhancement of the 2DP photoluminescence by two orders of magnitude in ultrathin sheets and an unexpected thickness-dependent modulation of the ultrafast excited state dynamics in the 2DP/MoS2 heterostructure. These results provide fundamental insight into the electronic structure of 2DPs and present a route to tune emergent quantum phenomena in 2DP hybrid van der Waals heterostructures.
Collapse
Affiliation(s)
- Halleh B. Balch
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | | | | | | | | | - Simil Thomas
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States,Department of Physics, Govt. College Nedumangad, Kerala 695541, India
| | - Danqing Wang
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Ryan P. Bisbey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States,Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Kaitlin Slicker
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ioannina Castano
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sangni Xun
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lili Jiang
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Nathan Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel C. Ralph
- Department of Physics and Kavli Institute at Cornell, Cornell University, Ithaca, New York 14853, United States
| | - Jean-Luc Brédas
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States,Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Seth R. Marder
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William R. Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Feng Wang
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
128
|
|
129
|
de la Torre B, Matěj A, Sánchez-Grande A, Cirera B, Mallada B, Rodríguez-Sánchez E, Santos J, Mendieta-Moreno JI, Edalatmanesh S, Lauwaet K, Otyepka M, Medveď M, Buendía Á, Miranda R, Martín N, Jelínek P, Écija D. Tailoring π-conjugation and vibrational modes to steer on-surface synthesis of pentalene-bridged ladder polymers. Nat Commun 2020; 11:4567. [PMID: 32917869 PMCID: PMC7486926 DOI: 10.1038/s41467-020-18371-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/04/2020] [Indexed: 11/08/2022] Open
Abstract
The development of synthetic strategies to engineer π-conjugated polymers is of paramount importance in modern chemistry and materials science. Here we introduce a synthetic protocol based on the search for specific vibrational modes through an appropriate tailoring of the π-conjugation of the precursors, in order to increase the attempt frequency of a chemical reaction. First, we design a 1D π-conjugated polymer on Au(111), which is based on bisanthene monomers linked by cumulene bridges that tune specific vibrational modes. In a second step, upon further annealing, such vibrational modes steer the twofold cyclization reaction between adjacent bisanthene moieties, which gives rise to a long pentalene-bridged conjugated ladder polymer featuring a low bandgap. In addition, high resolution atomic force microscopy allows us to identify by atomistic insights the resonance form of the polymer, thus confirming the validity of the Glidewell and Lloyd´s rules for aromaticity. This on-surface synthetic strategy may stimulate exploiting previously precluded reactions towards π-conjugated polymers with specific structures and properties.
Collapse
Affiliation(s)
- Bruno de la Torre
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| | - Adam Matěj
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| | - Ana Sánchez-Grande
- IMDEA Nanociencia, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Borja Cirera
- IMDEA Nanociencia, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Benjamin Mallada
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| | | | - José Santos
- IMDEA Nanociencia, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain
| | - Jesús I Mendieta-Moreno
- Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| | - Shayan Edalatmanesh
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| | - Koen Lauwaet
- IMDEA Nanociencia, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Miroslav Medveď
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Álvaro Buendía
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Rodolfo Miranda
- IMDEA Nanociencia, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Nazario Martín
- IMDEA Nanociencia, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain.
| | - Pavel Jelínek
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
- Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic.
| | - David Écija
- IMDEA Nanociencia, C/ Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
130
|
Affiliation(s)
- Yu Jing
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Thomas Heine
- Chair of Theoretical Chemistry, School of Science, TU Dresden, Dresden, Germany.
- Leipzig Research Branch, Institute of Resource Ecology, Helmholtz-Center Dresden-Rossendorf, Leipzig, Germany.
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
131
|
Abstract
Coordination polymers (CPs) are potential thermoelectric (TE) materials to replace the sometimes costly, brittle and toxic heavy metal inorganic TEs for near-ambient-temperature applications. Air-stable and highly conductive p-type thermoelectric CPs are relatively well known, but the their n-type counterparts are only now emerging and both are needed for most practical applications. This perspective reviews recent advances in the development of n-type thermoelectric CPs, particularly the 1D and 2D metal bisdithiolenes, and introduces a relatively new class of guest@metal-organic framework(MOF)-based composites. Low dimensional CPs with reasonable n-type thermoelectric performance are emerging with good charge mobility and air-stability but still relatively low electrical conductivity.
Collapse
Affiliation(s)
- Yannan Lu
- College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, Northern Territory, Australia 0909.
| | | |
Collapse
|