101
|
Tian L, Jia Z, Yan Y, Jia Q, Shi W, Cui S, Chen H, Han Y, Zhao X, He K. Low-dose of caffeine alleviates high altitude pulmonary edema via regulating mitochondrial quality control process in AT1 cells. Front Pharmacol 2023; 14:1155414. [PMID: 37081967 PMCID: PMC10110878 DOI: 10.3389/fphar.2023.1155414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Backgrounds: High-altitude pulmonary edema (HAPE) is a life-threatening disease without effective drugs. Caffeine is a small molecule compound with antioxidant biological activity used to treat respiratory distress syndrome. However, it is unclear whether caffeine plays a role in alleviating HAPE.Methods: We combined a series of biological experiments and label-free quantitative proteomics analysis to detect the effect of caffeine on treating HAPE and explore its mechanism in vivo and in vitro.Results: Dry and wet weight ratio and HE staining of pulmonary tissues showed that the HAPE model was constructed successfully, and caffeine relieved pulmonary edema. The proteomic results of mice lungs indicated that regulating mitochondria might be the mechanism by which caffeine reduced HAPE. We found that caffeine blocked the reduction of ATP production and oxygen consumption rate, decreased ROS accumulation, and stabilized mitochondrial membrane potential to protect AT1 cells from oxidative stress damage under hypoxia. Caffeine promoted the PINK1/parkin-dependent mitophagy and enhanced mitochondrial fission to maintain the mitochondria quality control process.Conclusion: Low-dose of caffeine alleviated HAPE by promoting PINK1/parkin-dependent mitophagy and mitochondrial fission to control the mitochondria quality. Therefore, caffeine could be a potential treatment for HAPE.
Collapse
Affiliation(s)
- Liuyang Tian
- School of Medicine, Nankai University, Tianjin, China
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Center for Artificial Intelligence in Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhilong Jia, ; Xiaojing Zhao, ; Kunlun He,
| | - Yan Yan
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Qian Jia
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Wenjie Shi
- Technical Research Centre for Prevention and Control of Birth Defects, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Saijia Cui
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Huining Chen
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yang Han
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Zhao
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhilong Jia, ; Xiaojing Zhao, ; Kunlun He,
| | - Kunlun He
- School of Medicine, Nankai University, Tianjin, China
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhilong Jia, ; Xiaojing Zhao, ; Kunlun He,
| |
Collapse
|
102
|
Balzarini M, Yuan Z, Weidberg H. MitoStores: a place for precursors to ride out the storm. EMBO J 2023; 42:e113576. [PMID: 36876922 PMCID: PMC10068307 DOI: 10.15252/embj.2023113576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023] Open
Abstract
The fate of unimported mitochondrial precursors has been increasingly studied in recent years, mostly focusing on protein degradation. In this issue of the EMBO journal, Krämer et al discovered MitoStores, a new protective mechanism that temporarily stores mitochondrial proteins in cytosolic deposits.
Collapse
Affiliation(s)
- Megan Balzarini
- Department of Cellular and Physiological SciencesLife Sciences Institute, University of British ColumbiaVancouverBCCanada
| | - Zixuan Yuan
- Department of Cellular and Physiological SciencesLife Sciences Institute, University of British ColumbiaVancouverBCCanada
| | - Hilla Weidberg
- Department of Cellular and Physiological SciencesLife Sciences Institute, University of British ColumbiaVancouverBCCanada
| |
Collapse
|
103
|
Qiu S, Zhong X, Meng X, Li S, Qian X, Lu H, Cai J, Zhang Y, Wang M, Ye Z, Zhang H, Gao P. Mitochondria-localized cGAS suppresses ferroptosis to promote cancer progression. Cell Res 2023; 33:299-311. [PMID: 36864172 PMCID: PMC10066369 DOI: 10.1038/s41422-023-00788-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
A well-established role of cyclic GMP-AMP synthase (cGAS) is the recognition of cytosolic DNA, which is linked to the activation of host defense programs against pathogens via stimulator of interferon genes (STING)-dependent innate immune response. Recent advance has also revealed that cGAS may be involved in several noninfectious contexts by localizing to subcellular compartments other than the cytosol. However, the subcellular localization and function of cGAS in different biological conditions is unclear; in particular, its role in cancer progression remains poorly understood. Here we show that cGAS is localized to mitochondria and protects hepatocellular carcinoma cells from ferroptosis in vitro and in vivo. cGAS anchors to the outer mitochondrial membrane where it associates with dynamin-related protein 1 (DRP1) to facilitate its oligomerization. In the absence of cGAS or DRP1 oligomerization, mitochondrial ROS accumulation and ferroptosis increase, inhibiting tumor growth. Collectively, this previously unrecognized role for cGAS in orchestrating mitochondrial function and cancer progression suggests that cGAS interactions in mitochondria can serve as potential targets for new cancer interventions.
Collapse
Affiliation(s)
- Shiqiao Qiu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiuying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiang Meng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shiting Li
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Qian
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Hui Lu
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jin Cai
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yi Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Mingjie Wang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zijian Ye
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Huafeng Zhang
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Ping Gao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
104
|
Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel) 2023; 15:cancers15071936. [PMID: 37046596 PMCID: PMC10093243 DOI: 10.3390/cancers15071936] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer mortality in women. Despite the recent development of new therapeutics including targeted therapies and immunotherapy, triple-negative breast cancer remains an aggressive form of breast cancer, and thus improved treatments are needed. In recent decades, it has become increasingly clear that breast cancers harbor metabolic plasticity that is controlled by mitochondria. A myriad of studies provide evidence that mitochondria are essential to breast cancer progression. Mitochondria in breast cancers are widely reprogrammed to enhance energy production and biosynthesis of macromolecules required for tumor growth. In this review, we will discuss the current understanding of mitochondrial roles in breast cancers and elucidate why mitochondria are a rational therapeutic target. We will then outline the status of the use of mitochondria-targeting drugs in breast cancers, and highlight ClpP agonists as emerging mitochondria-targeting drugs with a unique mechanism of action. We also illustrate possible drug combination strategies and challenges in the future breast cancer clinic.
Collapse
Affiliation(s)
- Rohan Wedam
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Weltz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Kundu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
105
|
Rosenkranz AA, Slastnikova TA. Prospects of Using Protein Engineering for Selective Drug Delivery into a Specific Compartment of Target Cells. Pharmaceutics 2023; 15:pharmaceutics15030987. [PMID: 36986848 PMCID: PMC10055131 DOI: 10.3390/pharmaceutics15030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A large number of proteins are successfully used to treat various diseases. These include natural polypeptide hormones, their synthetic analogues, antibodies, antibody mimetics, enzymes, and other drugs based on them. Many of them are demanded in clinical settings and commercially successful, mainly for cancer treatment. The targets for most of the aforementioned drugs are located at the cell surface. Meanwhile, the vast majority of therapeutic targets, which are usually regulatory macromolecules, are located inside the cell. Traditional low molecular weight drugs freely penetrate all cells, causing side effects in non-target cells. In addition, it is often difficult to elaborate a small molecule that can specifically affect protein interactions. Modern technologies make it possible to obtain proteins capable of interacting with almost any target. However, proteins, like other macromolecules, cannot, as a rule, freely penetrate into the desired cellular compartment. Recent studies allow us to design multifunctional proteins that solve these problems. This review considers the scope of application of such artificial constructs for the targeted delivery of both protein-based and traditional low molecular weight drugs, the obstacles met on the way of their transport to the specified intracellular compartment of the target cells after their systemic bloodstream administration, and the means to overcome those difficulties.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
106
|
Yang R, Zhang X, Zhang Y, Wang Y, Li M, Meng Y, Wang J, Wen X, Yu J, Chang P. Grpel2 maintains cardiomyocyte survival in diabetic cardiomyopathy through DLST-mediated mitochondrial dysfunction: a proof-of-concept study. J Transl Med 2023; 21:200. [PMID: 36927450 PMCID: PMC10021968 DOI: 10.1186/s12967-023-04049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) has been considered as a major threat to health in individuals with diabetes. GrpE-like 2 (Grpel2), a nucleotide exchange factor, has been shown to regulate mitochondrial import process to maintain mitochondrial homeostasis. However, the effect and mechanism of Grpel2 in DCM remain unknown. METHODS The streptozotocin (STZ)-induced DCM mice model and high glucose (HG)-treated cardiomyocytes were established. Overexpression of cardiac-specific Grpel2 was performed by intramyocardial injection of adeno-associated virus serotype 9 (AAV9). Bioinformatics analysis, co-immunoprecipitation (co-IP), transcriptomics profiling and functional experiments were used to explore molecular mechanism of Grpel2 in DCM. RESULTS Here, we found that Grpel2 was decreased in DCM induced by STZ. Overexpression of cardiac-specific Grpel2 alleviated cardiac dysfunction and structural remodeling in DCM. In both diabetic hearts and HG-treated cardiomyocytes, Grpel2 overexpression attenuated apoptosis and mitochondrial dysfunction, including decreased mitochondrial ROS production, increased mitochondrial respiratory capacities and increased mitochondrial membrane potential. Mechanistically, Grpel2 interacted with dihydrolipoyl succinyltransferase (DLST), which positively mediated the import process of DLST into mitochondria under HG conditions. Furthermore, the protective effects of Grpel2 overexpression on mitochondrial function and cell survival were blocked by siRNA knockdown of DLST. Moreover, Nr2f6 bond to the Grpel2 promoter region and positively regulated its transcription. CONCLUSION Our study provides for the first time evidence that Grpel2 overexpression exerts a protective effect against mitochondrial dysfunction and apoptosis in DCM by maintaining the import of DLST into mitochondria. These findings suggest that targeting Grpel2 might be a promising therapeutic strategy for the treatment of patients with DCM.
Collapse
Affiliation(s)
- Rongjin Yang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi, China.,Department of Cardiology, The 989th Hospital of the People's Liberation Army Joint Logistic Support Force, 2 Huaxia West Road, Luoyang, 471000, China
| | - Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yunyun Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yingfan Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi, China
| | - Man Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi, China
| | - Yuancui Meng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi, China
| | - Jianbang Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi, China
| | - Xue Wen
- Department of Cardiology, The 989th Hospital of the People's Liberation Army Joint Logistic Support Force, 2 Huaxia West Road, Luoyang, 471000, China
| | - Jun Yu
- Clinical Experimental Center, The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710100, China.
| | - Pan Chang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
107
|
Kan S, Pi C, Zhang L, Guo D, Niu Z, Liu Y, Duan M, Pu X, Bai M, Zhou C, Zhang D, Xie J. FGF19 increases mitochondrial biogenesis and fusion in chondrocytes via the AMPKα-p38/MAPK pathway. Cell Commun Signal 2023; 21:55. [PMID: 36915160 PMCID: PMC10009974 DOI: 10.1186/s12964-023-01069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/05/2023] [Indexed: 03/16/2023] Open
Abstract
Fibroblast growth factor 19 (FGF19) is recognized to play an essential role in cartilage development and physiology, and has emerged as a potential therapeutic target for skeletal metabolic diseases. However, FGF19-mediated cellular behavior in chondrocytes remains a big challenge. In the current study, we aimed to investigate the role of FGF19 on chondrocytes by characterizing mitochondrial biogenesis and fission-fusion dynamic equilibrium and exploring the underlying mechanism. We first found that FGF19 enhanced mitochondrial biogenesis in chondrocytes with the help of β Klotho (KLB), a vital accessory protein for assisting the binding of FGF19 to its receptor, and the enhanced biogenesis accompanied with a fusion of mitochondria, reflecting in the elongation of individual mitochondria and the up-regulation of mitochondrial fusion proteins. We then revealed that FGF19-mediated mitochondrial biogenesis and fusion required the binding of FGF19 to the membrane receptor, FGFR4, and the activation of AMP-activated protein kinase alpha (AMPKα)/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α)/sirtuin 1 (SIRT1) axis. Finally, we demonstrated that FGF19-mediated mitochondrial biogenesis and fusion was mainly dependent on the activation of p-p38 signaling. Inhibition of p38 signaling largely reduced the high expression of AMPKα/PGC-1α/SIRT1 axis, decreased the up-regulation of mitochondrial fusion proteins and impaired the enhancement of mitochondrial network morphology in chondrocytes induced by FGF19. Taking together, our results indicate that FGF19 could increase mitochondrial biogenesis and fusion via AMPKα-p38/MAPK signaling, which enlarge the understanding of FGF19 on chondrocyte metabolism. Video Abstract.
Collapse
Affiliation(s)
- Shiyi Kan
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Caixia Pi
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Li Zhang
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Daimo Guo
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Zhixing Niu
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yang Liu
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Mengmeng Duan
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xiahua Pu
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Mingru Bai
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Chenchen Zhou
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Demao Zhang
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jing Xie
- Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China.
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
108
|
Dar GM, Ahmad E, Ali A, Mahajan B, Ashraf GM, Saluja SS. Genetic aberration analysis of mitochondrial respiratory complex I implications in the development of neurological disorders and their clinical significance. Ageing Res Rev 2023; 87:101906. [PMID: 36905963 DOI: 10.1016/j.arr.2023.101906] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Growing neurological diseases pose difficult challenges for modern medicine to diagnose and manage them effectively. Many neurological disorders mainly occur due to genetic alteration in genes encoding mitochondrial proteins. Moreover, mitochondrial genes exhibit a higher rate of mutation due to the generation of Reactive oxygen species (ROS) during oxidative phosphorylation operating in their vicinity. Among the different complexes of Electron transport chain (ETC), NADH: Ubiquinone oxidoreductase (Mitochondrial complex I) is the most important. This multimeric enzyme, composed of 44 subunits, is encoded by both nuclear and mitochondrial genes. It often exhibits mutations resulting in development of various neurological diseases. The most prominent diseases include leigh syndrome (LS), leber hereditary optic neuropathy (LHON), mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS), myoclonic epilepsy associated with ragged-red fibers (MERRF), idiopathic Parkinson's disease (PD) and, Alzheimer's disease (AD). Preliminary data suggest that mitochondrial complex I subunit genes mutated are frequently of nuclear origin; however, most of the mtDNA gene encoding subunits are also primarily involved. In this review, we have discussed the genetic origins of neurological disorders involving mitochondrial complex I and signified recent approaches to unravel the diagnostic and therapeutic potentials and their management.
Collapse
Affiliation(s)
- Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Bhawna Mahajan
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India.
| |
Collapse
|
109
|
Niemi NM, Serrano LR, Muehlbauer LK, Balnis C, Kozul KL, Rashan EH, Shishkova E, Schueler KL, Keller MP, Attie AD, Pagan J, Coon JJ, Pagliarini DJ. Pptc7 maintains mitochondrial protein content by suppressing receptor-mediated mitophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530351. [PMID: 36909604 PMCID: PMC10002655 DOI: 10.1101/2023.02.28.530351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Pptc7 is a resident mitochondrial phosphatase essential for maintaining proper mitochondrial content and function. Newborn mice lacking Pptc7 exhibit aberrant mitochondrial protein phosphorylation, suffer from a range of metabolic defects, and fail to survive beyond one day after birth. Using an inducible knockout model, we reveal that loss of Pptc7 in adult mice causes marked reduction in mitochondrial mass concomitant with elevation of the mitophagy receptors Bnip3 and Nix. Consistently, Pptc7-/- mouse embryonic fibroblasts (MEFs) exhibit a major increase in mitophagy that is reversed upon deletion of these receptors. Our phosphoproteomics analyses reveal a common set of elevated phosphosites between perinatal tissues, adult liver, and MEFs-including multiple sites on Bnip3 and Nix. These data suggest that Pptc7 deletion causes mitochondrial dysfunction via dysregulation of several metabolic pathways and that Pptc7 may directly regulate mitophagy receptor function or stability. Overall, our work reveals a significant role for Pptc7 in the mitophagic response and furthers the growing notion that management of mitochondrial protein phosphorylation is essential for ensuring proper organelle content and function.
Collapse
Affiliation(s)
- Natalie M. Niemi
- Morgridge Institute for Research, Madison, WI, 53715, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lia R. Serrano
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura K. Muehlbauer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Catie Balnis
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Keri-Lyn Kozul
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Edrees H. Rashan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Julia Pagan
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Joshua J. Coon
- Morgridge Institute for Research, Madison, WI, 53715, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - David J. Pagliarini
- Morgridge Institute for Research, Madison, WI, 53715, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
110
|
Lin S, Yang F, Hu M, Chen J, Chen G, Hu A, Li X, Fu D, Xing C, Xiong Z, Wu Y, Cao H. Selenium alleviates cadmium-induced mitophagy through FUNDC1-mediated mitochondrial quality control pathway in the lungs of sheep. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120954. [PMID: 36581240 DOI: 10.1016/j.envpol.2022.120954] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is a poisonous metal element that causes mitochondrial dysfunction. Selenium (Se) can reduce the damage of Cd to various organs of animals, but the protective mechanism of Se in Cd-induced lung injury has not been fully elucidated. For purpose of further illustrating the specific mechanism of Se alleviated Cd-triggered pulmonary toxicity, 48 sheep were divided into 4 groups, of which the sheep in the treatment group were taken 1 mg/kg body weight (BW) of Cd, 0.34 mg/kg BW of Se, and 0.34 mg Se + 1 mg/kg BW of Cd by intragastric administration for 50 d, respectively. The results indicated that Cd caused inflammatory cell infiltration and alveolar wall thickening, which facilitated mitochondrial vacuolation and formation of mitophagosomes in lung tissues. Simultaneously, Cd treatment impaired the antioxidant capacity of sheep lung tissue. Additionally, Cd treatment down-regulated the expression levels of mitochondrial biogenesis and mitochondrial fusion, but up-regulated the levels of mitochondrial fission and mitophagy mediated by FUNDC1. Moreover, the immunofluorescence co-localization puncta of LC3B/COX IV, LC3B/FUNDC1 were increased after Cd treatment. Nevertheless, co-treatment with Se improved effectively the above variation caused by Cd exposure. In summary, Se could mitigate Cd-generated mitophagy through FUNDC1-mediated mitochondrial quality control pathway in the lungs of sheep.
Collapse
Affiliation(s)
- Shixuan Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Mingwen Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guiping Chen
- Jiangxi Provincial Agricultural Ecology and Resource Protection Station, Nanchang 330046, Jiangxi, PR China
| | - Aiming Hu
- Ji'an Animal Husbandry and Veterinary Bureau, No.4 Luzhou West Road, Jizhou District, Ji'an 343000, Jiangxi, PR China
| | - Xiong Li
- Pingxiang Agricultural Science Research Center, Pingxiang 337000, Jiangxi, PR China
| | - Danghua Fu
- Nanchang Zoo, Nanchang, 330025, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhiwei Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Yunhui Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
111
|
Creation of Mitochondrial Disease Models Using Mitochondrial DNA Editing. Biomedicines 2023; 11:biomedicines11020532. [PMID: 36831068 PMCID: PMC9953118 DOI: 10.3390/biomedicines11020532] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Mitochondrial diseases are a large class of human hereditary diseases, accompanied by the dysfunction of mitochondria and the disruption of cellular energy synthesis, that affect various tissues and organ systems. Mitochondrial DNA mutation-caused disorders are difficult to study because of the insufficient number of clinical cases and the challenges of creating appropriate models. There are many cellular models of mitochondrial diseases, but their application has a number of limitations. The most proper and promising models of mitochondrial diseases are animal models, which, unfortunately, are quite rare and more difficult to develop. The challenges mainly arise from the structural features of mitochondria, which complicate the genetic editing of mitochondrial DNA. This review is devoted to discussing animal models of human mitochondrial diseases and recently developed approaches used to create them. Furthermore, this review discusses mitochondrial diseases and studies of metabolic disorders caused by the mitochondrial DNA mutations underlying these diseases.
Collapse
|
112
|
Ajmal MR. Protein Misfolding and Aggregation in Proteinopathies: Causes, Mechanism and Cellular Response. Diseases 2023; 11:30. [PMID: 36810544 PMCID: PMC9944956 DOI: 10.3390/diseases11010030] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Proteins are central to life functions. Alterations in the structure of proteins are reflected in their function. Misfolded proteins and their aggregates present a significant risk to the cell. Cells have a diverse but integrated network of protection mechanisms. Streams of misfolded proteins that cells are continuously exposed to must be continually monitored by an elaborated network of molecular chaperones and protein degradation factors to control and contain protein misfolding problems. Aggregation inhibition properties of small molecules such as polyphenols are important as they possess other beneficial properties such as antioxidative, anti-inflammatory, and pro-autophagic properties and help neuroprotection. A candidate with such desired features is important for any possible treatment development for protein aggregation diseases. There is a need to study the protein misfolding phenomenon so that we can treat some of the worst kinds of human ailments related to protein misfolding and aggregation.
Collapse
Affiliation(s)
- Mohammad Rehan Ajmal
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
113
|
Ganji R, Paulo JA, Xi Y, Kline I, Zhu J, Clemen CS, Weihl CC, Purdy JG, Gygi SP, Raman M. The p97-UBXD8 complex regulates ER-Mitochondria contact sites by altering membrane lipid saturation and composition. Nat Commun 2023; 14:638. [PMID: 36746962 PMCID: PMC9902492 DOI: 10.1038/s41467-023-36298-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
The intimate association between the endoplasmic reticulum (ER) and mitochondrial membranes at ER-Mitochondria contact sites (ERMCS) is a platform for critical cellular processes, particularly lipid synthesis. How contacts are remodeled and the impact of altered contacts on lipid metabolism remains poorly understood. We show that the p97 AAA-ATPase and its adaptor ubiquitin-X domain adaptor 8 (UBXD8) regulate ERMCS. The p97-UBXD8 complex localizes to contacts and its loss increases contacts in a manner that is dependent on p97 catalytic activity. Quantitative proteomics and lipidomics of ERMCS demonstrates alterations in proteins regulating lipid metabolism and a significant change in membrane lipid saturation upon UBXD8 deletion. Loss of p97-UBXD8 increased membrane lipid saturation via SREBP1 and the lipid desaturase SCD1. Aberrant contacts can be rescued by unsaturated fatty acids or overexpression of SCD1. We find that the SREBP1-SCD1 pathway is negatively impacted in the brains of mice with p97 mutations that cause neurodegeneration. We propose that contacts are exquisitely sensitive to alterations to membrane lipid composition and saturation.
Collapse
Affiliation(s)
- Rakesh Ganji
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yuecheng Xi
- Department of Immunobiology, BIO5 Institute, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ian Kline
- Department of Immunobiology, BIO5 Institute, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jiang Zhu
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
- Ilumina Inc., San Diego, CA, USA
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - John G Purdy
- Department of Immunobiology, BIO5 Institute, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
114
|
Schulte U, den Brave F, Haupt A, Gupta A, Song J, Müller CS, Engelke J, Mishra S, Mårtensson C, Ellenrieder L, Priesnitz C, Straub SP, Doan KN, Kulawiak B, Bildl W, Rampelt H, Wiedemann N, Pfanner N, Fakler B, Becker T. Mitochondrial complexome reveals quality-control pathways of protein import. Nature 2023; 614:153-159. [PMID: 36697829 PMCID: PMC9892010 DOI: 10.1038/s41586-022-05641-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/09/2022] [Indexed: 01/26/2023]
Abstract
Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.
Collapse
Affiliation(s)
- Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arushi Gupta
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catrin S Müller
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeannine Engelke
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Swadha Mishra
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Christoph Mårtensson
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- MTIP, Basel, Switzerland
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Novartis, Basel, Switzerland
| | - Chantal Priesnitz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Sanofi-Aventis (Suisse), Vernier, Switzerland
| | - Kim Nguyen Doan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bogusz Kulawiak
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heike Rampelt
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation, Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
115
|
Li J, Yang D, Li Z, Zhao M, Wang D, Sun Z, Wen P, Dai Y, Gou F, Ji Y, Zhao D, Yang L. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev 2023; 84:101817. [PMID: 36503124 DOI: 10.1016/j.arr.2022.101817] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria play key roles in bioenergetics, metabolism, and signaling; therefore, stable mitochondrial function is essential for cell survival, particularly in energy-intensive neuronal cells. In neurodegenerative diseases, damaged mitochondria accumulate in neurons causing associated bioenergetics deficiency, impaired cell signaling, defective cytoplasmic calcium buffering, and other pathological changes. Mitochondrial quality control is an important mechanism to ensure the maintenance of mitochondrial health, homeostasis, and mitophagy, the latter of which is a pathway that delivers defective mitochondria to the lysosome for degradation. Defective mitophagy is thought to be responsible for the accumulation of damaged mitochondria, which leads to cellular dysfunction and/or death in neurodegenerative diseases. PINK1/Parkin mainly regulates ubiquitin-dependent mitophagy, which is crucial for many aspects of mitochondrial physiology, particularly the initiation of autophagic mechanisms. Therefore, in the present review, we summarize the current knowledge of the conventional mitophagy pathway, focusing on the molecular mechanisms underlying mitophagy dysregulation in prion disease and other age-related neurodegenerative diseases, especially in relation to the PINK1/Parkin pathway. Moreover, we list the inducers of mitophagy that possess neuroprotective effects, in addition to their mechanisms related to the PINK1/Parkin pathway. These mechanisms may provide potential interventions centered on the regulation of mitophagy and offer therapeutic strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongdong Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Pei Wen
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yilan Ji
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China.
| |
Collapse
|
116
|
Collier JJ, Oláhová M, McWilliams TG, Taylor RW. Mitochondrial signalling and homeostasis: from cell biology to neurological disease. Trends Neurosci 2023; 46:137-152. [PMID: 36635110 DOI: 10.1016/j.tins.2022.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Efforts to understand how mitochondrial dysfunction contributes to neurodegeneration have primarily focussed on the role of mitochondria in neuronal energy metabolism. However, progress in understanding the etiological nature of emerging mitochondrial functions has yielded new ideas about the mitochondrial basis of neurological disease. Studies aimed at deciphering how mitochondria signal through interorganellar contacts, vesicular trafficking, and metabolic transmission have revealed that mitochondrial regulation of immunometabolism, cell death, organelle dynamics, and neuroimmune interplay are critical determinants of neural health. Moreover, the homeostatic mechanisms that exist to protect mitochondrial health through turnover via nanoscale proteostasis and lysosomal degradation have become integrated within mitochondrial signalling pathways to support metabolic plasticity and stress responses in the nervous system. This review highlights how these distinct mitochondrial pathways converge to influence neurological health and contribute to disease pathology.
Collapse
Affiliation(s)
- Jack J Collier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas G McWilliams
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
117
|
He T, Zhu S, Lu W. Design, synthesis, and biological evaluation of 4-(1H-1,2,3-triazol-1-yl)benzamides as HSP90 inhibitors. Mol Divers 2023; 27:239-248. [PMID: 35429283 DOI: 10.1007/s11030-022-10423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Heat shock protein 90 (HSP90) is a promising anticancer drug target, which could be employed to construct HSP90 inhibitors-based drug conjugates for selective tumor therapy. Herein, a series of 4-(1H-1,2,3-triazol-1-yl)benzamides were rationally designed, synthesized as HSP90 inhibitors, and their structures were characterized by 1H NMR, 13C NMR, and HR-MS. Preliminary HSP90 binding assay showed that compounds 6b, 6l, 6m, 6n, 6t, and 6u exhibited significant HSP90α binding affinity. Among these selected compounds, 6u displayed the most potent anti-proliferative activities and particularly in Capan-1 cell line. Molecular modeling studies also confirmed possible mode of interaction between 6u and the binding sites of HSP90 by hydrogen bond and hydrophobic interactions. Above all, these encouraging data indicated that 6u could be used as a HSP90 inhibitor for further study and helped the recognition of the 4-(1H-1,2,3-triazol-1-yl)benzamide motif as a new scaffold for HSP90 inhibitors.
Collapse
Affiliation(s)
- Tingting He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, People's Republic of China
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, People's Republic of China.
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
118
|
A census of complexes formed by mitochondrial proteins. Nature 2023:10.1038/d41586-023-00095-0. [PMID: 36697734 DOI: 10.1038/d41586-023-00095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
119
|
Application Prospects of Triphenylphosphine-Based Mitochondria-Targeted Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030666. [PMID: 36765624 PMCID: PMC9913854 DOI: 10.3390/cancers15030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer is one of the leading causes of death and the most important impediments to the efforts to increase life expectancy worldwide. Currently, chemotherapy is the main treatment for cancer, but it is often accompanied by side effects that affect normal tissues and organs. The search for new alternatives to chemotherapy has been a hot research topic in the field of antineoplastic medicine. Drugs targeting diseased tissues or cells can significantly improve the efficacy of drugs. Therefore, organelle-targeted antitumor drugs are being explored, such as mitochondria-targeted antitumor drugs. Mitochondria is the central site of cellular energy production and plays an important role in cell survival and death. Moreover, a large number of studies have shown a close association between mitochondrial metabolism and tumorigenesis and progression, making mitochondria a promising new target for cancer therapy. Combining mitochondrial targeting agents with drug molecules is an effective way of mitochondrial targeting. In addition, hyperpolarized tumor cell membranes and mitochondrial membrane potentially allow selective accumulation of mitochondria-targeted drugs. This enhances the direct killing of tumor cells by drug molecules while minimizing the potential toxicity to normal cells. In this review, we discuss the common pro-mitochondrial agents, the advantages of triphenylphosphine (TPP) in mitochondrial-targeted cancer therapy and systematically summarize various TPP-based mitochondria-targeting anticancer drugs.
Collapse
|
120
|
Kumar A, Waingankar TP, D'Silva P. Functional crosstalk between the TIM22 complex and YME1 machinery maintains mitochondrial proteostasis and integrity. J Cell Sci 2023; 136:286750. [PMID: 36601773 DOI: 10.1242/jcs.260060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
TIM22 pathway cargos are essential for sustaining mitochondrial homeostasis as an excess of these proteins leads to proteostatic stress and cell death. Yme1 is an inner membrane metalloprotease that regulates protein quality control with chaperone-like and proteolytic activities. Although the mitochondrial translocase and protease machinery are critical for organelle health, their functional association remains unexplored. The present study unravels a novel genetic connection between the TIM22 complex and YME1 machinery in Saccharomyces cerevisiae that is required for maintaining mitochondrial health. Our genetic analyses indicate that impairment in the TIM22 complex rescues the respiratory growth defects of cells without Yme1. Furthermore, Yme1 is essential for the stability of the TIM22 complex and regulates the proteostasis of TIM22 pathway substrates. Moreover, impairment in the TIM22 complex suppressed the mitochondrial structural and functional defects of Yme1-devoid cells. In summary, excessive levels of TIM22 pathway substrates could be one of the reasons for respiratory growth defects of cells lacking Yme1, and compromising the TIM22 complex can compensate for the imbalance in mitochondrial proteostasis caused by the loss of Yme1.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore 560012, India
| | - Tejashree Pradip Waingankar
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore 560012, India
| | - Patrick D'Silva
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore 560012, India
| |
Collapse
|
121
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Reche-López D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Romero-González A, Suárez-Rivero JM, Romero-Domínguez JM, Sánchez-Alcázar JA. mtUPR Modulation as a Therapeutic Target for Primary and Secondary Mitochondrial Diseases. Int J Mol Sci 2023; 24:ijms24021482. [PMID: 36674998 PMCID: PMC9865803 DOI: 10.3390/ijms24021482] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is a key pathological event in many diseases. Its role in energy production, calcium homeostasis, apoptosis regulation, and reactive oxygen species (ROS) balance render mitochondria essential for cell survival and fitness. However, there are no effective treatments for most primary and secondary mitochondrial diseases to this day. Therefore, new therapeutic approaches, such as the modulation of the mitochondrial unfolded protein response (mtUPR), are being explored. mtUPRs englobe several compensatory processes related to proteostasis and antioxidant system mechanisms. mtUPR activation, through an overcompensation for mild intracellular stress, promotes cell homeostasis and improves lifespan and disease alterations in biological models of mitochondrial dysfunction in age-related diseases, cardiopathies, metabolic disorders, and primary mitochondrial diseases. Although mtUPR activation is a promising therapeutic option for many pathological conditions, its activation could promote tumor progression in cancer patients, and its overactivation could lead to non-desired side effects, such as the increased heteroplasmy of mitochondrial DNA mutations. In this review, we present the most recent data about mtUPR modulation as a therapeutic approach, its role in diseases, and its potential negative consequences in specific pathological situations.
Collapse
|
122
|
Bai M, Wu M, Jiang M, He J, Deng X, Xu S, Fan J, Miao M, Wang T, Li Y, Yu X, Wang L, Zhang Y, Huang S, Yang L, Jia Z, Zhang A. LONP1 targets HMGCS2 to protect mitochondrial function and attenuate chronic kidney disease. EMBO Mol Med 2023; 15:e16581. [PMID: 36629048 PMCID: PMC9906428 DOI: 10.15252/emmm.202216581] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondria comprise the central metabolic hub of cells and their imbalance plays a pathogenic role in chronic kidney disease (CKD). Here, we studied Lon protease 1 (LONP1), a major mitochondrial protease, as its role in CKD pathogenesis is unclear. LONP1 expression was decreased in human patients and mice with CKD, and tubular-specific Lonp1 overexpression mitigated renal injury and mitochondrial dysfunction in two different models of CKD, but these outcomes were aggravated by Lonp1 deletion. These results were confirmed in renal tubular epithelial cells in vitro. Mechanistically, LONP1 downregulation caused mitochondrial accumulation of the LONP1 substrate, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), which disrupted mitochondrial function and further accelerated CKD progression. Finally, computer-aided virtual screening was performed, which identified a novel LONP1 activator. Pharmacologically, the LONP1 activator attenuated renal fibrosis and mitochondrial dysfunction. Collectively, these results imply that LONP1 is a promising therapeutic target for treating CKD.
Collapse
Affiliation(s)
- Mi Bai
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina,Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - Mengqiu Wu
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina,Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - Mingzhu Jiang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Jia He
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Xu Deng
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Shuang Xu
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Jiaojiao Fan
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Mengqiu Miao
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Ting Wang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Yuting Li
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Xiaowen Yu
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina,Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - Lin Wang
- Key Laboratory of Molecular Pharmacology and Drug EvaluationYantai UniversityYantaiChina
| | - Yue Zhang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Songming Huang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina
| | - Li Yang
- Renal DivisionPeking University First HospitalBeijingChina
| | - Zhanjun Jia
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina,Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjingChina,Jiangsu Key Laboratory of PediatricsNanjing Medical UniversityNanjingChina,Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
123
|
Song J, Steidle L, Steymans I, Singh J, Sanner A, Böttinger L, Winter D, Becker T. The mitochondrial Hsp70 controls the assembly of the F 1F O-ATP synthase. Nat Commun 2023; 14:39. [PMID: 36596815 PMCID: PMC9810599 DOI: 10.1038/s41467-022-35720-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
The mitochondrial F1FO-ATP synthase produces the bulk of cellular ATP. The soluble F1 domain contains the catalytic head that is linked via the central stalk and the peripheral stalk to the membrane embedded rotor of the FO domain. The assembly of the F1 domain and its linkage to the peripheral stalk is poorly understood. Here we show a dual function of the mitochondrial Hsp70 (mtHsp70) in the formation of the ATP synthase. First, it cooperates with the assembly factors Atp11 and Atp12 to form the F1 domain of the ATP synthase. Second, the chaperone transfers Atp5 into the assembly line to link the catalytic head with the peripheral stalk. Inactivation of mtHsp70 leads to integration of assembly-defective Atp5 variants into the mature complex, reflecting a quality control function of the chaperone. Thus, mtHsp70 acts as an assembly and quality control factor in the biogenesis of the F1FO-ATP synthase.
Collapse
Affiliation(s)
- Jiyao Song
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.,Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Liesa Steidle
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Isabelle Steymans
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Jasjot Singh
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Anne Sanner
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Lena Böttinger
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
124
|
Shi J, Wang H, Wang Y, Peng Y, Huang X, Zhang Y, Geng H, Wang Y, Li X, Liu C, Liu C. Mitochondrion-targeting and in situ photocontrolled protein delivery via photocages. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112624. [PMID: 36521315 DOI: 10.1016/j.jphotobiol.2022.112624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Defects in mitochondrial proteostasis contribute to many disorders, including cancer, neurodegeneration, and metabolic and genetic diseases. A strategy aimed at restoring the damaged mitochondrial proteostasis is the mitochondrion-targeting and carrier-free delivery of exogenous functional proteins that can replace the endogenous dysfunctional proteins. The modification of a protein with a photolabile protecting group (PPG, i.e., photocage group) can be activated in situ by response to illumination, leading to release of the protein from its photocage. Here, the Cys and peptide photocages with coumarin were first prepared and characterized for proof of concept. Then, we designed a pair of photocage groups PPG-RhB and PPG-TPP using coumarin and mitochondrion-targeting Rhodamine B (RhB) and triphenylphosphine (TPP), and another pair of organelle-nontarget photocage groups Br-PPG and NO2-PPG for comparison. The proteins modified with these two pairs of photocage groups undergo photolysis in solutions, and can penetrate cell membrane toward their destinations in the carrier-free fashions. The intracellular protein photocages are in situ activated by illumination at 405 nm, and the proteins are released from their photocages in mitochondria and cytoplasm, respectively. This strategy of light-responsive and carrier-free cellular delivery enables mitochondrial and cytoplasmic accumulation of exogenous proteins.
Collapse
Affiliation(s)
- Jiayuan Shi
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Huiling Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yuhui Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yujie Peng
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Xiaoping Huang
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yunfeng Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Hongen Geng
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yi Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Xiang Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China; College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry Education, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China.
| |
Collapse
|
125
|
Li Q, Hoppe T. Role of amino acid metabolism in mitochondrial homeostasis. Front Cell Dev Biol 2023; 11:1127618. [PMID: 36923249 PMCID: PMC10008872 DOI: 10.3389/fcell.2023.1127618] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Mitochondria are central hubs for energy production, metabolism and cellular signal transduction in eukaryotic cells. Maintenance of mitochondrial homeostasis is important for cellular function and survival. In particular, cellular metabolic state is in constant communication with mitochondrial homeostasis. One of the most important metabolic processes that provide energy in the cell is amino acid metabolism. Almost all of the 20 amino acids that serve as the building blocks of proteins are produced or degraded in the mitochondria. The synthesis of the amino acids aspartate and arginine depends on the activity of the respiratory chain, which is essential for cell proliferation. The degradation of branched-chain amino acids mainly occurs in the mitochondrial matrix, contributing to energy metabolism, mitochondrial biogenesis, as well as protein quality control in both mitochondria and cytosol. Dietary supplementation or restriction of amino acids in worms, flies and mice modulates lifespan and health, which has been associated with changes in mitochondrial biogenesis, antioxidant response, as well as the activity of tricarboxylic acid cycle and respiratory chain. Consequently, impaired amino acid metabolism has been associated with both primary mitochondrial diseases and diseases with mitochondrial dysfunction such as cancer. Here, we present recent observations on the crosstalk between amino acid metabolism and mitochondrial homeostasis, summarise the underlying molecular mechanisms to date, and discuss their role in cellular functions and organismal physiology.
Collapse
Affiliation(s)
- Qiaochu Li
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
126
|
Marszalek J, Craig EA, Tomiczek B. J-Domain Proteins Orchestrate the Multifunctionality of Hsp70s in Mitochondria: Insights from Mechanistic and Evolutionary Analyses. Subcell Biochem 2023; 101:293-318. [PMID: 36520311 DOI: 10.1007/978-3-031-14740-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mitochondrial J-domain protein (JDP) co-chaperones orchestrate the function of their Hsp70 chaperone partner(s) in critical organellar processes that are essential for cell function. These include folding, refolding, and import of mitochondrial proteins, maintenance of mitochondrial DNA, and biogenesis of iron-sulfur cluster(s) (FeS), prosthetic groups needed for function of mitochondrial and cytosolic proteins. Consistent with the organelle's endosymbiotic origin, mitochondrial Hsp70 and the JDPs' functioning in protein folding and FeS biogenesis clearly descended from bacteria, while the origin of the JDP involved in protein import is less evident. Regardless of their origin, all mitochondrial JDP/Hsp70 systems evolved unique features that allowed them to perform mitochondria-specific functions. Their modes of functional diversification and specialization illustrate the versatility of JDP/Hsp70 systems and inform our understanding of system functioning in other cellular compartments.
Collapse
Affiliation(s)
- Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
127
|
The characteristics of FBXO7 and its role in human diseases. Gene X 2023; 851:146972. [DOI: 10.1016/j.gene.2022.146972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
128
|
Fang Y, Wu W, Zhao Y, Liu H, Li Z, Li X, Zhang M, Qin Y. Transcriptomic and metabolomic investigation of molecular inactivation mechanisms in Escherichia coli triggered by graphene quantum dots. CHEMOSPHERE 2023; 311:137051. [PMID: 36334733 DOI: 10.1016/j.chemosphere.2022.137051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Graphene quantum dots (GQDs), a novel broad-spectrum antibacterial agent, are considered potential candidates in the field of biomedical and food safety due to their outstanding antimicrobial properties and excellent biocompatibility. To uncover the molecular regulatory mechanisms underlying the phenotypes, the overall regulation of genes and metabolites in Escherichia coli (E. coli) after GQDs stimulation was investigated by RNA-sequencing and LC-MS. Gene transcription and metabolite expression related to a series of crucial biomolecular processes were influenced by the GQDs stimulation, including biofilm formation, bacterial secretion system, sulfur metabolism and nitrogen metabolism, etc. This study could provide profound insights into the GQDs stress response in E. coli, which would be useful for the development and application of GQDs in food safety.
Collapse
Affiliation(s)
- Yan Fang
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Wanfeng Wu
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Yan Zhao
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Haoqiang Liu
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Zongda Li
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Xinbo Li
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China.
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China.
| |
Collapse
|
129
|
Cheng KYK, Bao Z, Long Y, Liu C, Huang T, Cui C, Chow SKH, Wong RMY, Cheung WH. Sarcopenia and Ageing. Subcell Biochem 2023; 103:95-120. [PMID: 37120466 DOI: 10.1007/978-3-031-26576-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Musculoskeletal ageing is a major health challenge as muscles and bones constitute around 55-60% of body weight. Ageing muscles will result in sarcopenia that is characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes. In recent years, a few consensus panels provide new definitions for sarcopenia. It was officially recognized as a disease in 2016 with an ICD-10-CM disease code, M62.84, in the International Classification of Diseases (ICD). With the new definitions, there are many studies emerging to investigate the pathogenesis of sarcopenia, exploring new interventions to treat sarcopenia and evaluating the efficacy of combination treatments for sarcopenia. The scope of this chapter is to summarize and appraise the evidence in terms of (1) clinical signs, symptoms, screening, and diagnosis, (2) pathogenesis of sarcopenia with emphasis on mitochondrial dysfunction, intramuscular fat infiltration and neuromuscular junction deterioration, and (3) current treatments with regard to physical exercises and nutritional supplement.
Collapse
Affiliation(s)
- Keith Yu-Kin Cheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhengyuan Bao
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yufeng Long
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chaoran Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Huang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
130
|
Mitochondrial Unfolded Protein Response and Integrated Stress Response as Promising Therapeutic Targets for Mitochondrial Diseases. Cells 2022; 12:cells12010020. [PMID: 36611815 PMCID: PMC9818186 DOI: 10.3390/cells12010020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The development and application of high-throughput omics technologies have enabled a more in-depth understanding of mitochondrial biosynthesis metabolism and the pathogenesis of mitochondrial diseases. In accordance with this, a host of new treatments for mitochondrial disease are emerging. As an essential pathway in maintaining mitochondrial proteostasis, the mitochondrial unfolded protein response (UPRmt) is not only of considerable significance for mitochondrial substance metabolism but also plays a fundamental role in the development of mitochondrial diseases. Furthermore, in mammals, the integrated stress response (ISR) and UPRmt are strongly coupled, functioning together to maintain mitochondrial function. Therefore, ISR and UPRmt show great application prospects in the treatment of mitochondrial diseases. In this review, we provide an overview of the molecular mechanisms of ISR and UPRmt and focus on them as potential targets for mitochondrial disease therapy.
Collapse
|
131
|
Zhang Y, Karmon O, Das K, Wiener R, Lehming N, Pines O. Ubiquitination Occurs in the Mitochondrial Matrix by Eclipsed Targeted Components of the Ubiquitination Machinery. Cells 2022; 11:cells11244109. [PMID: 36552873 PMCID: PMC9777009 DOI: 10.3390/cells11244109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Ubiquitination is a critical type of post-translational modification in eukaryotic cells. It is involved in regulating nearly all cellular processes in the cytosol and nucleus. Mitochondria, known as the metabolism heart of the cell, are organelles that evolved from bacteria. Using the subcellular compartment-dependent α-complementation, we detect multiple components of ubiquitination machinery as being eclipsed distributed to yeast mitochondria. Ubiquitin conjugates and mono-ubiquitin can be detected in lysates of isolated mitochondria from cells expressing HA-Ub and treated with trypsin. By expressing MTS (mitochondrial targeting sequence) targeted HA-tagged ubiquitin, we demonstrate that certain ubiquitination events specifically occur in yeast mitochondria and are independent of proteasome activity. Importantly, we show that the E2 Rad6 affects the pattern of protein ubiquitination in mitochondria and provides an in vivo assay for its activity in the matrix of the organelle. This study shows that ubiquitination occurs in the mitochondrial matrix by eclipsed targeted components of the ubiquitin machinery, providing a new perspective on mitochondrial and ubiquitination research.
Collapse
Affiliation(s)
- Yu Zhang
- NUS-HUJ-CREATE Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138602, Singapore
| | - Ofri Karmon
- NUS-HUJ-CREATE Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138602, Singapore
| | - Koyeli Das
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel
| | - Norbert Lehming
- NUS-HUJ-CREATE Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138602, Singapore
| | - Ophry Pines
- NUS-HUJ-CREATE Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138602, Singapore
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel
- Correspondence:
| |
Collapse
|
132
|
Fan Q, Maejima Y, Wei L, Nakagama S, Shiheido-Watanabe Y, Sasano T. The Pathophysiological Significance of "Mitochondrial Ejection" from Cells. Biomolecules 2022; 12:biom12121770. [PMID: 36551198 PMCID: PMC9775504 DOI: 10.3390/biom12121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondria have beneficial effects on cells by producing ATP and contributing to various biosynthetic procedures. On the other hand, dysfunctional mitochondria have detrimental effects on cells by inducing cellular damage, inflammation, and causing apoptosis in response to various stimuli. Therefore, a series of mitochondrial quality control pathways are required for the physiological state of cells to be maintained. Recent research has provided solid evidence to support that mitochondria are ejected from cells for transcellular degradation or transferred to other cells as metabolic support or regulatory messengers. In this review, we summarize the current understanding of the regulation of mitochondrial transmigration across the plasma membranes and discuss the functional significance of this unexpected phenomenon, with an additional focus on the impact on the pathogenesis of cardiovascular diseases. We also provide some perspective concerning the unrevealed mechanisms underlying mitochondrial ejection as well as existing problems and challenges concerning the therapeutic application of mitochondrial ejection.
Collapse
|
133
|
Furutani N, Izawa S. Adaptability of wine yeast to ethanol-induced protein denaturation. FEMS Yeast Res 2022; 22:6831633. [PMID: 36385376 DOI: 10.1093/femsyr/foac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
This year marks the 200th anniversary of the birth of Dr Louis Pasteur (1822-1895), who revealed that alcoholic fermentation is performed by yeast cells. Subsequently, details of the mechanisms of alcoholic fermentation and glycolysis in yeast cells have been elucidated. However, the mechanisms underlying the high tolerance and adaptability of yeast cells to ethanol are not yet fully understood. This review presents the response and adaptability of yeast cells to ethanol-induced protein denaturation. Herein, we describe the adverse effects of severe ethanol stress on intracellular proteins and the responses of yeast cells. Furthermore, recent findings on the acquired resistance of wine yeast cells to severe ethanol stress that causes protein denaturation are discussed, not only under laboratory conditions, but also during the fermentation process at 15°C to mimic the vinification process of white wine.
Collapse
Affiliation(s)
- Noboru Furutani
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| |
Collapse
|
134
|
Peng S, Gao J, Stojkov D, Yousefi S, Simon H. Established and emerging roles for mitochondria in neutrophils. Immunol Rev 2022; 314:413-426. [PMID: 36331270 DOI: 10.1111/imr.13158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neutrophils are the most abundant innate immune cells in human blood, emerging as important players in a variety of diseases. Mitochondria are bioenergetic, biosynthetic, and signaling organelles critical for cell fate and function. Mitochondria have been overlooked in neutrophil research owing to the conventional view that neutrophils contain few, if any, competent mitochondria and do not rely on these organelles for adenosine triphosphate production. A growing body of evidence suggests that mitochondria participate in neutrophil biology at many levels, ranging from neutrophil development to chemotaxis, effector function, and cell death. Moreover, mitochondria and mitochondrial components, such as mitochondrial deoxyribonucleic acid, can be released by neutrophils to eliminate infection and/or shape immune response, depending on the specific context. In this review, we provide an update on the functional role of mitochondria in neutrophils, highlight mitochondria as key players in modulating the neutrophil phenotype and function during infection and inflammation, and discuss the possibilities and challenges to exploit the unique aspects of mitochondria in neutrophils for disease treatment.
Collapse
Affiliation(s)
- Shuang Peng
- Institute of Pharmacology University of Bern Bern Switzerland
| | - Jian Gao
- Department of Molecular and Cellular Oncology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Darko Stojkov
- Institute of Pharmacology University of Bern Bern Switzerland
| | - Shida Yousefi
- Institute of Pharmacology University of Bern Bern Switzerland
| | - Hans‐Uwe Simon
- Institute of Pharmacology University of Bern Bern Switzerland
- Department of Clinical Immunology and Allergology Sechenov University Moscow Russia
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology Kazan Federal University Kazan Russia
- Institute of Biochemistry, Brandenburg Medical School Neuruppin Germany
| |
Collapse
|
135
|
Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J 2022; 289:7038-7050. [PMID: 34092035 DOI: 10.1111/febs.16059] [Citation(s) in RCA: 241] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
As a type of lytic cell death driven by unrestricted lipid peroxidation and subsequent plasma membrane damage, ferroptosis occurs and develops because of sophisticated signals and regulatory mechanisms. The reactive oxygen species (ROS) used to initiate ferroptosis come from a variety of sources, including iron-mediated Fenton reactions, mitochondrial ROS, and membrane-associated ROS driven by the NOX protein family. Polyunsaturated fatty acid-containing phospholipids are the main substrates of lipid peroxidation in ferroptosis, which is positively regulated by enzymes, such as ACSL4, LPCAT3, ALOXs, or POR. Selective activation of autophagic degradation pathways promotes ferroptosis by increasing iron accumulation to cause lipid peroxidation. In contrast, system xc- -glutathione-GPX4 axis plays a central role in limiting lipid peroxidation, although other antioxidants (such as coenzyme Q10 and tetrahydrobiopterin) can also inhibit ferroptosis. A main nuclear mechanism of cell defense against ferroptosis is the activation of the NFE2L2-dependent antioxidant response by transcriptionally upregulating the expression of antioxidants or cytoprotective genes. Additionally, the membrane damage caused by ferroptotic stimulus can be repaired by ESCRT-III-dependent membrane scission machinery. In this review, we summarize recent progress in understanding the signaling pathways and defense mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Jiao Liu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
136
|
Zhou Z, Fan Y, Zong R, Tan K. The mitochondrial unfolded protein response: A multitasking giant in the fight against human diseases. Ageing Res Rev 2022; 81:101702. [PMID: 35908669 DOI: 10.1016/j.arr.2022.101702] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria, which serve as the energy factories of cells, are involved in cell differentiation, calcium homeostasis, amino acid and fatty acid metabolism and apoptosis. In response to environmental stresses, mitochondrial homeostasis is regulated at both the organelle and molecular levels to effectively maintain the number and function of mitochondria. The mitochondrial unfolded protein response (UPRmt) is an adaptive intracellular stress mechanism that responds to stress signals by promoting the transcription of genes encoding mitochondrial chaperones and proteases. The mechanism of the UPRmt in Caenorhabditis elegans (C. elegans) has been clarified over time, and the main regulatory factors include ATFS-1, UBL-5 and DVE-1. In mammals, the activation of the UPRmt involves eIF2α phosphorylation and the uORF-regulated expression of CHOP, ATF4 and ATF5. Several additional factors, such as SIRT3 and HSF1, are also involved in regulating the UPRmt. A deep and comprehensive exploration of the UPRmt can provide new directions and strategies for the treatment of human diseases, including aging, neurodegenerative diseases, cardiovascular diseases and diabetes. In this review, we mainly discuss the function of UPRmt, describe the regulatory mechanisms of UPRmt in C. elegans and mammals, and summarize the relationship between UPRmt and various human diseases.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ruikai Zong
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
137
|
Liu S, Liu S, Jiang H. Multifaceted roles of mitochondrial stress responses under ETC dysfunction - repair, destruction and pathogenesis. FEBS J 2022; 289:6994-7013. [PMID: 34918460 DOI: 10.1111/febs.16323] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/13/2023]
Abstract
Electron transport chain (ETC) dysfunction is a common feature of mitochondrial diseases and induces severe cellular stresses, including mitochondrial membrane potential (Δψm ) reduction, mitochondrial matrix acidification, metabolic derangements and proteostatic stresses. Extensive studies of ETC dysfunction in yeast, Caenorhabditis elegans, cultured cells and mouse models have revealed multiple mitochondrial stress response pathways. Here, we summarise the current understanding of the triggers, sensors, signalling mechanisms and the functional outcomes of mitochondrial stress responses in different species. We highlight Δψm reduction as a major trigger of stress responses in different species, but the responses are species-specific and the outcomes are context-dependent. ETC dysfunction elicits a mitochondrial unfolded protein response (UPRmt ) to repair damaged mitochondria in C. elegans, and activates a global adaptive programme to maintain Δψm in yeast. Yeast and C. elegans responses are remarkably similar at the downstream responses, although they are activated by different signalling mechanisms. UPRmt generally protects ETC-defective worms, but its constitutive activation is toxic for wildtype worms and worms carrying mutant mtDNA. In contrast to lower organisms, ETC dysfunction in mammals mainly activates a mitochondrial integrated stress response (ISRmt ) to reprogramme metabolism and a PINK1-Parkin mitophagy pathway to degrade damaged mitochondria. Accumulating in vivo results suggest that the ATF4 branch of ISRmt exacerbates metabolic derangements to accelerate mitochondrial disease progression. The in vivo roles of mitophagy in mitochondrial diseases are also context-dependent. These results thus reveal the common and unique aspects of mitochondrial stress responses in different species and highlight their multifaceted roles in mitochondrial diseases.
Collapse
Affiliation(s)
- Shanshan Liu
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Siqi Liu
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Hui Jiang
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
138
|
Szczepanowska K, Trifunovic A. Mitochondrial matrix proteases: quality control and beyond. FEBS J 2022; 289:7128-7146. [PMID: 33971087 DOI: 10.1111/febs.15964] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 01/13/2023]
Abstract
To ensure correct function, mitochondria have developed several mechanisms of protein quality control (QC). Protein homeostasis highly relies on chaperones and proteases to maintain proper folding and remove damaged proteins that might otherwise form cell-toxic aggregates. Besides quality control, mitochondrial proteases modulate and regulate many essential functions, such as trafficking, processing and activation of mitochondrial proteins, mitochondrial dynamics, mitophagy and apoptosis. Therefore, the impaired function of mitochondrial proteases is associated with various pathological conditions, including cancer, metabolic syndromes and neurodegenerative disorders. This review recapitulates and discusses the emerging roles of two major proteases of the mitochondrial matrix, LON and ClpXP. Although commonly acknowledge for their protein quality control role, recent advances have uncovered several highly regulated processes controlled by the LON and ClpXP connected to mitochondrial gene expression and respiratory chain function maintenance. Furthermore, both proteases have been lately recognized as potent targets for anticancer therapies, and we summarize those findings.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Germany
| |
Collapse
|
139
|
Sun M, Yuan F, Tang Y, Zou P, Lei X. Subcellular Interactomes Revealed by Merging APEX with Cross-Linking Mass Spectrometry. Anal Chem 2022; 94:14878-14888. [PMID: 36265550 DOI: 10.1021/acs.analchem.2c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Subcellular protein-protein interactions (PPIs) are essential to understanding the mechanism of diverse cellular signaling events and the pathogenesis of diseases. Herein, we report an integrated APEX proximity labeling and chemical cross-linking coupled with mass spectrometry (CXMS) platform named APEX-CXMS for spatially resolved subcellular interactome profiling in a high-throughput manner. APEX proximity labeling rapidly captures subcellular proteomes, and the highly reactive chemical cross-linkers can capture weak and dynamic interactions globally without extra genetic manipulation. APEX-CXMS was first applied to mitochondria and identified 653 pairs of interprotein cross-links. Six pairs of new interactions were selected and verified by coimmunoprecipitation, the mammalian two-hybrid system, and surface plasmon resonance method. Besides, our approach was further applied to the nucleus, capturing 336 pairs of interprotein cross-links with approximately 94% nuclear specificity. APEX-CXMS thus provides a simple, fast, and general alternative to map diverse subcellular PPIs.
Collapse
Affiliation(s)
- Mengze Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Feng Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuliang Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.,Chinese Institute for Brain Research (CIBR), Beijing 102206, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
140
|
Zheng J, Cao Y, Yang J, Jiang H. UBXD8 mediates mitochondria-associated degradation to restrain apoptosis and mitophagy. EMBO Rep 2022; 23:e54859. [PMID: 35979733 PMCID: PMC9535754 DOI: 10.15252/embr.202254859] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 08/08/2023] Open
Abstract
The hexameric AAA-ATPase valosin-containing protein (VCP) is essential for mitochondrial protein quality control. How VCP is recruited to mammalian mitochondria remains obscure. Here we report that UBXD8, an ER- and lipid droplet-localized VCP adaptor, also localizes to mitochondria and locally recruits VCP. UBXD8 associates with mitochondrial and ER ubiquitin E3 ligases and targets their substrates for degradation. Remarkably, both mitochondria- and ER-localized UBXD8 can degrade mitochondrial and ER substrates in cis and in trans. UBXD8 also associates with the TOM complex but is dispensable for translocation-associated degradation. UBXD8 knockout impairs the degradation of the pro-survival protein Mcl1 but surprisingly sensitizes cells to apoptosis and mitochondrial stresses. UBXD8 knockout also hyperactivates mitophagy. We identify pro-apoptotic BH3-only proteins Noxa, Bik, and Bnip3 as novel UBXD8 substrates and determine that UBXD8 inhibits apoptosis via degrading Noxa and restrains mitophagy via degrading Bnip3. Collectively, our characterizations reveal UBXD8 as the major mitochondrial adaptor of VCP and unveil its role in apoptosis and mitophagy regulation.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life SciencesPeking UniversityBeijingChina
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
| | - Yu Cao
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Jun Yang
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Hui Jiang
- School of Life SciencesPeking UniversityBeijingChina
- National Institute of Biological SciencesBeijingChina
- Beijing Key Laboratory of Cell Biology for Animal AgingBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| |
Collapse
|
141
|
Ortega-Lozano AJ, Jiménez-Uribe AP, Aranda-Rivera AK, Gómez-Caudillo L, Ríos-Castro E, Tapia E, Bellido B, Aparicio-Trejo OE, Sánchez-Lozada LG, Pedraza-Chaverri J. Expression Profiles of Kidney Mitochondrial Proteome during the Progression of the Unilateral Ureteral Obstruction: Focus on Energy Metabolism Adaptions. Metabolites 2022; 12:metabo12100936. [PMID: 36295838 PMCID: PMC9607257 DOI: 10.3390/metabo12100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Kidney diseases encompass many pathologies, including obstructive nephropathy (ON), a common clinical condition caused by different etiologies such as urolithiasis, prostatic hyperplasia in males, tumors, congenital stenosis, and others. Unilateral ureteral obstruction (UUO) in rodents is an experimental model widely used to explore the pathophysiology of ON, replicating vascular alterations, tubular atrophy, inflammation, and fibrosis development. In addition, due to the kidney’s high energetic demand, mitochondrial function has gained great attention, as morphological and functional alterations have been demonstrated in kidney diseases. Here we explore the kidney mitochondrial proteome differences during a time course of 7, 14, and 21 days after the UUO in rats, revealing changes in proteins involved in three main metabolic pathways, oxidative phosphorylation (OXPHOS), the tricarboxylic acid cycle (TCA), and the fatty acid (FA) metabolism, all of them related to bioenergetics. Our results provide new insight into the mechanisms involved in metabolic adaptations triggered by the alterations in kidney mitochondrial proteome during the ON.
Collapse
Affiliation(s)
- Ariadna Jazmín Ortega-Lozano
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Alexis Paulina Jiménez-Uribe
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Ana Karina Aranda-Rivera
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Leopoldo Gómez-Caudillo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Emmanuel Ríos-Castro
- Genomic, Proteomic, and Metabolomic Unit (UGPM), LaNSE, Cinvestav-IPN, Mexico City 07360, Mexico
| | - Edilia Tapia
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Belen Bellido
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
- Correspondence: ; Tel./Fax: +52-55-5622-3878
| |
Collapse
|
142
|
Zhang J, Wang X, Wang F, Tang X. Xiangsha Liujunzi Decoction improves gastrointestinal motility in functional dyspepsia with spleen deficiency syndrome by restoring mitochondrial quality control homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154374. [PMID: 35963194 DOI: 10.1016/j.phymed.2022.154374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Xiang Sha Liu Junzi decoction (XSLJZD) is a famous traditional Chinese medicinal prescription for the treatment of functional dyspepsia (FD) in spleen deficiency. However, its therapeutic mechanism has not been fully clarified. PURPOSE The present study aimed to determine the role of mitochondrial quality control (MQC)-mediated gastrointestinal motility disorder in FD treated with XSLJZD by using spleen-deficient FD rats and gastrointestinal smooth muscle cells (GSMCs). METHODS In vivo, an FD with spleen deficiency syndrome model was established by gastric perfusion with iodoacetamide solution combined with the modified multiple platform method (MMPM), followed by intragastric gavage with XSLJZD for 4 weeks. Improvement of pathological symptoms was evaluated based on food intake, water intake, grip strength, gastric histopathological changes, gastric emptying rate, small intestinal propulsion rate, and average amplitude and frequency of smooth muscle strips. The mitochondrial ultrastructure was observed by transmission electron microscopy. The colocalization of LC3 and Parkin with mitochondria was detected by immunofluorescence. The expression and localization of Drp1 proteins were detected by immunohistochemistry. In vitro, GSMCs were treated with different concentrations of XSLJZD-CS for 24 h, followed by treatment with 20 μM carbon cyanide 3-chlorophenylhydrazone (CCCP) for 4 h. Cell viability, mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mtROS), cellular ATP generation and mitochondrial Keima (mtKeima) expression were examined. Both in vivo and in vitro, gene expression was assessed by Western blotting. All experiments were performed in duplicate. RESULTS Disorders of the mitochondrial quality control system existed in gastric smooth muscle in FD spleen deficiency syndrome. XSLJZD administration promoted the contraction of gastric smooth muscle and restored mitochondrial function by downregulating the colocalization of LC3 or Parkin with mitochondria, reducing the ratio of LC3II/LC3I, decreasing the expression of PINK1, Parkin and Drp1 and increasing the expression of p62 to restore mitochondrial morphology and function. In vitro studies showed that the improvement in mitochondrial function by XSLJZD was related to PINK1-parkin-mediated mitochondrial quality control. CONCLUSION We demonstrated that XSLJZD can improve gastrointestinal motility disorder in functional dyspepsia with spleen deficiency syndrome, which was related to reconstruction of the mitochondrial quality control system by restraining PINK1/Parkin-mediated mitophagy and division. This study illustrates a novel clinical significance of herbal medicine in the treatment of FD and clarifies the important role of MQC in treating gastrointestinal motility disorder.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xue Wang
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fengyun Wang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xudong Tang
- China Academy of Chinese Medical Sciences, No. 16, Inner South Street, Dongzhimen, Dongcheng District, Beijing 100700, China.
| |
Collapse
|
143
|
Jenkins EC, Chattopadhyay M, Gomez M, Torre D, Ma'ayan A, Torres‐Martin M, Sia D, Germain D. Age alters the oncogenic trajectory toward luminal mammary tumors that activate unfolded proteins responses. Aging Cell 2022; 21:e13665. [PMID: 36111352 PMCID: PMC9577951 DOI: 10.1111/acel.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023] Open
Abstract
A major limitation in the use of mouse models in breast cancer research is that most mice develop estrogen receptor-alpha (ERα)-negative mammary tumors, while in humans, the majority of breast cancers are ERα-positive. Therefore, developing mouse models that best mimic the disease in humans is of fundamental need. Here, using an inducible MMTV-rtTA/TetO-NeuNT mouse model, we show that despite being driven by the same oncogene, mammary tumors in young mice are ERα-negative, while they are ERα-positive in aged mice. To further elucidate the mechanisms for this observation, we performed RNAseq analysis and identified genes that are uniquely expressed in aged female-derived mammary tumors. We found these genes to be involved in the activation of the ERα axis of the mitochondrial UPR and the ERα-mediated regulation of XBP-1s, a gene involved in the endoplasmic reticulum UPR. Collectively, our results indicate that aging alters the oncogenic trajectory towards the ERα-positive subtype of breast cancers, and that mammary tumors in aged mice are characterized by the upregulation of multiple UPR stress responses regulated by the ERα.
Collapse
Affiliation(s)
- Edmund Charles Jenkins
- Department of Medicine, Division of Hematology/Oncology, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Mrittika Chattopadhyay
- Department of Medicine, Division of Hematology/Oncology, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Maria Gomez
- Rutgers Cancer Institute of New JerseyNew BrunswickNew JerseyUSA
| | - Denis Torre
- Department of Pharmacological Sciences, Mount Sinai Center for BioinformaticsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for BioinformaticsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Miguel Torres‐Martin
- Clinical Genomics Research GroupGermans Trias I Pujol Research Institute (IGTP)BarcelonaSpain
| | - Daniela Sia
- Department of Medicine, Division of Liver Diseases, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Doris Germain
- Department of Medicine, Division of Hematology/Oncology, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
144
|
The Mitochondrial Unfolded Protein Response: A Novel Protective Pathway Targeting Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6430342. [PMID: 36187338 PMCID: PMC9519344 DOI: 10.1155/2022/6430342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Mitochondrial protein homeostasis in cardiomyocyte injury determines not only the normal operation of mitochondrial function but also the fate of mitochondria in cardiomyocytes. Studies of mitochondrial protein homeostasis have become an integral part of cardiovascular disease research. Modulation of the mitochondrial unfolded protein response (UPRmt), a protective factor for cardiomyocyte mitochondria, may in the future become an important treatment strategy for myocardial protection in cardiovascular disease. However, because of insufficient understanding of the UPRmt and inadequate elucidation of relevant mechanisms, few therapeutic drugs targeting the UPRmt have been developed. The UPRmt maintains a series of chaperone proteins and proteases and is activated when misfolded proteins accumulate in the mitochondria. Mitochondrial injury leads to metabolic dysfunction in cardiomyocytes. This paper reviews the relationship of the UPRmt and mitochondrial quality monitoring with cardiomyocyte protection. This review mainly introduces the regulatory mechanisms of the UPRmt elucidated in recent years and the relationship between the UPRmt and mitophagy, mitochondrial fusion/fission, mitochondrial biosynthesis, and mitochondrial energy metabolism homeostasis in order to generate new ideas for the study of the mitochondrial protein homeostasis mechanisms as well as to provide a reference for the targeted drug treatment of imbalances in mitochondrial protein homeostasis following cardiomyocyte injury.
Collapse
|
145
|
STAT6 in mitochondrial outer membrane impairs mitochondrial fusion by inhibiting MFN2 dimerization. iScience 2022; 25:104923. [PMID: 36065189 PMCID: PMC9440285 DOI: 10.1016/j.isci.2022.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Although it is reported that mitochondria-localized nuclear transcription factors (TFs) regulate mitochondrial processes such as apoptosis and mitochondrial transcription/respiration, the functions and mechanisms of mitochondrial dynamics regulated by mitochondria-localized nuclear TFs are yet to be fully characterized. Here, we identify STAT6 as a mitochondrial protein that is localized in the outer membrane of mitochondria (OMM). STAT6 in OMM inhibits mitochondrial fusion by blocking MFN2 dimerization. This implies that STAT6 has a critical role in mitochondrial dynamics. Moreover, mitochondrial accumulation of STAT6 in response to hypoxic conditions reveals that STAT6 is a regulator of mitochondrial processes including fusion/fission mechanisms. STAT6 has mitochondrial-targeting sequences and anchoring transmembrane segments STAT6 in OMM attenuates mitochondrial fusion by blocking MFN2 dimerization Hypoxia-induced STAT6 mitochondrial accumulation inhibits tumorigenesis
Collapse
|
146
|
Liu M, Lv J, Pan Z, Wang D, Zhao L, Guo X. Mitochondrial dysfunction in heart failure and its therapeutic implications. Front Cardiovasc Med 2022; 9:945142. [PMID: 36093152 PMCID: PMC9448986 DOI: 10.3389/fcvm.2022.945142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
The ATP consumption in heart is very intensive to support muscle contraction and relaxation. Mitochondrion is the power plant of the cell. Mitochondrial dysfunction has long been believed as the primary mechanism responsible for the inability of energy generation and utilization in heart failure. In addition, emerging evidence has demonstrated that mitochondrial dysfunction also contributes to calcium dysregulation, oxidative stress, proteotoxic insults and cardiomyocyte death. These elements interact with each other to form a vicious circle in failing heart. The role of mitochondrial dysfunction in the pathogenesis of heart failure has attracted increasing attention. The complex signaling of mitochondrial quality control provides multiple targets for maintaining mitochondrial function. Design of therapeutic strategies targeting mitochondrial dysfunction holds promise for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Miaosen Liu
- Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jialan Lv
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhicheng Pan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfei Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liding Zhao
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiaogang Guo,
| |
Collapse
|
147
|
Macrophage Polarization Mediated by Mitochondrial Dysfunction Induces Adipose Tissue Inflammation in Obesity. Int J Mol Sci 2022; 23:ijms23169252. [PMID: 36012516 PMCID: PMC9409464 DOI: 10.3390/ijms23169252] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/06/2022] Open
Abstract
Obesity is one of the prominent global health issues, contributing to the growing prevalence of insulin resistance and type 2 diabetes. Chronic inflammation in adipose tissue is considered as a key risk factor for the development of insulin resistance and type 2 diabetes in obese individuals. Macrophages are the most abundant immune cells in adipose tissue and play an important role in adipose tissue inflammation. Mitochondria are critical for regulating macrophage polarization, differentiation, and survival. Changes to mitochondrial metabolism and physiology induced by extracellular signals may underlie the corresponding state of macrophage activation. Macrophage mitochondrial dysfunction is a key mediator of obesity-induced macrophage inflammatory response and subsequent systemic insulin resistance. Mitochondrial dysfunction drives the activation of the NLRP3 inflammasome, which induces the release of IL-1β. IL-1β leads to decreased insulin sensitivity of insulin target cells via paracrine signaling or infiltration into the systemic circulation. In this review, we discuss the new findings on how obesity induces macrophage mitochondrial dysfunction and how mitochondrial dysfunction induces NLRP3 inflammasome activation. We also summarize therapeutic approaches targeting mitochondria for the treatment of diabetes.
Collapse
|
148
|
Bai Y, Wu J, Yang Z, Wang X, Zhang D, Ma J. Mitochondrial quality control in cardiac ischemia/reperfusion injury: new insights into mechanisms and implications. Cell Biol Toxicol 2022; 39:33-51. [PMID: 35951200 DOI: 10.1007/s10565-022-09716-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
The current effective method for the treatment of myocardial infarction is timely restoration of the blood supply to the ischemic area of the heart. Although reperfusion is essential for reestablishing oxygen and nutrient supplies, it often leads to additional myocardial damage, creating an important clinical dilemma. Reports from long-term studies have confirmed that mitochondrial damage is the critical mechanism in cardiac ischemia/reperfusion (I/R) injury. Mitochondria are dynamic and possess a quality control system that targets mitochondrial quantity and quality by modifying mitochondrial fusion, fission, mitophagy, and biogenesis and protein homeostasis to maintain a healthy mitochondrial network. The system of mitochondrial quality control involves complex molecular machinery that is highly interconnected and associated with pathological changes such as oxidative stress, calcium overload, and endoplasmic reticulum (ER) stress. Because of the critical role of the mitochondrial quality control systems, many reports have suggested that defects in this system are among the molecular mechanisms underlying myocardial reperfusion injury. In this review, we briefly summarize the important role of the mitochondrial quality control in cardiomyocyte function and focus on the current understanding of the regulatory mechanisms and molecular pathways involved in mitochondrial quality control in cardiac I/R damage.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zhenyu Yang
- Department of Endocrinology, South China Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Xu'an Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
149
|
Soto I, Couvillion M, Hansen KG, McShane E, Moran JC, Barrientos A, Churchman LS. Balanced mitochondrial and cytosolic translatomes underlie the biogenesis of human respiratory complexes. Genome Biol 2022; 23:170. [PMID: 35945592 PMCID: PMC9361522 DOI: 10.1186/s13059-022-02732-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/18/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Oxidative phosphorylation (OXPHOS) complexes consist of nuclear and mitochondrial DNA-encoded subunits. Their biogenesis requires cross-compartment gene regulation to mitigate the accumulation of disproportionate subunits. To determine how human cells coordinate mitochondrial and nuclear gene expression processes, we tailored ribosome profiling for the unique features of the human mitoribosome. RESULTS We resolve features of mitochondrial translation initiation and identify a small ORF in the 3' UTR of MT-ND5. Analysis of ribosome footprints in five cell types reveals that average mitochondrial synthesis levels correspond precisely to cytosolic levels across OXPHOS complexes, and these average rates reflect the relative abundances of the complexes. Balanced mitochondrial and cytosolic synthesis does not rely on rapid feedback between the two translation systems, and imbalance caused by mitochondrial translation deficiency is associated with the induction of proteotoxicity pathways. CONCLUSIONS Based on our findings, we propose that human OXPHOS complexes are synthesized proportionally to each other, with mitonuclear balance relying on the regulation of OXPHOS subunit translation across cellular compartments, which may represent a proteostasis vulnerability.
Collapse
Affiliation(s)
- Iliana Soto
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Mary Couvillion
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Katja G Hansen
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Erik McShane
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - J Conor Moran
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - L Stirling Churchman
- Blavatnik Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
150
|
Plant proteostasis: a proven and promising target for crop improvement. Essays Biochem 2022; 66:75-85. [PMID: 35929615 DOI: 10.1042/ebc20210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
The Green Revolution of the 1960s accomplished dramatic increases in crop yields through genetic improvement, chemical fertilisers, irrigation, and mechanisation. However, the current trajectory of population growth, against a backdrop of climate change and geopolitical unrest, predicts that agricultural production will be insufficient to ensure global food security in the next three decades. Improvements to crops that go beyond incremental gains are urgently needed. Plant biology has also undergone a revolution in recent years, through the development and application of powerful technologies including genome sequencing, a pantheon of 'omics techniques, precise genome editing, and step changes in structural biology and microscopy. Proteostasis - the collective processes that control the protein complement of the cell, comprising synthesis, modification, localisation, and degradation - is a field that has benefitted from these advances. This special issue presents a selection of the latest research in this vibrant field, with a particular focus on protein degradation. In the current article, we highlight the diverse and widespread contributions of plant proteostasis to agronomic traits, suggest opportunities and strategies to manipulate different elements of proteostatic mechanisms for crop improvement, and discuss the challenges involved in bringing these ideas into practice.
Collapse
|