101
|
Nishida K, Kondo A. CRISPR-derived genome editing technologies for metabolic engineering. Metab Eng 2020; 63:141-147. [PMID: 33307189 DOI: 10.1016/j.ymben.2020.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022]
Abstract
In metabolic engineering, genome editing tools make it much easier to discover and evaluate relevant genes and pathways and construct strains. Clustered regularly interspaced palindromic repeats (CRISPR)-associated (Cas) systems now have become the first choice for genome engineering in many organisms includingindustrially relevant ones. Targeted DNA cleavage by CRISPR-Cas provides variousgenome engineering modes such as indels, replacements, large deletions, knock-in and chromosomal rearrangements, while host-dependent differences in repair pathways need to be considered. The versatility of the CRISPR system has given rise to derivative technologies that complement nuclease-based editing, which causes cytotoxicity especially in microorganisms. Deaminase-mediated base editing installs targeted point mutations with much less toxicity. CRISPRi and CRISPRa can temporarily control gene expression without changing the genomic sequence. Multiplex, combinatorial and large scale editing are made possible by streamlined design and construction of gRNA libraries to further accelerates comprehensive discovery, evaluation and building of metabolic pathways. This review summarizes the technical basis and recent advances in CRISPR-related genome editing tools applied for metabolic engineering purposes, with representative examples of industrially relevant eukaryotic and prokaryotic organisms.
Collapse
Affiliation(s)
- Keiji Nishida
- Engineering Biology Research Center, Kobe University, Japan; Graduate School of Science, Technology and Innovation, Kobe University, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, Japan; Graduate School of Science, Technology and Innovation, Kobe University, Japan.
| |
Collapse
|
102
|
Abdullah, Jiang Z, Hong X, Zhang S, Yao R, Xiao Y. CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. Synth Syst Biotechnol 2020; 5:277-292. [PMID: 32954022 PMCID: PMC7481536 DOI: 10.1016/j.synbio.2020.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated) has been extensively exploited as a genetic tool for genome editing. The RNA guided Cas nucleases generate DNA double-strand break (DSB), triggering cellular repair systems mainly Non-homologous end-joining (NHEJ, imprecise repair) or Homology-directed repair (HDR, precise repair). However, DSB typically leads to unexpected DNA changes and lethality in some organisms. The establishment of bacteria and plants into major bio-production platforms require efficient and precise editing tools. Hence, in this review, we focus on the non-DSB and template-free genome editing, i.e., base editing (BE) and prime editing (PE) in bacteria and plants. We first highlight the development of base and prime editors and summarize their studies in bacteria and plants. We then discuss current and future applications of BE/PE in synthetic biology, crop improvement, evolutionary engineering, and metabolic engineering. Lastly, we critically consider the challenges and prospects of BE/PE in PAM specificity, editing efficiency, off-targeting, sequence specification, and editing window.
Collapse
Affiliation(s)
- Abdullah
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengzheng Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xulin Hong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shun Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
103
|
Multiple gene substitution by Target-AID base-editing technology in tomato. Sci Rep 2020; 10:20471. [PMID: 33235312 PMCID: PMC7686336 DOI: 10.1038/s41598-020-77379-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
The use of Target activation-induced cytidine deaminase (Target-AID) base-editing technology with the CRISPR-Cas 9 system fused with activation-induced cytidine deaminase (AID) resulted in the substitution of a cytidine with a thymine. In previous experiments focusing on a single target gene, this system has been reported to work in several plant species, including tomato (Solanum lycopersicum L.). In this research, we used Target-AID technology to target multiple genes related to carotenoid accumulation in tomato. We selected 3 genes, SlDDB1, SlDET1 and SlCYC-B, for their roles in carotenoid accumulation. Among 12 edited T0 lines, we obtained 10 independent T0 lines carrying nucleotide substitutions in the three targeted genes, with several allelic versions for each targeted gene. The two edited lines showed significant differences in carotenoid accumulation. These results demonstrate that Target-AID technology is a highly efficient tool for targeting multiple genes with several allelic versions.
Collapse
|
104
|
Zhao D, Zhu X, Zhou H, Sun N, Wang T, Bi C, Zhang X. CRISPR-based metabolic pathway engineering. Metab Eng 2020; 63:148-159. [PMID: 33152516 DOI: 10.1016/j.ymben.2020.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
A highly effective metabolic pathway is the key for an efficient cell factory. However, the engineered homologous or heterologous multi-gene pathway may be unbalanced, inefficient and causing the accumulation of potentially toxic intermediates. Therefore, pathways must be constructed optimally to minimize these negative effects and maximize catalytic efficiency. With the development of CRISPR technology, some of the problems of previous pathway engineering and genome editing techniques were resolved, providing higher efficiency, lower cost, and easily customizable targets. Moreover, CRISPR was demonstrated as robust and effective in various organisms including both prokaryotes and eukaryotes. In recent years, researchers in the field of metabolic engineering and synthetic biology have exploited various CRISPR-based pathway engineering approaches, which are both effective and convenient, as well as valuable from a theoretical standpoint. In this review, we systematically summarize novel pathway engineering techniques and strategies based on CRISPR nucleases system, CRISPR interference (CRISPRi), and CRISPR activation (CRISPRa), including figures and descriptions for easy understanding, with the aim to facilitate their broader application among fellow researchers.
Collapse
Affiliation(s)
- Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hang Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Naxin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ting Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
105
|
Pattharaprachayakul N, Lee M, Incharoensakdi A, Woo HM. Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme Microb Technol 2020; 140:109619. [PMID: 32912679 DOI: 10.1016/j.enzmictec.2020.109619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms that are capable of converting CO2 to value-added chemicals. Engineering of cyanobacteria with synthetic biology tools, including the CRISPR-Cas system, has allowed an opportunity for biological CO2 utilization. Here, we described natural CRISPR-Cas systems for understanding cyanobacterial genomics and synthetic CRISPR-Cas systems for metabolic engineering applications. The natural CRISPR-Cas systems in cyanobacteria have been identified as Class 1, with type I and III, and some Class 2, with type V, as an adaptive immune system against viral invasion. As synthetic tools, CRISPR-Cas9 and -Cas12a have been successfully established in cyanobacteria to delete a target gene without a selection marker. Deactivated Cas9 and Cas12a have also been used to repress genes for metabolic engineering. In addition, a perspective on how advanced CRISPR-Cas systems and a pool of the guide RNAs can be advantageous for precise genome engineering and understanding of unknown functions was discussed for advanced engineering of cyanobacteria.
Collapse
Affiliation(s)
- Napisa Pattharaprachayakul
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand; Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Mieun Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
106
|
Zou ZP, Ye BC. Long-Term Rewritable Report and Recording of Environmental Stimuli in Engineered Bacterial Populations. ACS Synth Biol 2020; 9:2440-2449. [PMID: 32794765 DOI: 10.1021/acssynbio.0c00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA writing (living sensing recorders) based whole-cell biosensors can capture transient signals and then convert them into readable genomic DNA changes. The primitive signals can be easily obtained by sequencing technology or analysis of protein activity (such as fluorescent protein). However, the functions of the current living sensing recorders still need to be expanded, and the difficulty of rewriting in complex biological environments has further limited their applications. In this study, we designed a long-term rewritable recording system using a CRISPR base editor-based synthetic genetic circuit, named CRISPR-istop. This system can convert stimuli into changes in the fluorescence intensity (reporter) and single-base mutations in genomic DNA (recording). Furthermore, we updated the biological circuit through the strategy of coupling the single-base mutation (record site) and the loss-of-function of the targeted protein (translation stopped by stop codon introduction), and we can remove edited bacteria from a population through selective sweeps upon applying a selective pressure. It successfully conducted the rewritable reporter and recording of the nutrient arabinose and pollutant arsenite with two rounds of continuous operation (10 passages/round, 12 h/passage). These observations indicated that the CRISPR-istop system can report and record stimuli over time; moreover, the recording can be manually erased and rewritten as needed. This method has great potential to be extended to more complicated recording systems to execute sophisticated tasks in inaccessible environments for synthetic biology and biomedical applications, such as monitoring disease-relevant physiological markers or other molecules.
Collapse
Affiliation(s)
- Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
107
|
Collins SP, Beisel CL. Your Base Editor Might Be Flirting with Single (Stranded) DNA: Faithful On-Target CRISPR Base Editing without Promiscuous Deamination. Mol Cell 2020; 79:703-704. [PMID: 32888434 DOI: 10.1016/j.molcel.2020.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Jin et al. (2020) engineered new variants of CRISPR base editors that make precise genomic edits in rice protoplasts while minimizing untargeted mutagenesis.
Collapse
Affiliation(s)
- Scott P Collins
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Chase L Beisel
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Helmholtz Institute for RNA-based Infection Research (HIRI) / Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
108
|
Liu Z, Dong H, Cui Y, Cong L, Zhang D. Application of different types of CRISPR/Cas-based systems in bacteria. Microb Cell Fact 2020; 19:172. [PMID: 32883277 PMCID: PMC7470686 DOI: 10.1186/s12934-020-01431-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
As important genome editing tools, CRISPR/Cas systems, especially those based on type II Cas9 and type V Cas12a, are widely used in genetic and metabolic engineering of bacteria. However, the intrinsic toxicity of Cas9 and Cas12a-mediated CRISPR/Cas tools can lead to cell death in some strains, which led to the development of endogenous type I and III CRISPR/Cas systems. However, these systems are hindered by complicated development and limited applications. Thus, further development and optimization of CRISPR/Cas systems is needed. Here, we briefly summarize the mechanisms of different types of CRISPR/Cas systems as genetic manipulation tools and compare their features to provide a reference for selecting different CRISPR/Cas tools. Then, we show the use of CRISPR/Cas technology for bacterial strain evolution and metabolic engineering, including genome editing, gene expression regulation and the base editor tool. Finally, we offer a view of future directions for bacterial CRISPR/Cas technology.
Collapse
Affiliation(s)
- Zhenquan Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Yali Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Lina Cong
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
109
|
Rousset F, Bikard D. CRISPR screens in the era of microbiomes. Curr Opin Microbiol 2020; 57:70-77. [PMID: 32858412 DOI: 10.1016/j.mib.2020.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Recent advances in genomics have uncovered the tremendous diversity and richness of microbial ecosystems. New functional genomics methods are now needed to probe gene function in high-throughput and provide mechanistic insights. Here, we review how the CRISPR toolbox can be used to inactivate, repress or overexpress genes in a sequence-specific manner and how this offers diverse attractive solutions to identify gene function in high-throughput. Developed both in eukaryotes and prokaryotes, CRISPR screening technologies have already provided meaningful insights in microbiology and host-pathogen interactions. In the era of microbiomes, the versatility and the functional diversity of CRISPR-derived tools has the potential to significantly improve our understanding of microbial communities and their interaction with the host.
Collapse
Affiliation(s)
- François Rousset
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - David Bikard
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France.
| |
Collapse
|
110
|
Xia PF, Casini I, Schulz S, Klask CM, Angenent LT, Molitor B. Reprogramming Acetogenic Bacteria with CRISPR-Targeted Base Editing via Deamination. ACS Synth Biol 2020; 9:2162-2171. [PMID: 32610012 DOI: 10.1021/acssynbio.0c00226] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetogenic bacteria are rising in popularity as chassis microbes for biotechnology due to their capability of converting inorganic one-carbon (C1) gases to organic chemicals. To fully uncover the potential of acetogenic bacteria, synthetic biology tools are imperative to either engineer designed functions or to interrogate the physiology. Here, we report a genome-editing tool at a one-nucleotide resolution, namely base editing, for acetogenic bacteria based on CRISPR-targeted deamination. This tool combines nuclease deactivated Cas9 with activation-induced cytidine deaminase to enable cytosine-to-thymine substitution without DNA cleavage, homology-directed repair, and donor DNA, which are generally the bottlenecks for applying conventional CRISPR-Cas systems in bacteria. We designed and validated a modularized base-editing tool in the model acetogenic bacterium Clostridium ljungdahlii. The editing principles were investigated, and an in-silico analysis revealed the capability of base editing across the genome and the potential for off-target events. Moreover, genes related to acetate and ethanol production were disrupted individually by installing premature STOP codons to reprogram carbon flux toward improved acetate production. This resulted in engineered C. ljungdahlii strains with the desired phenotypes and stable genotypes. Our base-editing tool promotes the application and research in acetogenic bacteria and provides a blueprint to upgrade CRISPR-Cas-based genome editing in bacteria in general.
Collapse
Affiliation(s)
- Peng-Fei Xia
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Isabella Casini
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Sarah Schulz
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Christian-Marco Klask
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Largus T. Angenent
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
- AG Angenent, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
111
|
Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol 2020; 39:35-40. [PMID: 32690970 DOI: 10.1038/s41587-020-0592-2] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/08/2020] [Indexed: 01/01/2023]
Abstract
Current base editors (BEs) catalyze only base transitions (C to T and A to G) and cannot produce base transversions. Here we present BEs that cause C-to-A transversions in Escherichia coli and C-to-G transversions in mammalian cells. These glycosylase base editors (GBEs) consist of a Cas9 nickase, a cytidine deaminase and a uracil-DNA glycosylase (Ung). Ung excises the U base created by the deaminase, forming an apurinic/apyrimidinic (AP) site that initiates the DNA repair process. In E. coli, we used activation-induced cytidine deaminase (AID) to construct AID-nCas9-Ung and found that it converts C to A with an average editing specificity of 93.8% ± 4.8% and editing efficiency of 87.2% ± 6.9%. For use in mammalian cells, we replaced AID with rat APOBEC1 (APOBEC-nCas9-Ung). We tested APOBEC-nCas9-Ung at 30 endogenous sites, and we observed C-to-G conversions with a high editing specificity at the sixth position of the protospacer between 29.7% and 92.2% and an editing efficiency between 5.3% and 53.0%. APOBEC-nCas9-Ung supplements the current adenine and cytidine BEs (ABE and CBE, respectively) and could be used to target G/C disease-causing mutations.
Collapse
|
112
|
Yu S, Price MA, Wang Y, Liu Y, Guo Y, Ni X, Rosser SJ, Bi C, Wang M. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in Bacillus subtilis. ACS Synth Biol 2020; 9:1781-1789. [PMID: 32551562 DOI: 10.1021/acssynbio.0c00151] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Base editing technology based on clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) is a recent addition to the family of CRISPR technologies. Compared with the traditional CRISPR/Cas9 technology, it does not rely on DNA double strand break and homologous recombination, and can realize gene inactivation and point mutation more quickly and simply. Herein, we first developed a base editing method for genome editing in Bacillus subtilis utilizing CRISPR/dCas9 (a fully nuclease-deficient mutant of Cas9 from S. pyogenes) and activation-induced cytidine deaminase (AID). This method achieved three and four loci simultaneous editing with editing efficiency up to 100% and 50%, respectively. Our base editing system in B. subtilis has a 5 nt editing window, which is similar to previously reported base editing in other microorganisms. We demonstrated that the plasmid curing rate is almost 100%, which is advantageous for multiple rounds of genome engineering in B. subtilis. Finally, we applied multiplex genome editing to generate a B. subtilis 168 mutant strain with eight inactive extracellular protease genes in just two rounds of base editing and plasmid curing, suggesting that it is a powerful tool for gene manipulation in B. subtilis and industrial applications in the future.
Collapse
Affiliation(s)
- Sili Yu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Marcus A. Price
- Centre for Synthetic and Systems Biology and UK Centre for Mammalian Synthetic Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Yu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yang Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanmei Guo
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Susan J. Rosser
- Centre for Synthetic and Systems Biology and UK Centre for Mammalian Synthetic Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Changhao Bi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
113
|
Wang Y, Liu Y, Zheng P, Sun J, Wang M. Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering. Trends Biotechnol 2020; 39:165-180. [PMID: 32680590 DOI: 10.1016/j.tibtech.2020.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Genome engineering is crucial for answering fundamental questions about, and exploring practical applications of, microorganisms. Various microbial genome-engineering tools, including CRISPR/Cas-enhanced homologous recombination (HR), have been developed, with ever-improving simplicity, efficiency, and applicability. Recently, a powerful emerging technology based on CRISPR/Cas-nucleobase deaminase fusions, known as base editing, opened new avenues for microbial genome engineering. Base editing enables nucleotide transition without inducing lethal double-stranded (ds)DNA cleavage, adding foreign donor DNA, or depending on inefficient HR. Here, we review ongoing efforts to develop and apply base editing to engineer industrially and clinically relevant microorganisms. We also summarize bioinformatics tools that would greatly facilitate guide (g)RNA design and sequencing data analysis and discuss the future challenges and prospects associated with this technology.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ye Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
114
|
Zhao Y, Tian J, Zheng G, Chen J, Sun C, Yang Z, Zimin AA, Jiang W, Deng Z, Wang Z, Lu Y. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1053-1062. [PMID: 31872379 DOI: 10.1007/s11427-019-1559-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/27/2019] [Indexed: 01/19/2023]
Abstract
CRISPR/Cas-mediated genome editing has greatly facilitated the study of gene function in Streptomyces. However, it could not be efficiently employed in streptomycetes with low homologous recombination (HR) ability. Here, a deaminase-assisted base editor dCas9-CDA-ULstr was developed in Streptomyces, which comprises the nuclease-deficient Cas9 (dCas9), the cytidine deaminase from Petromyzon marinus (PmCDA1), the uracil DNA glycosylase inhibitor (UGI) and the protein degradation tag (LVA tag). Using dCas9-CDA-ULstr, we achieved single-, double- and triple-point mutations (cytosine-to-thymine substitutions) at target sites in Streptomyces coelicolor with efficiency up to 100%, 60% and 20%, respectively. This base editor was also demonstrated to be highly efficient for base editing in the industrial strain, Streptomyces rapamycinicus, which produces the immunosuppressive agent rapamycin. Compared with base editors derived from the cytidine deaminase rAPOBEC1, the PmCDA1-assisted base editor dCas9-CDA-ULstr could edit cytosines preceded by guanosines with high efficiency, which is a great advantage for editing Streptomyces genomes (with high GC content). Collectively, the base editor dCas9-CDA-ULstr could be employed for efficient multiplex genome editing in Streptomyces. Since the dCas9-CDA-ULstr-based genome editing is independent of HR-mediated DNA repair, we believe this technology will greatly facilitate functional genome research and metabolic engineering in Streptomyces strains with weak HR ability.
Collapse
Affiliation(s)
- Yawei Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinzhong Tian
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guosong Zheng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jun Chen
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chuanwen Sun
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhongyi Yang
- School of Life Science, Taizhou University, Taizhou, 318000, China
| | - Andrei A Zimin
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China. .,Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
115
|
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38:824-844. [PMID: 32572269 DOI: 10.1038/s41587-020-0561-9] [Citation(s) in RCA: 1271] [Impact Index Per Article: 254.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The development of new CRISPR-Cas genome editing tools continues to drive major advances in the life sciences. Four classes of CRISPR-Cas-derived genome editing agents-nucleases, base editors, transposases/recombinases and prime editors-are currently available for modifying genomes in experimental systems. Some of these agents have also moved rapidly into the clinic. Each tool comes with its own capabilities and limitations, and major efforts have broadened their editing capabilities, expanded their targeting scope and improved editing specificity. We analyze key considerations when choosing genome editing agents and identify opportunities for future improvements and applications in basic research and therapeutics.
Collapse
Affiliation(s)
- Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
116
|
Blin K, Shaw S, Tong Y, Weber T. Designing sgRNAs for CRISPR-BEST base editing applications with CRISPy-web 2.0. Synth Syst Biotechnol 2020; 5:99-102. [PMID: 32596519 PMCID: PMC7301206 DOI: 10.1016/j.synbio.2020.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/30/2022] Open
Abstract
CRISPR/Cas9 systems are an established tool in genome engineering. As double strand breaks caused by the standard Cas9-based knock-out techniques can be problematic in some organisms, new systems were developed that can efficiently create knock-outs without causing double strand breaks to elegantly sidestep these issues. The recently published CRISPR-BEST base editor system for actinobacteria is built around a C to T or A to G base exchange. These base editing systems however require additional constraints to be considered for designing the sgRNAs. Here, we present an updated version of the interactive CRISPy-web single guide RNA design tool https://crispy.secondarymetabolites.org/that was built to support “classical” CRISPR and now also CRISPR-BEST workflows.
Collapse
Affiliation(s)
- Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simon Shaw
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
117
|
He X, Chen W, Liu Z, Yu G, Chen Y, Cai YJ, Sun L, Xu W, Zhong L, Gao C, Chen J, Zhang M, Yang S, Yao Y, Zhang Z, Ma F, Zhang CC, Lu HP, Yu B, Cheng TL, Qiu J, Sheng Q, Zhou HM, Lv ZR, Yan J, Zhou Y, Qiu Z, Cui Z, Zhang X, Meng A, Sun Q, Yang Y. Efficient and risk-reduced genome editing using double nicks enhanced by bacterial recombination factors in multiple species. Nucleic Acids Res 2020; 48:e57. [PMID: 32232370 PMCID: PMC7261186 DOI: 10.1093/nar/gkaa195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
Site-specific DNA double-strand breaks have been used to generate knock-in through the homology-dependent or -independent pathway. However, low efficiency and accompanying negative impacts such as undesirable indels or tumorigenic potential remain problematic. In this study, we present an enhanced reduced-risk genome editing strategy we named as NEO, which used either site-specific trans or cis double-nicking facilitated by four bacterial recombination factors (RecOFAR). In comparison to currently available approaches, NEO achieved higher knock-in (KI) germline transmission frequency (improving from zero to up to 10% efficiency with an average of 5-fold improvement for 8 loci) and 'cleaner' knock-in of long DNA fragments (up to 5.5 kb) into a variety of genome regions in zebrafish, mice and rats. Furthermore, NEO yielded up to 50% knock-in in monkey embryos and 20% relative integration efficiency in non-dividing primary human peripheral blood lymphocytes (hPBLCs). Remarkably, both on-target and off-target indels were effectively suppressed by NEO. NEO may also be used to introduce low-risk unrestricted point mutations effectively and precisely. Therefore, by balancing efficiency with safety and quality, the NEO method reported here shows substantial potential and improves the in vivo gene-editing strategies that have recently been developed.
Collapse
Affiliation(s)
- Xiaozhen He
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wenfeng Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guirong Yu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Youbang Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yi-Jun Cai
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling Sun
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wanli Xu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lili Zhong
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Caixi Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jishen Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Minjie Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shengxi Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yizhou Yao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhiping Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Fujun Ma
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chen-Chen Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui-Ping Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Yu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Lin Cheng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juhui Qiu
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qing Sheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Hai-Meng Zhou
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
| | - Zhi-Rong Lv
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
| | - Junjun Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yongjian Zhou
- Department of Gastric Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Zilong Qiu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xi Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
118
|
Adiego-Pérez B, Randazzo P, Daran JM, Verwaal R, Roubos JA, Daran-Lapujade P, van der Oost J. Multiplex genome editing of microorganisms using CRISPR-Cas. FEMS Microbiol Lett 2020; 366:5489186. [PMID: 31087001 PMCID: PMC6522427 DOI: 10.1093/femsle/fnz086] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial production of chemical compounds often requires highly engineered microbial cell factories. During the last years, CRISPR-Cas nucleases have been repurposed as powerful tools for genome editing. Here, we briefly review the most frequently used CRISPR-Cas tools and describe some of their applications. We describe the progress made with respect to CRISPR-based multiplex genome editing of industrial bacteria and eukaryotic microorganisms. We also review the state of the art in terms of gene expression regulation using CRISPRi and CRISPRa. Finally, we summarize the pillars for efficient multiplexed genome editing and present our view on future developments and applications of CRISPR-Cas tools for multiplex genome editing.
Collapse
Affiliation(s)
- Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Paola Randazzo
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - René Verwaal
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Johannes A Roubos
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
119
|
Development of a DNA double-strand break-free base editing tool in Corynebacterium glutamicum for genome editing and metabolic engineering. Metab Eng Commun 2020; 11:e00135. [PMID: 32577397 PMCID: PMC7300154 DOI: 10.1016/j.mec.2020.e00135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022] Open
Abstract
As a traditional amino acid producing bacterium, Corynebacterium glutamicum is a platform strain for production of various fine chemicals. Based on the CRISPR (Clustered regularly interspaced short palindromic repeats)-Cas9 system, gene editing tools that enable base conversion in the genome of C. glutamicum have been developed. However, some problems such as genomic instability caused by DNA double-strand break (DSB) and off-target effects need to be solved. In this study, a DSB-free single nucleotide genome editing system was developed by construction of a bi-directional base conversion tool TadA-dCas9-AID. This system includes cytosine base editors (CBEs): activation-induced cytidine deaminase (AID) and adenine deaminase (ABEs): tRNA adenosine deaminase (TadA), which can specifically target the gene through a 20-nt single guide RNA (sgRNA) and achieve the base conversion of C-T, C-G and A-G in the 28-bp editing window upstream of protospacer adjacent motif. Finally, as a proof-of-concept demonstration, the system was used to construct a mutant library of zwf gene in C. glutamicum S9114 genome to improve the production of a typical nutraceutical N-acetylglucosamine (GlcNAc). The GlcNAc titer of the mutant strain K293R was increased by 31.9% to 9.1 g/L in shake flask. Here, the developed bases conversion tool TadA-dCas9-AID does not need DNA double-strand break and homologous template, and is effective for genome editing and metabolic engineering in C. glutamicum. A DNA double-strand break-free base editing tool was developed in Corynebacterium glutamicum S9114, which can produce diverse single base mutations. The base editing tool can be used for base mutations on genome and metabolic engineering of C. glutamicum S9114. High efficiency 20N target sequence linking strategy was developed. The base editing tool is used to increase the titer of GlcNAc.
Collapse
|
120
|
Challenges and Advances in Genome Editing Technologies in Streptomyces. Biomolecules 2020; 10:biom10050734. [PMID: 32397082 PMCID: PMC7278167 DOI: 10.3390/biom10050734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
The genome of Streptomyces encodes a high number of natural product (NP) biosynthetic gene clusters (BGCs). Most of these BGCs are not expressed or are poorly expressed (commonly called silent BGCs) under traditional laboratory experimental conditions. These NP BGCs represent an unexplored rich reservoir of natural compounds, which can be used to discover novel chemical compounds. To activate silent BGCs for NP discovery, two main strategies, including the induction of BGCs expression in native hosts and heterologous expression of BGCs in surrogate Streptomyces hosts, have been adopted, which normally requires genetic manipulation. So far, various genome editing technologies have been developed, which has markedly facilitated the activation of BGCs and NP overproduction in their native hosts, as well as in heterologous Streptomyces hosts. In this review, we summarize the challenges and recent advances in genome editing tools for Streptomyces genetic manipulation with a focus on editing tools based on clustered regularly interspaced short palindrome repeat (CRISPR)/CRISPR-associated protein (Cas) systems. Additionally, we discuss the future research focus, especially the development of endogenous CRISPR/Cas-based genome editing technologies in Streptomyces.
Collapse
|
121
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
122
|
Luo Y, Ge M, Wang B, Sun C, Wang J, Dong Y, Xi JJ. CRISPR/Cas9-deaminase enables robust base editing in Rhodobacter sphaeroides 2.4.1. Microb Cell Fact 2020; 19:93. [PMID: 32334589 PMCID: PMC7183636 DOI: 10.1186/s12934-020-01345-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background CRISPR/Cas9 systems have been repurposed as canonical genome editing tools in a variety of species, but no application for the model strain Rhodobacter sphaeroides 2.4.1 was unveiled. Results Here we showed two kinds of programmable base editing systems, cytosine base editors (CBEs) and adenine base editors (ABEs), generated by fusing endonuclease Cas9 variant to cytosine deaminase PmCDA1 or heterodimer adenine deaminase TadA–TadA*, respectively. Using CBEs, we were able to obtain C-to-T mutation of single and double targets following the first induction step, with the efficiency of up to 97% and 43%; while the second induction step was needed in the case of triple target, with the screening rate of 47%. Using ABEs, we were only able to gain A-to-G mutation of single target after the second induction step, with the screening rate of 30%. Additionally, we performed a knockout analysis to identify the genes responsible for coenzyme Q10 biosynthesis and found that ubiF, ubiA, ubiG, and ubiX to be the most crucial ones. Conclusions Together, CBEs and ABEs serve as alternative methods for genetic manipulation in Rhodobacter sphaeroides and will shed light on the fundamental research of other bacteria that are hard to be directly edited by Cas9-sgRNA.
Collapse
Affiliation(s)
- Yufeng Luo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bolun Wang
- Department of Biomedical Engineering, State Key Laboratory of Natural and Biomimetic Drugs, College of Engineering, Peking University, Beijing, 100871, China
| | - Changhong Sun
- Beijing Viewsolid Biotech Co. Ltd, Beijing, 100071, China
| | - Junyi Wang
- Department of Biomedical Engineering, State Key Laboratory of Natural and Biomimetic Drugs, College of Engineering, Peking University, Beijing, 100871, China
| | - Yuyang Dong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Jianzhong Jeff Xi
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking University, Beijing, 100871, China. .,Department of Biomedical Engineering, State Key Laboratory of Natural and Biomimetic Drugs, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
123
|
Abstract
Base editing is emerging as a potent new strategy to achieve precise gene editing. By combining different nucleobase deaminases with Cas9 or Cpf1 proteins, several base editors have recently been developed to achieve targeted base conversions in different genomic contexts. Importantly, base editors have been successfully applied in animals, plants, and bacteria to induce precise substitutions at the single-base level with high efficiency. In this review, we summarize recent progress in the development and application of base editors and discuss some of the future directions of the technology.
Collapse
Affiliation(s)
- Bei Yang
- 1 Shanghai Institute for Advanced Immunochemical Studies and Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Li Yang
- 2 Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, CAS-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,3 School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jia Chen
- 3 School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,4 CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
124
|
Zheng Y, Li J, Wang B, Han J, Hao Y, Wang S, Ma X, Yang S, Ma L, Yi L, Peng W. Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering. Front Bioeng Biotechnol 2020; 8:62. [PMID: 32195227 PMCID: PMC7064716 DOI: 10.3389/fbioe.2020.00062] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
Establishment of production platforms through prokaryotic engineering in microbial organisms would be one of the most efficient means for chemicals, protein, and biofuels production. Despite the fact that CRISPR (clustered regularly interspaced short palindromic repeats)–based technologies have readily emerged as powerful and versatile tools for genetic manipulations, their applications are generally limited in prokaryotes, possibly owing to the large size and severe cytotoxicity of the heterogeneous Cas (CRISPR-associated) effector. Nevertheless, the rich natural occurrence of CRISPR-Cas systems in many bacteria and most archaea holds great potential for endogenous CRISPR-based prokaryotic engineering. The endogenous CRISPR-Cas systems, with type I systems that constitute the most abundant and diverse group, would be repurposed as genetic manipulation tools once they are identified and characterized as functional in their native hosts. This article reviews the major progress made in understanding the mechanisms of invading DNA immunity by type I CRISPR-Cas and summarizes the practical applications of endogenous type I CRISPR-based toolkits for prokaryotic engineering.
Collapse
Affiliation(s)
- Yanli Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Baiyang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jiamei Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yile Hao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Shengchen Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiangdong Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
125
|
Zhang Y, Zhang H, Wang Z, Wu Z, Wang Y, Tang N, Xu X, Zhao S, Chen W, Ji Q. Programmable adenine deamination in bacteria using a Cas9-adenine-deaminase fusion. Chem Sci 2020; 11:1657-1664. [PMID: 32206285 PMCID: PMC7069399 DOI: 10.1039/c9sc03784e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/06/2020] [Indexed: 12/26/2022] Open
Abstract
Precise genetic manipulation is vital to studying bacterial physiology, but is difficult to achieve in some bacterial species due to the weak intrinsic homologous recombination (HR) capacity and lack of a compatible exogenous HR system. Here we report the establishment of a rapid and efficient method for directly converting adenine to guanine in bacterial genomes using the fusion of an adenine deaminase and a Cas9 nickase. The method achieves the conversion of adenine to guanine via an enzymatic deamination reaction and a subsequent DNA replication process rather than HR, which is utilized in conventional bacterial genetic manipulation methods, thereby substantially simplifying the genome editing process. A systematic screening targeting the possibly editable adenine sites of cntBC, the importer of the staphylopine/metal complex in Staphylococcus aureus, pinpoints key residues for metal importation, demonstrating that application of the system would greatly facilitate the genomic engineering of bacteria.
Collapse
Affiliation(s)
- Ya Zhang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Hongyuan Zhang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Zhipeng Wang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Zhaowei Wu
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
| | - Yu Wang
- College of Life Science and Engineering , Jiangxi Agricultural University , Nanchang 330045 , China
| | - Na Tang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Xuexia Xu
- iHuman Institute , ShanghaiTech University , Shanghai 201210 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Suwen Zhao
- iHuman Institute , ShanghaiTech University , Shanghai 201210 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Weizhong Chen
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
| | - Quanjiang Ji
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China . ;
| |
Collapse
|
126
|
Schultenkämper K, Brito LF, Wendisch VF. Impact of CRISPR interference on strain development in biotechnology. Biotechnol Appl Biochem 2020; 67:7-21. [DOI: 10.1002/bab.1901] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Luciana F. Brito
- Department of Biotechnology and Food ScienceNTNUNorwegian University of Science and Technology Trondheim Norway
| | | |
Collapse
|
127
|
Xin X, Li J, Zhao D, Li S, Xie Q, Li Z, Fan F, Bi C, Zhang X. Double-Check Base Editing for Efficient A to G Conversions. ACS Synth Biol 2019; 8:2629-2634. [PMID: 31765564 DOI: 10.1021/acssynbio.9b00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the development of CRISPR/Cas9 technology, a new generation of editing methods that convert specific bases has enabled precise single-base mutations. To date, conversion of cytosine to thymidine and adenine to guanine has been achieved using the cytidine deaminase APOBEC1 and adenosine deaminase (TadA), respectively. However, the base editing efficiency can be unacceptably low in some cell types or at certain target loci. One reason might be the lack of a selective pressure against the survival of nonedited cells. Few studies on ABE in prokaryotes have been reported, probably due to the relatively low editing efficiency of TadA. Improving the editing efficiency is the key for establishing base editing techniques and especially the ABE technologies. In this work, a selective pressure against nonedited cells was implemented to increase the base editing efficiency. First, we fused nCas9 or dCas9 with TadA to compare the editing efficiency of nCas9-TadA and dCas9-TadA fusion complexes in the model prokaryote Escherichia coli. While nCas9-TadA was able to achieve A to G base editing (ABE) with a moderate efficiency, dCas9-TadA had a very low efficiency. To enrich for edited cells and increase the base-editing efficiency, we utilized the induction of double-strand breaks by active Cas9, which leads to the death of prokaryotic cells. By introducing an inducible active Cas9 with the same editing gRNA as the nCas9-TadA in the base editing process, the cells with nonedited target bases remained vulnerable to Cas9 and were eliminated. Thus, a double-check base editing (DBE) method was established, which significantly improved the editing efficiency of ABE in E. coli, reaching 99.0% for some sites. By placing a selective pressure against nonedited cells, the DBE strategy might also be applied to various scenarios to increase the efficiency of many different base editing targets or even for epigenetic DNA modification techniques.
Collapse
Affiliation(s)
- Xiuqing Xin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin 300387, PR China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Qianwen Xie
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Zhongkang Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| |
Collapse
|
128
|
Mougiakos I, Orsi E, Ghiffary MR, Post W, de Maria A, Adiego-Perez B, Kengen SWM, Weusthuis RA, van der Oost J. Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering. Microb Cell Fact 2019; 18:204. [PMID: 31767004 PMCID: PMC6876111 DOI: 10.1186/s12934-019-1255-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Background Rhodobacter sphaeroides is a metabolically versatile bacterium that serves as a model for analysis of photosynthesis, hydrogen production and terpene biosynthesis. The elimination of by-products formation, such as poly-β-hydroxybutyrate (PHB), has been an important metabolic engineering target for R. sphaeroides. However, the lack of efficient markerless genome editing tools for R. sphaeroides is a bottleneck for fundamental studies and biotechnological exploitation. The Cas9 RNA-guided DNA-endonuclease from the type II CRISPR-Cas system of Streptococcus pyogenes (SpCas9) has been extensively employed for the development of genome engineering tools for prokaryotes and eukaryotes, but not for R. sphaeroides. Results Here we describe the development of a highly efficient SpCas9-based genomic DNA targeting system for R. sphaeroides, which we combine with plasmid-borne homologous recombination (HR) templates developing a Cas9-based markerless and time-effective genome editing tool. We further employ the tool for knocking-out the uracil phosphoribosyltransferase (upp) gene from the genome of R. sphaeroides, as well as knocking it back in while altering its start codon. These proof-of-principle processes resulted in editing efficiencies of up to 100% for the knock-out yet less than 15% for the knock-in. We subsequently employed the developed genome editing tool for the consecutive deletion of the two predicted acetoacetyl-CoA reductase genes phaB and phbB in the genome of R. sphaeroides. The culturing of the constructed knock-out strains under PHB producing conditions showed that PHB biosynthesis is supported only by PhaB, while the growth of the R. sphaeroides ΔphbB strains under the same conditions is only slightly affected. Conclusions In this study, we combine the SpCas9 targeting activity with the native homologous recombination (HR) mechanism of R. sphaeroides for the development of a genome editing tool. We further employ the developed tool for the elucidation of the PHB production pathway of R. sphaeroides. We anticipate that the presented work will accelerate molecular research with R. sphaeroides.
Collapse
Affiliation(s)
- Ioannis Mougiakos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Enrico Orsi
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Mohammad Rifqi Ghiffary
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Wilbert Post
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Alberto de Maria
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Systems and Synthetic Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Belén Adiego-Perez
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
129
|
CRATES: A one-step assembly method for Class 2 CRISPR arrays. Methods Enzymol 2019. [PMID: 31727255 DOI: 10.1016/bs.mie.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
CRISPR-Cas systems naturally rely on CRISPR arrays to achieve immunity against multiple foreign invaders, where these arrays are also being utilized for multiplexed targeting as part of CRISPR technologies. However, CRISPR arrays have proven difficult to synthesize or assemble to-date due to the repetitive DNA repeats in each array. To overcome this barrier, we recently reported a cloning method we term CRATES (CRISPR Assembly through Trimmed Ends of Spacers) for the single-step, efficient generation of large Class 2 CRISPR arrays. CRATES generates CRISPR arrays through assembly of multiple repeat-spacer subunits using defined junction sequences within the trimmed portion of the CRISPR spacers. These arrays can be utilized by single-effector nucleases associated with Class 2 CRISPR-Cas systems, such as Cas9, Cas12a/Cpf1, or Cas13a/C2c2. Here, we describe in detail the steps for generating arrays utilized by Cas9 and Cas12a as well as composite arrays co-utilized by both nucleases. We also generate a representative three-spacer array and demonstrate multiplexed DNA cleavage through plasmid-clearance assays in Escherichia coli. This method is expected to simplify the study of natural CRISPR arrays and facilitate multiplexed targeting with programmable nucleases from Class 2 Cas nucleases across the myriad applications of CRISPR technologies.
Collapse
|
130
|
Becker J, Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 2019; 37:107360. [DOI: 10.1016/j.biotechadv.2019.02.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
|
131
|
Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc Natl Acad Sci U S A 2019; 116:20366-20375. [PMID: 31548381 PMCID: PMC6789908 DOI: 10.1073/pnas.1913493116] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although CRISPR-Cas9 tools dramatically simplified the genetic manipulation of actinomycetes, significant concerns of genome instability caused by the DNA double-strand breaks (DSBs) and common off-target effects remain. To address these concerns, we developed CRISPR-BEST, a DSB-free and high-fidelity single-nucleotide–resolution base editing system for streptomycetes and validated its use by determining editing properties and genome-wide off-target effects. Furthermore, our CRISPR-BEST toolkit supports Csy4-based multiplexing to target multiple genes of interest in parallel. We believe that our CRISPR-BEST approach is a significant improvement over existing genetic manipulation methods to engineer streptomycetes, especially for those strains that cannot be genome-edited using normal DSB-based genome editing systems, such as CRISPR-Cas9. Streptomycetes serve as major producers of various pharmacologically and industrially important natural products. Although CRISPR-Cas9 systems have been developed for more robust genetic manipulations, concerns of genome instability caused by the DNA double-strand breaks (DSBs) and the toxicity of Cas9 remain. To overcome these limitations, here we report development of the DSB-free, single-nucleotide–resolution genome editing system CRISPR-BEST (CRISPR-Base Editing SysTem), which comprises a cytidine (CRISPR-cBEST) and an adenosine (CRISPR-aBEST) deaminase-based base editor. Specifically targeted by an sgRNA, CRISPR-cBEST can efficiently convert a C:G base pair to a T:A base pair and CRISPR-aBEST can convert an A:T base pair to a G:C base pair within a window of approximately 7 and 6 nucleotides, respectively. CRISPR-BEST was validated and successfully used in different Streptomyces species. Particularly in nonmodel actinomycete Streptomyces collinus Tü365, CRISPR-cBEST efficiently inactivated the 2 copies of kirN gene that are in the duplicated kirromycin biosynthetic pathways simultaneously by STOP codon introduction. Generating such a knockout mutant repeatedly failed using the conventional DSB-based CRISPR-Cas9. An unbiased, genome-wide off-target evaluation indicates the high fidelity and applicability of CRISPR-BEST. Furthermore, the system supports multiplexed editing with a single plasmid by providing a Csy4-based sgRNA processing machinery. To simplify the protospacer identification process, we also updated the CRISPy-web (https://crispy.secondarymetabolites.org), and now it allows designing sgRNAs specifically for CRISPR-BEST applications.
Collapse
|
132
|
Abstract
The evolution of genome editing technology based on CRISPR (clustered regularly interspaced short palindromic repeats) system has led to a paradigm shift in biological research. CRISPR/Cas9-guide RNA complexes enable rapid and efficient genome editing in mammalian cells. This system induces double-stranded DNA breaks (DSBs) at target sites and most DNA breakages induce mutations as small insertions or deletions (indels) by non-homologous end joining (NHEJ) repair pathway. However, for more precise correction as knock-in or replacement of DNA base pairs, using the homology-directed repair (HDR) pathway is essential. Until now, many trials have greatly enhanced knock-in or substitution efficiency by increasing HDR efficiency, or newly developed methods such as Base Editors (BEs). However, accuracy remains unsatisfactory. In this review, we summarize studies to overcome the limitations of HDR using the CRISPR system and discuss future direction.
Collapse
Affiliation(s)
- Seuk-Min Ryu
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Junseok W Hur
- Department of Neurosurgery, Korea University College of Medicine, Seoul 02841, Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
133
|
Nora LC, Westmann CA, Guazzaroni ME, Siddaiah C, Gupta VK, Silva-Rocha R. Recent advances in plasmid-based tools for establishing novel microbial chassis. Biotechnol Adv 2019; 37:107433. [PMID: 31437573 DOI: 10.1016/j.biotechadv.2019.107433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
Abstract
A key challenge for domesticating alternative cultivable microorganisms with biotechnological potential lies in the development of innovative technologies. Within this framework, a myriad of genetic tools has flourished, allowing the design and manipulation of complex synthetic circuits and genomes to become the general rule in many laboratories rather than the exception. More recently, with the development of novel technologies such as DNA automated synthesis/sequencing and powerful computational tools, molecular biology has entered the synthetic biology era. In the beginning, most of these technologies were established in traditional microbial models (known as chassis in the synthetic biology framework) such as Escherichia coli and Saccharomyces cerevisiae, enabling fast advances in the field and the validation of fundamental proofs of concept. However, it soon became clear that these organisms, although extremely useful for prototyping many genetic tools, were not ideal for a wide range of biotechnological tasks due to intrinsic limitations in their molecular/physiological properties. Over the last decade, researchers have been facing the great challenge of shifting from these model systems to non-conventional chassis with endogenous capacities for dealing with specific tasks. The key to address these issues includes the generation of narrow and broad host plasmid-based molecular tools and the development of novel methods for engineering genomes through homologous recombination systems, CRISPR/Cas9 and other alternative methods. Here, we address the most recent advances in plasmid-based tools for the construction of novel cell factories, including a guide for helping with "build-your-own" microbial host.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Cauã Antunes Westmann
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - María-Eugenia Guazzaroni
- Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | | | - Vijai Kumar Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|
134
|
Wang Y, Liu Y, Li J, Yang Y, Ni X, Cheng H, Huang T, Guo Y, Ma H, Zheng P, Wang M, Sun J, Ma Y. Expanding targeting scope, editing window, and base transition capability of base editing in
Corynebacterium glutamicum. Biotechnol Bioeng 2019; 116:3016-3029. [DOI: 10.1002/bit.27121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Ye Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Junwei Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
- College of BiotechnologyTianjin University of Science and Technology Tianjin China
| | - Yi Yang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Haijiao Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Teng Huang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Yanmei Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| |
Collapse
|
135
|
Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nat Commun 2019; 10:2948. [PMID: 31270316 PMCID: PMC6610086 DOI: 10.1038/s41467-019-10747-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
CRISPR-Cas systems inherently multiplex through CRISPR arrays—whether to defend against different invaders or mediate multi-target editing, regulation, imaging, or sensing. However, arrays remain difficult to generate due to their reoccurring repeat sequences. Here, we report a modular, one-pot scheme called CRATES to construct CRISPR arrays and array libraries. CRATES allows assembly of repeat-spacer subunits using defined assembly junctions within the trimmed portion of spacers. Using CRATES, we construct arrays for the single-effector nucleases Cas9, Cas12a, and Cas13a that mediated multiplexed DNA/RNA cleavage and gene regulation in cell-free systems, bacteria, and yeast. CRATES further allows the one-pot construction of array libraries and composite arrays utilized by multiple Cas nucleases. Finally, array characterization reveals processing of extraneous CRISPR RNAs from Cas12a terminal repeats and sequence- and context-dependent loss of RNA-directed nuclease activity via global RNA structure formation. CRATES thus can facilitate diverse multiplexing applications and help identify factors impacting crRNA biogenesis. CRISPR array generation is difficult due to reoccurring repeat sequences. Here the authors present CRATES—a modular, one-pot assembly method—and demonstrate the creation of arrays for Cas9, Cas12a and Cas13a for cell-free, bacterial, yeast and mammalian systems.
Collapse
|
136
|
Fernández‐Cabezón L, Cros A, Nikel PI. Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories. Biotechnol J 2019; 14:e1800439. [DOI: 10.1002/biot.201800439] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Lorena Fernández‐Cabezón
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Antonin Cros
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|
137
|
Barriers to genome editing with CRISPR in bacteria. J Ind Microbiol Biotechnol 2019; 46:1327-1341. [PMID: 31165970 DOI: 10.1007/s10295-019-02195-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
Abstract
Genome editing is essential for probing genotype-phenotype relationships and for enhancing chemical production and phenotypic robustness in industrial bacteria. Currently, the most popular tools for genome editing couple recombineering with DNA cleavage by the CRISPR nuclease Cas9 from Streptococcus pyogenes. Although successful in some model strains, CRISPR-based genome editing has been slow to extend to the multitude of industrially relevant bacteria. In this review, we analyze existing barriers to implementing CRISPR-based editing across diverse bacterial species. We first compare the efficacy of current CRISPR-based editing strategies. Next, we discuss alternatives when the S. pyogenes Cas9 does not yield colonies. Finally, we describe different ways bacteria can evade editing and how elucidating these failure modes can improve CRISPR-based genome editing across strains. Together, this review highlights existing obstacles to CRISPR-based editing in bacteria and offers guidelines to help achieve and enhance editing in a wider range of bacterial species, including non-model strains.
Collapse
|
138
|
Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion. Microbiol Res 2019; 223-225:44-50. [DOI: 10.1016/j.micres.2019.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
|
139
|
|
140
|
Abstract
Our bodies are colonized by a complex ecosystem of bacteria, unicellular eukaryotes and their viruses that together play a major role in our health. Over the past few years tools derived from the prokaryotic immune system known as CRISPR-Cas have empowered researchers to modify and study organisms with unprecedented ease and efficiency. Here we discuss how various types of CRISPR-Cas systems can be used to modify the genome of gut microorganisms and bacteriophages. CRISPR-Cas systems can also be delivered to bacterial population and programmed to specifically eliminate members of the microbiome. Finally, engineered CRISPR-Cas systems can be used to control gene expression and modulate the production of metabolites and proteins. Together these tools provide exciting opportunities to investigate the complex interplay between members of the microbiome and our bodies, and present new avenues for the development of drugs that target the microbiome. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
| | - David Bikard
- Synthetic Biology Group, Department of Microbiology, Institut Pasteur, Paris 75015, France
| |
Collapse
|
141
|
Nyerges Á, Bálint B, Cseklye J, Nagy I, Pál C, Fehér T. CRISPR-interference-based modulation of mobile genetic elements in bacteria. Synth Biol (Oxf) 2019; 4:ysz008. [PMID: 31008359 PMCID: PMC6462304 DOI: 10.1093/synbio/ysz008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 11/12/2022] Open
Abstract
Spontaneous mutagenesis of synthetic genetic constructs by mobile genetic elements frequently results in the rapid loss of engineered functions. Previous efforts to minimize such mutations required the exceedingly time-consuming manipulation of bacterial chromosomes and the complete removal of insertional sequences (ISes). To this aim, we developed a single plasmid-based system (pCRIS) that applies CRISPR-interference to inhibit the transposition of bacterial ISes. pCRIS expresses multiple guide RNAs to direct inactivated Cas9 (dCas9) to simultaneously silence IS1, IS3, IS5 and IS150 at up to 38 chromosomal loci in Escherichia coli, in vivo. As a result, the transposition rate of all four targeted ISes dropped to negligible levels at both chromosomal and episomal targets. Most notably, pCRIS, while requiring only a single plasmid delivery performed within a single day, provided a reduction of IS-mobility comparable to that seen in genome-scale chromosome engineering projects. The fitness cost of multiple IS-knockdown, detectable in flask-and-shaker systems was readily outweighed by the less frequent inactivation of the transgene, as observed in green fluorescent protein (GFP)-overexpression experiments. In addition, global transcriptomics analysis revealed only minute alterations in the expression of untargeted genes. Finally, the transposition-silencing effect of pCRIS was easily transferable across multiple E. coli strains. The plasticity and robustness of our IS-silencing system make it a promising tool to stabilize bacterial genomes for synthetic biology and industrial biotechnology applications.
Collapse
Affiliation(s)
- Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.,Seqomics Biotechnology Ltd, Mórahalom, Hungary
| | | | - István Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.,Seqomics Biotechnology Ltd, Mórahalom, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Fehér
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
142
|
Li Q, Seys FM, Minton NP, Yang J, Jiang Y, Jiang W, Yang S. CRISPR-Cas9 D10A nickase-assisted base editing in the solvent producer Clostridium beijerinckii. Biotechnol Bioeng 2019; 116:1475-1483. [PMID: 30739328 DOI: 10.1002/bit.26949] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 01/02/2023]
Abstract
Clostridium beijerinckii is a potentially important industrial microorganism as it can synthesize valuable chemicals and fuels from various carbon sources. The establishment of convenient to use, effective gene tools with which the organism can be rapidly modified is essential if its full potential is to be realized. Here, we developed a genomic editing tool (pCBEclos) for use in C. beijerinckii based on the fusion of cytidine deaminase (Apobec1), Cas9 D10A nickase and uracil DNA glycosylase inhibitor (UGI). Apobec1 and UGI are guided to the target site where they introduce specific base-pair substitutions through the conversion of C·G to T·A. By appropriate choice of target sequence, these nucleotide changes are capable of creating missense mutation or null mutations in a gene. Through optimization of pCBEclos, the system derived, pCBEclos-opt, has been used to rapidly generate four different mutants in C. beijerinckii, in pyrE, xylR, spo0A, and araR. The efficiency of the system was such that they could sometimes be directly obtained following transformation, otherwise only requiring one single restreaking step. Whilst CRISPR-Cas9 nickase systems, such as pNICKclos2.0, have previously been reported in C. beijerinckii, pCBEclos-opt does not rely on homologous recombination, a process that is intrinsically inefficient in clostridia such as C. beijerinckii. As a consequence, bulky editing templates do not need to be included in the knockout plasmids. This both reduces plasmid size and makes their construction simpler, for example, whereas the assembly of pNICKclos2.0 requires six primers for the assembly of a typical knockout plasmid, pCBEclos-opt requires just two primers. The pCBEclos-opt plasmid established here represents a powerful new tool for genome editing in C. beijerinckii, which should be readily applicable to other clostridial species.
Collapse
Affiliation(s)
- Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China.,Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - François M Seys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| |
Collapse
|
143
|
Shimatani Z, Ariizumi T, Fujikura U, Kondo A, Ezura H, Nishida K. Targeted Base Editing with CRISPR-Deaminase in Tomato. Methods Mol Biol 2019; 1917:297-307. [PMID: 30610645 DOI: 10.1007/978-1-4939-8991-1_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Target-AID system, consisting of a complex of cytidine deaminase and deficient CRISPR/Cas9, enables highly specific genomic nucleotide substitutions without the need for template DNA. The Cas9-fused cytidine deaminase is guided by sgRNAs and catalyzes the conversion of cytosine to uracil. The resulting U-G DNA mismatches trigger nucleotide substitutions (C to T or G to A) through DNA replication and repair pathways. Target-AID also retains the benefits of conventional CRISPR/Cas9 including robustness in various organisms, high targeting efficiency, and multiplex simultaneous gene editing. Our research group recently developed plant-optimized Target-AID system and demonstrated targeted base editing in tomato and rice. In this chapter, we introduce methods for Target-AID application in tomato.
Collapse
Affiliation(s)
- Zenpei Shimatani
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ushio Fujikura
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Nishida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
144
|
CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Appl Environ Microbiol 2018; 84:AEM.01834-18. [PMID: 30217854 DOI: 10.1128/aem.01834-18] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
Klebsiella pneumoniae is a promising industrial microorganism as well as a major human pathogen. The recent emergence of carbapenem-resistant K. pneumoniae has posed a serious threat to public health worldwide, emphasizing a dire need for novel therapeutic means against drug-resistant K. pneumoniae Despite the critical importance of genetics in bioengineering, physiology studies, and therapeutic-means development, genome editing, in particular, the highly desirable scarless genetic manipulation in K. pneumoniae, is often time-consuming and laborious. Here, we report a two-plasmid system, pCasKP-pSGKP, used for precise and iterative genome editing in K. pneumoniae By harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome cleavage system and the lambda Red recombination system, pCasKP-pSGKP enabled highly efficient genome editing in K. pneumoniae using a short repair template. Moreover, we developed a cytidine base-editing system, pBECKP, for precise C→T conversion in both the chromosomal and plasmid-borne genes by engineering the fusion of the cytidine deaminase APOBEC1 and a Cas9 nickase. By using both the pCasKP-pSGKP and the pBECKP tools, the bla KPC-2 gene was confirmed to be the major factor that contributed to the carbapenem resistance of a hypermucoviscous carbapenem-resistant K. pneumoniae strain. The development of the two editing tools will significantly facilitate the genetic engineering of K. pneumoniae IMPORTANCE Genetics is a key means to study bacterial physiology. However, the highly desirable scarless genetic manipulation is often time-consuming and laborious for the major human pathogen K. pneumoniae We developed a CRISPR-Cas9-mediated genome-editing method and a cytidine base-editing system, enabling rapid, highly efficient, and iterative genome editing in both industrial and clinically isolated K. pneumoniae strains. We applied both tools in dissecting the drug resistance mechanism of a hypermucoviscous carbapenem-resistant K. pneumoniae strain, elucidating that the bla KPC-2 gene was the major factor that contributed to the carbapenem resistance of the hypermucoviscous carbapenem-resistant K. pneumoniae strain. Utilization of the two tools will dramatically accelerate a wide variety of investigations in diverse K. pneumoniae strains and relevant Enterobacteriaceae species, such as gene characterization, drug discovery, and metabolic engineering.
Collapse
|
145
|
Sakuma T, Yamamoto T. Acceleration of cancer science with genome editing and related technologies. Cancer Sci 2018; 109:3679-3685. [PMID: 30315615 PMCID: PMC6272086 DOI: 10.1111/cas.13832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 12/26/2022] Open
Abstract
Genome editing includes various edits of the genome, such as short insertions and deletions, substitutions, and chromosomal rearrangements including inversions, duplications, and translocations. These variations are based on single or multiple DNA double-strand break (DSB)-triggered in cellulo repair machineries. In addition to these "conventional" genome editing strategies, tools enabling customized, site-specific recognition of particular nucleic acid sequences have been coming into wider use; for example, single base editing without DSB introduction, epigenome editing with recruitment of epigenetic modifiers, transcriptome engineering using RNA editing systems, and in vitro detection of specific DNA and RNA sequences. In this review, we provide a quick overview of the current state of genome editing and related technologies that multilaterally contribute to cancer science.
Collapse
Affiliation(s)
- Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
146
|
Liu H, Wang L, Luo Y. Blossom of CRISPR technologies and applications in disease treatment. Synth Syst Biotechnol 2018; 3:217-228. [PMID: 30370342 PMCID: PMC6199817 DOI: 10.1016/j.synbio.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023] Open
Abstract
Since 2013, the CRISPR-based bacterial antiviral defense systems have revolutionized the genome editing field. In addition to genome editing, CRISPR has been developed as a variety of tools for gene expression regulations, live cell chromatin imaging, base editing, epigenome editing, and nucleic acid detection. Moreover, in the context of further boosting the usability and feasibility of CRISPR systems, novel CRISPR systems and engineered CRISPR protein mutants have been explored and studied actively. With the flourish of CRISPR technologies, they have been applied in disease treatment recently, as in gene therapy, cell therapy, immunotherapy, and antimicrobial therapy. Here we present the developments of CRISPR technologies and describe the applications of these CRISPR-based technologies in disease treatment.
Collapse
Affiliation(s)
- Huayi Liu
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Lian Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Yunzi Luo
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| |
Collapse
|
147
|
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 2018; 3:135-149. [PMID: 30345399 PMCID: PMC6190536 DOI: 10.1016/j.synbio.2018.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technologies have greatly reshaped the biology field. In this review, we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a, which have been most widely studied and used. We discuss the biological mechanisms of CRISPR-Cas as immune defense systems, recently-discovered anti-CRISPR-Cas systems, and the emerging Cas variants (such as xCas9 and Cas13) with unique characteristics. Then, we highlight various CRISPR-Cas biotechnologies, including nuclease-dependent genome editing, CRISPR gene regulation (including CRISPR interference/activation), DNA/RNA base editing, and nucleic acid detection. Last, we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Xiao Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
148
|
Arazoe T, Kondo A, Nishida K. Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnol J 2018; 13:e1700596. [PMID: 29862665 DOI: 10.1002/biot.201700596] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/15/2018] [Indexed: 12/31/2022]
Abstract
Since the emergence of programmable RNA-guided nucleases based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems, genome editing technologies have become a simplified and versatile tool for genome editing in various organisms and cell types. Although genome editing enables efficient genome manipulations, such as gene disruptions, gene knockins, and chromosomal translocations via DNA double-strand break (DSB) repair in eukaryotes, DSBs induced by the CRISPR/Cas system are lethal or severely toxic to many microorganisms. Therefore, in many prokaryotes, including industrially useful microbes, the CRISPR/Cas system is often used as a negative selection component in combination with recombineering or other related strategies. Novel and revolutionary technologies have been recently developed to re-write targeted nucleotides (C:G to T:A and A:T to G:C) without DSBs and donor DNA templates. These technologies rely on the recruitment of deaminases at specific target loci using the nuclease-deficient CRISPR/Cas system. Here, the authors review and compare CRISPR-based genome editing, current base editing platforms and their spectra. The authors discuss how these technologies can be applied in various aspects of microbial metabolic engineering to overcome barriers to cellular regulation in prokaryotes.
Collapse
Affiliation(s)
- Takayuki Arazoe
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Keiji Nishida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
149
|
Chen W, Zhang Y, Zhang Y, Pi Y, Gu T, Song L, Wang Y, Ji Q. CRISPR/Cas9-based Genome Editing in Pseudomonas aeruginosa and Cytidine Deaminase-Mediated Base Editing in Pseudomonas Species. iScience 2018; 6:222-231. [PMID: 30240613 PMCID: PMC6137401 DOI: 10.1016/j.isci.2018.07.024] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas species are a large class of gram-negative bacteria that exhibit significant biomedical, ecological, and industrial importance. Despite the extensive research and wide applications, genetic manipulation in Pseudomonas species, in particular in the major human pathogen Pseudomonas aeruginosa, remains a laborious endeavor. Here we report the development of a genome editing method pCasPA/pACRISPR by harnessing the CRISPR/Cas9 and the phage λ-Red recombination systems. The method allows for efficient and scarless genetic manipulation in P. aeruginosa. By engineering the fusion of the cytidine deaminase APOBEC1 and the Cas9 nickase, we further develop a base editing system pnCasPA-BEC, which enables highly efficient gene inactivation and point mutations in a variety of Pseudomonas species, such as P. aeruginosa, Pseudomonas putida, Pseudomonas fluorescens, and Pseudomonas syringae. Application of the two genome editing methods will dramatically accelerate a wide variety of investigations, such as bacterial physiology study, drug target exploration, and metabolic engineering.
Collapse
Affiliation(s)
- Weizhong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ya Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yishuang Pi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tongnian Gu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Liqiang Song
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
150
|
St. Martin A, Salamango D, Serebrenik A, Shaban N, Brown WL, Donati F, Munagala U, Conticello SG, Harris RS. A fluorescent reporter for quantification and enrichment of DNA editing by APOBEC-Cas9 or cleavage by Cas9 in living cells. Nucleic Acids Res 2018; 46:e84. [PMID: 29746667 PMCID: PMC6101615 DOI: 10.1093/nar/gky332] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/26/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Base editing is an exciting new genome engineering technology. C-to-T mutations in genomic DNA have been achieved using ribonucleoprotein complexes comprised of rat APOBEC1 single-stranded DNA deaminase, Cas9 nickase (Cas9n), uracil DNA glycosylase inhibitor (UGI), and guide (g)RNA. Here, we report the first real-time reporter system for quantification of APOBEC-mediated base editing activity in living mammalian cells. The reporter expresses eGFP constitutively as a marker for transfection or transduction, and editing restores functionality of an upstream mCherry cassette through the simultaneous processing of two gRNA binding regions that each contain an APOBEC-preferred 5'TCA target site. Using this system as both an episomal and a chromosomal editing reporter, we show that human APOBEC3A-Cas9n-UGI and APOBEC3B-Cas9n-UGI base editing complexes are more efficient than the original rat APOBEC1-Cas9n-UGI construct. We also demonstrate coincident enrichment of editing events at a heterologous chromosomal locus in reporter-edited, mCherry-positive cells. The mCherry reporter also quantifies the double-stranded DNA cleavage activity of Cas9, and may therefore be adaptable for use with many different CRISPR systems. The combination of a rapid, fluorescence-based editing reporter system and more efficient, structurally defined DNA editing enzymes broadens the versatility of the rapidly expanding toolbox of genome editing and engineering technologies.
Collapse
Affiliation(s)
- Amber St. Martin
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | - Daniel Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | - Artur Serebrenik
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | - Nadine Shaban
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | | | | | | | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|