101
|
Loufouma Mbouaka A, Gamble M, Wurst C, Jäger HY, Maixner F, Zink A, Noedl H, Binder M. The elusive parasite: comparing macroscopic, immunological, and genomic approaches to identifying malaria in human skeletal remains from Sayala, Egypt (third to sixth centuries AD). ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES 2021; 13:115. [PMID: 34149953 PMCID: PMC8202054 DOI: 10.1007/s12520-021-01350-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/19/2021] [Indexed: 05/12/2023]
Abstract
UNLABELLED Although malaria is one of the oldest and most widely distributed diseases affecting humans, identifying and characterizing its presence in ancient human remains continue to challenge researchers. We attempted to establish a reliable approach to detecting malaria in human skeletons using multiple avenues of analysis: macroscopic observations, rapid diagnostic tests, and shotgun-capture sequencing techniques, to identify pathological changes, Plasmodium antigens, and Plasmodium DNA, respectively. Bone and tooth samples from ten individuals who displayed skeletal lesions associated with anaemia, from a site in southern Egypt (third to sixth centuries AD), were selected. Plasmodium antigens were detected in five of the ten bone samples, and traces of Plasmodium aDNA were detected in six of the twenty bone and tooth samples. There was relatively good synchronicity between the biomolecular findings, despite not being able to authenticate the results. This study highlights the complexity and limitations in the conclusive identification of the Plasmodium parasite in ancient human skeletons. Limitations regarding antigen and aDNA preservation and the importance of sample selection are at the forefront of the search for malaria in the past. We confirm that, currently, palaeopathological changes such as cribra orbitalia are not enough to be certain of the presence of malaria. While biomolecular methods are likely the best chance for conclusive identification, we were unable to obtain results which correspond to the current authentication criteria of biomolecules. This study represents an important contribution in the refinement of biomolecular techniques used; also, it raises new insight regarding the consistency of combining several approaches in the identification of malaria in past populations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12520-021-01350-z.
Collapse
Affiliation(s)
- Alvie Loufouma Mbouaka
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Michelle Gamble
- Bioarchaeology Department, Austrian Archaeological Institute at the Austrian Academy of Sciences, Franz Klein-Gasse 1, 1190 Vienna, Austria
- Present Address: Heritage and Archaeological Research Practice, 101 Rose Street South Lane, EH2 3JG Edinburgh, Scotland
| | - Christina Wurst
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Heidi Yoko Jäger
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Harald Noedl
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
- Present Address: Malaria Research Initiative Bandarban, Vienna, Austria
| | - Michaela Binder
- Bioarchaeology Department, Austrian Archaeological Institute at the Austrian Academy of Sciences, Franz Klein-Gasse 1, 1190 Vienna, Austria
- Present Address: Planen und Bauen im Bestand, Novetus, Belvederegasse 41, 1040 Vienna, Austria
| |
Collapse
|
102
|
Barbieri R, Signoli M, Chevé D, Costedoat C, Tzortzis S, Aboudharam G, Raoult D, Drancourt M. Yersinia pestis: the Natural History of Plague. Clin Microbiol Rev 2020; 34:e00044-19. [PMID: 33298527 PMCID: PMC7920731 DOI: 10.1128/cmr.00044-19] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Gram-negative bacterium Yersinia pestis is responsible for deadly plague, a zoonotic disease established in stable foci in the Americas, Africa, and Eurasia. Its persistence in the environment relies on the subtle balance between Y. pestis-contaminated soils, burrowing and nonburrowing mammals exhibiting variable degrees of plague susceptibility, and their associated fleas. Transmission from one host to another relies mainly on infected flea bites, inducing typical painful, enlarged lymph nodes referred to as buboes, followed by septicemic dissemination of the pathogen. In contrast, droplet inhalation after close contact with infected mammals induces primary pneumonic plague. Finally, the rarely reported consumption of contaminated raw meat causes pharyngeal and gastrointestinal plague. Point-of-care diagnosis, early antibiotic treatment, and confinement measures contribute to outbreak control despite residual mortality. Mandatory primary prevention relies on the active surveillance of established plague foci and ectoparasite control. Plague is acknowledged to have infected human populations for at least 5,000 years in Eurasia. Y. pestis genomes recovered from affected archaeological sites have suggested clonal evolution from a common ancestor shared with the closely related enteric pathogen Yersinia pseudotuberculosis and have indicated that ymt gene acquisition during the Bronze Age conferred Y. pestis with ectoparasite transmissibility while maintaining its enteric transmissibility. Three historic pandemics, starting in 541 AD and continuing until today, have been described. At present, the third pandemic has become largely quiescent, with hundreds of human cases being reported mainly in a few impoverished African countries, where zoonotic plague is mostly transmitted to people by rodent-associated flea bites.
Collapse
Affiliation(s)
- R Barbieri
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| | - M Signoli
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - D Chevé
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - C Costedoat
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - S Tzortzis
- Ministère de la Culture, Direction Régionale des Affaires Culturelles de Provence-Alpes-Côte d'Azur, Service Régional de l'Archéologie, Aix-en-Provence, France
| | - G Aboudharam
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, Faculty of Odontology, Marseille, France
| | - D Raoult
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| | - M Drancourt
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| |
Collapse
|
103
|
Glebe D, Goldmann N, Lauber C, Seitz S. HBV evolution and genetic variability: Impact on prevention, treatment and development of antivirals. Antiviral Res 2020; 186:104973. [PMID: 33166575 DOI: 10.1016/j.antiviral.2020.104973] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) poses a major global health burden with 260 million people being chronically infected and 890,000 dying annually from complications in the course of the infection. HBV is a small enveloped virus with a reverse-transcribed DNA genome that infects hepatocytes and can cause acute and chronic infections of the liver. HBV is endemic in humans and apes representing the prototype member of the viral family Hepadnaviridae and can be divided into 10 genotypes. Hepadnaviruses have been found in all vertebrate classes and constitute an ancient viral family that descended from non-enveloped progenitors more than 360 million years ago. The de novo emergence of the envelope protein gene was accompanied with the liver-tropism and resulted in a tight virus-host association. The oldest HBV genomes so far have been isolated from human remains of the Bronze Age and the Neolithic (~7000 years before present). Despite the remarkable stability of the hepadnaviral genome over geological eras, HBV is able to rapidly evolve within an infected individual under pressure of the immune response or during antiviral treatment. Treatment with currently available antivirals blocking intracellular replication of HBV allows controlling of high viremia and improving liver health during long-term therapy of patients with chronic hepatitis B (CHB), but they are not sufficient to cure the disease. New therapy options that cover all HBV genotypes and emerging viral variants will have to be developed soon. In addition to the antiviral treatment of chronically infected patients, continued efforts to expand the global coverage of the currently available HBV vaccine will be one of the key factors for controlling the rising global spread of HBV. Certain improvements of the vaccine (e.g. inclusion of PreS domains) could counteract known problems such as low or no responsiveness of certain risk groups and waning anti-HBs titers leading to occult infections, especially with HBV genotypes E or F. But even with an optimal vaccine and a cure for hepatitis B, global eradication of HBV would be difficult to achieve because of an existing viral reservoir in primates and bats carrying closely related hepadnaviruses with zoonotic potential.
Collapse
Affiliation(s)
- Dieter Glebe
- Institute of Medical Virology, Justus Liebig University of Giessen, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Schubertstr. 81, 35392, Giessen, Germany; German Center for Infection Research (DZIF), Partner Sites Giessen, Heidelberg, Hannover, Germany.
| | - Nora Goldmann
- Institute of Medical Virology, Justus Liebig University of Giessen, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Schubertstr. 81, 35392, Giessen, Germany
| | - Chris Lauber
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Research Group Computational Virology, Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Cluster of Excellence RESIST, Hannover Medical School, 30625, Hannover, Germany; German Center for Infection Research (DZIF), Partner Sites Giessen, Heidelberg, Hannover, Germany
| | - Stefan Seitz
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Sites Giessen, Heidelberg, Hannover, Germany.
| |
Collapse
|
104
|
Abstract
In ancient DNA research, the degraded nature of the samples generally results in poor yields of highly fragmented DNA; targeted DNA enrichment is thus required to maximize research outcomes. The three commonly used methods - array-based hybridization capture and in-solution capture using either RNA or DNA baits - have different characteristics that may influence the capture efficiency, specificity and reproducibility. Here we compare their performance in enriching pathogen DNA of Mycobacterium leprae and Treponema pallidum from 11 ancient and 19 modern samples. We find that in-solution approaches are the most effective method in ancient and modern samples of both pathogens and that RNA baits usually perform better than DNA baits.
Collapse
|
105
|
|
106
|
Abstract
The study of ancient genomes has burgeoned at an incredible rate in the last decade. The result is a shift in archaeological narratives, bringing with it a fierce debate on the place of genetics in anthropological research. Archaeogenomics has challenged and scrutinized fundamental themes of anthropological research, including human origins, movement of ancient and modern populations, the role of social organization in shaping material culture, and the relationship between culture, language, and ancestry. Moreover, the discussion has inevitably invoked new debates on indigenous rights, ownership of ancient materials, inclusion in the scientific process, and even the meaning of what it is to be a human. We argue that the broad and seemingly daunting ethical, methodological, and theoretical challenges posed by archaeogenomics, in fact, represent the very cutting edge of social science research. Here, we provide a general review of the field by introducing the contemporary discussion points and summarizing methodological and ethical concerns, while highlighting the exciting possibilities of ancient genome studies in archaeology from an anthropological perspective.
Collapse
Affiliation(s)
- Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14221, USA
| | - Michael Frachetti
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
107
|
Enard D, Petrov DA. Ancient RNA virus epidemics through the lens of recent adaptation in human genomes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190575. [PMID: 33012231 PMCID: PMC7702803 DOI: 10.1098/rstb.2019.0575] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the course of the last several million years of evolution, humans probably have been plagued by hundreds or perhaps thousands of epidemics. Little is known about such ancient epidemics and a deep evolutionary perspective on current pathogenic threats is lacking. The study of past epidemics has typically been limited in temporal scope to recorded history, and in physical scope to pathogens that left sufficient DNA behind, such as Yersinia pestis during the Great Plague. Host genomes, however, offer an indirect way to detect ancient epidemics beyond the current temporal and physical limits. Arms races with pathogens have shaped the genomes of the hosts by driving a large number of adaptations at many genes, and these signals can be used to detect and further characterize ancient epidemics. Here, we detect the genomic footprints left by ancient viral epidemics that took place in the past approximately 50 000 years in the 26 human populations represented in the 1000 Genomes Project. By using the enrichment in signals of adaptation at approximately 4500 host loci that interact with specific types of viruses, we provide evidence that RNA viruses have driven a particularly large number of adaptive events across diverse human populations. These results suggest that different types of viruses may have exerted different selective pressures during human evolution. Knowledge of these past selective pressures will provide a deeper evolutionary perspective on current pathogenic threats. This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.
Collapse
Affiliation(s)
- David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
108
|
Duchêne S, Ho SYW, Carmichael AG, Holmes EC, Poinar H. The Recovery, Interpretation and Use of Ancient Pathogen Genomes. Curr Biol 2020; 30:R1215-R1231. [PMID: 33022266 PMCID: PMC7534838 DOI: 10.1016/j.cub.2020.08.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to sequence genomes from ancient biological material has provided a rich source of information for evolutionary biology and engaged considerable public interest. Although most studies of ancient genomes have focused on vertebrates, particularly archaic humans, newer technologies allow the capture of microbial pathogens and microbiomes from ancient and historical human and non-human remains. This coming of age has been made possible by techniques that allow the preferential capture and amplification of discrete genomes from a background of predominantly host and environmental DNA. There are now near-complete ancient genome sequences for three pathogens of considerable historical interest - pre-modern bubonic plague (Yersinia pestis), smallpox (Variola virus) and cholera (Vibrio cholerae) - and for three equally important endemic human disease agents - Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy) and Treponema pallidum pallidum (syphilis). Genomic data from these pathogens have extended earlier work by paleopathologists. There have been efforts to sequence the genomes of additional ancient pathogens, with the potential to broaden our understanding of the infectious disease burden common to past populations from the Bronze Age to the early 20th century. In this review we describe the state-of-the-art of this rapidly developing field, highlight the contributions of ancient pathogen genomics to multidisciplinary endeavors and describe some of the limitations in resolving questions about the emergence and long-term evolution of pathogens.
Collapse
Affiliation(s)
- Sebastián Duchêne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L9, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L8, Canada; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
109
|
Identification of ancient viruses from metagenomic data of the Jomon people. J Hum Genet 2020; 66:287-296. [PMID: 32994538 DOI: 10.1038/s10038-020-00841-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/20/2020] [Accepted: 09/05/2020] [Indexed: 11/08/2022]
Abstract
Ancient DNA studies provide genomic information about the origins, population structures, and physical characteristics of ancient humans that cannot be solely examined by archeological studies. The DNAs extracted from ancient human bones, teeth, or tissues are often contaminated with coexisting bacterial and viral genomes that contain DNA from ancient microbes infecting those of ancient humans. Information on ancient viral genomes is useful in making inferences about the viral evolution. Here, we have utilized metagenomic sequencing data from the dental pulp of five Jomon individuals, who lived on the Japanese archipelago more than 3000 years ago; this is to detect ancient viral genomes. We conducted de novo assembly of the non-human reads where we have obtained 277,387 contigs that were longer than 1000 bp. These contigs were subjected to homology searches against a collection of modern viral genome sequences. We were able to detect eleven putative ancient viral genomes. Among them, we reconstructed the complete sequence of the Siphovirus contig89 (CT89) viral genome. The Jomon CT89-like sequence was determined to contain 59 open reading frames, among which five genes known to encode phage proteins were under strong purifying selection. The host of CT89 was predicted to be Schaalia meyeri, a bacterium residing in the human oral cavity. Finally, the CT89 phylogenetic tree showed two clusters, from both of which the Jomon sequence was separated. Our results suggest that metagenomic information from the dental pulp of the Jomon people is essential in retrieving ancient viral genomes used to examine their evolution.
Collapse
|
110
|
Amadei SS, Notario V. A Significant Question in Cancer Risk and Therapy: Are Antibiotics Positive or Negative Effectors? Current Answers and Possible Alternatives. Antibiotics (Basel) 2020; 9:E580. [PMID: 32899961 PMCID: PMC7558931 DOI: 10.3390/antibiotics9090580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is predominantly considered as an environmental disease caused by genetic or epigenetic alterations induced by exposure to extrinsic (e.g., carcinogens, pollutants, radiation) or intrinsic (e.g., metabolic, immune or genetic deficiencies). Over-exposure to antibiotics, which is favored by unregulated access as well as inappropriate prescriptions by physicians, is known to have led to serious health problems such as the rise of antibiotic resistance, in particular in poorly developed countries. In this review, the attention is focused on evaluating the effects of antibiotic exposure on cancer risk and on the outcome of cancer therapeutic protocols, either directly acting as extrinsic promoters, or indirectly, through interactions with the human gut microbiota. The preponderant evidence derived from information reported over the last 10 years confirms that antibiotic exposure tends to increase cancer risk and, unfortunately, that it reduces the efficacy of various forms of cancer therapy (e.g., chemo-, radio-, and immunotherapy alone or in combination). Alternatives to the current patterns of antibiotic use, such as introducing new antibiotics, bacteriophages or enzybiotics, and implementing dysbiosis-reducing microbiota modulatory strategies in oncology, are discussed. The information is in the end considered from the perspective of the most recent findings on the tumor-specific and intracellular location of the tumor microbiota, and of the most recent theories proposed to explain cancer etiology on the notion of regression of the eukaryotic cells and systems to stages characterized for a lack of coordination among their components of prokaryotic origin, which is promoted by injuries caused by environmental insults.
Collapse
Affiliation(s)
| | - Vicente Notario
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA;
| |
Collapse
|
111
|
|
112
|
Datta S. Excavating new facts from ancient Hepatitis B virus sequences. Virology 2020; 549:89-99. [PMID: 32858309 DOI: 10.1016/j.virol.2020.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
Recently, two independent studies discovered 15 ancient Hepatitis B virus (aHBV) sequences, of which 7 dated back to the Neolithic age (NA) and the Bronze Age (BA). In the present research, all the available aHBV sequences were collectively re-analysed with reference to extant HBV diversity to understand the role of these aHBV genotypes in evolution of extant HBV genetic diversity. Several intergenotype recombination events were documented, which corroborated well with population admixture and ancient human migration. Present analyses suggested replacement of HBV genotype associated with early Neolithic European farming cultures by the migrating steppe people, during Bronze Age Steppe migration. Additionally, detailed analyses of recombinations revealed evolution of a number of extant genotypes and suggested their possible site of origin. Through this manuscript, novel and important findings of the analyses are communicated.
Collapse
Affiliation(s)
- Sibnarayan Datta
- Molecular Virology Laboratory, Entomology & Biothreat Management Division, Defence Research Laboratory, Defence R&D Organization (DRDO), PO Bag 02, Tezpur HPO, Assam, 784001, India.
| |
Collapse
|
113
|
Majander K, Pfrengle S, Kocher A, Neukamm J, du Plessis L, Pla-Díaz M, Arora N, Akgül G, Salo K, Schats R, Inskip S, Oinonen M, Valk H, Malve M, Kriiska A, Onkamo P, González-Candelas F, Kühnert D, Krause J, Schuenemann VJ. Ancient Bacterial Genomes Reveal a High Diversity of Treponema pallidum Strains in Early Modern Europe. Curr Biol 2020; 30:3788-3803.e10. [PMID: 32795443 DOI: 10.1016/j.cub.2020.07.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/24/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022]
Abstract
Syphilis is a globally re-emerging disease, which has marked European history with a devastating epidemic at the end of the 15th century. Together with non-venereal treponemal diseases, like bejel and yaws, which are found today in subtropical and tropical regions, it currently poses a substantial health threat worldwide. The origins and spread of treponemal diseases remain unresolved, including syphilis' potential introduction into Europe from the Americas. Here, we present the first genetic data from archaeological human remains reflecting a high diversity of Treponema pallidum in early modern Europe. Our study demonstrates that a variety of strains related to both venereal syphilis and yaws-causing T. pallidum subspecies were already present in Northern Europe in the early modern period. We also discovered a previously unknown T. pallidum lineage recovered as a sister group to yaws- and bejel-causing lineages. These findings imply a more complex pattern of geographical distribution and etiology of early treponemal epidemics than previously understood.
Collapse
Affiliation(s)
- Kerttu Majander
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany; Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| | - Saskia Pfrengle
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany
| | - Arthur Kocher
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
| | - Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | | | - Marta Pla-Díaz
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Natasha Arora
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057 Zurich, Switzerland
| | - Gülfirde Akgül
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kati Salo
- Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland; Archaeology, Faculty of Arts, University of Helsinki, Unioninkatu 38F, 00014 Helsinki, Finland
| | - Rachel Schats
- Laboratory for Human Osteoarchaeology, Faculty of Archaeology, Leiden University, Einsteinweg 2, 2333CC Leiden, the Netherlands
| | - Sarah Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK
| | - Markku Oinonen
- Laboratory of Chronology, Finnish Museum of Natural History, University of Helsinki, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland
| | - Heiki Valk
- Institute of History and Archaeology, University of Tartu, Jakobi 2, 51005 Tartu, Tartumaa, Estonia
| | - Martin Malve
- Institute of History and Archaeology, University of Tartu, Jakobi 2, 51005 Tartu, Tartumaa, Estonia
| | - Aivar Kriiska
- Institute of History and Archaeology, University of Tartu, Jakobi 2, 51005 Tartu, Tartumaa, Estonia
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland; Department of Biology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
| | - Fernando González-Candelas
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany; Senckenberg Centre for Human Evolution and Palaeoenvironment (S-HEP), University of Tübingen, Tübingen, Germany.
| | - Verena J Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany; Senckenberg Centre for Human Evolution and Palaeoenvironment (S-HEP), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
114
|
Wagner JK, Colwell C, Claw KG, Stone AC, Bolnick DA, Hawks J, Brothers KB, Garrison NA. Fostering Responsible Research on Ancient DNA. Am J Hum Genet 2020; 107:183-195. [PMID: 32763189 PMCID: PMC7413888 DOI: 10.1016/j.ajhg.2020.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anticipating and addressing the social implications of scientific work is a fundamental responsibility of all scientists. However, expectations for ethically sound practices can evolve over time as the implications of science come to be better understood. Contemporary researchers who work with ancient human remains, including those who conduct ancient DNA research, face precisely this challenge as it becomes clear that practices such as community engagement are needed to address the important social implications of this work. To foster and promote ethical engagement between researchers and communities, we offer five practical recommendations for ancient DNA researchers: (1) formally consult with communities; (2) address cultural and ethical considerations; (3) engage communities and support capacity building; (4) develop plans to report results and manage data; and (5) develop plans for long-term responsibility and stewardship. Ultimately, every member of a research team has an important role in fostering ethical research on ancient DNA.
Collapse
Affiliation(s)
- Jennifer K Wagner
- Professional Practice and Social Implications Committee (formerly the Social Issues Committee), American Society of Human Genetics, Bethesda, MD 20814, USA; Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Center for Translational Bioethics and Health Care Policy, Geisinger, Danville, PA 17822, USA.
| | - Chip Colwell
- Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Department of Anthropology, Denver Museum of Nature and Science, Denver, CO 80205, USA
| | - Katrina G Claw
- Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anne C Stone
- Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Deborah A Bolnick
- Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Department of Anthropology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - John Hawks
- Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Department of Anthropology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kyle B Brothers
- Professional Practice and Social Implications Committee (formerly the Social Issues Committee), American Society of Human Genetics, Bethesda, MD 20814, USA; Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Nanibaa' A Garrison
- Professional Practice and Social Implications Committee (formerly the Social Issues Committee), American Society of Human Genetics, Bethesda, MD 20814, USA; Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
115
|
Peyrégne S, Prüfer K. Present-Day DNA Contamination in Ancient DNA Datasets. Bioessays 2020; 42:e2000081. [PMID: 32648350 DOI: 10.1002/bies.202000081] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/20/2020] [Indexed: 01/06/2023]
Abstract
Present-day contamination can lead to false conclusions in ancient DNA studies. A number of methods are available to estimate contamination, which use a variety of signals and are appropriate for different types of data. Here an overview of currently available methods highlighting their strengths and weaknesses is provided, and a classification based on the signals used to estimate contamination is proposed. This overview aims at enabling researchers to choose the most appropriate methods for their dataset. Based on this classification, potential avenues for the further development of methods are discussed.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, 07745, Germany
| |
Collapse
|
116
|
Arning N, Wilson DJ. The past, present and future of ancient bacterial DNA. Microb Genom 2020; 6:mgen000384. [PMID: 32598277 PMCID: PMC7478633 DOI: 10.1099/mgen.0.000384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Groundbreaking studies conducted in the mid-1980s demonstrated the possibility of sequencing ancient DNA (aDNA), which has allowed us to answer fundamental questions about the human past. Microbiologists were thus given a powerful tool to glimpse directly into inscrutable bacterial history, hitherto inaccessible due to a poor fossil record. Initially plagued by concerns regarding contamination, the field has grown alongside technical progress, with the advent of high-throughput sequencing being a breakthrough in sequence output and authentication. Albeit burdened with challenges unique to the analysis of bacteria, a growing number of viable sources for aDNA has opened multiple avenues of microbial research. Ancient pathogens have been extracted from bones, dental pulp, mummies and historical medical specimens and have answered focal historical questions such as identifying the aetiological agent of the black death as Yersinia pestis. Furthermore, ancient human microbiomes from fossilized faeces, mummies and dental plaque have shown shifts in human commensals through the Neolithic demographic transition and industrial revolution, whereas environmental isolates stemming from permafrost samples have revealed signs of ancient antimicrobial resistance. Culminating in an ever-growing repertoire of ancient genomes, the quickly expanding body of bacterial aDNA studies has also enabled comparisons of ancient genomes to their extant counterparts, illuminating the evolutionary history of bacteria. In this review we summarize the present avenues of research and contextualize them in the past of the field whilst also pointing towards questions still to be answered.
Collapse
Affiliation(s)
- Nicolas Arning
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
117
|
|
118
|
Affiliation(s)
- Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Sebastián Duchêne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
119
|
Dolle D, Fages A, Mata X, Schiavinato S, Tonasso-Calvière L, Chauvey L, Wagner S, Der Sarkissian C, Fromentier A, Seguin-Orlando A, Orlando L. CASCADE: A Custom-Made Archiving System for the Conservation of Ancient DNA Experimental Data. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
120
|
A 2,000-year-old specimen with intraerythrocytic Bartonella quintana. Sci Rep 2020; 10:10069. [PMID: 32572066 PMCID: PMC7308320 DOI: 10.1038/s41598-020-66917-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/20/2020] [Indexed: 11/08/2022] Open
Abstract
Photogrammetry and cascading microscopy investigations of dental pulp specimens collected from 2,000-year-old individuals buried in a Roman necropolis in Besançon, France, revealed unprecedented preserved tissular and cellular morphology. Photogrammetry yielded 3-D images of the smallest archaeological human remains ever recovered. Optical microscopy examinations after standard haematoxylin-phloxine-saffron staining and anti-glycophorin A immunohistochemistry exposed dental pulp cells, in addition erythrocytes were visualised by electron microscopy, which indicated the ancient dental pulp trapped a blood drop. Fluorescence in situ hybridisation applied on red blood cells revealed the louse-borne pathogen Bartonella quintana, a finding confirmed by polymerase chain reaction assays. Through paleohistology and paleocytology, we demonstrate that the ancient dental pulp preserved intact blood cells at the time of the individual's death, offering an unprecedented opportunity to engage in direct and indirect tests to diagnose pathogens in ancient buried individuals.
Collapse
|
121
|
Giffin K, Lankapalli AK, Sabin S, Spyrou MA, Posth C, Kozakaitė J, Friedrich R, Miliauskienė Ž, Jankauskas R, Herbig A, Bos KI. A treponemal genome from an historic plague victim supports a recent emergence of yaws and its presence in 15 th century Europe. Sci Rep 2020; 10:9499. [PMID: 32528126 PMCID: PMC7290034 DOI: 10.1038/s41598-020-66012-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022] Open
Abstract
Developments in techniques for identification of pathogen DNA in archaeological samples can expand our resolution of disease detection. Our application of a non-targeted molecular screening tool for the parallel detection of pathogens in historical plague victims from post-medieval Lithuania revealed the presence of more than one active disease in one individual. In addition to Yersinia pestis, we detected and genomically characterized a septic infection of Treponema pallidum pertenue, a subtype of the treponemal disease family recognised as the cause of the tropical disease yaws. Our finding in northern Europe of a disease that is currently restricted to equatorial regions is interpreted within an historical framework of intercontinental trade and potential disease movements. Through this we offer an alternative hypothesis for the history and evolution of the treponemal diseases, and posit that yaws be considered an important contributor to the sudden epidemic of late 15th century Europe that is widely ascribed to syphilis.
Collapse
Affiliation(s)
- Karen Giffin
- Max Planck Institute for the Science of Human History, Jena, Germany
| | | | - Susanna Sabin
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Maria A Spyrou
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Cosimo Posth
- Max Planck Institute for the Science of Human History, Jena, Germany.,Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Rümelinstraße 23, 72070, Tübingen, Germany
| | | | | | | | | | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
122
|
Nelson EA, Buikstra JE, Herbig A, Tung TA, Bos KI. Advances in the molecular detection of tuberculosis in pre-contact Andean South America. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2020; 29:128-140. [PMID: 31964606 DOI: 10.1016/j.ijpp.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Andean paleopathological research has significantly enhanced knowledge about the geographical distribution and evolution of tuberculosis (TB) in pre-Columbian South America. In this paper, we review the history and progress of research on ancient tuberculosis (TB) in the Andean region, focusing on the strengths and limitations of current approaches for the molecular detection of ancient pathogens, with special attention to TB. As a case study, we describe a molecular screening approach for the detection of ancient Mycobacterium tuberculosis in individuals from Late Intermediate Period (1000-1400 CE) contexts at the site of Huari, Peru. We evaluate 34 commingled human vertebrae and combine morphological assessments of pathology with high throughput sequencing and a non-selective approach to ancient pathogen DNA screening. Our method enabled the simultaneous detection of ancient M. tuberculosis DNA and an evaluation of the environmental microbial composition of each sample. Our results show that despite the dominance of environmental DNA, molecular signatures of M. tuberculosis were identified in eight vertebrae, six of which had no observable skeletal pathology classically associated tuberculosis infection. This screening approach will assist in the identification of candidate samples for downstream genomic analyses. The method permits higher resolution disease identification in cases where pathology may be absent, or where the archaeological context may necessitate a broad differential diagnosis based on morphology alone.
Collapse
Affiliation(s)
- Elizabeth A Nelson
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str 10, 07745 Jena, Germany; Eberhard Karls Universität Tübingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany.
| | - Jane E Buikstra
- Center for Bioarchaeological Research, Arizona State University, 1151 S. Forest Ave., Tempe, AZ, 85281, USA.
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str 10, 07745 Jena, Germany.
| | - Tiffiny A Tung
- Department of Anthropology, Vanderbilt University, VU Station B #356050, Nashville, TN 37235, USA.
| | - Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str 10, 07745 Jena, Germany.
| |
Collapse
|
123
|
Abstract
The domestication of animals led to a major shift in human subsistence patterns, from a hunter-gatherer to a sedentary agricultural lifestyle, which ultimately resulted in the development of complex societies. Over the past 15,000 years, the phenotype and genotype of multiple animal species, such as dogs, pigs, sheep, goats, cattle and horses, have been substantially altered during their adaptation to the human niche. Recent methodological innovations, such as improved ancient DNA extraction methods and next-generation sequencing, have enabled the sequencing of whole ancient genomes. These genomes have helped reconstruct the process by which animals entered into domestic relationships with humans and were subjected to novel selection pressures. Here, we discuss and update key concepts in animal domestication in light of recent contributions from ancient genomics.
Collapse
|
124
|
Key FM, Posth C, Esquivel-Gomez LR, Hübler R, Spyrou MA, Neumann GU, Furtwängler A, Sabin S, Burri M, Wissgott A, Lankapalli AK, Vågene ÅJ, Meyer M, Nagel S, Tukhbatova R, Khokhlov A, Chizhevsky A, Hansen S, Belinsky AB, Kalmykov A, Kantorovich AR, Maslov VE, Stockhammer PW, Vai S, Zavattaro M, Riga A, Caramelli D, Skeates R, Beckett J, Gradoli MG, Steuri N, Hafner A, Ramstein M, Siebke I, Lösch S, Erdal YS, Alikhan NF, Zhou Z, Achtman M, Bos K, Reinhold S, Haak W, Kühnert D, Herbig A, Krause J. Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat Ecol Evol 2020; 4:324-333. [PMID: 32094538 PMCID: PMC7186082 DOI: 10.1038/s41559-020-1106-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022]
Abstract
It has been hypothesized that the Neolithic transition towards an
agricultural and pastoralist economy facilitated the emergence of human adapted
pathogens. Here, we recovered eight Salmonella enterica subsp.
enterica genomes from human skeletons of transitional
foragers, pastoralists, and agro-pastoralists in western Eurasia that were up to
6,500 years old. Despite the high genetic diversity of S.
enterica all ancient bacterial genomes clustered in a single
previously uncharacterized branch that contains S. enterica
adapted to multiple mammalian species. All ancient bacterial genomes from
prehistoric (agro-)pastoralists fall within a part of this branch that also
includes the human-specific S. enterica Paratyphi C,
illustrating the evolution of a human pathogen over a period of five thousand
years. Bacterial genomic comparisons suggest that the earlier ancient strains
were not host specific, differed in pathogenic potential, and experienced
convergent pseudogenization that accompanied their downstream host adaptation.
These observations support the concept that the emergence of human adapted
S. enterica is linked to human cultural
transformations.
Collapse
Affiliation(s)
- Felix M Key
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany. .,Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Luis R Esquivel-Gomez
- Transmission, Infection, Diversification & Evolution Group, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Ron Hübler
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Anja Furtwängler
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tuebingen, Tuebingen, Germany
| | - Susanna Sabin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Marta Burri
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Antje Wissgott
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Aditya Kumar Lankapalli
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Åshild J Vågene
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rezeda Tukhbatova
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.,Laboratory of Structural Biology, Kazan Federal University, Kazan, Russian Federation
| | - Aleksandr Khokhlov
- Samara State University of Social Sciences and Education, Samara, Russian Federation
| | - Andrey Chizhevsky
- Institute of Archaeology named after A.Kh. Khalikov of the Academy of Sciences of the Republic of Tatarstan, Kazan, Russian Federation
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | | | - Alexey Kalmykov
- 'Nasledie' Cultural Heritage Unit, Stavropol, Russian Federation
| | - Anatoly R Kantorovich
- Department of Archaeology, Faculty of History, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.,Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University Munich, Munich, Germany
| | - Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Monica Zavattaro
- Museum of Anthropology and Ethnology, Museum System of the University of Florence, Florence, Italy
| | - Alessandro Riga
- Department of Biology, University of Florence, Florence, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy
| | - Robin Skeates
- Department of Archaeology, Durham University, Durham, UK
| | | | | | - Noah Steuri
- Institute of Archaeological Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Albert Hafner
- Institute of Archaeological Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | | | - Inga Siebke
- Department of Physical Anthropology Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Sandra Lösch
- Department of Physical Anthropology Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | | | | | - Zhemin Zhou
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Mark Achtman
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Kirsten Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Denise Kühnert
- Transmission, Infection, Diversification & Evolution Group, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
125
|
McHugo GP, Dover MJ, MacHugh DE. Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol 2019; 17:98. [PMID: 31791340 PMCID: PMC6889691 DOI: 10.1186/s12915-019-0724-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Animal domestication has fascinated biologists since Charles Darwin first drew the parallel between evolution via natural selection and human-mediated breeding of livestock and companion animals. In this review we show how studies of ancient DNA from domestic animals and their wild progenitors and congeners have shed new light on the genetic origins of domesticates, and on the process of domestication itself. High-resolution paleogenomic data sets now provide unprecedented opportunities to explore the development of animal agriculture across the world. In addition, functional population genomics studies of domestic and wild animals can deliver comparative information useful for understanding recent human evolution.
Collapse
Affiliation(s)
- Gillian P McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Michael J Dover
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
126
|
Trumble BC, Finch CE. THE EXPOSOME IN HUMAN EVOLUTION: FROM DUST TO DIESEL. THE QUARTERLY REVIEW OF BIOLOGY 2019; 94:333-394. [PMID: 32269391 PMCID: PMC7141577 DOI: 10.1086/706768] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global exposures to air pollution and cigarette smoke are novel in human evolutionary history and are associated with about 16 million premature deaths per year. We investigate the history of the human exposome for relationships between novel environmental toxins and genetic changes during human evolution in six phases. Phase I: With increased walking on savannas, early human ancestors inhaled crustal dust, fecal aerosols, and spores; carrion scavenging introduced new infectious pathogens. Phase II: Domestic fire exposed early Homo to novel toxins from smoke and cooking. Phases III and IV: Neolithic to preindustrial Homo sapiens incurred infectious pathogens from domestic animals and dense communities with limited sanitation. Phase V: Industrialization introduced novel toxins from fossil fuels, industrial chemicals, and tobacco at the same time infectious pathogens were diminishing. Thereby, pathogen-driven causes of mortality were replaced by chronic diseases driven by sterile inflammogens, exogenous and endogenous. Phase VI: Considers future health during global warming with increased air pollution and infections. We hypothesize that adaptation to some ancient toxins persists in genetic variations associated with inflammation and longevity.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution & Social Change and Center for Evolution and Medicine, Arizona State University Tempe, Arizona 85287 USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California Los Angeles, California 90089-0191 USA
| |
Collapse
|
127
|
Maixner F, Thorell K, Granehäll L, Linz B, Moodley Y, Rattei T, Engstrand L, Zink A. Helicobacter pylori in ancient human remains. World J Gastroenterol 2019; 25:6289-6298. [PMID: 31754290 PMCID: PMC6861846 DOI: 10.3748/wjg.v25.i42.6289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/13/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
The bacterium Helicobacter pylori (H. pylori) infects the stomachs of approximately 50% of all humans. With its universal occurrence, high infectivity and virulence properties it is considered as one of the most severe global burdens of modern humankind. It has accompanied humans for many thousands of years, and due to its high genetic variability and vertical transmission, its population genetics reflects the history of human migrations. However, especially complex demographic events such as the colonisation of Europe cannot be resolved with population genetic analysis of modern H. pylori strains alone. This is best exemplified with the reconstruction of the 5300-year-old H. pylori genome of the Iceman, a European Copper Age mummy. Our analysis provided precious insights into the ancestry and evolution of the pathogen and underlined the high complexity of ancient European population history. In this review we will provide an overview on the molecular analysis of H. pylori in mummified human remains that were done so far and we will outline methodological advancements in the field of ancient DNA research that support the reconstruction and authentication of ancient H. pylori genome sequences.
Collapse
Affiliation(s)
- Frank Maixner
- Institute for Mummy Studies, EURAC Research, Bolzano 39100, Italy
| | - Kaisa Thorell
- Department of Infectious Diseases, University of Gothenburg, Göteborg SE405 30, Sweden
| | - Lena Granehäll
- Institute for Mummy Studies, EURAC Research, Bolzano 39100, Italy
| | - Bodo Linz
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, United States
| | - Yoshan Moodley
- Department of Zoology, University of Venda, Thohoyandou 0950, South Africa
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna 1090, Austria
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 141 83, Sweden
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, Bolzano 39100, Italy
| |
Collapse
|
128
|
Näpflin K, O’Connor EA, Becks L, Bensch S, Ellis VA, Hafer-Hahmann N, Harding KC, Lindén SK, Olsen MT, Roved J, Sackton TB, Shultz AJ, Venkatakrishnan V, Videvall E, Westerdahl H, Winternitz JC, Edwards SV. Genomics of host-pathogen interactions: challenges and opportunities across ecological and spatiotemporal scales. PeerJ 2019; 7:e8013. [PMID: 31720122 PMCID: PMC6839515 DOI: 10.7717/peerj.8013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Evolutionary genomics has recently entered a new era in the study of host-pathogen interactions. A variety of novel genomic techniques has transformed the identification, detection and classification of both hosts and pathogens, allowing a greater resolution that helps decipher their underlying dynamics and provides novel insights into their environmental context. Nevertheless, many challenges to a general understanding of host-pathogen interactions remain, in particular in the synthesis and integration of concepts and findings across a variety of systems and different spatiotemporal and ecological scales. In this perspective we aim to highlight some of the commonalities and complexities across diverse studies of host-pathogen interactions, with a focus on ecological, spatiotemporal variation, and the choice of genomic methods used. We performed a quantitative review of recent literature to investigate links, patterns and potential tradeoffs between the complexity of genomic, ecological and spatiotemporal scales undertaken in individual host-pathogen studies. We found that the majority of studies used whole genome resolution to address their research objectives across a broad range of ecological scales, especially when focusing on the pathogen side of the interaction. Nevertheless, genomic studies conducted in a complex spatiotemporal context are currently rare in the literature. Because processes of host-pathogen interactions can be understood at multiple scales, from molecular-, cellular-, and physiological-scales to the levels of populations and ecosystems, we conclude that a major obstacle for synthesis across diverse host-pathogen systems is that data are collected on widely diverging scales with different degrees of resolution. This disparity not only hampers effective infrastructural organization of the data but also data granularity and accessibility. Comprehensive metadata deposited in association with genomic data in easily accessible databases will allow greater inference across systems in the future, especially when combined with open data standards and practices. The standardization and comparability of such data will facilitate early detection of emerging infectious diseases as well as studies of the impact of anthropogenic stressors, such as climate change, on disease dynamics in humans and wildlife.
Collapse
Affiliation(s)
- Kathrin Näpflin
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
| | - Emily A. O’Connor
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Lutz Becks
- Aquatic Ecology and Evolution, Limnological Institute University Konstanz, Konstanz, Germany
| | - Staffan Bensch
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Vincenzo A. Ellis
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Nina Hafer-Hahmann
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Karin C. Harding
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Sara K. Lindén
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Morten T. Olsen
- Section for Evolutionary Genomics, Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Roved
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Timothy B. Sackton
- Informatics Group, Harvard University, Cambridge, MA, United States of America
| | - Allison J. Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, CA, United States of America
| | - Vignesh Venkatakrishnan
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elin Videvall
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States of America
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Jamie C. Winternitz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
129
|
Spyrou MA, Keller M, Tukhbatova RI, Scheib CL, Nelson EA, Andrades Valtueña A, Neumann GU, Walker D, Alterauge A, Carty N, Cessford C, Fetz H, Gourvennec M, Hartle R, Henderson M, von Heyking K, Inskip SA, Kacki S, Key FM, Knox EL, Later C, Maheshwari-Aplin P, Peters J, Robb JE, Schreiber J, Kivisild T, Castex D, Lösch S, Harbeck M, Herbig A, Bos KI, Krause J. Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nat Commun 2019; 10:4470. [PMID: 31578321 PMCID: PMC6775055 DOI: 10.1038/s41467-019-12154-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/15/2019] [Indexed: 12/30/2022] Open
Abstract
The second plague pandemic, caused by Yersinia pestis, devastated Europe and the nearby regions between the 14th and 18th centuries AD. Here we analyse human remains from ten European archaeological sites spanning this period and reconstruct 34 ancient Y. pestis genomes. Our data support an initial entry of the bacterium through eastern Europe, the absence of genetic diversity during the Black Death, and low within-outbreak diversity thereafter. Analysis of post-Black Death genomes shows the diversification of a Y. pestis lineage into multiple genetically distinct clades that may have given rise to more than one disease reservoir in, or close to, Europe. In addition, we show the loss of a genomic region that includes virulence-related genes in strains associated with late stages of the pandemic. The deletion was also identified in genomes connected with the first plague pandemic (541-750 AD), suggesting a comparable evolutionary trajectory of Y. pestis during both events.
Collapse
Affiliation(s)
- Maria A Spyrou
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
- Institute for Archaeological Sciences, University of Tübingen, 72070, Tübingen, Germany.
| | - Marcel Keller
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
- SNSB, State Collection for Anthropology and Palaeoanatomy Munich, 80333, Munich, Germany
| | - Rezeda I Tukhbatova
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
- Laboratory of Structural Biology, Kazan Federal University, Kazan, Russian Federation, 420008
| | | | - Elizabeth A Nelson
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
- Institute for Archaeological Sciences, University of Tübingen, 72070, Tübingen, Germany
| | | | - Gunnar U Neumann
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Don Walker
- MOLA (Museum of London Archaeology), London, N1 7ED, UK
| | - Amelie Alterauge
- Department of Physical Anthropology, Institute for Forensic Medicine, University of Bern, 3007, Bern, Switzerland
| | - Niamh Carty
- MOLA (Museum of London Archaeology), London, N1 7ED, UK
| | - Craig Cessford
- Department of Archaeology, University of Cambridge, Downing St, Cambridge, CB2 3ER, UK
| | - Hermann Fetz
- Archaeological Service, State Archive Nidwalden, 6371, Nidwalden, Switzerland
| | - Michaël Gourvennec
- Archeodunum SAS, Agency Toulouse, 8 allée Michel de Montaigne, 31770, Colomiers, France
| | - Robert Hartle
- MOLA (Museum of London Archaeology), London, N1 7ED, UK
| | | | - Kristin von Heyking
- SNSB, State Collection for Anthropology and Palaeoanatomy Munich, 80333, Munich, Germany
| | - Sarah A Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Downing St, Cambridge, CB2 3ER, UK
| | - Sacha Kacki
- PACEA, CNRS Institute, Université de Bordeaux, 33615, Pessac, France
- Department of Archaeology, Durham University, South Rd, Durham, DH1 3LE, UK
| | - Felix M Key
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Christian Later
- Bavarian State Department of Monuments and Sites, 80539, Munich, Germany
| | | | - Joris Peters
- SNSB, State Collection for Anthropology and Palaeoanatomy Munich, 80333, Munich, Germany
- ArchaeoBioCenter and Department of Veterinary Sciences, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig Maximilian University Munich, Kaulbachstr. 37/III, 80539, Munich, Germany
| | - John E Robb
- Department of Archaeology, University of Cambridge, Downing St, Cambridge, CB2 3ER, UK
| | | | - Toomas Kivisild
- Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Department of Human Genetics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Dominique Castex
- PACEA, CNRS Institute, Université de Bordeaux, 33615, Pessac, France
| | - Sandra Lösch
- Department of Physical Anthropology, Institute for Forensic Medicine, University of Bern, 3007, Bern, Switzerland
| | - Michaela Harbeck
- SNSB, State Collection for Anthropology and Palaeoanatomy Munich, 80333, Munich, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
- Institute for Archaeological Sciences, University of Tübingen, 72070, Tübingen, Germany.
| |
Collapse
|
130
|
Ditchburn JL, Hodgkins R. Yersinia pestis, a problem of the past and a re-emerging threat. BIOSAFETY AND HEALTH 2019. [DOI: 10.1016/j.bsheal.2019.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
131
|
|