101
|
Yin J, Li F, Li Z, Yu L, Zhu F, Zeng S. Feature, Function, and Information of Drug Transporter-Related Databases. Drug Metab Dispos 2022; 50:76-85. [PMID: 34426411 DOI: 10.1124/dmd.121.000419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
With the rapid progress in pharmaceutical experiments and clinical investigations, extensive knowledge of drug transporters (DTs) has accumulated, which is valuable data for the understanding of drug metabolism and disposition. However, such data are largely dispersed in the literature, which hampers its utility and significantly limits its possibility for comprehensive analysis. A variety of databases have, therefore, been constructed to provide DT-related data, and they were reviewed in this study. First, several knowledge bases providing data regarding clinically important drugs and their corresponding transporters were discussed, which constituted the most important resources of DT-centered data. Second, some databases describing the general transporters and their functional families were reviewed. Third, various databases offering transporter information as part of their entire data collection were described. Finally, customized database functions that are available to facilitate DT-related research were discussed. This review provided an overview of the whole collection of DT-related databases, which might facilitate research on precision medicine and rational drug use. SIGNIFICANCE STATEMENT: A collection of well established databases related to drug transporters were comprehensively reviewed, which were organized according to their importance in drug absorption, distribution, metabolism, and excretion research. These databases could collectively contribute to the research on rational drug use.
Collapse
Affiliation(s)
- Jiayi Yin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Fengcheng Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Zhaorong Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Feng Zhu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| |
Collapse
|
102
|
Wu JY, Hua ZL, Gu L, Li XQ, Gao C, Liu YY. Perfluorinated compounds (PFCs) in regional industrial rivers: Interactions between pollution flux and eukaryotic community phylosymbiosis. ENVIRONMENTAL RESEARCH 2022; 203:111876. [PMID: 34400162 DOI: 10.1016/j.envres.2021.111876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Perfluorinated compounds (PFCs) pose serious threats to aquatic ecosystems, especially their microbial communities. However, little is known about the phylosymbiosis of aquatic fungal and viridiplantae communities in response to PFC accumulation. We quantified the distribution of 14 PFCs in rivers and found that PFBA was dominant in the transition from water to sediment. High through-put sequencing revealed that phyla Ascomycota, Basidiomycota, Anthophyta, and Chlorophyta were the predominant in eukaryotic community. The effects of PFCs on spatial community coalescence at taxonomic and phylogenetic levels (p < 0.05) were revealed. Fungal community coalescence triggered the spatial assembly of fungal and viridiplantae communities in riverine environments (p < 0.05). Null modeling indicated that PFBA, PFTrDA and PFOS, etc, mediated phylogenetic assembly (p < 0.05) and stochastic processes (86.67-100%) maintain phylogenetic turnover in the fungal community. Meanwhile, variable selection (27.78-54.44%) explained the viridiplantae community assemblage. Finally, we identified fungal genera Hannaella, Naganishia, Purpureocillium and Stachybotrys as indicators for PFC pollution (p < 0.001). These results help explain the effects of PFCs on riverine ecological remediation.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
| | - Xiao-Qing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Chang Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Yuan-Yuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| |
Collapse
|
103
|
Perlman D, Martínez-Álvaro M, Moraïs S, Altshuler I, Hagen LH, Jami E, Roehe R, Pope PB, Mizrahi I. Concepts and Consequences of a Core Gut Microbiota for Animal Growth and Development. Annu Rev Anim Biosci 2021; 10:177-201. [PMID: 34941382 DOI: 10.1146/annurev-animal-013020-020412] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal microbiomes are occasionally considered as an extension of host anatomy, physiology, and even their genomic architecture. Their compositions encompass variable and constant portions when examined across multiple hosts. The latter, termed the core microbiome, is viewed as more accommodated to its host environment and suggested to benefit host fitness. Nevertheless, discrepancies in its definitions, characteristics, and importance to its hosts exist across studies. We survey studies that characterize the core microbiome, detail its current definitions and available methods to identify it, and emphasize the crucial need to upgrade and standardize the methodologies among studies. We highlight ruminants as a case study and discuss the link between the core microbiome and host physiology and genetics, as well as potential factors that shape it. We conclude with main directives of action to better understand the host-core microbiome axis and acquire the necessary insights into its controlled modulation. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daphne Perlman
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel;
| | - Marina Martínez-Álvaro
- Department of Agriculture, Horticulture and Engineering Sciences, SRUC (Scotland's Rural College), Edinburgh, Scotland, United Kingdom
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel;
| | - Ianina Altshuler
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway;
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Elie Jami
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Rainer Roehe
- Department of Agriculture, Horticulture and Engineering Sciences, SRUC (Scotland's Rural College), Edinburgh, Scotland, United Kingdom
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway; .,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel;
| |
Collapse
|
104
|
Brown JL, Swift CL, Mondo SJ, Seppala S, Salamov A, Singan V, Henrissat B, Drula E, Henske JK, Lee S, LaButti K, He G, Yan M, Barry K, Grigoriev IV, O'Malley MA. Co‑cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:234. [PMID: 34893091 PMCID: PMC8665504 DOI: 10.1186/s13068-021-02083-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/19/2021] [Indexed: 05/12/2023]
Abstract
Anaerobic fungi and methanogenic archaea are two classes of microorganisms found in the rumen microbiome that metabolically interact during lignocellulose breakdown. Here, stable synthetic co-cultures of the anaerobic fungus Caecomyces churrovis and the methanogen Methanobacterium bryantii (not native to the rumen) were formed, demonstrating that microbes from different environments can be paired based on metabolic ties. Transcriptional and metabolic changes induced by methanogen co-culture were evaluated in C. churrovis across a variety of substrates to identify mechanisms that impact biomass breakdown and sugar uptake. A high-quality genome of C. churrovis was obtained and annotated, which is the first sequenced genome of a non-rhizoid-forming anaerobic fungus. C. churrovis possess an abundance of CAZymes and carbohydrate binding modules and, in agreement with previous studies of early-diverging fungal lineages, N6-methyldeoxyadenine (6mA) was associated with transcriptionally active genes. Co-culture with the methanogen increased overall transcription of CAZymes, carbohydrate binding modules, and dockerin domains in co-cultures grown on both lignocellulose and cellulose and caused upregulation of genes coding associated enzymatic machinery including carbohydrate binding modules in family 18 and dockerin domains across multiple growth substrates relative to C. churrovis monoculture. Two other fungal strains grown on a reed canary grass substrate in co-culture with the same methanogen also exhibited high log2-fold change values for upregulation of genes encoding carbohydrate binding modules in families 1 and 18. Transcriptional upregulation indicated that co-culture of the C. churrovis strain with a methanogen may enhance pyruvate formate lyase (PFL) function for growth on xylan and fructose and production of bottleneck enzymes in sugar utilization pathways, further supporting the hypothesis that co-culture with a methanogen may enhance certain fungal metabolic functions. Upregulation of CBM18 may play a role in fungal-methanogen physical associations and fungal cell wall development and remodeling.
Collapse
Affiliation(s)
- Jennifer L Brown
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Candice L Swift
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Susanna Seppala
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vasanth Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elodie Drula
- Architecture Et Fonction Des Macromolécules Biologiques, CNRS/Aix-Marseille University, Marseille, France
- INRAE USC1408, AFMB, 13009, Marseille, France
| | - John K Henske
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Samantha Lee
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Guifen He
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mi Yan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
105
|
Blair EM, Dickson KL, O'Malley MA. Microbial communities and their enzymes facilitate degradation of recalcitrant polymers in anaerobic digestion. Curr Opin Microbiol 2021; 64:100-108. [PMID: 34700124 DOI: 10.1016/j.mib.2021.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Microbial consortia efficiently degrade complex biopolymers found in the organic fraction of municipal solid waste (OFMSW). Through enzyme production and division of labor during anaerobic digestion, microbial communities break down recalcitrant polymers and make fermentation products, including methane. However, microbial communities remain underutilized for waste degradation as it remains difficult to characterize and predict microbial interactions during waste breakdown, especially as cultivation conditions change drastically throughout anaerobic digestion. This review discusses recent progress and opportunities in cultivating natural and engineered consortia for OFMSW hydrolysis, including how recalcitrant substrates are degraded by enzymes as well as the critical factors that govern microbial interactions and culture stability. Methods to measure substrate degradation are also reviewed, and we demonstrate the need for increased standardization to enable comparisons across different environments.
Collapse
Affiliation(s)
- Elaina M Blair
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Katharine L Dickson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, USA.
| |
Collapse
|
106
|
Li Q, Wu T, Zhang M, Chen H, Liu R. Induction of the glycolysis product methylglyoxal on trimethylamine lyase synthesis in the intestinal microbiota from mice fed with choline and dietary fiber. Food Funct 2021; 12:9880-9893. [PMID: 34664588 DOI: 10.1039/d1fo01481a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study investigated the induction of the glycolysis product methylglyoxal by trimethylamine (TMA) lyase synthesis in the intestinal microbiota and investigated the intervention mechanism of the effects of dietary fiber on methylglyoxal formation. Intestinal digesta samples, collected from the ceca of mice fed with choline-rich and fiber-supplemented diets, were incubated in an anaerobic environment at 37 °C and pH 7.0 with choline, glycine, and methylglyoxal as inductive factors. The differences between the gut microbiota and its metagenomic and metabonomics profiles were determined using 16S rRNA gene sequencing analysis. The results elucidated that the different dietary interventions could induce differences in the composition of the microbiota, gene expression profiles associated with glycine metabolism, and glycolysis. As compared to the gut microbiota of choline-diet fed mice, fiber supplementation effectively altered the composition of the microbiota and inhibited the genes involved in choline metabolism, glycine and methylglyoxal accumulation, and TMA lyase expression, and improved the methylglyoxal utilization by regulating the pathway related to pyruvate production. However, the intervention of exogenous methylglyoxal significantly decreased these effects. These findings successfully revealed the correlations between the TMA lyase expression and glycine level, as well as the inhibitory effects of dietary fiber on the glycine level, thereby highlighting the role of common glycolytic metabolites as a potential target for TMA production.
Collapse
Affiliation(s)
- Qian Li
- Tianjin Agricultural University, Tianjin 300392, PR China.,China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China.,State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Tao Wu
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300392, PR China.,China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China.,State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Rui Liu
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
107
|
Leggieri PA, Kerdman-Andrade C, Lankiewicz TS, Valentine MT, O’Malley MA. Non-destructive quantification of anaerobic gut fungi and methanogens in co-culture reveals increased fungal growth rate and changes in metabolic flux relative to mono-culture. Microb Cell Fact 2021; 20:199. [PMID: 34663313 PMCID: PMC8522008 DOI: 10.1186/s12934-021-01684-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Quantification of individual species in microbial co-cultures and consortia is critical to understanding and designing communities with prescribed functions. However, it is difficult to physically separate species or measure species-specific attributes in most multi-species systems. Anaerobic gut fungi (AGF) (Neocallimastigomycetes) are native to the rumen of large herbivores, where they exist as minority members among a wealth of prokaryotes. AGF have significant biotechnological potential owing to their diverse repertoire of potent lignocellulose-degrading carbohydrate-active enzymes (CAZymes), which indirectly bolsters activity of other rumen microbes through metabolic exchange. While decades of literature suggest that polysaccharide degradation and AGF growth are accelerated in co-culture with prokaryotes, particularly methanogens, methods have not been available to measure concentrations of individual species in co-culture. New methods to disentangle the contributions of AGF and rumen prokaryotes are sorely needed to calculate AGF growth rates and metabolic fluxes to prove this hypothesis and understand its causality for predictable co-culture design. RESULTS We present a simple, microplate-based method to measure AGF and methanogen concentrations in co-culture based on fluorescence and absorbance spectroscopies. Using samples of < 2% of the co-culture volume, we demonstrate significant increases in AGF growth rate and xylan and glucose degradation rates in co-culture with methanogens relative to mono-culture. Further, we calculate significant differences in AGF metabolic fluxes in co-culture relative to mono-culture, namely increased flux through the energy-generating hydrogenosome organelle. While calculated fluxes highlight uncertainties in AGF primary metabolism that preclude definitive explanations for this shift, our method will enable steady-state fluxomic experiments to probe AGF metabolism in greater detail. CONCLUSIONS The method we present to measure AGF and methanogen concentrations enables direct growth measurements and calculation of metabolic fluxes in co-culture. These metrics are critical to develop a quantitative understanding of interwoven rumen metabolism, as well as the impact of co-culture on polysaccharide degradation and metabolite production. The framework presented here can inspire new methods to probe systems beyond AGF and methanogens. Simple modifications to the method will likely extend its utility to co-cultures with more than two organisms or those grown on solid substrates to facilitate the design and deployment of microbial communities for bioproduction and beyond.
Collapse
Affiliation(s)
- Patrick A. Leggieri
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Corey Kerdman-Andrade
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Thomas S. Lankiewicz
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106 USA
- Joint BioEnergy Institute (JBEI), Emeryville, CA 94608 USA
| | - Megan T. Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 USA
- Joint BioEnergy Institute (JBEI), Emeryville, CA 94608 USA
| |
Collapse
|
108
|
Zhang S, Xia T, Wang J, Zhao Y, Xie X, Wei Z, Zhang X, Song C, Song X. Role of Bacillus inoculation in rice straw composting and bacterial community stability after inoculation: Unite resistance or individual collapse. BIORESOURCE TECHNOLOGY 2021; 337:125464. [PMID: 34320744 DOI: 10.1016/j.biortech.2021.125464] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Bacillus is the classic inoculant in rice straw composting. However, there has been no in-depth study of the mechanism promoting the degradation of lignocellulose and the change of indigenous bacterial communities after Bacillus inoculation. Moreover, the stability of bacterial communities is a significant challenge in achieving the efficacy of inoculation. In this study, the ecological succession and yield-resource acquisition-stress tolerance (Y-A-S) framework were combined with Redundancy analysis (RDA) and changes in relative abundance, Bacillus was found to be a pioneer bacterium that adopts a resource acquisition-stress tolerance strategy. The structural equation model (SEM) revealed that in addition to exerting a degradation effect, Bacillus inoculation could also indirectly affect lignocellulose degradation by changing the bacterial community. Random forest model and network analysis indicated a change in bacterial communities after inoculation, and bacteria with more complex relationships and weaker decomposition ability were key to the stability of bacterial communities.
Collapse
Affiliation(s)
- Shubo Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150081 Harbin, Heilongjiang Province, China
| | - Jialin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Xie
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Caihong Song
- Liaocheng Univ, Life Sci Coll, Liaocheng 252059, China
| | - Xinyu Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
109
|
Peng X, Gat D, Paytan A, Rudich Y. The Response of Airborne Mycobiome to Dust Storms in the Eastern Mediterranean. J Fungi (Basel) 2021; 7:802. [PMID: 34682226 PMCID: PMC8540267 DOI: 10.3390/jof7100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Airborne microbial communities directly impact the health of humans, animals, plants, and receiving ecosystems. While airborne bacterial and fungal communities have been studied by both cultivation-based methods and metabarcoding surveys targeting specific molecular markers, fewer studies have used shotgun metagenomics to study the airborne mycobiome. We analyzed the diversity and relative abundance of fungi in nine airborne metagenomes collected on clear days ("background") and during dust storms in the Eastern Mediterranean. The negative correlation between the relative abundance of fungal reads and the concentrations of atmospheric particulate matter having an aerodynamic diameter smaller than 10 μm (PM10) indicate that dust storms lower the proportion of fungi in the airborne microbiome, possibly due to the lower relative abundance of fungi in the dust storm source regions and/or more effective transport of bacteria by the dust. Airborne fungal community composition was altered by the dust storms, particularly those originated from Syria, which was enriched with xerophilic fungi. We reconstructed a high-quality fungal metagenome-assembled genome (MAG) from the order Cladosporiales, which include fungi known to adapt to environmental extremes commonly faced by airborne microbes. The negative correlation between the relative abundance of Cladosporiales MAG and PM10 concentrations indicate that its origin is dominated by local sources and likely includes the indoor environments found in the city.
Collapse
Affiliation(s)
- Xuefeng Peng
- School of Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA
| | - Daniela Gat
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;
- Joint Mass Spectrometry Centre (JMSC) of Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München–German Research Center for Environmental Health GmbH, 81379 Munich, Germany
| | - Adina Paytan
- Institute of Marine Science, University of California, Santa Cruz, CA 95064, USA;
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
110
|
Li S, Jin M, Wu Y, Jung S, Li D, He N, Lee MS. An efficient enzyme-triggered controlled release system for colon-targeted oral delivery to combat dextran sodium sulfate (DSS)-induced colitis in mice. Drug Deliv 2021; 28:1120-1131. [PMID: 34121560 PMCID: PMC8205034 DOI: 10.1080/10717544.2021.1934189] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oral route colon-targeted drug delivery systems (CDDSs) are desirable for the treatment of ulcerative colitis (UC). However, CDDSs are challenging owing to the physiological and anatomical barriers associated with the gastrointestinal tract (GIT). In this study, we developed an effective enzyme-triggered controlled release system using curcumin-cyclodextrin (CD-Cur) inclusion complex as core and low molecular weight chitosan and unsaturated alginate resulting nanoparticles (CANPs) as shell. The formed CD-Cur-CANPs showed a narrow particle-size distribution and a compact structure. In vitro drug release determination indicated that CD-Cur-CANPs showed pH-sensitive and α-amylase-responsive release characteristics. Furthermore, in vivo experiments demonstrated that oral administration of CD-Cur-CANPs had an efficient therapeutic efficacy, strong colonic biodistribution and accumulation, rapid macrophage uptake, promoted colonic epithelial barrier integrity and modulated production of inflammatory cytokines, reshaped the gut microbiota in mice with dextran sodium sulfate (DSS)-induced colitis. Taken together, our synthetic CD-Cur-CANPs are a promising synergistic colon-targeted approach for UC treatment.
Collapse
Affiliation(s)
- Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.,Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| | - Mengfei Jin
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yanhong Wu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| | - Dandan Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
111
|
A review on enzyme-producing lactobacilli associated with the human digestive process: From metabolism to application. Enzyme Microb Technol 2021; 149:109836. [PMID: 34311881 DOI: 10.1016/j.enzmictec.2021.109836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Complex carbohydrates, proteins, and other food components require a longer digestion process to be absorbed by the lining of the alimentary canal. In addition to the enzymes of the gastrointestinal tract, gut microbiota, comprising a large range of bacteria and fungi, has complementary action on the production of digestive enzymes. Within this universe of "hidden soldiers", lactobacilli are extensively studied because of their ability to produce lactase, proteases, peptidases, fructanases, amylases, bile salt hydrolases, phytases, and esterases. The administration of living lactobacilli cells has been shown to increase nutrient digestibility. However, it is still little known how these microbial-derived enzymes act in the human body. Enzyme secretion may be affected by variations in temperature, pH, and other extreme conditions faced by the bacterial cells in the human body. Besides, lactobacilli administration cannot itself be considered the only factor interfering with enzyme secretion, human diet (microbial substrate) being determinant in their metabolism. This review highlights the potential of lactobacilli to release functional enzymes associated with the digestive process and how this complex metabolism can be explored to contribute to the human diet. Enzymatic activity of lactobacilli is exerted in a strain-dependent manner, i.e., within the same lactobacilli species, there are different enzyme contents, leading to a large variety of enzymatic activities. Thus, we report current methods to select the most promising lactobacilli strains as sources of bioactive enzymes. Finally, a patent landscape and commercial products are described to provide the state of art of the transfer of knowledge from the scientific sphere to the industrial application.
Collapse
|
112
|
Saye LMG, Navaratna TA, Chong JPJ, O’Malley MA, Theodorou MK, Reilly M. The Anaerobic Fungi: Challenges and Opportunities for Industrial Lignocellulosic Biofuel Production. Microorganisms 2021; 9:694. [PMID: 33801700 PMCID: PMC8065543 DOI: 10.3390/microorganisms9040694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulose is a promising feedstock for biofuel production as a renewable, carbohydrate-rich and globally abundant source of biomass. However, challenges faced include environmental and/or financial costs associated with typical lignocellulose pretreatments needed to overcome the natural recalcitrance of the material before conversion to biofuel. Anaerobic fungi are a group of underexplored microorganisms belonging to the early diverging phylum Neocallimastigomycota and are native to the intricately evolved digestive system of mammalian herbivores. Anaerobic fungi have promising potential for application in biofuel production processes due to the combination of their highly effective ability to hydrolyse lignocellulose and capability to convert this substrate to H2 and ethanol. Furthermore, they can produce volatile fatty acid precursors for subsequent biological conversion to H2 or CH4 by other microorganisms. The complex biological characteristics of their natural habitat are described, and these features are contextualised towards the development of suitable industrial systems for in vitro growth. Moreover, progress towards achieving that goal is reviewed in terms of process and genetic engineering. In addition, emerging opportunities are presented for the use of anaerobic fungi for lignocellulose pretreatment; dark fermentation; bioethanol production; and the potential for integration with methanogenesis, microbial electrolysis cells and photofermentation.
Collapse
Affiliation(s)
- Luke M. G. Saye
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
- Department of Agriculture and the Environment, Harper Adams University, Newport TF10 8NB, UK
| | - Tejas A. Navaratna
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; (T.A.N.); (M.A.O.)
| | - James P. J. Chong
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; (T.A.N.); (M.A.O.)
| | - Michael K. Theodorou
- Department of Agriculture and the Environment, Harper Adams University, Newport TF10 8NB, UK
| | - Matthew Reilly
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
| |
Collapse
|