101
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
102
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
103
|
Krebs N, Klein L, Wegwitz F, Espinet E, Maurer HC, Tu M, Penz F, Küffer S, Xu X, Bohnenberger H, Cameron S, Brunner M, Neesse A, Kishore U, Hessmann E, Trumpp A, Ströbel P, Brekken RA, Ellenrieder V, Singh SK. Axon guidance receptor ROBO3 modulates subtype identity and prognosis via AXL-associated inflammatory network in pancreatic cancer. JCI Insight 2022; 7:154475. [PMID: 35993361 PMCID: PMC9462476 DOI: 10.1172/jci.insight.154475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Metastatic pancreatic cancer (PDAC) has a poor clinical outcome with a 5-year survival rate below 3%. Recent transcriptome profiling of PDAC biopsies has identified 2 clinically distinct subtypes - the "basal-like" (BL) subtype with poor prognosis and therapy resistance compared with the less aggressive and drug-susceptible "classical" (CLA) subtype. However, the mechanistic events and environmental factors that promote the BL subtype identity are not very clear. Using preclinical models, patient-derived xenografts, and FACS-sorted PDAC patient biopsies, we report here that the axon guidance receptor, roundabout guidance receptor 3 (ROBO3), promotes the BL metastatic program via a potentially unique AXL/IL-6/phosphorylated STAT3 (p-STAT3) regulatory axis. RNA-Seq identified a ROBO3-mediated BL-specific gene program, while tyrosine kinase profiling revealed AXL as the key mediator of the p-STAT3 activation. CRISPR/dCas9-based ROBO3 silencing disrupted the AXL/p-STAT3 signaling axis, thereby halting metastasis and enhancing therapy sensitivity. Transcriptome analysis of resected patient tumors revealed that AXLhi neoplastic cells associated with the inflammatory stromal program. Combining AXL inhibitor and chemotherapy substantially restored a CLA phenotypic state and reduced disease aggressiveness. Thus, we conclude that a ROBO3-driven hierarchical network determines the inflammatory and prometastatic programs in a specific PDAC subtype.
Collapse
Affiliation(s)
- Niklas Krebs
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,HI-STEM: The Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Hans Carlo Maurer
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mengyu Tu
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Frederike Penz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | | | - Xingbo Xu
- Department of Cardiology and Pneumology, and
| | | | - Silke Cameron
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Marius Brunner
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,HI-STEM: The Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Philipp Ströbel
- Institute of Pathology,,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research, Departments of Surgery and Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
104
|
Ose J, Gigic B, Hardikar S, Lin T, Himbert C, Warby CA, Peoples AR, Lindley CL, Boehm J, Schrotz-King P, Figueiredo JC, Toriola AT, Siegel EM, Li CI, Ulrich A, Schneider M, Shibata D, Ulrich CM. Presurgery Adhesion Molecules and Angiogenesis Biomarkers Are Differently Associated with Outcomes in Colon and Rectal Cancer: Results from the ColoCare Study. Cancer Epidemiol Biomarkers Prev 2022; 31:1650-1660. [PMID: 35667092 PMCID: PMC9509698 DOI: 10.1158/1055-9965.epi-22-0092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/02/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cell-to-cell adhesion and angiogenesis are hallmarks of cancer. No studies have examined associations of adhesion molecules and angiogenesis biomarkers with clinical outcomes in colorectal cancer. METHODS In presurgery serum from n = 426 patients with colorectal cancer (stage I-III), we investigated associations of CRP, SAA, adhesion molecules (sICAM-1, sVCAM-1), and angiogenesis markers (VEGF-A and VEGF-D) with overall survival (OS), disease-free survival (DFS), and risk of recurrence. We computed HRs and 95% confidence intervals; adjusted for age, sex, BMI, stage, site, and study site, stratified by tumor site in exploratory analyses. RESULTS N = 65 (15%) were deceased, and 39 patients (14%) had a recurrence after a median follow-up of 31 months. We observed significant associations of biomarkers with OS, DFS, and risk of recurrence on a continuous scale and comparing top to bottom tertile, with HRs ranging between 1.19 and 13.92. CRP was associated with risk of death and recurrence in patients in the top tertile compared with patients in the bottom tertile, for example, risk of recurrence HRQ3-Q1: 13.92 (1.72-112.56). Significant heterogeneity between biomarkers and clinical outcomes was observed in stratified analysis by tumor site for CRP, SAA, sICAM-1, sVCAM-1, and VEGF-D. VEGF-D was associated with a 3-fold increase in risk of death for rectal cancer (HRlog2: 3.26; 95% CI, 1.58-6.70) compared with no association for colon cancer (HRlog2: 0.78; 95% CI, 0.35-1.73; Pheterogenity = 0.01). CONCLUSIONS Adhesion molecules and angiogenesis biomarkers are independent prognostic markers for colorectal cancer, with differences by tumor site. IMPACT There is need for tailored treatment for colon and rectal cancer.
Collapse
Affiliation(s)
- Jennifer Ose
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Sheetal Hardikar
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Tengda Lin
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Caroline Himbert
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Anita R Peoples
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | | | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | | | | - Erin M Siegel
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | | | | | - David Shibata
- University of Tennessee Health Science Center, Memphis, TN
| | - Cornelia M Ulrich
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| |
Collapse
|
105
|
The Hepatic Pre-Metastatic Niche. Cancers (Basel) 2022; 14:cancers14153731. [PMID: 35954395 PMCID: PMC9367402 DOI: 10.3390/cancers14153731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The pre-metastatic niche is a recently established concept that could lead to targeted therapies that prevent metastasis before ever occurring. Considering that 90% of cancer mortality results from metastasis, the PMN is thus a salient opportunity for intervention. The purpose of the current review is to cover what is known specifically about the hepatic pre-metastatic niche, a topic that has garnered increasing research focus within the last decade. We discuss the methods of communication between primary tumors and the liver, the involved cell populations, the key changes within liver tissue, and perspectives on the future of the field. Abstract Primary tumors can communicate with the liver to establish a microenvironment that favors metastatic colonization prior to dissemination, forming what is termed the “pre-metastatic niche” (PMN). Through diverse signaling mechanisms, distant malignancies can both influence hepatic cells directly as well as recruit immune cells into the PMN. The result is a set of changes within the hepatic tissue that increase susceptibility of tumor cell invasion and outgrowth upon dissemination. Thus, the PMN offers a novel step in the traditional metastatic cascade that could offer opportunities for clinical intervention. The involved signaling molecules also offer promise as biomarkers. Ultimately, while the existence of the hepatic PMN is well-established, continued research effort and use of innovative models are required to reach a functional knowledge of PMN mechanisms that can be further targeted.
Collapse
|
106
|
Forcina L, Franceschi C, Musarò A. The hormetic and hermetic role of IL-6. Ageing Res Rev 2022; 80:101697. [PMID: 35850167 DOI: 10.1016/j.arr.2022.101697] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Interleukin-6 is a pleiotropic cytokine regulating different tissues and organs in diverse and sometimes discrepant ways. The dual and sometime hermetic nature of IL-6 action has been highlighted in several contexts and can be explained by the concept of hormesis, in which beneficial or toxic effects can be induced by the same molecule depending on the intensity, persistence, and nature of the stimulation. According with hormesis, a low and/or controlled IL-6 release is associated with anti-inflammatory, antioxidant, and pro-myogenic actions, whereas increased systemic levels of IL-6 can induce pro-inflammatory, pro-oxidant and pro-fibrotic responses. However, many aspects regarding the multifaceted action of IL-6 and the complex nature of its signal transduction remains to be fully elucidated. In this review we collect mechanistic insight into the molecular networks contributing to normal or pathologic changes during advancing age and in chronic diseases. We point out the involvement of IL-6 deregulation in aging-related diseases, dissecting the hormetic action of this key mediator in different tissues, with a special focus on skeletal muscle. Since IL-6 can act as an enhancer of detrimental factor associated with both aging and pathologic conditions, such as chronic inflammation and oxidative stress, this cytokine could represent a "Gerokine", a determinant of the switch from physiologic aging to age-related diseases.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, Rome 00161, Italy.
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Scuola Superiore di Studi Avanzati Sapienza (SSAS), Via A. Scarpa, 14, Rome 00161, Italy.
| |
Collapse
|
107
|
Ohara Y, Valenzuela P, Hussain SP. The interactive role of inflammatory mediators and metabolic reprogramming in pancreatic cancer. Trends Cancer 2022; 8:556-569. [PMID: 35525794 PMCID: PMC9233125 DOI: 10.1016/j.trecan.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its highly reactive inflammatory desmoplastic stroma with evidence of an extensive tumor stromal interaction largely mediated by inflammatory factors. KRAS mutation and inflammatory signaling promote protumorigenic events, including metabolic reprogramming with several inter-regulatory crosstalks to fulfill the high demand of energy and regulate oxidative stress for tumor growth and progression. Notably, the more aggressive molecular subtype of PDAC enhances influx of glycolytic intermediates. This review focuses on the interactive role of inflammatory signaling and metabolic reprogramming with emerging evidence of crosstalk, which supports the development, progression, and therapeutic resistance of PDAC. Understanding the emerging crosstalk between inflammation and metabolic adaptations may identify potential targets and develop novel therapeutic approaches for PDAC.
Collapse
Affiliation(s)
- Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paloma Valenzuela
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
108
|
Gumberger P, Bjornsson B, Sandström P, Bojmar L, Zambirinis CP. The Liver Pre-Metastatic Niche in Pancreatic Cancer: A Potential Opportunity for Intervention. Cancers (Basel) 2022; 14:3028. [PMID: 35740692 PMCID: PMC9221452 DOI: 10.3390/cancers14123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer-related mortality is primarily a consequence of metastatic dissemination and associated complications. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and tends to metastasize early, especially in the liver. Emerging evidence suggests that organs that develop metastases exhibit microscopic changes that favor metastatic growth, collectively known as "pre-metastatic niches". By definition, a pre-metastatic niche is chronologically established before overt metastatic outgrowth, and its generation involves the release of tumor-derived secreted factors that modulate cells intrinsic to the recipient organ, as well as recruitment of additional cells from tertiary sites, such as bone marrow-all orchestrated by the primary tumor. The pre-metastatic niche is characterized by tumor-promoting inflammation with tumor-supportive and immune-suppressive features, remodeling of the extracellular matrix, angiogenic modulation and metabolic alterations that support growth of disseminated tumor cells. In this paper, we review the current state of knowledge of the hepatic pre-metastatic niche in PDAC and attempt to create a framework to guide future diagnostic and therapeutic studies.
Collapse
Affiliation(s)
- Peter Gumberger
- Department of Surgery, Linköping University, 58183 Linköping, Sweden; (P.G.); (B.B.); (P.S.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Bergthor Bjornsson
- Department of Surgery, Linköping University, 58183 Linköping, Sweden; (P.G.); (B.B.); (P.S.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Per Sandström
- Department of Surgery, Linköping University, 58183 Linköping, Sweden; (P.G.); (B.B.); (P.S.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Linda Bojmar
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | |
Collapse
|
109
|
Fan T, Kuang G, Long R, Han Y, Wang J. The overall process of metastasis: From initiation to a new tumor. Biochim Biophys Acta Rev Cancer 2022; 1877:188750. [PMID: 35728735 DOI: 10.1016/j.bbcan.2022.188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Metastasis-a process that involves the migration of cells from the primary site to distant organs-is the leading cause of cancer-associated death. Improved technology and in-depth research on tumors have furthered our understanding of the various mechanisms involved in tumor metastasis. Metastasis is initiated by cancer cells of a specific phenotype, which migrate with the assistance of extracellular components and metastatic traits conferred via epigenetic regulation while modifying their behavior in response to the complex and dynamic human internal environment. In this review, we have summarized the general steps involved in tumor metastasis and their characteristics, incorporating recent studies and topical issues, including epithelial-mesenchymal transition, cancer stem cells, neutrophil extracellular traps, pre-metastatic niche, extracellular vesicles, and dormancy. Several feasible treatment directions have also been summarized. In addition, the correlation between cancer metastasis and lifestyle factors, such as obesity and circadian rhythm, has been illustrated.
Collapse
Affiliation(s)
- Tianyue Fan
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guicheng Kuang
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Runmin Long
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
110
|
Jiang SH, Liu D, Hu LP, Zhang S, Yu Y, Sun YW, Ji J, Zhang ZG. Modeling of cancer-related body-wide effects identifies LTB4 as a diagnostic biomarker for pancreatic cancer. EBioMedicine 2022; 80:104050. [PMID: 35561453 PMCID: PMC9108888 DOI: 10.1016/j.ebiom.2022.104050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cancer elicits a complex adaptive response in an organism. Limited information is available for the body-wide effects induced by cancer. Here, we evaluated multiorgan changes in mouse models of pancreatic ductal adenocarcinoma (PDAC) and its precursor lesions (pancreatic intraepithelial neoplasia, PanIN) to decipher changes that occur during PDAC development. METHODS RNA-sequencing was employed in the brain, colon, stomach, kidney, heart, liver, and lung tissues of mice with PanIN and PDAC. A combination of differential expression analysis and functional-category enrichment was applied for an in-depth understanding of the multiorgan transcriptome. Differentially expressed genes were verified by quantitative real-time polymerase chain reaction. Neutrophil and macrophage infiltration in multiple organs was analyzed by immunohistochemical staining. Leukotriene B4 (LTB4) levels in mouse and human serum samples were determined by enzyme-linked immunosorbent assay. FINDINGS Transcriptional changes within diverse organs during PanIN and PDAC stages were identified. Using Gene Ontology enrichment analysis, increased neutrophil infiltration was discovered as a central and prominent affected feature, which occurred in the liver, lung, and stomach at the PanIN stage. The brain appeared to be well protected from the sequels of PanIN or PDAC. Importantly, serum LTB4 was able to discriminate PDAC from normal controls, chronic pancreatitis, and intraductal papillary mucinous neoplasms with high performance. INTERPRETATION Our study provides a high-resolution cartographic view of the dynamic multiorgan transcriptomic landscape of mice with PDAC and its precursor lesions. Our findings suggest that LTB4 could serve as a biomarker for the early detection of PDAC. FUNDING The complete list of funders can be found in the Acknowledgement section.
Collapse
Affiliation(s)
- Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200217, PR China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, PR China; Shenyang Engineering Technology R&D Center of Cell Therapy CO.LTD, Shenyang 110169, PR China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200217, PR China.
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
111
|
Chen X, Song E. The theory of tumor ecosystem. Cancer Commun (Lond) 2022; 42:587-608. [PMID: 35642770 PMCID: PMC9257988 DOI: 10.1002/cac2.12316] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer cells can be conceived as “living organisms” interacting with cellular or non‐cellular components in the host internal environment, not only the local tumor microenvironment but also the distant organ niches, as well as the immune, nervous and endocrine systems, to construct a self‐sustainable tumor ecosystem. With increasing evidence for the systemic tumor‐host interplay, we predict that a new era of cancer therapy targeting the ecosystemic vulnerability of human malignancies has come. Revolving around the tumor ecosystem scoped as different hierarchies of primary, regional, distal and systemic onco‐spheres, we comprehensively review the tumor‐host interaction among cancer cells and their local microenvironment, distant organ niches, immune, nervous and endocrine systems, highlighting material and energy flow with tumor ecological homeostasis as an internal driving force. We also substantiate the knowledge of visualizing, modelling and subtyping this dynamically intertwined network with recent technological advances, and discuss ecologically rational strategies for more effective cancer therapies.
Collapse
Affiliation(s)
- Xueman Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| |
Collapse
|
112
|
Somasundaram A, Cillo AR, Lampenfeld C, Workman CJ, Kunning S, Oliveri LN, Velez M, Joyce S, Calderon M, Dadey R, Rajasundaram D, Normolle DP, Watkins SC, Herman JG, Kirkwood JM, Lipson EJ, Ferris RL, Bruno TC, Vignali DAA. Systemic immune dysfunction in cancer patients driven by IL6 induction of LAG3 in peripheral CD8+ T cells. Cancer Immunol Res 2022; 10:885-899. [PMID: 35587532 DOI: 10.1158/2326-6066.cir-20-0736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 06/10/2021] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Many cancer patients do not develop a durable response to the current standard of care immunotherapies, despite substantial advances in targeting immune inhibitory receptors. A potential compounding issue, which may serve as an unappreciated, dominant resistance mechanism, is an inherent systemic immune dysfunction that is often associated with advanced cancer. Minimal response to inhibitory receptor (IR) blockade therapy and increased disease burden have been associated with peripheral CD8+ T-cell dysfunction, characterized by suboptimal T-cell proliferation and chronic expression of IRs (eg. Programmed Death 1 [PD1] and Lymphocyte Activation Gene 3 [LAG3]). Here, we demonstrated that approximately a third of cancer patients analyzed in this study have peripheral CD8+ T cells that expressed robust intracellular LAG3 (LAG3IC), but not surface LAG3 (LAG3SUR) due to A Disintegrin and Metalloproteinase domain-containing protein 10 (ADAM10) cleavage. This associated with poor disease prognosis and decreased CD8+ T-cell function, which could be partially reversed by anti-LAG3. Systemic immune dysfunction was restricted to CD8+ T cells, including, in some cases, a high percentage of peripheral naïve CD8+ T cells, and was driven by the cytokine IL6 via STAT3. These data suggest that additional studies are warrented to determine if the combination of increased LAG3IC in peripheral CD8+ T cells and elevated systemic IL6 can serve as predictive biomarkers and identify which cancer patients may benefit from LAG3 blockade.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Velez
- University of Pittsburgh, Pittsburgh, PA, United States
| | - Sonali Joyce
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Michael Calderon
- University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Rebekah Dadey
- University of Pittsburgh, Pittsburgh, PA, United States
| | | | | | | | | | | | - Evan J Lipson
- Johns Hopkins University School of Medicine, BALTIMORE, MD, United States
| | - Robert L Ferris
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Tullia C Bruno
- University of Colorado Boulder, Pittsburgh, PA, United States
| | | |
Collapse
|
113
|
Roy-Luzarraga M, Reynolds LE, de Luxán-Delgado B, Maiques O, Wisniewski L, Newport E, Rajeeve V, Drake RJ, Gómez-Escudero J, Richards FM, Weller C, Dormann C, Meng YM, Vermeulen PB, Saur D, Sanz-Moreno V, Wong PP, Géraud C, Cutillas PR, Hodivala-Dilke K. Suppression of Endothelial Cell FAK Expression Reduces Pancreatic Ductal Adenocarcinoma Metastasis after Gemcitabine Treatment. Cancer Res 2022; 82:1909-1925. [PMID: 35350066 PMCID: PMC9381116 DOI: 10.1158/0008-5472.can-20-3807] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 02/02/2023]
Abstract
Despite substantial advances in the treatment of solid cancers, resistance to therapy remains a major obstacle to prolonged progression-free survival. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with a high level of liver metastasis. Primary PDAC is highly hypoxic, and metastases are resistant to first-line treatment, including gemcitabine. Recent studies have indicated that endothelial cell (EC) focal adhesion kinase (FAK) regulates DNA-damaging therapy-induced angiocrine factors and chemosensitivity in primary tumor models. Here, we show that inducible loss of EC-FAK in both orthotopic and spontaneous mouse models of PDAC is not sufficient to affect primary tumor growth but reduces liver and lung metastasis load and improves survival rates in gemcitabine-treated, but not untreated, mice. EC-FAK loss did not affect primary tumor angiogenesis, tumor blood vessel leakage, or early events in metastasis, including the numbers of circulating tumor cells, tumor cell homing, or metastatic seeding. Phosphoproteomics analysis showed a downregulation of the MAPK, RAF, and PAK signaling pathways in gemcitabine-treated FAK-depleted ECs compared with gemcitabine-treated wild-type ECs. Moreover, low levels of EC-FAK correlated with increased survival and reduced relapse in gemcitabine-treated patients with PDAC, supporting the clinical relevance of these findings. Altogether, we have identified a new role of EC-FAK in regulating PDAC metastasis upon gemcitabine treatment that impacts outcome. SIGNIFICANCE These findings establish the potential utility of combinatorial endothelial cell FAK targeting together with gemcitabine in future clinical applications to control metastasis in patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Marina Roy-Luzarraga
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Louise E. Reynolds
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Laura Wisniewski
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Emma Newport
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Vinothini Rajeeve
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Rebecca J.G. Drake
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Jesús Gómez-Escudero
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Frances M. Richards
- Translational Medicine Operations, Astrazeneca Oncology, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, United Kingdom
| | - Céline Weller
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christof Dormann
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peter B. Vermeulen
- Department of Oncological Research, Translational Cancer Research Unit, Oncology Center GZA—GZA Hospitals St. Augustinus and University of Antwerp, Antwerp, Belgium
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg and Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, München, Germany
| | - Victoria Sanz-Moreno
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cyrill Géraud
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pedro R. Cutillas
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| |
Collapse
|
114
|
Yang C, Wu Y, Wang L, Li S, Zhou J, Tan Y, Song J, Xing H, Yi K, Zhan Q, Zhao J, Wang Q, Yuan X, Kang C. Glioma-derived exosomes hijack the blood-brain barrier to facilitate nanocapsule delivery via LCN2. J Control Release 2022; 345:537-548. [PMID: 35341902 DOI: 10.1016/j.jconrel.2022.03.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/15/2022]
Abstract
Exosomes are small extracellular vehicles which could transport genetic materials and proteins between cells. Although there are reports about exosomes crossing the blood-brain barrier (BBB), the underlying mechanisms still need further study. We found that exosomes from primary brain tumors could upregulate the expression of Lipocalin-2 (LCN2) in bEnd.3 brain microvascular endothelial cells (BMVECs). Furthermore, exosomes increased the membrane fluidity of bEnd.3 cells in an LCN2 dependent manner. Both intraperitoneal injection and caudal vein injection of LCN2 increased the number of nanocapsules crossing the BBB. Evans Blue staining revealed that LCN2 does not interrupt the integrity of the BBB, as observed in the traumatic brain injury model. Tandem mass tags quantitative proteomics and bioinformatics analysis revealed that LCN2 is upregulated by exosomes via the JAK-STAT3 pathway, but not delivered from exosomes. Knocking down LCN2 in bEnd.3 cells significantly abrogated the effect of exosomes on BMVEC membrane fluidity. Previously, we have reported that 2-methacryloyloxyethyl phosphorylcholine (MPC) and a peptide crosslinker could encapsulate mAbs to achieve nanocapsules. The nanocapsules containing choline analogs could effectively penetrate the BBB to deliver therapeutic monoclonal antibodies (tAbs) to the glioma. However, the delivered tAbs could be significantly reduced by blocking the release of exosomes from the gliomas. Application of tAb nanocapsules prior to treatment with MK2206, an AKT pathway inhibitor that has been shown to inhibit the production of exosomes, resulted in a better combination. Insights from this study provide a mechanistic framework with regard to how glioblastomas hijack BMVECs using exosomes. In addition, we provide a strategy for maximizing the effect of the choline-containing nanocapsules and MK2206 combination. These results also demonstrate the therapeutic role of tAbs in glioblastoma and brain tumor metastasis, by shedding new light on strategies that can be used for BBB-penetrating therapies.
Collapse
Affiliation(s)
- Chao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Ye Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Lin Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Yanli Tan
- Department of Pathology, Medical College of Hebei University, Baoding, Hebei 071000, China; Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Baoding 071000, China
| | - Jia Song
- Medical College of Hebei University, Baoding, Hebei 071000, China; Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Baoding 071000, China
| | - Huike Xing
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Kaikai Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Qi Zhan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China.
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China.
| |
Collapse
|
115
|
A Randomized Placebo-Controlled Phase 2 Study of Gemcitabine and Capecitabine with or without T-ChOS as Adjuvant Therapy in Patients with Resected Pancreatic Cancer (CHIPAC). Pharmaceutics 2022; 14:pharmaceutics14030509. [PMID: 35335885 PMCID: PMC8955369 DOI: 10.3390/pharmaceutics14030509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
The antitumor activity of chitooligosaccharides has been suggested. This phase 2 trial evaluated the efficacy and safety of T-ChOS™, in addition to adjuvant chemotherapy, in patients after resection of pancreatic ductal adenocarcinoma (PDAC). In this single-center, randomized, double-blind, placebo-controlled trial using patients ≥18 years of age after complete macroscopic resection for PDAC, patients were randomly assigned (1:1) to either a continuous oral T-ChOS group or a placebo group, in combination with gemcitabine (GEM) and oral capecitabine (CAP), for a maximum of six cycles. The primary endpoint was disease-free survival (DFS). Recruitment was stopped prematurely in July 2018, with 21 of planned 180 patients included, due to poor accrual and because modified FOLFIRINOX replaced GEM/CAP for the target population. Nine patients received T-ChOS and twelve received the placebo. The median DFS was 10.8 months (95% CI 5.9–15.7) for the T-ChOS arm and 8.4 months (95% CI 0–21.5) in the placebo arm. Overall, seven patients (78%) in the T-ChOS arm and eight patients (67%) in the placebo arm experienced at least one grade 3–4 treatment-related adverse event, most frequently neutropenia. Altogether, the addition of T-ChOS to chemotherapy in patients after resection of PDAC seems safe. However, the clinical benefit cannot be assessed due to the premature cessation of the trial.
Collapse
|
116
|
Chu Y, Sun T, Jiang C. Emerging landscapes of nanosystems based on pre-metastatic microenvironment for cancer theranostics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
117
|
Lubotzky A, Zemmour H, Neiman D, Gotkine M, Loyfer N, Piyanzin S, Ochana BL, Lehmann-Werman R, Cohen D, Moss J, Magenheim J, Loftus MF, Brais L, Ng K, Mostoslavsky R, Wolpin BM, Zick A, Maoz M, Grinshpun A, Kustanovich A, Makranz C, Cohen JE, Peretz T, Hubert A, Temper M, Salah A, Avniel-Polak S, Grozinsky-Glasberg S, Spalding KL, Rokach A, Kaplan T, Glaser B, Shemer R, Dor Y. Liquid biopsy reveals collateral tissue damage in cancer. JCI Insight 2022; 7:153559. [PMID: 35076021 PMCID: PMC8855834 DOI: 10.1172/jci.insight.153559] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022] Open
Abstract
Cancer inflicts damage to surrounding normal tissues, which can culminate in fatal organ failure. Here, we demonstrate that cell death in organs affected by cancer can be detected by tissue-specific methylation patterns of circulating cell-free DNA (cfDNA). We detected elevated levels of hepatocyte-derived cfDNA in the plasma of patients with liver metastases originating from different primary tumors, compared with cancer patients without liver metastases. In addition, patients with localized pancreatic or colon cancer showed elevated hepatocyte cfDNA, suggesting liver damage inflicted by micrometastatic disease, by primary pancreatic tumor pressing the bile duct, or by a systemic response to the primary tumor. We also identified elevated neuron-, oligodendrocyte-, and astrocyte-derived cfDNA in a subpopulation of patients with brain metastases compared with cancer patients without brain metastasis. Cell type–specific cfDNA methylation markers enable the identification of collateral tissue damage in cancer, revealing the presence of metastases in specific locations and potentially assisting in early cancer detection.
Collapse
Affiliation(s)
- Asael Lubotzky
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Hai Zemmour
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Marc Gotkine
- Department of Neurology, The Agnes-Ginges Center for Neurogenetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Netanel Loyfer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Sheina Piyanzin
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Bracha-Lea Ochana
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Roni Lehmann-Werman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daniel Cohen
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joshua Moss
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Judith Magenheim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maureen F. Loftus
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Aviad Zick
- Sharett Institute of Oncology, Hadassah Medical Center and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Myriam Maoz
- Sharett Institute of Oncology, Hadassah Medical Center and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Albert Grinshpun
- Sharett Institute of Oncology, Hadassah Medical Center and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anatoli Kustanovich
- Sharett Institute of Oncology, Hadassah Medical Center and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chen Makranz
- Department of Neurology and Oncology, Gaffin Center for Neuro-Oncology, Sharett Institute of Oncology, and
| | - Jonathan E. Cohen
- Sharett Institute of Oncology, Hadassah Medical Center and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah Medical Center and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayala Hubert
- Sharett Institute of Oncology, Hadassah Medical Center and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark Temper
- Sharett Institute of Oncology, Hadassah Medical Center and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Azzam Salah
- Sharett Institute of Oncology, Hadassah Medical Center and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shani Avniel-Polak
- Department of Endocrinology and Metabolism Service, Hadassah Medical Organization and The Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Simona Grozinsky-Glasberg
- Department of Endocrinology and Metabolism Service, Hadassah Medical Organization and The Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Kirsty L. Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ariel Rokach
- Pulmonary Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Tommy Kaplan
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism Service, Hadassah Medical Organization and The Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
118
|
Zhu Q, Yao Y, Xu L, Wu H, Wang W, He Y, Wang Y, Lu Y, Qi J, Ding Y, Li X, Huang J, Zhao H, Du Y, Sun K, Sun Y. Elevated SAA1 promotes the development of insulin resistance in ovarian granulosa cells in polycystic ovary syndrome. Reprod Biol Endocrinol 2022; 20:4. [PMID: 34980155 PMCID: PMC8721971 DOI: 10.1186/s12958-021-00873-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) contributes to ovarian dysfunctions in polycystic ovarian syndrome (PCOS) patients. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver in response to inflammation. In addition to its role in inflammation, SAA1 may participate in IR development in peripheral tissues. Yet, expressional regulation of SAA1 in the ovary and its role in the pathogenesis of ovarian IR in PCOS remain elusive. METHODS Follicular fluid, granulosa cells and peripheral venous blood were collected from PCOS and non-PCOS patients with and without IR to measure SAA1 abundance for analysis of its correlation with IR status. The effects of SAA1 on its own expression and insulin signaling pathway were investigated in cultured primary granulosa cells. RESULTS Ovarian granulosa cells were capable of producing SAA1, which could be induced by SAA1 per se. Moreover, the abundance of SAA1 significantly increased in granulosa cells and follicular fluid in PCOS patients with IR. SAA1 treatment significantly attenuated insulin-stimulated membrane translocation of glucose transporter 4 and glucose uptake in granulosa cells through induction of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression with subsequent inhibition of Akt phosphorylation. These effects of SAA1 could be blocked by inhibitors for toll-like receptors 2/4 (TLR 2/4) and nuclear factor kappa light chain enhancer of activated B (NF-κB). CONCLUSIONS Human granulosa cells are capable of feedforward production of SAA1, which significantly increased in PCOS patients with IR. Excessive SAA1 reduces insulin sensitivity in granulosa cells via induction of PTEN and subsequent inhibition of Akt phosphorylation upon activation of TLR2/4 and NF-κB pathway. These findings highlight that elevation of SAA1 in the ovary promotes the development of IR in granulosa cells of PCOS patients.
Collapse
Affiliation(s)
- Qinling Zhu
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yue Yao
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Lizhen Xu
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Hasiximuke Wu
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yaqiong He
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yuan Wang
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yao Lu
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Jia Qi
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Ying Ding
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Xinyu Li
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Jiaan Huang
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Hanting Zhao
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China
| | - Kang Sun
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China.
| | - Yun Sun
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
119
|
Topkan E, Selek U, Haksoyler V, Kucuk A, Durankus NK, Sezen D, Bolukbasi Y, Pehlivan B. Postchemoradiotherapy Neutrophil-to-Lymphocyte Ratio Predicts Distant Metastasis and Survival Results in Locally Advanced Pancreatic Cancers. Int J Clin Pract 2022; 2022:7473649. [PMID: 35685603 PMCID: PMC9159257 DOI: 10.1155/2022/7473649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
MATERIALS AND METHODS Our retrospective research included a sum of 126 LAPAC patients who received CCRT. The NLR was calculated for each patient based on the complete blood count test results obtained on the last day of the CCRT. The availability of optimal cutoff(s) that might dichotomize the whole cohort into two groups with significantly different clinical outcomes was searched using receiver operating characteristic (ROC) curve analysis. Primary and secondary endpoints were the potential association between the post-CCRT NLR measures and distant metastasis-free survival (DMFS) and overall survival (OS) outcomes. RESULTS The median follow-up duration was 14.7 months (range: 2.4-94.5). The median and 3-year OS and DMFS rates for the whole group were 15.3 months (95% confidence interval: 12.4-18.2) and 14.5%, and 8.7 months (95% CI: 6.7-10.7) and 6.3% separately. The ROC curve analysis findings separated the patients into two groups on a rounded NLR cutoff of 3.1 (area under the curve (AUC): 75.4%; sensitivity: 74.2%; specificity: 73.9%) for OS and DMFS: NLR <3.1 (N = 62) and NLR ≥3.1 (N = 64), respectively. Comparisons between the NLR groups displayed that the median OS (11.4 vs. 21.4 months; P < 0.001) and DMFS (6.0 vs. 16.0 months; P < 0.001) lengths were significantly shorter in the NLR ≥3.1 group than its NLR <3.1 counterparts, as well as the 3-year actuarial DM rate (79.7% vs. 50.0%; P=0.003). The N1-2 nodal stage, CA 19-9>90 U/mL, and NLR >3.1 were found to be independent predictors of poor prognosis in the multivariate analysis. CONCLUSION The present study found that the posttreatment NLR ≥3.1 was independently linked with a higher risk of DM and subsequent degraded survival outcomes in unresectable LAPAC patients managed with exclusive CCRT.
Collapse
Affiliation(s)
- Erkan Topkan
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Ugur Selek
- Department of Radiation Oncology, Koc University Schoolof Medicine, Istanbul, Turkey
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, TX 77030, USA
| | | | - Ahmet Kucuk
- Clinic of Radiation Oncology, Mersin Education and Research Hospital, Mersin, Turkey
| | | | - Duygu Sezen
- Department of Radiation Oncology, Koc University Schoolof Medicine, Istanbul, Turkey
| | - Yasemin Bolukbasi
- Department of Radiation Oncology, Koc University Schoolof Medicine, Istanbul, Turkey
- The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology, Houston, TX 77030, USA
| | - Berrin Pehlivan
- Department of Radiation Oncology, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
120
|
Anisman H, Kusnecov AW. Cancer biology and pathology. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
121
|
Zhao Q, Kohut A, Li YJ, Martincuks A, Austria T, Zhang C, Santiago NL, Borrero RM, Phan XT, Melstrom L, Rodriguez-Rodriguez L, Yu H. Niraparib-induced STAT3 inhibition increases its antitumor effects. Front Oncol 2022; 12:966492. [PMID: 36324587 PMCID: PMC9618811 DOI: 10.3389/fonc.2022.966492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Recently, poly(ADP-ribosyl)ation polymerase inhibitors (PARPis), which induce synthetic lethality of tumor cells with DNA damage repair defects, have emerged as a promising therapy for ovarian, breast, and pancreatic cancer. Although the PARPi Olaparib is limited to treating cancer patients with DNA repair deficiencies, the PARPi Niraparib is FDA approved to treat ovarian cancer patients regardless of their status in DNA repair pathways. Despite differences in the affinity to PARP enzymes, the rationale behind the clinical use of Niraparib in patients without DNA repair deficiencies is still lacking. Moreover, only Olaparib has been approved for pancreatic ductal adenocarcinoma (PDAC) patients with BRCA mutations, accounting for only 5-7% of total PDACs. It remains unclear whether Niraparib could be beneficial to PDACs without BRCA mutations. We found that Niraparib inhibits ovarian and PDAC tumor cell growth, regardless of BRCA mutational status, more effectively than Olaparib. Unlike Olaparib, which is known to activate STAT3, Niraparib inhibits STAT3 activity in ovarian and PDAC cancer cell lines and patient tumors. Moreover, Niraparib regulates the expression of several STAT3 downstream genes involved in apoptosis. Overexpression of a constitutively activated STAT3 mutant rescues Niraparib-induced cancer cell apoptosis. Our results suggest that Niraparib inhibits pSTAT3 by interfering with SRC tyrosine kinase. Collectively, our studies provide a mechanism underlying Niraparib's ability to induce tumor cell apoptosis without BRCA mutations, suggesting the potential use of Niraparib for treating PDAC patients regardless of BRCA status.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA, United States
| | - Adrian Kohut
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Theresa Austria
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Nicole Lugo Santiago
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Rosemarie Martinez Borrero
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA, United States
| | - Xuan Thuy Phan
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Laleh Melstrom
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Lorna Rodriguez-Rodriguez
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
122
|
Pre- and Perioperative Inflammatory Biomarkers in Older Patients Resected for Localized Colorectal Cancer: Associations with Complications and Prognosis. Cancers (Basel) 2021; 14:cancers14010161. [PMID: 35008324 PMCID: PMC8750535 DOI: 10.3390/cancers14010161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/11/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer is the second most common cancer worldwide, and the incidence increases with age. The primary treatment for localized disease is surgical resection. Biomarkers identifying older patients at risk of complications following surgery are desirable to create a more individualized treatment plan. The purpose of this study is to investigate if circulating proteins related to inflammation (CRP, Il-6, and YKL-40) can provide information about the risk of complications and survival in older patients undergoing resection, and, furthermore, to investigate if this relation is different in older patients as compared to younger patients. We investigated 401 patients with localized colorectal cancer and found that older patients (n = 210) had higher levels of preoperative inflammatory biomarkers compared to younger patients (n = 191). High levels were associated with major complications after resection in older, but not in younger, patients. This may be useful in the future to design more personalized treatment plans. Abstract The association between pre- and perioperative inflammatory biomarkers, major complications, and survival rates after resection of colorectal cancer (CRC) in older patients is largely unknown. The aim was to investigate age-dependent differences in these associations. Serum CRP, IL-6, and YKL-40 were measured preoperatively and on the first and second day after resection of CRC (stages I–III) in 210 older (≥70 years) and 191 younger patients (<70 years). The results from the complications was presented as an odds ratio (OR, with a 95% confidence interval (CI)) with logistic regression. Results from the mortality rates were presented as a hazard ratio (HR, with a 95% CI) using Cox proportional hazards regression. The preoperative inflammatory biomarkers were higher in the older vs. the younger patients. The risk of complications was increased in older patients with a high preoperative CRP (OR = 1.25, 95% CI 1.03–1.53), IL-6 (OR = 1.57, 95% CI 1.18–2.08), and YKL-40 (OR = 1.66, 95% CI 1.20–2.28), but not in younger patients. Mortality was higher in younger patients with high preoperative YKL-40 (HR = 1.66, 95% CI 1.06–2.60). This was not found in older patients. Elevated preoperative inflammatory biomarkers among older patients were associated with an increased risk of complications, but not mortality. Preoperative inflammatory biomarkers may be useful in assessing the risk of a complicated surgical course in older patients with CRC.
Collapse
|
123
|
Lee BY, Hogg EKJ, Below CR, Kononov A, Blanco-Gomez A, Heider F, Xu J, Hutton C, Zhang X, Scheidt T, Beattie K, Lamarca A, McNamara M, Valle JW, Jørgensen C. Heterocellular OSM-OSMR signalling reprograms fibroblasts to promote pancreatic cancer growth and metastasis. Nat Commun 2021; 12:7336. [PMID: 34921158 PMCID: PMC8683436 DOI: 10.1038/s41467-021-27607-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with a complex microenvironment. Dichotomous tumour-promoting and -restrictive roles have been ascribed to the tumour microenvironment, however the effects of individual stromal subsets remain incompletely characterised. Here, we describe how heterocellular Oncostatin M (OSM) - Oncostatin M Receptor (OSMR) signalling reprograms fibroblasts, regulates tumour growth and metastasis. Macrophage-secreted OSM stimulates inflammatory gene expression in cancer-associated fibroblasts (CAFs), which in turn induce a pro-tumourigenic environment and engage tumour cell survival and migratory signalling pathways. Tumour cells implanted in Osm-deficient (Osm-/-) mice display an epithelial-dominated morphology, reduced tumour growth and do not metastasise. Moreover, the tumour microenvironment of Osm-/- animals exhibit increased abundance of α smooth muscle actin positive myofibroblasts and a shift in myeloid and T cell phenotypes, consistent with a more immunogenic environment. Taken together, these data demonstrate how OSM-OSMR signalling coordinates heterocellular interactions to drive a pro-tumourigenic environment in PDA.
Collapse
Affiliation(s)
- Brian Y Lee
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Elizabeth K J Hogg
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Christopher R Below
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Alexander Kononov
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Adrian Blanco-Gomez
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Felix Heider
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Jingshu Xu
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Colin Hutton
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Xiaohong Zhang
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Tamara Scheidt
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Kenneth Beattie
- FingerPrints Proteomics Facility, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX, Manchester, UK
- Institute of Cancer Sciences, University of Manchester, Wilmslow Road, M20 4BX, Manchester, UK
| | - Mairéad McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX, Manchester, UK
- Institute of Cancer Sciences, University of Manchester, Wilmslow Road, M20 4BX, Manchester, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX, Manchester, UK
- Institute of Cancer Sciences, University of Manchester, Wilmslow Road, M20 4BX, Manchester, UK
| | - Claus Jørgensen
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK.
| |
Collapse
|
124
|
TNFSF9 promotes metastasis of pancreatic cancer by regulating M2 polarization of macrophages through Src/FAK/p-Akt/IL-1β signaling. Int Immunopharmacol 2021; 102:108429. [PMID: 34906856 DOI: 10.1016/j.intimp.2021.108429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
The effect of tumor necrosis factor superfamily member 9 (TNFSF9) on the metastasis of pancreatic cancer (PC) and the underlying mechanism remain unclear. We studied the expression of TNFSF9 in pancreatic cancer and its relationship with immune cells. We further explored the effect of TNFSF9 on pancreatic cancer metastasis by inducing macrophage polarization, and evaluated the expression of Src/FAK/p-Akt/IL-1β signals in macrophages after knocking down TNFSF9. The data shows that TNFSF9 expression is elevated in pancreatic cancer and is related to the poor prognosis of patients with pancreatic cancer. In addition, TNFSF9 may induce the M2 polarization of macrophages through Src/FAK/p-Akt/IL-1β signals, thereby promoting the migration of pancreatic cancer cells. In conclusion, our data reveals that TNFSF9 may become a predictive biomarker of pancreatic cancer and provides a new intervention target for the immunotherapy of pancreatic cancer.
Collapse
|
125
|
Vaish U, Jain T, Are AC, Dudeja V. Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma: An Update on Heterogeneity and Therapeutic Targeting. Int J Mol Sci 2021; 22:13408. [PMID: 34948209 PMCID: PMC8706283 DOI: 10.3390/ijms222413408] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related morbidity and mortality in the western world, with limited therapeutic strategies and dismal long-term survival. Cancer-associated fibroblasts (CAFs) are key components of the pancreatic tumor microenvironment, maintaining the extracellular matrix, while also being involved in intricate crosstalk with cancer cells and infiltrating immunocytes. Therefore, they are potential targets for developing therapeutic strategies against PDAC. However, recent studies have demonstrated significant heterogeneity in CAFs with respect to their origins, spatial distribution, and functional phenotypes within the PDAC tumor microenvironment. Therefore, it is imperative to understand and delineate this heterogeneity prior to targeting CAFs for PDAC therapy.
Collapse
Affiliation(s)
| | | | | | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (U.V.); (T.J.); (A.C.A.)
| |
Collapse
|
126
|
Rose-John S. Local and systemic effects of interleukin-6 (IL-6) in inflammation and cancer. FEBS Lett 2021; 596:557-566. [PMID: 34738234 DOI: 10.1002/1873-3468.14220] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Interleukin-6 (IL-6) is an inflammatory cytokine, the level of which is highly elevated in most, if not all, inflammatory states. IL-6 triggers cell type-specific responses and acts on target cells via a specific interleukin-6 receptor (IL-6R), which, together with IL-6, binds to and induces the dimerization of a second receptor subunit, gp130. IL-6 also binds to soluble IL-6R, and this complex interacts with gp130, regardless of IL-6R expression. This allows cells that do not express IL-6R and would be otherwise insensitive to IL-6 to respond to it. We have generated a constitutively active version of gp130 by forced leucine-zipper-mediated dimerization, named L-gp130. Once inserted into the Rosa26 locus of mice, L-gp130 can be activated in a cell-autonomous manner by crossing these mice with any Cre-recombinase transgenic mouse strain. Activation of gp130 in hepatocytes produced liver-specific effects such as the induction of acute-phase proteins, but it also had profound systemic effects on the immune system. Such local and systemic effects of interleukin-6 will be reviewed.
Collapse
|
127
|
Zhang F, Zhou X, Zou H, Liu L, Li X, Ruan Y, Xie Y, Shi M, Xiao Y, Wang Y, Zhou Y, Wu Y, Guo B. SAA1 is transcriptionally activated by STAT3 and accelerates renal interstitial fibrosis by inducing endoplasmic reticulum stress. Exp Cell Res 2021; 408:112856. [PMID: 34597680 DOI: 10.1016/j.yexcr.2021.112856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
Renal interstitial fibrosis (RIF) is the common irreversible pathway by which chronic kidney disease (CKD) progresses to the end stage. The transforming growth factor-β (TGF-β)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is a common factor leading to inflammation-mediated RIF, but its downstream regulatory mechanism is still unclear. Bioinformatics analysis predicted that serum amyloid A protein 1 (SAA1) was one of the target genes for transcriptional activation of STAT3 signaling. As an acute phase reaction protein, SAA1 plays an important role in many inflammatory reactions, and research has suggested that SAA1 is significantly elevated in the serum of patients with CKD. In this research, multiple experiments were performed to investigate the role of SAA1 in the process of RIF. SAA1 was abnormally highly expressed in kidney tissue from individuals who underwent unilateral ureteral obstruction (UUO) and TGF-β-induced HK2 cells, and the abnormal expression was directly related to the transcriptional activation of STAT3. Additionally, SAA1 can directly target and bind valosin-containing protein (VCP)-interacting membrane selenoprotein (VIMP) to inhibit the function of the Derlin-1/VCP/VIMP complex, preventing the transportation and degradation of the misfolded protein, resulting in endoplasmic reticulum (ER) stress characterized by an increase in glucose-regulated protein 78 (GRP78) levels and ultimately promoting the occurrence and development of RIF.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Xingcheng Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Huimei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China; School of Nursing, Guizhou Medical University, Guiyang, 550025, China
| | - Lirong Liu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China; Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaoying Li
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China; Department of Nephrology, Guiyang First People's Hospital, Guiyang, 550025, China
| | - Yuanyuan Ruan
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Yuansheng Wu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
128
|
Hermann CD, Schoeps B, Eckfeld C, Munkhbaatar E, Kniep L, Prokopchuk O, Wirges N, Steiger K, Häußler D, Knolle P, Poulton E, Khokha R, Grünwald BT, Demir IE, Krüger A. TIMP1 expression underlies sex disparity in liver metastasis and survival in pancreatic cancer. J Exp Med 2021; 218:e20210911. [PMID: 34533565 PMCID: PMC8480668 DOI: 10.1084/jem.20210911] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/21/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Sex disparity in cancer is so far inadequately considered, and components of its basis are rather unknown. We reveal that male versus female pancreatic cancer (PC) patients and mice show shortened survival, more frequent liver metastasis, and elevated hepatic metastasis-promoting gene expression. Tissue inhibitor of metalloproteinases 1 (TIMP1) was the secreted factor with the strongest male-biased expression in patient-derived pancreatic tumors. Male-specific up-regulation of systemic TIMP1 was demonstrated in PC mouse models and patients. Using TIMP1-competent and TIMP1-deficient PC mouse models, we established a causal role of TIMP1 in determining shortened survival and increased liver metastasis in males. Observing TIMP1 expression as a risk parameter in males led to identification of a subpopulation exhibiting increased TIMP1 levels (T1HI males) in both primary tumors and blood. T1HI males showed increased risk for liver metastasis development not only in PC but also in colorectal cancer and melanoma. This study reveals a lifestyle-independent sex disparity in liver metastasis and may open new avenues toward precision medicine.
Collapse
Affiliation(s)
- Chris D. Hermann
- Institutes of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University Munich, Munich, Germany
| | - Benjamin Schoeps
- Institutes of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University Munich, Munich, Germany
| | - Celina Eckfeld
- Institutes of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University Munich, Munich, Germany
| | | | - Lukas Kniep
- Institutes of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University Munich, Munich, Germany
| | - Olga Prokopchuk
- Institutes of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University Munich, Munich, Germany
| | - Nils Wirges
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Daniel Häußler
- Institutes of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University Munich, Munich, Germany
| | - Percy Knolle
- Institutes of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University Munich, Munich, Germany
| | - Emily Poulton
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Barbara T. Grünwald
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ihsan Ekin Demir
- Department of Surgery, School of Medicine, Technical University Munich, Munich, Germany
| | - Achim Krüger
- Institutes of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
129
|
Truong LH, Pauklin S. Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers (Basel) 2021; 13:5028. [PMID: 34638513 PMCID: PMC8507722 DOI: 10.3390/cancers13195028] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human solid tumors, despite great efforts in improving therapeutics over the past few decades. In PDAC, the distinct characteristic of the tumor microenvironment (TME) is the main barrier for developing effective treatments. PDAC TME is characterized by a dense stroma, cancer-associated fibroblasts, and immune cells populations that crosstalk to the subpopulations of neoplastic cells that include cancer stem cells (CSCs). The heterogeneity in TME is also exhibited in the diversity and dynamics of acellular components, including the Extracellular matrix (ECM), cytokines, growth factors, and secreted ligands to signaling pathways. These contribute to drug resistance, metastasis, and relapse in PDAC. However, clinical trials targeting TME components have often reported unexpected results and still have not benefited patients. The failures in those trials and various efforts to understand the PDAC biology demonstrate the highly heterogeneous and multi-faceted TME compositions and the complexity of their interplay within TME. Hence, further functional and mechanistic insight is needed. In this review, we will present a current understanding of PDAC biology with a focus on the heterogeneity in TME and crosstalk among its components. We also discuss clinical challenges and the arising therapeutic opportunities in PDAC research.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
130
|
Wang L, Wang E, Prado Balcazar J, Wu Z, Xiang K, Wang Y, Huang Q, Negrete M, Chen K, Li W, Fu Y, Dohlman A, Mines R, Zhang L, Kobayashi Y, Chen T, Shi G, Shen JP, Kopetz S, Tata PR, Moreno V, Gersbach C, Crawford G, Hsu D, Huang E, Bu P, Shen X. Chromatin Remodeling of Colorectal Cancer Liver Metastasis is Mediated by an HGF-PU.1-DPP4 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004673. [PMID: 34378358 PMCID: PMC8498885 DOI: 10.1002/advs.202004673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Colorectal cancer (CRC) metastasizes mainly to the liver, which accounts for the majority of CRC-related deaths. Here it is shown that metastatic cells undergo specific chromatin remodeling in the liver. Hepatic growth factor (HGF) induces phosphorylation of PU.1, a pioneer factor, which in turn binds and opens chromatin regions of downstream effector genes. PU.1 increases histone acetylation at the DPP4 locus. Precise epigenetic silencing by CRISPR/dCas9KRAB or CRISPR/dCas9HDAC revealed that individual PU.1-remodeled regulatory elements collectively modulate DPP4 expression and liver metastasis growth. Genetic silencing or pharmacological inhibition of each factor along this chromatin remodeling axis strongly suppressed liver metastasis. Therefore, microenvironment-induced epimutation is an important mechanism for metastatic tumor cells to grow in their new niche. This study presents a potential strategy to target chromatin remodeling in metastatic cancer and the promise of repurposing drugs to treat metastasis.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Ergang Wang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Zhenzhen Wu
- Key Laboratory of RNA BiologyKey Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Kun Xiang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Yi Wang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Qiang Huang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Marcos Negrete
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Kai‐Yuan Chen
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Wei Li
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Yujie Fu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Anders Dohlman
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Robert Mines
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Liwen Zhang
- Key Laboratory of RNA BiologyKey Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yoshihiko Kobayashi
- Department of Cell BiologyRegeneration NextDuke University School of MedicineDurhamNC27710USA
| | - Tianyi Chen
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Guizhi Shi
- Laboratory Animal Research CenterInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - John Paul Shen
- Department of Gastrointestinal Medical OncologyMD AndersonDurhamNC77030USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical OncologyMD AndersonDurhamNC77030USA
| | - Purushothama Rao Tata
- Department of Cell BiologyRegeneration NextDuke University School of MedicineDurhamNC27710USA
| | - Victor Moreno
- Department of Clinical SciencesUniversity of BarcelonaBarcelona08193Spain
- Prevention and Control ProgramCatalan Institute of Oncology‐IDIBELLCIBERESPBarcelonaE08907Spain
| | - Charles Gersbach
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Gregory Crawford
- Department of PediatricsDuke University School of MedicineDurhamNC27710USA
| | - David Hsu
- Department of MedicineDuke University School of MedicineDurhamNC27710USA
| | - Emina Huang
- Department of Cancer Biology and Colorectal SurgeryLerner Research Institute, Cleveland ClinicClevelandOH44195USA
| | - Pengcheng Bu
- Key Laboratory of RNA BiologyKey Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Center for Excellence in BiomacromoleculesChinese Academy of SciencesBeijing100101China
| | - Xiling Shen
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
131
|
Wandmacher AM, Mehdorn AS, Sebens S. The Heterogeneity of the Tumor Microenvironment as Essential Determinant of Development, Progression and Therapy Response of Pancreatic Cancer. Cancers (Basel) 2021; 13:4932. [PMID: 34638420 PMCID: PMC8508450 DOI: 10.3390/cancers13194932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at advanced stages and most anti-cancer therapies have failed to substantially improve prognosis of PDAC patients. As a result, PDAC is still one of the deadliest tumors. Tumor heterogeneity, manifesting at multiple levels, provides a conclusive explanation for divergent survival times and therapy responses of PDAC patients. Besides tumor cell heterogeneity, PDAC is characterized by a pronounced inflammatory stroma comprising various non-neoplastic cells such as myofibroblasts, endothelial cells and different leukocyte populations which enrich in the tumor microenvironment (TME) during pancreatic tumorigenesis. Thus, the stromal compartment also displays a high temporal and spatial heterogeneity accounting for diverse effects on the development, progression and therapy responses of PDAC. Adding to this heterogeneity and the impact of the TME, the microbiome of PDAC patients is considerably altered. Understanding this multi-level heterogeneity and considering it for the development of novel therapeutic concepts might finally improve the dismal situation of PDAC patients. Here, we outline the current knowledge on PDAC cell heterogeneity focusing on different stromal cell populations and outline their impact on PDAC progression and therapy resistance. Based on this information, we propose some novel concepts for treatment of PDAC patients.
Collapse
Affiliation(s)
| | - Anna Maxi Wandmacher
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany;
| | - Anne-Sophie Mehdorn
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany;
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30 Entrance 1, 24105 Kiel, Germany
| |
Collapse
|
132
|
Ware MB, El-Rayes BF, Lesinski GB. Mirage or long-awaited oasis: reinvigorating T-cell responses in pancreatic cancer. J Immunother Cancer 2021; 8:jitc-2020-001100. [PMID: 32843336 PMCID: PMC7449491 DOI: 10.1136/jitc-2020-001100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is plagued by a dismal 5-year survival rate, early onset of metastasis and limited efficacy of systemic therapies. This scenario highlights the need to fervently pursue novel therapeutic strategies to treat this disease. Recent research has uncovered complicated dynamics within the tumor microenvironment (TME) of PDAC. An abundant stroma provides a framework for interactions between cancer-associated fibroblasts, suppressive myeloid cells and regulatory lymphocytes, which together create an inhospitable environment for adaptive immune responses. This accounts for the poor infiltration and exhausted phenotypes of effector T cells within pancreatic tumors. Innovative studies in genetically engineered mouse models have established that with appropriate pharmacological modulation of suppressive elements in the TME, T cells can be prompted to regress pancreatic tumors. In light of this knowledge, innovative combinatorial strategies involving immunotherapy and targeted therapies working in concert are rapidly emerging. This review will highlight recent advances in the field related to immune suppression in PDAC, emerging preclinical data and rationale for ongoing immunotherapy clinical trials. In particular, we draw attention to foundational findings involving T-cell activity in PDAC and encourage development of novel therapeutics to improve T-cell responses in this challenging disease.
Collapse
Affiliation(s)
- Michael Brandon Ware
- Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Bassel F El-Rayes
- Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Gregory B Lesinski
- Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
133
|
Rose-John S. Blocking only the bad side of IL-6 in inflammation and cancer. Cytokine 2021; 148:155690. [PMID: 34474215 DOI: 10.1016/j.cyto.2021.155690] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is considered an inflammatory cytokine, which is involved not only in most inflammatory states but it also plays a prominent role in inflammation associated cancers. The response of cells to the cytokine strictly depends on the presence of the IL-6 receptor (IL-6R),which presents IL-6 to the signal transducing receptor subunit gp130, which is expressed on all cells of the body. The expression of IL-6R is limited to some cells, which are therefore IL-6 target cells. The IL-6R can be cleaved by proteases and the thus generated soluble IL-6R (sIL-6R) still binds the ligand IL-6. The complex of IL-6 and sIL-6R can bind to gp130 on any cell, induce dimerization of gp130 and intracellular signaling. This process has been named IL-6 trans-signaling. A fusion protein of soluble gp130 with the constant portion of human IgG1 (sgp130Fc) turned out to be a potent and specific inhibitor of IL-6 trans-signaling. In many animal models of human diseases the significance of IL-6 trans-signaling has been analyzed. It turned out that the activities of IL-6 mediated by the sIL-6R are the pro-inflammatory activities of the cytokine whereas activities of IL-6 mediated by the membrane-bound IL-6R are rather protective and regenerative. The sgp130Fc protein has recently been developed into a biologic. The possible consequences of a specific IL-6 trans-signaling blockade is discussed in the light of the recent successfully concluded phase II clinical trials in patients with inflammatory bowel disease.
Collapse
|
134
|
Cho CS. Lymph Node Staging as Haruspication. Ann Surg Oncol 2021; 28:8008-8010. [PMID: 34471989 DOI: 10.1245/s10434-021-10755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Clifford S Cho
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
135
|
Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer 2021; 21:541-557. [PMID: 34326518 DOI: 10.1038/s41568-021-00383-9] [Citation(s) in RCA: 245] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The liver is the sixth most common site of primary cancer in humans, and generally arises in a background of cirrhosis and inflammation. Moreover, the liver is frequently colonized by metastases from cancers of other organs (particularly the colon) because of its anatomical location and organization, as well as its unique metabolic and immunosuppressive environment. In this Review, we discuss how the hepatic microenvironment adapts to pathologies characterized by chronic inflammation and metabolic alterations. We illustrate how these immunological or metabolic changes alter immunosurveillance and thus hinder or promote the development of primary liver cancer. In addition, we describe how inflammatory and metabolic niches affect the spreading of cancer metastases into or within the liver. Finally, we review the current therapeutic options in this context and the resulting challenges that must be surmounted.
Collapse
Affiliation(s)
- Xin Li
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Seehawer
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
136
|
Deasy SK, Erez N. A glitch in the matrix: organ-specific matrisomes in metastatic niches. Trends Cell Biol 2021; 32:110-123. [PMID: 34479765 DOI: 10.1016/j.tcb.2021.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Modification of the extracellular matrix (ECM) is a critical aspect of developing a metastasis-supportive organ niche. Recent work investigating ECM changes that facilitate metastasis has revealed ways in which different metastatic organ niches are similar as well as the distinct characteristics that make them unique. In this review, we present recent findings regarding how ECM modifications support metastasis in four frequent metastatic sites: the lung, liver, bone, and brain. We discuss ways in which these modifications are shared between metastatic organs as well as features specific to each location. We also discuss areas of technical innovation that could be advantageous to future research and areas of inquiry that merit further investigation.
Collapse
Affiliation(s)
- Sarah K Deasy
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
137
|
Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, Cheng Y, Huang S, Liu Y, Jiang S, Liu J, Huang X, Wang X, Qiu S, Xu J, Xi R, Bai F, Zhou J, Fan J, Zhang X, Gao Q. Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level. Cancer Discov 2021; 12:134-153. [PMID: 34417225 DOI: 10.1158/2159-8290.cd-21-0316] [Citation(s) in RCA: 371] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Liver metastasis, the leading cause of colorectal cancer mortality, exhibits a highly heterogeneous and suppressive immune microenvironment. Here, we sequenced 97 matched samples by using single-cell RNA-seq and Spatial Transcriptomics. Strikingly, metastatic microenvironment underwent remarkable spatial reprogramming of immunosuppressive cells such as MRC1+ CCL18+ M2-like macrophages. We further developed scMetabolism, a computational pipeline for quantifying single-cell metabolism, and observed that those macrophages harbored enhanced metabolic activity. Interestingly, neoadjuvant chemotherapy could block this status and restore the antitumor immune balance in responsive patients, while the non-responsive patients deteriorated into a more suppressive one. Our work described the immune evolution of metastasis and uncovered the black box of how tumors respond to neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Yingcheng Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University
| | - Shuaixi Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University
| | - Jiaqiang Ma
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Zechuan Chen
- Institut Pasteur of Shanghai, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Guohe Song
- Hepatic oncology, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University
| | - Yifei Cheng
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University
| | - Siyuan Huang
- Academy for Advanced Interdisciplinary Studies, Peking University
| | - Yifei Liu
- Pathology, Affiliated Hospital of Nantong University
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Jinxia Liu
- Affiliated Hospital of Nantong University; School of Medicine, Nantong University
| | - Xiaowu Huang
- Departmemt of liver surgery and tranplantation, Zhongshan Hospital
| | - Xiaoying Wang
- Liver Cancer Institute, Liver Cancer Institute, Fudan University
| | - Shuangjian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University
| | - Jianmin Xu
- Department of Gastrointestinal Oncology, The Fifth Medical Center, Chinese PLA General Hospital
| | - Ruibin Xi
- School of Mathematical Sciences and Center for Statistical Science, School of Mathematical Sciences and Center for Statistical Science, Peking University
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences
| | - Qiang Gao
- Depart. of Liver Surgery and Transplantation, Liver Cancer Institute, Zhong Shan Hospital and Shanghai Medical School, Fudan University,
| |
Collapse
|
138
|
Zhang T, Dong X, Zhou Y, Liu M, Hang J, Wu L. Development and validation of a radiomics nomogram to discriminate advanced pancreatic cancer with liver metastases or other metastatic patterns. Cancer Biomark 2021; 32:541-550. [PMID: 34334383 DOI: 10.3233/cbm-210190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Patients with advanced pancreatic cancer (APC) and liver metastases have much poorer prognoses than patients with other metastatic patterns. OBJECTIVE This study aimed to develop and validate a radiomics model to discriminate patients with pancreatic cancer and liver metastases from those with other metastatic patterns. METHODS We evaluated 77 patients who had APC and performed texture analysis on the region of interest. 58 patients and 19 patients were allocated randomly into the training and validation cohorts with almost the same proportion of liver metastases. An independentsamples t-test was used for feature selection in the training cohort. Random forest classifier was used to construct models based on these features and a radiomics signature (RS) was derived. A nomogram was constructed based on RS and CA19-9, and was validated with calibration plot and decision curve. The prognostic value of RS was evaluated by Kaplan-Meier methods. RESULTS The constructed nomogram demonstrated good discrimination in the training (AUC = 0.93) and validation (AUC = 0.81) cohorts. In both cohorts, patients with RS > 0.61 had much poorer overall survival than patients with RS < 0.61. CONCLUSIONS This study presents a radiomics nomogram incorporating RS and CA19-9 to discriminate patients who have APC with liver metastases from patients with other metastatic patterns.
Collapse
Affiliation(s)
- Tianliang Zhang
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Dong
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- Changzhou No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Muhan Liu
- Changzhou No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Junjie Hang
- Changzhou No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Lixia Wu
- Department of Oncology, Shanghai JingAn District ZhaBei Central Hospital, Shanghai, China
| |
Collapse
|
139
|
Jiao L, Eickhoff R, Egners A, Jumpertz S, Roth J, Erdem M, Kroh A, Duimel H, López-Iglesias C, Caro P, Heij LR, Schmeding M, Meierhofer D, Neumann UP, Cramer T. Deletion of mTOR in liver epithelial cells enhances hepatic metastasis of colon cancer. J Pathol 2021; 255:270-284. [PMID: 34309874 DOI: 10.1002/path.5768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
Activation of the mechanistic target of rapamycin (mTOR) pathway is frequently found in cancer, but mTOR inhibitors have thus far failed to demonstrate significant antiproliferative efficacy in the majority of cancer types. Besides cancer cell-intrinsic resistance mechanisms, it is conceivable that mTOR inhibitors impact on non-malignant host cells in a manner that ultimately supports resistance of cancer cells. Against this background, we sought to analyze the functional consequences of mTOR inhibition in hepatocytes for the growth of metastatic colon cancer. To this end, we established liver epithelial cell (LEC)-specific knockout (KO) of mTOR (mTORLEC ) mice. We used these mice to characterize the growth of colorectal liver metastases with or without partial hepatectomy to model different clinical settings. Although the LEC-specific loss of mTOR remained without effect on metastasis growth in intact liver, partial liver resection resulted in the formation of larger metastases in mTORLEC mice compared with wildtype controls. This was accompanied by significantly enhanced inflammatory activity in LEC-specific mTOR KO livers after partial liver resection. Analysis of NF-ĸB target gene expression and immunohistochemistry of p65 displayed a significant activation of NF-ĸB in mTORLEC mice, suggesting a functional importance of this pathway for the observed inflammatory phenotype. Taken together, we show an unexpected acceleration of liver metastases upon deletion of mTOR in LECs. Our results support the notion that non-malignant host cells can contribute to resistance against mTOR inhibitors and encourage testing whether anti-inflammatory drugs are able to improve the efficacy of mTOR inhibitors for cancer therapy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Long Jiao
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Roman Eickhoff
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Antje Egners
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Sandra Jumpertz
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Johanna Roth
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Merve Erdem
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Andreas Kroh
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Hans Duimel
- Microscopy Core Lab, FHML and M4I Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Carmen López-Iglesias
- Microscopy Core Lab, FHML and M4I Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Pilar Caro
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Lara R Heij
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany.,Pathology, RWTH University Hospital, Aachen, Germany
| | - Maximilian Schmeding
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | | | - Ulf P Neumann
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany.,ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany.,ESCAM - European Surgery Center Aachen Maastricht, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Thorsten Cramer
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany.,ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
140
|
Myeloid Cell Mediated Immune Suppression in Pancreatic Cancer. Cell Mol Gastroenterol Hepatol 2021; 12:1531-1542. [PMID: 34303882 PMCID: PMC8529393 DOI: 10.1016/j.jcmgh.2021.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA), the most common pancreatic cancer, is a nearly universally lethal malignancy. PDA is characterized by extensive infiltration of immunosuppressive myeloid cells, including tumor-associated macrophages and myeloid-derived suppressor cells. Myeloid cells in the tumor microenvironment inhibit cytotoxic T-cell responses promoting carcinogenesis. Immune checkpoint therapy has not been effective in PDA, most likely because of this robust immune suppression, making it critical to elucidate mechanisms behind this phenomenon. Here, we review myeloid cell infiltration and cellular crosstalk in PDA progression and highlight current therapeutic approaches to target myeloid cell-driven immune suppression.
Collapse
Key Words
- adm, acinar to ductal metaplasia
- csf1r, colony-stimulating factor 1 receptor
- ctla-4, cytotoxic t lymphocyte antigen 4
- egfr, epidermal growth factor receptor
- gm-csf, granulocyte-macrophage colony-stimulating factor
- hb-egf, heparin-binding egf-like growth factor
- ikk, inhibitory κb kinase
- il, interleukin
- mapk, mitogen-activated protein kinase
- mdsc, myeloid-derived suppressor cell
- m-mdsc, mononuclear myeloid-derived suppressor cell
- nf-κb, nuclear factor kappa b
- panin, pancreatic intraepithelial neoplasia
- pda, pancreatic ductal adenocarcinoma
- pd-1, programmed cell death
- pmn, polymorphonuclear
- tam, tumor-associated macrophage
- tme, tumor microenvironment
- tnf, tumor necrosis factor
Collapse
|
141
|
Meltzer S, Torgunrud A, Abrahamsson H, Solbakken AM, Flatmark K, Dueland S, Bakke KM, Bousquet PA, Negård A, Johansen C, Lyckander LG, Larsen FO, Schou JV, Redalen KR, Ree AH. The circulating soluble form of the CD40 costimulatory immune checkpoint receptor and liver metastasis risk in rectal cancer. Br J Cancer 2021; 125:240-246. [PMID: 33837301 PMCID: PMC8292313 DOI: 10.1038/s41416-021-01377-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In colorectal cancer, the inflamed tumour microenvironment with its angiogenic activities is immune- tolerant and incites progression to liver metastasis. We hypothesised that angiogenic and inflammatory factors in serum samples from patients with non-metastatic rectal cancer could inform on liver metastasis risk. METHODS We measured 84 angiogenic and inflammatory markers in serum sampled at the time of diagnosis within the population-based cohort of 122 stage I-III patients. In a stepwise manner, the statistically strongest proteins associated with time to development of liver metastasis were analysed in the corresponding serum samples from 273 stage II-III rectal cancer patients in three independent cohorts. RESULTS We identified the soluble form of the costimulatory immune checkpoint receptor cluster of differentiation molecule 40 (sCD40) as a marker of liver metastasis risk across all patient cohorts-the higher the sCD40 level, the shorter time to liver metastasis. In patients receiving neoadjuvant treatment, the sCD40 value remained an independent variable associated with progression to liver metastasis along with the local treatment response. Of note, serum sCD40 was not associated with progression to lung metastasis. CONCLUSIONS Circulating sCD40 is a marker of liver metastasis risk in rectal cancer and may be developed for use in clinical practice.
Collapse
Affiliation(s)
- Sebastian Meltzer
- grid.411279.80000 0000 9637 455XDepartment of Oncology, Akershus University Hospital, Lørenskog, Norway ,grid.411279.80000 0000 9637 455XDepartment of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Annette Torgunrud
- grid.55325.340000 0004 0389 8485Department of Tumour Biology, Oslo University Hospital, Oslo, Norway
| | - Hanna Abrahamsson
- grid.411279.80000 0000 9637 455XDepartment of Oncology, Akershus University Hospital, Lørenskog, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arne Mide Solbakken
- grid.55325.340000 0004 0389 8485Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| | - Kjersti Flatmark
- grid.55325.340000 0004 0389 8485Department of Tumour Biology, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| | - Svein Dueland
- grid.55325.340000 0004 0389 8485Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Kine Mari Bakke
- grid.411279.80000 0000 9637 455XDepartment of Oncology, Akershus University Hospital, Lørenskog, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Paula Anna Bousquet
- grid.411279.80000 0000 9637 455XDepartment of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Anne Negård
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.411279.80000 0000 9637 455XDepartment of Radiology, Akershus University Hospital, Lørenskog, Norway
| | - Christin Johansen
- grid.411279.80000 0000 9637 455XDepartment of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Lars Gustav Lyckander
- grid.411279.80000 0000 9637 455XDepartment of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Finn Ole Larsen
- grid.411646.00000 0004 0646 7402Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Jakob Vasehus Schou
- grid.411646.00000 0004 0646 7402Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Kathrine Røe Redalen
- grid.5947.f0000 0001 1516 2393Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Hansen Ree
- grid.411279.80000 0000 9637 455XDepartment of Oncology, Akershus University Hospital, Lørenskog, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
142
|
Geng X, Chen H, Zhao L, Hu J, Yang W, Li G, Cheng C, Zhao Z, Zhang T, Li L, Sun B. Cancer-Associated Fibroblast (CAF) Heterogeneity and Targeting Therapy of CAFs in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:655152. [PMID: 34336821 PMCID: PMC8319605 DOI: 10.3389/fcell.2021.655152] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease that typically features a dramatic desmoplastic reaction, especially fibroblasts. The roles of cancer-associated fibroblasts (CAFs) in PDAC have received more attention in recent years. As increasing evidence suggests the heterogeneity of CAFs in PDAC, different CAF subtypes have been shown to support tumor growth, while others suppress cancer proliferation. Myofibrotic CAFs (myCAFs) show alpha-smooth muscle actin (α-SMA)high interleukin-6 (IL-6)low myofibroblastic features, are activated by direct contact with tumor cells, and are located in the periglandular region. Inflammatory CAFs (iCAFs) show α-SMAlow IL-6high inflammatory features, are activated by paracrine factors secreted from tumor cells, and are located away from cancer cells. Antigen-presenting CAFs (apCAFs) show major histocompatibility complex II (MHC II) family genes that are highly expressed. CAFs have also been gradually explored as diagnostic and prognostic markers in pancreatic cancer. Targeted therapy of CAFs in PDAC has gradually attracted attention. With the deepening of related studies, some meaningful positive and negative results have surfaced, and CAFs may be the key to unlocking the door to pancreatic cancer treatment. Our review summarizes recent advances in the heterogeneity, function, and markers of CAFs in pancreatic cancer, as well as research and treatment targeting CAFs in pancreatic cancer.
Collapse
Affiliation(s)
- Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Abdominal Endoscopic Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Zhao
- Department of Gynecology, Qinghai University Affiliated Hospital, Xining, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chundong Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
143
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
144
|
Davis TA, Conradie D, Shridas P, de Beer FC, Engelbrecht AM, de Villiers WJS. Serum Amyloid A Promotes Inflammation-Associated Damage and Tumorigenesis in a Mouse Model of Colitis-Associated Cancer. Cell Mol Gastroenterol Hepatol 2021; 12:1329-1341. [PMID: 34217896 PMCID: PMC8463861 DOI: 10.1016/j.jcmgh.2021.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Identifying new approaches to lessen inflammation, as well as the associated malignant consequences, remains crucial to improving the lives and prognosis of patients diagnosed with inflammatory bowel diseases. Although it previously has been suggested as a suitable biomarker for monitoring disease activity in patients diagnosed with Crohn's disease, the role of the acute-phase protein serum amyloid A (SAA) in inflammatory bowel disease remains unclear. In this study, we aimed to assess the role of SAA in colitis-associated cancer. METHODS We established a model of colitis-associated cancer in wild-type and SAA double-knockout (Saa1/2-/-) mice by following the azoxymethane/dextran sulfate sodium protocol. Disease activity was monitored throughout the study while colon and tumor tissues were harvested for subsequent use in cytokine analyses, Western blot, and immunohistochemistry +experiments. RESULTS We observed attenuated disease activity in mice deficient for Saa1/2 as evidenced by decreased weight loss, increased stool consistency, decreased rectal bleeding, and decreased colitis-associated tissue damage. Macrophage infiltration, including CD206+ M2-like macrophages, also was attenuated in SAA knockout mice, while levels of interleukin 4, interleukin 10, and tumor necrosis factor-ɑ were decreased in the distal colon. Mice deficient for SAA also showed a decreased tumor burden, and tumors were found to have increased apoptotic activity coupled with decreased expression for markers of proliferation. CONCLUSION Based on these findings, we conclude that SAA has an active role in inflammatory bowel disease and that it could serve as a therapeutic target aimed at decreasing chronic inflammation and the associated risk of developing colitis-associated cancer.
Collapse
Affiliation(s)
| | | | - Preetha Shridas
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Frederick C de Beer
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences; African Cancer Institute, Department of Global Health
| | - Willem J S de Villiers
- African Cancer Institute, Department of Global Health; Department of Internal Medicine, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
145
|
Beatty GL, Werba G, Lyssiotis CA, Simeone DM. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev 2021; 35:940-962. [PMID: 34117095 PMCID: PMC8247606 DOI: 10.1101/gad.348523.121] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related mortality in the United States and has only recently achieved a 5-yr survival rate of 10%. This dismal prognosis reflects the remarkable capacity of PDAC to effectively adapt to and resist therapeutic intervention. In this review, we discuss recent advances in our understanding of the biological underpinnings of PDAC and their implications as targetable vulnerabilities in this highly lethal disease.
Collapse
Affiliation(s)
- Gregory L Beatty
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gregor Werba
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York 10016, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Diane M Simeone
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York 10016, USA
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
146
|
Shi L, Lu BL, Qiu Y, Huang L, Huang SY, Mao R, Lin JJ, Du JF, Feng ST, Li ZP, Sun CH, Li XH. Hepatic mosaic enhancement pattern correlates with increased inflammatory activity and adverse therapeutic outcomes in patients with Crohn's disease. Abdom Radiol (NY) 2021; 46:3149-3158. [PMID: 33646351 DOI: 10.1007/s00261-021-02979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE This study aimed to evaluate the role of hepatic mosaic enhancement pattern (HMEP) on computed tomography images in the disease activity and therapeutic outcome of Crohn's Disease (CD). METHODS Twenty-five CD patients with HMEP comprised the HMEP group, and 25 CD patients without HMEP, who had a similar onset age, sex, and disease course with those in the HMEP group, comprised the non-HMEP group. No underlying liver/biliary disease was observed in any of the patients. Clinical characteristics, laboratory test results, Lémann index, and CD endoscopic index of severity (CDEIS) were compared between the groups using the Student t-, Mann-Whitney U, Chi square, or Fisher's exact tests. Patients received top-down, step-up, or traditional treatment during the follow-up period. After the 1-year follow-up, therapeutic outcomes (active inflammation [CDEIS > 3.5 if the endoscopic data were available, or C-reactive protein level > 5 mg/L if the endoscopic data were unavailable] or remission) were evaluated. RESULTS The occurrence rate of fistulas/abscesses was higher in the HMEP group (84%, 21/25) than in the non-HMEP group (48%, 12/25) with no statistical significance (P = 0.056). The HMEP group showed a higher C-reactive protein level (P = 0.001), erythrocyte sedimentation rate (P = 0.013), and blood platelet count (P = 0.005). There was no significant difference in therapeutic strategies between the groups (P = 0.509). The HMEP group showed a significantly lower remission ratio after anti-inflammatory treatment than the non-HMEP group (P = 0.045). CONCLUSIONS HMEP was correlated with increased inflammatory activity and adverse therapeutic outcomes in CD. This finding provided insights regarding novel markers of CD diagnosis and treatment.
Collapse
Affiliation(s)
- Li Shi
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150, People's Republic of China
| | - Bao-Lan Lu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Yun Qiu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Li Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Si-Yun Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Jin-Jiang Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Jin-Fang Du
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Zi-Ping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | - Can-Hui Sun
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.
| | - Xue-Hua Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
147
|
Serum Amyloid A Proteins and Their Impact on Metastasis and Immune Biology in Cancer. Cancers (Basel) 2021; 13:cancers13133179. [PMID: 34202272 PMCID: PMC8267706 DOI: 10.3390/cancers13133179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The liver responds to systemic inflammation and injury in a coordinated manner, called the acute phase response. While this normal physiological response aims to restore homeostasis, malignant transformation coopts this biology to increase the risk for metastasis, immune evasion, and therapeutic resistance. In this Review, we discuss the importance of acute phase response proteins in regulating cancer biology and treatment efficacy. We also consider potential strategies to intervene on acute phase biology as an approach to improve outcomes in cancer. Abstract Cancer triggers the systemic release of inflammatory molecules that support cancer cell metastasis and immune evasion. Notably, this biology shows striking similarity to an acute phase response that is coordinated by the liver. Consistent with this, a role for the liver in defining cancer biology is becoming increasingly appreciated. Understanding the mechanisms that link acute phase biology to metastasis and immune evasion in cancer may reveal vulnerable pathways and novel therapeutic targets. Herein, we discuss a link between acute phase biology and cancer with a focus on serum amyloid A proteins and their involvement in regulating the metastatic cascade and cancer immunobiology.
Collapse
|
148
|
Peisl S, Mellenthin C, Vignot L, Gonelle-Gispert C, Bühler L, Egger B. Therapeutic targeting of STAT3 pathways in pancreatic adenocarcinoma: A systematic review of clinical and preclinical literature. PLoS One 2021; 16:e0252397. [PMID: 34138876 PMCID: PMC8211286 DOI: 10.1371/journal.pone.0252397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma is a highly lethal disease with increasing incidence. Due to high resistance, chemo/radiotherapy has limited success in pancreatic cancer and only marginally prolongs patient survival. Therefore, novel biomarkers and therapeutic targets are needed. In the present review, we performed a comprehensive summary of therapeutic approaches targeting the GP130/JAK/STAT3 pathway. METHODS We systematically reviewed the PubMed and Embase databases for preclinical and clinical studies, from inception to October 4, 2020, on drugs targeting the GP130/JAK/STAT3 pathway. Bias assessments and qualitative analyses were performed. RESULTS Twenty-five preclinical and nine clinical trials were included in the review. All preclinical studies reported a favorable outcome in terms of pancreatic ductal adenocarcinoma progression. Futhermore, drugs targeting the GP130/JAK/STAT3 pathway were shown to be efficient chemosensitizers. However, high publication bias was assumed. In the clinical setting, bazedoxifene and itacitinib improved patient outcomes. CONCLUSION Preclinical studies strongly suggest significant efficacy of drugs targeting GP130/JAK/STAT3 in the treatment of pancreatic ductal adenocarcinoma and that these molecules are effective chemosensitizers. Though only a few trials have shown the efficacy in a clinical setting, the STAT3 pathway remains a promising drug target for future treatment of pancreatic ductal adenocarcinoma and may help overcome chemotherapy resistance.
Collapse
Affiliation(s)
- Sarah Peisl
- Department of Surgery, HFR Fribourg, Fribourg, Switzerland
| | | | - Lucie Vignot
- Department of Oncology, HFR Fribourg, Fribourg, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Leo Bühler
- Department of Surgery, HFR Fribourg, Fribourg, Switzerland
| | - Bernhard Egger
- Department of Surgery, HFR Fribourg, Fribourg, Switzerland
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
149
|
A Proteomic Study on the Personalized Protein Corona of Liposomes. Relevance for Early Diagnosis of Pancreatic DUCTAL Adenocarcinoma and Biomarker Detection. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2020006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Due to late diagnosis, high incidence of metastasis, and poor survival rate, pancreatic cancer is one of the most leading cause of cancer-related death. Although manifold recent efforts have been done to achieve an early diagnosis of pancreatic cancer, CA-19.9 is currently the unique biomarker that is adopted for the detection, despite its limits in terms of sensitivity and specificity. To identify potential protein biomarkers for pancreatic ductal adenocarcinoma (PDAC), we used three model liposomes as nanoplatforms that accumulate proteins from human plasma and studied the composition of this biomolecular layer, which is known as protein corona. Indeed, plasma proteins adsorb on nanoparticle surface according to their abundance and affinity to the employed nanomaterial, thus even small differences between healthy and PDAC protein expression levels can be, in principle, detected. By mass spectrometry experiments, we quantified such differences and identified possible biomarkers for PDAC. Some of them are already known to exhibit different expressions in PDAC proteomes, whereas the role of other relevant proteins is still not clear. Therefore, we predict that the employment of nanomaterials and their protein corona may represent a useful tool to amplify the detection sensitivity of cancer biomarkers, which may be used for the early diagnosis of PDAC, with clinical implication for the subsequent therapy in the context of personalized medicine.
Collapse
|
150
|
Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature 2021; 594:566-571. [PMID: 34079127 DOI: 10.1038/s41586-021-03614-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
The persistence of undetectable disseminated tumour cells (DTCs) after primary tumour resection poses a major challenge to effective cancer treatment1-3. These enduring dormant DTCs are seeds of future metastases, and the mechanisms that switch them from dormancy to outgrowth require definition. Because cancer dormancy provides a unique therapeutic window for preventing metastatic disease, a comprehensive understanding of the distribution, composition and dynamics of reservoirs of dormant DTCs is imperative. Here we show that different tissue-specific microenvironments restrain or allow the progression of breast cancer in the liver-a frequent site of metastasis4 that is often associated with a poor prognosis5. Using mouse models, we show that there is a selective increase in natural killer (NK) cells in the dormant milieu. Adjuvant interleukin-15-based immunotherapy ensures an abundant pool of NK cells that sustains dormancy through interferon-γ signalling, thereby preventing hepatic metastases and prolonging survival. Exit from dormancy follows a marked contraction of the NK cell compartment and the concurrent accumulation of activated hepatic stellate cells (aHSCs). Our proteomics studies on liver co-cultures implicate the aHSC-secreted chemokine CXCL12 in the induction of NK cell quiescence through its cognate receptor CXCR4. CXCL12 expression and aHSC abundance are closely correlated in patients with liver metastases. Our data identify the interplay between NK cells and aHSCs as a master switch of cancer dormancy, and suggest that therapies aimed at normalizing the NK cell pool might succeed in preventing metastatic outgrowth.
Collapse
|