101
|
Barbour A, Elebyary O, Fine N, Oveisi M, Glogauer M. Metabolites of the Oral Microbiome: Important Mediators of Multi-Kingdom Interactions. FEMS Microbiol Rev 2021; 46:6316110. [PMID: 34227664 DOI: 10.1093/femsre/fuab039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The oral cavity hosts over 700 different microbial species that produce a rich reservoir of bioactive metabolites critical to oral health maintenance. Over the last two decades, new insights into the oral microbiome and its importance in health and disease have emerged mainly due to the discovery of new oral microbial species using next-generation sequencing (NGS). This advancement has revolutionized the documentation of unique microbial profiles associated with different niches and health/disease states within the oral cavity and the relation of the oral bacteria to systemic diseases. However, less work has been done to identify and characterize the unique oral microbial metabolites that play critical roles in maintaining equilibrium between the various oral microbial species and their human hosts. This article discusses the most significant microbial metabolites produced by these diverse communities of oral bacteria that can either foster health or contribute to disease. Finally, we shed light on how advances in genomics and genome mining can provide a high throughput platform for discovering novel bioactive metabolites derived from the human oral microbiome to tackle emerging human infections and systemic diseases.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada, M5G 2M9, Canada
| |
Collapse
|
102
|
Korshoj LE, Shi W, Duan B, Kielian T. The Prospect of Nanoparticle Systems for Modulating Immune Cell Polarization During Central Nervous System Infection. Front Immunol 2021; 12:670931. [PMID: 34248952 PMCID: PMC8260670 DOI: 10.3389/fimmu.2021.670931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/03/2021] [Indexed: 01/20/2023] Open
Abstract
The blood-brain barrier (BBB) selectively restricts the entry of molecules from peripheral circulation into the central nervous system (CNS) parenchyma. Despite this protective barrier, bacteria and other pathogens can still invade the CNS, often as a consequence of immune deficiencies or complications following neurosurgical procedures. These infections are difficult to treat since many bacteria, such as Staphylococcus aureus, encode a repertoire of virulence factors, can acquire antibiotic resistance, and form biofilm. Additionally, pathogens can leverage virulence factor production to polarize host immune cells towards an anti-inflammatory phenotype, leading to chronic infection. The difficulty of pathogen clearance is magnified by the fact that antibiotics and other treatments cannot easily penetrate the BBB, which requires extended regimens to achieve therapeutic concentrations. Nanoparticle systems are rapidly emerging as a promising platform to treat a range of CNS disorders. Nanoparticles have several advantages, as they can be engineered to cross the BBB with specific functionality to increase cellular and molecular targeting, have controlled release of therapeutic agents, and superior bioavailability and circulation compared to traditional therapies. Within the CNS environment, therapeutic actions are not limited to directly targeting the pathogen, but can also be tailored to modulate immune cell activation to promote infection resolution. This perspective highlights the factors leading to infection persistence in the CNS and discusses how novel nanoparticle therapies can be engineered to provide enhanced treatment, specifically through modulation of immune cell polarization.
Collapse
Affiliation(s)
- Lee E. Korshoj
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
103
|
Czajkowska J, Junka A, Hoppe J, Toporkiewicz M, Pawlak A, Migdał P, Oleksy-Wawrzyniak M, Fijałkowski K, Śmiglak M, Markowska-Szczupak A. The Co-Culture of Staphylococcal Biofilm and Fibroblast Cell Line: The Correlation of Biological Phenomena with Metabolic NMR 1 Footprint. Int J Mol Sci 2021; 22:ijms22115826. [PMID: 34072418 PMCID: PMC8198359 DOI: 10.3390/ijms22115826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is one of the most prevalent pathogens associated with several types of biofilm-based infections, including infections of chronic wounds. Mature staphylococcal biofilm is extremely hard to eradicate from a wound and displays a high tendency to induce recurring infections. Therefore, in the present study, we aimed to investigate in vitro the interaction between S. aureus biofilm and fibroblast cells searching for metabolites that could be considered as potential biomarkers of critical colonization and infection. Utilizing advanced microscopy and microbiological methods to examine biofilm formation and the staphylococcal infection process, we were able to distinguish 4 phases of biofilm development. The analysis of staphylococcal biofilm influence on the viability of fibroblasts allowed us to pinpoint the moment of critical colonization-12 h post contamination. Based on the obtained model we performed a metabolomics analysis by 1H NMR spectroscopy to provide new insights into the pathophysiology of infection. We identified a set of metabolites related to the switch to anaerobic metabolism that was characteristic for staphylococcal biofilm co-cultured with fibroblast cells. The data presented in this study may be thus considered a noteworthy but preliminary step in the direction of developing a new, NMR-based tool for rapid diagnosing of infection in a chronic wound.
Collapse
Affiliation(s)
- Joanna Czajkowska
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| | - Adam Junka
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
- Correspondence: ; Tel.: +48-889-229-341
| | - Jakub Hoppe
- Poznan Science and Technology Park (PPNT), Rubiez 5, 61-612 Poznań, Poland; (J.H.); (M.Ś.)
| | - Monika Toporkiewicz
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
| | - Andrzej Pawlak
- Department of Nervous System Diseases, Kazimierza Bartla 5, 50-996 Wrocław, Poland;
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Monika Oleksy-Wawrzyniak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Marcin Śmiglak
- Poznan Science and Technology Park (PPNT), Rubiez 5, 61-612 Poznań, Poland; (J.H.); (M.Ś.)
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| |
Collapse
|
104
|
Tomlinson KL, Lung TWF, Dach F, Annavajhala MK, Gabryszewski SJ, Groves RA, Drikic M, Francoeur NJ, Sridhar SH, Smith ML, Khanal S, Britto CJ, Sebra R, Lewis I, Uhlemann AC, Kahl BC, Prince AS, Riquelme SA. Staphylococcus aureus induces an itaconate-dominated immunometabolic response that drives biofilm formation. Nat Commun 2021; 12:1399. [PMID: 33658521 PMCID: PMC7930111 DOI: 10.1038/s41467-021-21718-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a prominent human pathogen that readily adapts to host immune defenses. Here, we show that, in contrast to Gram-negative pathogens, S. aureus induces a distinct airway immunometabolic response dominated by the release of the electrophilic metabolite, itaconate. The itaconate synthetic enzyme, IRG1, is activated by host mitochondrial stress, which is induced by staphylococcal glycolysis. Itaconate inhibits S. aureus glycolysis and selects for strains that re-direct carbon flux to fuel extracellular polysaccharide (EPS) synthesis and biofilm formation. Itaconate-adapted strains, as illustrated by S. aureus isolates from chronic airway infection, exhibit decreased glycolytic activity, high EPS production, and proficient biofilm formation even before itaconate stimulation. S. aureus thus adapts to the itaconate-dominated immunometabolic response by producing biofilms, which are associated with chronic infection of the human airway.
Collapse
Affiliation(s)
- Kira L Tomlinson
- Department of Pediatrics, Columbia University, New York, NY, 10032, USA
| | | | - Felix Dach
- Department of Pediatrics, Columbia University, New York, NY, 10032, USA
- Institute of Medical Microbiology Münster, University Hospital, Münster, 48149, Germany
| | | | | | - Ryan A Groves
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Marija Drikic
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Nancy J Francoeur
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Shwetha H Sridhar
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Sara Khanal
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Clemente J Britto
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Ian Lewis
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | | | - Barbara C Kahl
- Institute of Medical Microbiology Münster, University Hospital, Münster, 48149, Germany
| | - Alice S Prince
- Department of Pediatrics, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
105
|
de Morais SD, Kak G, Menousek JP, Kielian T. Immunopathogenesis of Craniotomy Infection and Niche-Specific Immune Responses to Biofilm. Front Immunol 2021; 12:625467. [PMID: 33708216 PMCID: PMC7940520 DOI: 10.3389/fimmu.2021.625467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial infections in the central nervous system (CNS) can be life threatening and often impair neurological function. Biofilm infection is a complication following craniotomy, a neurosurgical procedure that involves the removal and replacement of a skull fragment (bone flap) to access the brain for surgical intervention. The incidence of infection following craniotomy ranges from 1% to 3% with approximately half caused by Staphylococcus aureus (S. aureus). These infections present a significant therapeutic challenge due to the antibiotic tolerance of biofilm and unique immune properties of the CNS. Previous studies have revealed a critical role for innate immune responses during S. aureus craniotomy infection. Experiments using knockout mouse models have highlighted the importance of the pattern recognition receptor Toll-like receptor 2 (TLR2) and its adaptor protein MyD88 for preventing S. aureus outgrowth during craniotomy biofilm infection. However, neither molecule affected bacterial burden in a mouse model of S. aureus brain abscess highlighting the distinctions between immune regulation of biofilm vs. planktonic infection in the CNS. Furthermore, the immune responses elicited during S. aureus craniotomy infection are distinct from biofilm infection in the periphery, emphasizing the critical role for niche-specific factors in dictating S. aureus biofilm-leukocyte crosstalk. In this review, we discuss the current knowledge concerning innate immunity to S. aureus craniotomy biofilm infection, compare this to S. aureus biofilm infection in the periphery, and discuss the importance of anatomical location in dictating how biofilm influences inflammatory responses and its impact on bacterial clearance.
Collapse
Affiliation(s)
- Sharon Db de Morais
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gunjan Kak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Joseph P Menousek
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
106
|
Horn CM, Kielian T. Crosstalk Between Staphylococcus aureus and Innate Immunity: Focus on Immunometabolism. Front Immunol 2021; 11:621750. [PMID: 33613555 PMCID: PMC7892349 DOI: 10.3389/fimmu.2020.621750] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a leading cause of bacterial infections globally in both healthcare and community settings. The success of this bacterium is the product of an expansive repertoire of virulence factors in combination with acquired antibiotic resistance and propensity for biofilm formation. S. aureus leverages these factors to adapt to and subvert the host immune response. With the burgeoning field of immunometabolism, it has become clear that the metabolic program of leukocytes dictates their inflammatory status and overall effectiveness in clearing an infection. The metabolic flexibility of S. aureus offers an inherent means by which the pathogen could manipulate the infection milieu to promote its survival. The exact metabolic pathways that S. aureus influences in leukocytes are not entirely understood, and more work is needed to understand how S. aureus co-opts leukocyte metabolism to gain an advantage. In this review, we discuss the current knowledge concerning how metabolic biases dictate the pro- vs. anti-inflammatory attributes of various innate immune populations, how S. aureus metabolism influences leukocyte activation, and compare this with other bacterial pathogens. A better understanding of the metabolic crosstalk between S. aureus and leukocytes may unveil novel therapeutic strategies to combat these devastating infections.
Collapse
Affiliation(s)
- Christopher M Horn
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
107
|
Abstract
The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China.,Laboratory of Immunity and Inflammation, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
108
|
Dostert M, Trimble MJ, Hancock REW. Antibiofilm peptides: overcoming biofilm-related treatment failure. RSC Adv 2021; 11:2718-2728. [PMID: 35424252 PMCID: PMC8694000 DOI: 10.1039/d0ra09739j] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Health leaders and scientists worldwide consider antibiotic resistance among the world's most dangerous pathogens as one of the biggest threats to global health. Antibiotic resistance has largely been attributed to genetic changes, but the role and recalcitrance of biofilms, largely due to growth state dependent adaptive resistance, is becoming increasingly appreciated. Biofilms are mono- and multi-species microbial communities embedded in an extracellular, protective matrix. In this growth state, bacteria are transcriptionally primed to survive extracellular stresses. Adaptations, affecting metabolism, regulation, surface charge, immune recognition and clearance, allow bacteria to thrive in the human body and withstand antibiotics and the host immune system. Biofilms resist clearance by multiple antibiotics and have a major role in chronic infections, causing more than 65% of all infections. No specific antibiofilm agents have been developed. Thus, there is a pressing need for alternatives to traditional antibiotics that directly inhibit and/or eradicate biofilms. Host defence peptides (HDPs) are small cationic peptides that are part of the innate immune system to both directly kill microbes but also function to modulate the immune response. Specific HDPs and their derivatives demonstrate broad-spectrum activity against biofilms. In vivo biofilm assays show efficacy in abscess, respiratory, in-dwelling device, contact lens and skin infection models. Further progress has been made through the study of ex vivo organoid and air-liquid interface models to better understand human infections and treatment while relieving the burden and complex nature of animal models. These avenues pave the way for a better understanding and treatment of the underlying cause of chronic infections that challenge the healthcare system.
Collapse
Affiliation(s)
- Melanie Dostert
- Department of Microbiology and Immunology, University of British Columbia Vancouver British Columbia Canada
| | - Michael J Trimble
- Department of Microbiology and Immunology, University of British Columbia Vancouver British Columbia Canada
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
109
|
Guiberson ER, Weiss A, Ryan DJ, Monteith AJ, Sharman K, Gutierrez DB, Perry WJ, Caprioli RM, Skaar EP, Spraggins JM. Spatially Targeted Proteomics of the Host-Pathogen Interface during Staphylococcal Abscess Formation. ACS Infect Dis 2021; 7:101-113. [PMID: 33270421 DOI: 10.1021/acsinfecdis.0c00647] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Staphylococcus aureus is a common cause of invasive and life-threatening infections that are often multidrug resistant. To develop novel treatment approaches, a detailed understanding of the complex host-pathogen interactions during infection is essential. This is particularly true for the molecular processes that govern the formation of tissue abscesses, as these heterogeneous structures are important contributors to staphylococcal pathogenicity. To fully characterize the developmental process leading to mature abscesses, temporal and spatial analytical approaches are required. Spatially targeted proteomic technologies such as micro-liquid extraction surface analysis offer insight into complex biological systems including detection of bacterial proteins and their abundance in the host environment. By analyzing the proteomic constituents of different abscess regions across the course of infection, we defined the immune response and bacterial contribution to abscess development through spatial and temporal proteomic assessment. The information gathered was mapped to biochemical pathways to characterize the metabolic processes and immune strategies employed by the host. These data provide insights into the physiological state of bacteria within abscesses and elucidate pathogenic processes at the host-pathogen interface.
Collapse
Affiliation(s)
- Emma R. Guiberson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37203, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37203, United States
| | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, United States
| | - Daniel J. Ryan
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37203, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37203, United States
| | - Andrew J. Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, United States
| | - Kavya Sharman
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37203, United States
| | - Danielle B. Gutierrez
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37203, United States
| | - William J. Perry
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37203, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37203, United States
| | - Richard M. Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37203, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37203, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37203, United States
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37203, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37203, United States
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, United States
| | - Jeffrey M. Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37203, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37203, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37203, United States
| |
Collapse
|
110
|
|
111
|
Epigenome-metabolome-microbiome axis in health and IBD. Curr Opin Microbiol 2020; 56:97-108. [PMID: 32920333 DOI: 10.1016/j.mib.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Environmental triggers in the context of genetic susceptibility drive phenotypes of complex immune disorders such as Inflammatory bowel disease (IBD). One such trigger of IBD is perturbations in enteric commensal bacteria, fungi or viruses that shape both immune and neuronal state. The epigenome acts as an interface between microbiota and context-specific gene expression and is thus emerging as a third key contributor to IBD. Here we review evidence that the host epigenome plays a significant role in orchestrating the bidirectional crosstalk between mammals and their commensal microorganisms. We discuss disruption of chromatin regulatory regions and epigenetic enzyme mutants as a causative factor in IBD patients and mouse models of intestinal inflammation and consider the possible translation of this knowledge. Furthermore, we present emerging insights into the intricate connection between the microbiome and epigenetic enzyme activity via host or bacterial metabolites and how these interactions fine-tune the microorganism-host relationship.
Collapse
|
112
|
Consequences of Metabolic Interactions during Staphylococcus aureus Infection. Toxins (Basel) 2020; 12:toxins12090581. [PMID: 32917040 PMCID: PMC7551354 DOI: 10.3390/toxins12090581] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a metabolically flexible pathogen that causes infection in diverse settings. An array of virulence factors, including the secreted toxins, enables S. aureus to colonize different environmental niches and initiate infections by any of several discrete pathways. During these infections, both S. aureus and host cells compete with each other for nutrients and remodel their metabolism for survival. This metabolic interaction/crosstalk determines the outcome of the infection. The reprogramming of metabolic pathways in host immune cells not only generates adenosine triphosphate (ATP) to meet the cellular energy requirements during the infection process but also activates antimicrobial responses for eventual bacterial clearance, including cell death pathways. The selective pressure exerted by host immune cells leads to the emergence of bacterial mutants adapted for chronicity. These host-adapted mutants are often characterized by substantial changes in the expression of their own metabolic genes, or by mutations in genes involved in metabolism and biofilm formation. Host-adapted S. aureus can rewire or benefit from the metabolic activities of the immune cells via several mechanisms to cause persistent infection. In this review, we discuss how S. aureus activates host innate immune signaling, which results in an immune metabolic pressure that shapes S. aureus metabolic adaptation and determines the outcome of the infection.
Collapse
|
113
|
Bosch ME, Bertrand BP, Heim CE, Alqarzaee AA, Chaudhari SS, Aldrich AL, Fey PD, Thomas VC, Kielian T. Staphylococcus aureus ATP Synthase Promotes Biofilm Persistence by Influencing Innate Immunity. mBio 2020; 11:e01581-20. [PMID: 32900803 PMCID: PMC7482063 DOI: 10.1128/mbio.01581-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a major cause of prosthetic joint infection (PJI), which is characterized by biofilm formation. S. aureus biofilm skews the host immune response toward an anti-inflammatory profile by the increased recruitment of myeloid-derived suppressor cells (MDSCs) that attenuate macrophage proinflammatory activity, leading to chronic infection. A screen of the Nebraska Transposon Mutant Library identified several hits in the ATP synthase operon that elicited a heightened inflammatory response in macrophages and MDSCs, including atpA, which encodes the alpha subunit of ATP synthase. An atpA transposon mutant (ΔatpA) had altered growth kinetics under both planktonic and biofilm conditions, along with a diffuse biofilm architecture that was permissive for leukocyte infiltration, as observed by confocal laser scanning microscopy. Coculture of MDSCs and macrophages with ΔatpA biofilm elicited significant increases in the proinflammatory cytokines interleukin 12p70 (IL-12p70), tumor necrosis factor alpha (TNF-α), and IL-6. This was attributed to increased leukocyte survival resulting from less toxin and protease production by ΔatpA biofilm as determined by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The enhanced inflammatory response elicited by ΔatpA biofilm was cell lysis-dependent since it was negated by polyanethole sodium sulfanate treatment or deletion of the major autolysin, Atl. In a mouse model of PJI, ΔatpA-infected mice had decreased MDSCs concomitant with increased monocyte/macrophage infiltrates and proinflammatory cytokine production, which resulted in biofilm clearance. These studies identify S. aureus ATP synthase as an important factor in influencing the immune response during biofilm-associated infection and bacterial persistence.IMPORTANCE Medical device-associated biofilm infections are a therapeutic challenge based on their antibiotic tolerance and ability to evade immune-mediated clearance. The virulence determinants responsible for bacterial biofilm to induce a maladaptive immune response remain largely unknown. This study identified a critical role for S. aureus ATP synthase in influencing the host immune response to biofilm infection. An S. aureus ATP synthase alpha subunit mutant (ΔatpA) elicited heightened proinflammatory cytokine production by leukocytes in vitro and in vivo, which coincided with improved biofilm clearance in a mouse model of prosthetic joint infection. The ability of S. aureus ΔatpA to augment host proinflammatory responses was cell lysis-dependent, as inhibition of bacterial lysis by polyanethole sodium sulfanate or a ΔatpAΔatl biofilm did not elicit heightened cytokine production. These studies reveal a critical role for AtpA in shaping the host immune response to S. aureus biofilm.
Collapse
Affiliation(s)
- Megan E Bosch
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Blake P Bertrand
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Cortney E Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Abdulelah A Alqarzaee
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sujata S Chaudhari
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Amy L Aldrich
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vinai C Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|