101
|
Dong H, Kong X, Wang X, Liu Q, Fang Y, Wang J. The Causal Effect of Dietary Composition on the Risk of Breast Cancer: A Mendelian Randomization Study. Nutrients 2023; 15:nu15112586. [PMID: 37299548 DOI: 10.3390/nu15112586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Breast cancer has become the most common malignancy among women, posing a severe health risk to women worldwide and creating a heavy social burden. Based on current observational studies, the dietary factor may have a causal relationship with breast cancer. Therefore, exploring how dietary composition affects breast cancer incidence will provide nutrition strategies for clinicians and women. We performed a two-sample Mendelian randomization (MR) analysis to find the causal effect of four kinds of relative macronutrient intake (protein, carbohydrate, sugar, and fat) on the risk of breast cancer and its subtypes [Luminal A, Luminal B, Luminal B HER2-negative, HER2-positive, Triple-negative, Estrogen receptor (ER) positive, and ER-negative breast cancer]. The Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) test, MR-Egger intercept test, Cochran's Q statistic, funnel plot, and leave-one-out (Loo) analysis were all used in a sensitivity analysis to test the robustness of MR. Genetically, a higher relative protein intake was found as a protective factor for Luminal A and overall breast cancer, which was inconsistent with recent findings. A higher relative sugar intake could genetically promote the risk of Luminal B and HER2-positive breast cancer. Conclusions: A higher protein proportion in diet genetically reduces the risk of breast cancer, while higher relative sugar intake does the opposite.
Collapse
Affiliation(s)
- Hao Dong
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiangyi Kong
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiangyu Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yi Fang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
102
|
Kalam F, James DL, Li YR, Coleman MF, Kiesel VA, Cespedes Feliciano EM, Hursting SD, Sears DD, Kleckner AS. Intermittent fasting interventions to leverage metabolic and circadian mechanisms for cancer treatment and supportive care outcomes. J Natl Cancer Inst Monogr 2023; 2023:84-103. [PMID: 37139971 PMCID: PMC10157769 DOI: 10.1093/jncimonographs/lgad008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 05/05/2023] Open
Abstract
Intermittent fasting entails restricting food intake during specific times of day, days of the week, religious practice, or surrounding clinically important events. Herein, the metabolic and circadian rhythm mechanisms underlying the proposed benefits of intermittent fasting for the cancer population are described. We summarize epidemiological, preclinical, and clinical studies in cancer published between January 2020 and August 2022 and propose avenues for future research. An outstanding concern regarding the use of intermittent fasting among cancer patients is that fasting often results in caloric restriction, which can put patients already prone to malnutrition, cachexia, or sarcopenia at risk. Although clinical trials do not yet provide sufficient data to support the general use of intermittent fasting in clinical practice, this summary may be useful for patients, caregivers, and clinicians who are exploring intermittent fasting as part of their cancer journey for clinical outcomes and symptom management.
Collapse
Affiliation(s)
- Faiza Kalam
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University. Chicago, IL, USA
| | - Dara L James
- College of Nursing, University of South Alabama, Mobile, AL, USA
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics and Epigenetics, City of Hope, Duarte, CA, USA
- Division of Quantitative Medicine & Systems Biology, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Violet A Kiesel
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | | | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Amber S Kleckner
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
- Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
103
|
Udumula MP, Singh H, Faraz R, Poisson L, Tiwari N, Dimitrova I, Hijaz M, Gogoi R, Swenor M, Munkarah A, Giri S, Rattan R. Intermittent Fasting induced ketogenesis inhibits mouse epithelial ovarian tumors by promoting anti-tumor T cell response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531740. [PMID: 36945428 PMCID: PMC10028914 DOI: 10.1101/2023.03.08.531740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Epithelial Ovarian Cancer (EOC) is the most lethal gynecologic cancer with limited genetic alterations identified that can be therapeutically targeted. In tumor bearing mice, short-term fasting, fasting mimicking diet and calorie restriction enhance the activity of antineoplastic treatment by modulating systemic metabolism and boosting anti-tumor immunity. We tested the outcome of sixteen-hour intermittent fasting (IF) on mouse EOC progression with focus on fasting driven antitumor immune responses. IF resulted in consistent decrease of tumor promoting metabolic growth factors and cytokines, recapitulating changes that creates a tumor antagonizing environment. Immune profiling revealed that IF profoundly reshapes anti-cancer immunity by inducing increase in CD4+ and CD8+ cells, paralleled by enhanced antitumor Th1 and cytotoxic responses, by enhancing their metabolic fitness. Metabolic studies revealed that IF generated bioactive metabolite BHB which can be a potential substitute for simulating the antitumor benefits of IF. However, in a direct comparison, IF surpassed exogenous BHB therapy in improving survival and activating anti-tumor immune response. Thus, our data provides strong evidence for IF and its metabolic mediator BHB for ameliorating EOC progression and as a viable approach in maintaining and sustaining an effective anti-tumor T cell response.
Collapse
Affiliation(s)
- Mary Priyanka Udumula
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Harshit Singh
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Rashid Faraz
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202
| | - Laila Poisson
- Department of Public Health Services and Center for Bioinformatics and Henry Ford Cancer Institute, Detroit, MI
| | - Nivedita Tiwari
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Irina Dimitrova
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Miriana Hijaz
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Radhika Gogoi
- Department of Gynecology Oncology, Barbara Ann Karmanos Cancer Institute and Wayne State University, Detroit, MI
| | - Margaret Swenor
- Department of Lifestyle and Functional Medicine, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Adnan Munkarah
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Shailendra Giri
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202
| | - Ramandeep Rattan
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
- Department of Oncology, Wayne State University, Detroit, MI
| |
Collapse
|
104
|
Pateras IS, Williams C, Gianniou DD, Margetis AT, Avgeris M, Rousakis P, Legaki AI, Mirtschink P, Zhang W, Panoutsopoulou K, Delis AD, Pagakis SN, Tang W, Ambs S, Warpman Berglund U, Helleday T, Varvarigou A, Chatzigeorgiou A, Nordström A, Tsitsilonis OE, Trougakos IP, Gilthorpe JD, Frisan T. Short term starvation potentiates the efficacy of chemotherapy in triple negative breast cancer via metabolic reprogramming. J Transl Med 2023; 21:169. [PMID: 36869333 PMCID: PMC9983166 DOI: 10.1186/s12967-023-03935-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/27/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Chemotherapy (CT) is central to the treatment of triple negative breast cancer (TNBC), but drug toxicity and resistance place strong restrictions on treatment regimes. Fasting sensitizes cancer cells to a range of chemotherapeutic agents and also ameliorates CT-associated adverse effects. However, the molecular mechanism(s) by which fasting, or short-term starvation (STS), improves the efficacy of CT is poorly characterized. METHODS The differential responses of breast cancer or near normal cell lines to combined STS and CT were assessed by cellular viability and integrity assays (Hoechst and PI staining, MTT or H2DCFDA staining, immunofluorescence), metabolic profiling (Seahorse analysis, metabolomics), gene expression (quantitative real-time PCR) and iRNA-mediated silencing. The clinical significance of the in vitro data was evaluated by bioinformatical integration of transcriptomic data from patient data bases: The Cancer Genome Atlas (TCGA), European Genome-phenome Archive (EGA), Gene Expression Omnibus (GEO) and a TNBC cohort. We further examined the translatability of our findings in vivo by establishing a murine syngeneic orthotopic mammary tumor-bearing model. RESULTS We provide mechanistic insights into how preconditioning with STS enhances the susceptibility of breast cancer cells to CT. We showed that combined STS and CT enhanced cell death and increased reactive oxygen species (ROS) levels, in association with higher levels of DNA damage and decreased mRNA levels for the NRF2 targets genes NQO1 and TXNRD1 in TNBC cells compared to near normal cells. ROS enhancement was associated with compromised mitochondrial respiration and changes in the metabolic profile, which have a significant clinical prognostic and predictive value. Furthermore, we validate the safety and efficacy of combined periodic hypocaloric diet and CT in a TNBC mouse model. CONCLUSIONS Our in vitro, in vivo and clinical findings provide a robust rationale for clinical trials on the therapeutic benefit of short-term caloric restriction as an adjuvant to CT in triple breast cancer treatment.
Collapse
Affiliation(s)
- Ioannis S Pateras
- 2nd Department of Pathology, "Attikon" University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62, Athens, Greece.
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Despoina D Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 157 84, Athens, Greece
| | - Aggelos T Margetis
- 2nd Department of Internal Medicine, Athens Naval and Veterans Hospital, 115 21, Athens, Greece
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 115 27, Athens, Greece
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 71, Athens, Greece
| | - Pantelis Rousakis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, 157 84, Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, 013 07, Dresden, Germany
| | - Wei Zhang
- Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 71, Athens, Greece
| | - Anastasios D Delis
- Centre for Basic Research, Bioimaging Unit, Biomedical Research Foundation, Academy of Athens, 115 27, Athens, Greece
| | - Stamatis N Pagakis
- Centre for Basic Research, Bioimaging Unit, Biomedical Research Foundation, Academy of Athens, 115 27, Athens, Greece
| | - Wei Tang
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, MD, 20892-4258, USA
- Data Science & Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, MD, 20892-4258, USA
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Anastasia Varvarigou
- Department of Paediatrics, University of Patras Medical School, General University Hospital, 265 04, Patras, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, 013 07, Dresden, Germany
| | - Anders Nordström
- Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Ourania E Tsitsilonis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, 157 84, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 157 84, Athens, Greece
| | - Jonathan D Gilthorpe
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
105
|
Blaževitš O, Di Tano M, Longo VD. Fasting and fasting mimicking diets in cancer prevention and therapy. Trends Cancer 2023; 9:212-222. [PMID: 36646607 DOI: 10.1016/j.trecan.2022.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
Fasting mimicking diets (FMDs) are emerging as effective dietary interventions with the potential to improve healthspan and decrease the incidence of cancer and other age-related diseases. Unlike chronic dietary restrictions or water-only fasting, FMDs represent safer and less challenging options for cancer patients. FMD cycles increase protection in healthy cells while sensitizing cancer cells to various therapies, partly by generating complex environments that promote differential stress resistance (DSR) and differential stress sensitization (DSS), respectively. More recent data indicate that FMD cycles enhance the efficacy of a range of drugs targeting different cancers in mice by stimulating antitumor immunity. Here, we report on the effects of FMD cycles on cancer prevention and treatment and the mechanisms implicated in these effects.
Collapse
Affiliation(s)
- Olga Blaževitš
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Maira Di Tano
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Valter D Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
106
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
107
|
Jiang W, Zhong S, Chen Z, Qian J, Huang X, Zhang H, Wen L, Zhang Y, Yao G. 2D-CuPd nanozyme overcome tamoxifen resistance in breast cancer by regulating the PI3K/AKT/mTOR pathway. Biomaterials 2023; 294:121986. [PMID: 36623325 DOI: 10.1016/j.biomaterials.2022.121986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Tamoxifen is the most commonly used treatment for estrogen-receptor (ER) positive breast cancer patients, but its efficacy is severely hampered by resistance. PI3K/AKT/mTOR pathway inhibition was proven to augment the benefit of endocrine therapy and exhibited potential for reversing tamoxifen-induced resistance. However, the vast majority of PI3K inhibitors currently approved for clinical use are unsatisfactory in terms of safety and efficacy. We developed two-dimensional CuPd (2D-CuPd) nanosheets with oxidase and peroxidase nanozyme activities to offer a novel solution to inhibit the activity of the PI3K/AKT/mTOR pathway. 2D-CuPd exhibit superior dual nanozyme activities converting hydrogen peroxide accumulated in drug-resistant cells into more lethal hydroxyl radicals while compensating for the insufficient superoxide anion produced by tamoxifen. The potential clinical utility was further demonstrated in an orthotopically implanted tamoxifen-resistant PDX breast cancer model. Our results reveal a novel nanozyme ROS-mediated protein mechanism for the regulation of the PI3K subunit, illustrate the cellular pathways through which increased p85β protein expression contributes to tamoxifen resistance, and reveal p85β protein as a potential therapeutic target for overcoming tamoxifen resistance. 2D-CuPd is the first reported nanomaterial capable of degrading PI3K subunits, and its high performance combined with further materials engineering may lead to the development of nanozyme-based tumor catalytic therapy.
Collapse
Affiliation(s)
- Wenwei Jiang
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Suqin Zhong
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, 510006, Guangzhou, P. R. China
| | - Ziying Chen
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, 510006, Guangzhou, P. R. China
| | - Jieying Qian
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, 510006, Guangzhou, P. R. China
| | - Xiaowan Huang
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, 510006, Guangzhou, P. R. China
| | - Hao Zhang
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, 510006, Guangzhou, P. R. China
| | - Longping Wen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, P. R. China.
| | - Yunjiao Zhang
- School of Medicine, School of Biomedical Sciences and Engineering, South China University of Technology, 510006, Guangzhou, P. R. China; National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, 510006, Guangzhou, P. R. China.
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China.
| |
Collapse
|
108
|
Tau S, Miller TW. The role of cancer cell bioenergetics in dormancy and drug resistance. Cancer Metastasis Rev 2023; 42:87-98. [PMID: 36696004 PMCID: PMC10233409 DOI: 10.1007/s10555-023-10081-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
While anti-cancer drug treatments are often effective for the clinical management of cancer, these treatments frequently leave behind drug-tolerant persister cancer cells that can ultimately give rise to recurrent disease. Such persistent cancer cells can lie dormant for extended periods of time, going undetected by conventional clinical means. Understanding the mechanisms that such dormant cancer cells use to survive, and the mechanisms that drive emergence from dormancy, is critical to the development of improved therapeutic strategies to prevent and manage disease recurrence. Cancer cells often exhibit metabolic alterations compared to their non-transformed counterparts. An emerging body of evidence supports the notion that dormant cancer cells also have unique metabolic adaptations that may offer therapeutically targetable vulnerabilities. Herein, we review mechanisms through which cancer cells metabolically adapt to persist during drug treatments and develop drug resistance. We also highlight emerging therapeutic strategies to target dormant cancer cells via their metabolic features.
Collapse
Affiliation(s)
- Steven Tau
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Cancer Center, Lebanon, NH, USA
| | - Todd W Miller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Cancer Center, Lebanon, NH, USA.
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, HB-7936, Lebanon, NH 03756, USA.
| |
Collapse
|
109
|
Liu X, Peng S, Tang G, Xu G, Xie Y, Shen D, Zhu M, Huang Y, Wang X, Yu H, Huang M, Luo Y. Fasting-mimicking diet synergizes with ferroptosis against quiescent, chemotherapy-resistant cells. EBioMedicine 2023; 90:104496. [PMID: 36863257 PMCID: PMC9996234 DOI: 10.1016/j.ebiom.2023.104496] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND More than ten randomized clinical trials are being tested to evaluate the efficacy, effectiveness and safety of a fasting-mimicking diet (FMD) combined with different antitumor agents. METHODS UMI-mRNA sequencing, Cell-cycle analysis, Label retention, metabolomics, Multilabeling et al. were used to explore mechanisms. A tandem mRFP-GFP-tagged LC3B, Annexin-V-FITC Apoptosis, TUNEL, H&E, Ki-67 and animal model was used to search for synergistic drugs. FINDINGS Here we showed that fasting or FMD retards tumor growth more effectively but does not increase 5-fluorouracil/oxaliplatin (5-FU/OXA) sensitivity to apoptosis in vitro and in vivo. Mechanistically, we demonstrated that CRC cells would switch from an active proliferative to a slow-cycling state during fasting. Furthermore, metabolomics shows cell proliferation was decreased to survive nutrient stress in vivo, as evidenced by a low level of adenosine and deoxyadenosine monophosphate. CRC cells would decrease proliferation to achieve increased survival and relapse after chemotherapy. In addition, these fasting-induced quiescent cells were more prone to develop drug-tolerant persister (DTP) tumor cells postulated to be responsible for cancer relapse and metastasis. Then, UMI-mRNA sequencing uncovered the ferroptosis pathway as the pathway most influenced by fasting. Combining fasting with ferroptosis inducer treatment leads to tumor inhibition and eradication of quiescent cells by boosting autophagy. INTERPRETATION Our results suggest that ferroptosis could improve the antitumor activity of FMD + chemotherapy and highlight a potential therapeutic opportunity to avoid DTP cells-driven tumor relapse and therapy failure. FUNDING A full list of funding bodies can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China.
| | - Shaoyong Peng
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guannan Tang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Gaopo Xu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Yumo Xie
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Dingcheng Shen
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Mingxuan Zhu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Yaoyi Huang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Huichuan Yu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Meijin Huang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
110
|
Abstract
The incidences of both breast cancer and obesity are rising in the UK. Obesity increases the risk of developing breast cancer in the postmenopausal population and leads to worse outcomes in those of all ages treated for early-stage breast cancer. In this review we explore the multifactorial reasons behind this association and the clinical trial evidence for the benefits of physical activity and dietary interventions in the early and metastatic patient groups. As more people with breast cancer are cured, and those with metastatic disease are living longer, cancer survivorship is becoming increasingly important. Therefore, ensuring the long-term implications of cancer and cancer treatment are addressed is vital. Although there remains a lack of definitive evidence that deliberate weight loss after a diagnosis of breast cancer reduces disease recurrence, a number of studies have reported benefits of weight loss and of physical activity. However, the limited data currently available mean that clinicians remain unclear on the optimal lifestyle advice to give their patients. Further high-quality research is needed to provide this evidence base, which will be required to optimise clinical care and for the commissioning of lifestyle interventions in the UK in breast cancer survivors.
Collapse
|
111
|
Hanslian E, Koppold D, Michalsen A. Fasten – ein potentes Therapeutikum der
Moderne. AKTUELLE ERNÄHRUNGSMEDIZIN 2023. [DOI: 10.1055/a-1835-5612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Fasten als Therapie hat im letzten Jahrzehnt durch eine Fülle an
Grundlagenstudien und experimentellen Arbeiten sowie zunehmende klinische
Forschung seinen Einzug in die moderne Medizin gehalten. Es ist ein Verfahren
mit jahrtausendealter Tradition und dadurch verschiedenartigen
Durchführungsmöglichkeiten. Gemeinsam ist ihnen die Reduktion
der täglichen Nahrungsaufnahme für begrenzte Zeit. Diese hat
vielfältige Wirkungen auf Stoffwechsel, Zellen und Organsysteme, die es
zu einem potenten Mittel im ärztlichen Handeln machen
können.
Collapse
|
112
|
Short-Term Starvation Weakens the Efficacy of Cell Cycle Specific Chemotherapy Drugs through G1 Arrest. Int J Mol Sci 2023; 24:ijms24032498. [PMID: 36768821 PMCID: PMC9917170 DOI: 10.3390/ijms24032498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
Short-term starvation (STS) during chemotherapy can block the nutrient supply to tumors and make tumor cells much more sensitive to chemotherapeutic drugs than normal cells. However, because of the diversity of starvation methods and the heterogeneity of tumors, this method's specific effects and mechanisms for chemotherapy are still poorly understood. In this study, we used HeLa cells as a model for short-term starvation and etoposide (ETO) combined treatment, and we also mimicked the short-term starvation effect by knocking down the glycolytic enzyme GAPDH to explore the exact molecular mechanism. In addition, our study demonstrated that short-term starvation protects cancer cells against the chemotherapeutic agent ETO by reducing DNA damage and apoptosis due to the STS-induced cell cycle G1 phase block and S phase reduction, thereby diminishing the effect of ETO. Furthermore, these results suggest that starvation therapy in combination with cell cycle-specific chemotherapeutic agents must be carefully considered.
Collapse
|
113
|
López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab 2023; 35:12-35. [PMID: 36599298 DOI: 10.1016/j.cmet.2022.11.001] [Citation(s) in RCA: 237] [Impact Index Per Article: 118.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Both aging and cancer are characterized by a series of partially overlapping "hallmarks" that we subject here to a meta-analysis. Several hallmarks of aging (i.e., genomic instability, epigenetic alterations, chronic inflammation, and dysbiosis) are very similar to specific cancer hallmarks and hence constitute common "meta-hallmarks," while other features of aging (i.e., telomere attrition and stem cell exhaustion) act likely to suppress oncogenesis and hence can be viewed as preponderantly "antagonistic hallmarks." Disabled macroautophagy and cellular senescence are two hallmarks of aging that exert context-dependent oncosuppressive and pro-tumorigenic effects. Similarly, the equivalence or antagonism between aging-associated deregulated nutrient-sensing and cancer-relevant alterations of cellular metabolism is complex. The agonistic and antagonistic relationship between the processes that drive aging and cancer has bearings for the age-related increase and oldest age-related decrease of cancer morbidity and mortality, as well as for the therapeutic management of malignant disease in the elderly.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
114
|
Giugliano F, Boldrini L, Uliano J, Crimini E, Minchella I, Curigliano G. Fast Mimicking Diets and Other Innovative Nutritional Interventions to Treat Patients with Breast Cancer. Cancer Treat Res 2023; 188:199-218. [PMID: 38175347 DOI: 10.1007/978-3-031-33602-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The impact of nutritional patterns on the risk of breast cancer (BC) is well investigated in the oncology literature, including the type of diets and caloric intake. While obesity and elevated body mass index are well-reported critical risk factors of BC occurrence, there is an expanding area of oncology assessing the impact of caloric intake and nutritional patterns in patients with cancer. Caloric restriction and fast mimicking alimentary regimens have been consistently reported to improve survival outcomes based on preclinical models. Moreover, emerging clinical evidence has paved the way for new metabolic approaches for the treatment of BC, in addition to the established therapeutic arsenal or as alternative options. In this chapter, our aim is to discuss the principal strategies of metabolic manipulation through nutritional interventions for patients with BC as an innovative area of cancer therapy.
Collapse
Affiliation(s)
- Federica Giugliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Laura Boldrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Jacopo Uliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Edoardo Crimini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Ida Minchella
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
115
|
Ruze R, Chen Y, Xu R, Song J, Yin X, Wang C, Xu Q. Obesity, diabetes mellitus, and pancreatic carcinogenesis: Correlations, prevention, and diagnostic implications. Biochim Biophys Acta Rev Cancer 2023; 1878:188844. [PMID: 36464199 DOI: 10.1016/j.bbcan.2022.188844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
The prevalence of obesity, diabetes mellitus (DM), and pancreatic cancer (PC) has been consistently increasing in the last two decades worldwide. Sharing various influential risk factors in genetics and environmental inducers in pathogenesis, the close correlations of these three diseases have been demonstrated in plenty of clinical studies using multiple parameters among different populations. On the contrary, most measures aimed to manage and treat obesity and DM effectively reduce the risk and prevent PC occurrence, yet certain drugs can inversely promote pancreatic carcinogenesis instead. Most importantly, an elevation of blood glucose with or without a reduction in body weight, along with other potential tools, may provide valuable clues for detecting PC at an early stage in patients with obesity and DM, favoring a timely intervention and prolonging survival. Herein, the epidemiological and etiological correlations among these three diseases and the supporting clinical evidence of their connections are first summarized to favor a better and more thorough understanding of obesity- and DM-related pancreatic carcinogenesis. After comparing the distinct impacts of different weight-lowering and anti-diabetic treatments on the risk of PC, the possible diagnostic implications of hyperglycemia and weight loss in PC screening are also addressed in detail.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China.
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China.
| |
Collapse
|
116
|
Kikomeko J, Schutte T, van Velzen MJ, Seefat R, van Laarhoven HW. Short-term fasting and fasting mimicking diets combined with chemotherapy: a narrative review. Ther Adv Med Oncol 2023; 15:17588359231161418. [PMID: 36970110 PMCID: PMC10037739 DOI: 10.1177/17588359231161418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Many patients with cancer search for and use alternative and complementary treatments, aiming to improve the effectiveness of their anticancer treatment and a reduction in treatment-associated side effects. Short-term fasting (STF) and fasting mimicking diets (FMDs) are among the most commonly used dietary interventions. In recent years, different trials have reported the promising results of dietary interventions in combination with chemotherapy, in terms of slowing down tumor growth and reduction in chemotherapy-related side effects. In this narrative review, we identify and describe the current evidence about feasibility and effects of STF and FMDs in cancer patients receiving chemotherapy. The studies that examined the effects of STF when combined with chemotherapy suggest potential benefits regarding reduction in side effects and improved quality of life. We also conclude with a list of well-designed studies that are still recruiting patients, examining the long-term effects of STF.
Collapse
Affiliation(s)
| | - Tim Schutte
- Department of Oncology, Amsterdam UMC location
Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Treatment and
Quality of Life, Amsterdam, the Netherlands
| | - Merel J.M. van Velzen
- Department of Oncology, Amsterdam UMC location
University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Treatment and
Quality of Life, Amsterdam, the Netherlands
| | - Rianne Seefat
- Division of Molecular Pathology, The
Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Oncology, Amsterdam UMC location
University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Treatment and
Quality of Life, Amsterdam, the Netherlands
| |
Collapse
|
117
|
Buono R, Alhaddad M, Fruman DA. Novel pharmacological and dietary approaches to target mTOR in B-cell acute lymphoblastic leukemia. Front Oncol 2023; 13:1162694. [PMID: 37124486 PMCID: PMC10140551 DOI: 10.3389/fonc.2023.1162694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
High-risk subtypes of B-cell acute lymphoblastic leukemia (B-ALL) are frequently associated with aberrant activation of tyrosine kinases (TKs). These include Ph+ B-ALL driven by BCR-ABL, and Ph-like B-ALL that carries other chromosomal rearrangements and/or gene mutations that activate TK signaling. Currently, the tyrosine kinase inhibitor (TKI) dasatinib is added to chemotherapy as standard of care in Ph+ B-ALL, and TKIs are being tested in clinical trials for Ph-like B-ALL. However, growth factors and nutrients in the leukemia microenvironment can support cell cycle and survival even in cells treated with TKIs targeting the driving oncogene. These stimuli converge on the kinase mTOR, whose elevated activity is associated with poor prognosis. In preclinical models of Ph+ and Ph-like B-ALL, mTOR inhibitors strongly enhance the anti-leukemic efficacy of TKIs. Despite this strong conceptual basis for targeting mTOR in B-ALL, the first two generations of mTOR inhibitors tested clinically (rapalogs and mTOR kinase inhibitors) have not demonstrated a clear therapeutic window. The aim of this review is to introduce new therapeutic strategies to the management of Ph-like B-ALL. We discuss novel approaches to targeting mTOR in B-ALL with potential to overcome the limitations of previous mTOR inhibitor classes. One approach is to apply third-generation bi-steric inhibitors that are selective for mTOR complex-1 (mTORC1) and show preclinical efficacy with intermittent dosing. A distinct, non-pharmacological approach is to use nutrient restriction to target signaling and metabolic dependencies in malignant B-ALL cells. These two new approaches could potentiate TKI efficacy in Ph-like leukemia and improve survival.
Collapse
Affiliation(s)
- Roberta Buono
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- *Correspondence: David A. Fruman, ; Roberta Buono,
| | - Muneera Alhaddad
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- Hematology/Oncology Fellowship Program, CHOC Children's Hospital, Orange, CA, United States
| | - David A. Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- *Correspondence: David A. Fruman, ; Roberta Buono,
| |
Collapse
|
118
|
Tewari S, Vargas R, Reizes O. The impact of obesity and adipokines on breast and gynecologic malignancies. Ann N Y Acad Sci 2022; 1518:131-150. [PMID: 36302117 PMCID: PMC10092047 DOI: 10.1111/nyas.14916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The link between obesity and multiple disease comorbidities is well established. In 2003, Calle and colleagues presented the relationship between obesity and several cancer types, including breast, ovarian, and endometrial malignancies. Nearly, 20% of cancer-related deaths in females can be accounted for by obesity. Identifying obesity as a risk factor for cancer led to a focus on the role of fat-secreted cytokines, known as adipokines, on carcinogenesis and tumor progression. Early studies indicated that the adipokine leptin increases cell proliferation, invasion, and inhibition of apoptosis in multiple cancer types. As a greater appreciation of the obesity-cancer link has amassed, we now know that additional adipokines can impact tumorigenesis. A deeper understanding of the adipokine-activated signaling in cancer may identify new treatment strategies irrespective of obesity. Moreover, adipokines may serve as disease biomarkers, harnessing the potential of obesity-associated factors to serve as indicators of treatment response and disease prognosis. As studies investigating obesity and women's cancers continue to expand, it has become evident that breast, ovarian, and uterine cancers are distinctly impacted by adipokines. While complex, these distinct interactions may provide insight into cancer progression in these organs and new opportunities for targeted therapies. This review aims to organize and present the literature from the last 5 years investigating the mechanisms and implications of adipokine signaling in breast, endometrial, and ovarian cancers with a special focus on leptin and adiponectin.
Collapse
Affiliation(s)
- Surabhi Tewari
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roberto Vargas
- Department of Gynecologic Oncology, Women's Health Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Ofer Reizes
- Department of Gynecologic Oncology, Women's Health Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
119
|
Lee JS, Tocheny CE, Shaw LM. The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121992. [PMID: 36556357 PMCID: PMC9782138 DOI: 10.3390/life12121992] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
In this review, we provide an overview of the role of the insulin-like growth factor (IGF) signaling pathway in breast cancer and discuss its potential as a therapeutic target. The IGF pathway ligands, IGF-1 and IGF-2, and their receptors, primarily IGF-1R, are important for normal mammary gland biology, and dysregulation of their expression and function drives breast cancer risk and progression through activation of downstream signaling effectors, often in a subtype-dependent manner. The IGF signaling pathway has also been implicated in resistance to current therapeutic strategies, including ER and HER2 targeting drugs. Unfortunately, efforts to target IGF signaling for the treatment of breast cancer have been unsuccessful, due to a number of factors, most significantly the adverse effects of disrupting IGF signaling on normal glucose metabolism. We highlight here the recent discoveries that provide enthusiasm for continuing efforts to target IGF signaling for the treatment of breast cancer patients.
Collapse
Affiliation(s)
| | | | - Leslie M. Shaw
- Correspondence: ; Tel.: +1-508-856-8675; Fax: +1-508-856-1310
| |
Collapse
|
120
|
Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Cells 2022; 11:3454. [PMID: 36359850 PMCID: PMC9657932 DOI: 10.3390/cells11213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.
Collapse
Affiliation(s)
- Agata N. Burska
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Aruzhan Dildabek
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medina Khamijan
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ferdinand Molnár
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dos D. Sarbassov
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
121
|
Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell Metab 2022; 34:1675-1699. [PMID: 36261043 DOI: 10.1016/j.cmet.2022.09.023] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lipids have essential biological functions in the body (e.g., providing energy storage, acting as a signaling molecule, and being a structural component of membranes); however, an excess of lipids can promote tumorigenesis, colonization, and metastatic capacity of tumor cells. To metastasize, a tumor cell goes through different stages that require lipid-related metabolic and structural adaptations. These adaptations include altering the lipid membrane composition for invading other niches and overcoming cell death mechanisms and promoting lipid catabolism and anabolism for energy and oxidative stress protective purposes. Cancer cells also harness lipid metabolism to modulate the activity of stromal and immune cells to their advantage and to resist therapy and promote relapse. All this is especially worrying given the high fat intake in Western diets. Thus, metabolic interventions aiming to reduce lipid availability to cancer cells or to exacerbate their metabolic vulnerabilities provide promising therapeutic opportunities to prevent cancer progression and treat metastasis.
Collapse
Affiliation(s)
- Miguel Martin-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, 08028 Barcelona, Spain.
| | - Uxue Urdiroz-Urricelqui
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Claudia Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
122
|
Soliman GA. Intermittent fasting and time-restricted eating role in dietary interventions and precision nutrition. Front Public Health 2022; 10:1017254. [PMID: 36388372 PMCID: PMC9650338 DOI: 10.3389/fpubh.2022.1017254] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 01/28/2023] Open
Abstract
Intermittent fasting (IF), time-restricted eating (TRE) and fasting-mimicking diets (FMD) are gaining popularity as weight loss programs. As such, the timing and frequency of meals have been recognized as essential contributors to improving cardiometabolic health and a role as adjuvant therapy in cancer. Randomized controlled trials suggested that the weight loss associated with IF is due to a reduced energy intake due to time restriction. Although the supervised TRE clinical trials documented the dietary caloric intake, many free-living studies focused on the timing of meals without a complete characterization of the dietary intake, caloric density, or macronutrient composition. It is possible that both caloric-restriction diets and time-restriction protocols could work synergistically or additively to improve metabolic health outcomes. Like personalized medicine, achieving precision nutrition mandates the provision of the right nutrients to the right patient at the right time. To accomplish this goal, future studies need to evaluate the benefits of IF and TRE. Randomized controlled trials were conducted in different populations, ethnic groups, ages, geographic distribution, physical activity levels, body composition and in patients with obesity, diabetes, and cardiovascular diseases. Also, it is crucial to analyze the dietary composition and caloric density as related to circadian rhythm and timing of meals. It is conceivable that IF and TRE may contribute to precision nutrition strategies to achieve optimal health. However, more research is needed to evaluate IF and TRE effects on health outcomes and any side effects.
Collapse
|
123
|
Mercier BD, Tizpa E, Philip EJ, Feng Q, Huang Z, Thomas RM, Pal SK, Dorff TB, Li YR. Dietary Interventions in Cancer Treatment and Response: A Comprehensive Review. Cancers (Basel) 2022; 14:cancers14205149. [PMID: 36291933 PMCID: PMC9600754 DOI: 10.3390/cancers14205149] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy and radiotherapy are essential components to the management of most solid malignancies. These modalities exert their effects primarily by mediating the DNA damage of malignant cells; however, healthy cells are also damaged by the same mechanisms and can incur acute and late side effects resulting in both morbidity and mortality. Dietary interventions have been shown to reduce cancer growth, progression, and metastasis in many different solid tumor models and they show promise for improving cancer outcomes in early phase clinical studies. Here, we review preclinical and clinical studies that examine how dietary interventions can impact cancer treatment toxicity and efficacy in patients who were undergoing chemotherapy and/or radiotherapy. This information can help clinicians tailor the dietary regimens to patients based on their treatment methods and promote larger clinical trials to test the dietary effects on cancer treatment safety and efficacy. Abstract Chemotherapy and radiotherapy are first-line treatments in the management of advanced solid tumors. Whereas these treatments are directed at eliminating cancer cells, they cause significant adverse effects that can be detrimental to a patient’s quality of life and even life-threatening. Diet is a modifiable risk factor that has been shown to affect cancer risk, recurrence, and treatment toxicity, but little information is known how diet interacts with cancer treatment modalities. Although dietary interventions, such as intermittent fasting and ketogenic diets, have shown promise in pre-clinical studies by reducing the toxicity and increasing the efficacy of chemotherapeutics, there remains a limited number of clinical studies in this space. This review surveys the impact of dietary interventions (caloric restriction, intermittent and short-term fasting, and ketogenic diet) on cancer treatment outcomes in both pre-clinical and clinical studies. Early studies support a complementary role for these dietary interventions in improving patient quality of life across multiple cancer types by reducing toxicity and perhaps a benefit in treatment efficacy. Larger, phase III, randomized clinical trials are ultimately necessary to evaluate the efficacy of these dietary interventions in improving oncologic or quality of life outcomes for patients that are undergoing chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Benjamin D. Mercier
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Eemon Tizpa
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Errol J. Philip
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Qianhua Feng
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Ziyi Huang
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Reeny M. Thomas
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Sumanta K. Pal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Tanya B. Dorff
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Yun R. Li
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
- Division of Quantitative Medicine & Systems Biology, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA
- Correspondence:
| |
Collapse
|
124
|
Niu Y, Tang S. Circadian clock-mediated nuclear receptors in cancer. J Cell Physiol 2022; 237:4428-4442. [PMID: 36250982 DOI: 10.1002/jcp.30905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Circadian system coordinates the daily periodicity of physiological and biochemical functions to adapt to environmental changes. Circadian disruption has been identified to increase the risk of cancer and promote cancer progression, but the underlying mechanism remains unclear. And further mechanistic understanding of the crosstalk between clock components and cancer is urgent to achieve clinical anticancer benefits from chronochemotherapy. Recent studies discover that several nuclear receptors regulating circadian clock, also play crucial roles in mediating multiple cancer processes. In this review, we aim to summarize the latest developments of clock-related nuclear receptors in cancer biology and dissect mechanistic insights into how nuclear receptors coordinate with circadian clock to regulate tumorigenesis and cancer treatment. A better understanding of circadian clock-related nuclear receptors in cancer could help prevent tumorigenesis and improve anticancer efficacy.
Collapse
Affiliation(s)
- Ya Niu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shuang Tang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
125
|
Montégut L, de Cabo R, Zitvogel L, Kroemer G. Science-Driven Nutritional Interventions for the Prevention and Treatment of Cancer. Cancer Discov 2022; 12:2258-2279. [PMID: 35997502 PMCID: PMC10749912 DOI: 10.1158/2159-8290.cd-22-0504] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
In population studies, dietary patterns clearly influence the development, progression, and therapeutic response of cancers. Nonetheless, interventional dietary trials have had relatively little impact on the prevention and treatment of malignant disease. Standardization of nutritional interventions combined with high-level mode-of-action studies holds the promise of identifying specific entities and pathways endowed with antineoplastic properties. Here, we critically review the effects of caloric restriction and more specific interventions on macro- and micronutrients in preclinical models as well as in clinical studies. We place special emphasis on the prospect of using defined nutrition-relevant molecules to enhance the efficacy of established anticancer treatments. SIGNIFICANCE The avoidance of intrinsically hypercaloric and toxic diets contributes to the prevention and cure of cancer. In addition, specific diet-induced molecules such as ketone bodies and micronutrients, including specific vitamins, have drug-like effects that are clearly demonstrable in preclinical models, mostly in the context of immunotherapies. Multiple trials are underway to determine the clinical utility of such molecules.
Collapse
Affiliation(s)
- Léa Montégut
- Equipe labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - Laurence Zitvogel
- Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, ClinicObiome, Villejuif, France
- INSERM U1015, Paris, France
- Equipe labellisée par la Ligue contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
126
|
Wang Z, Cui Y, Wen L, Yu H, Feng J, Yuan W, He X. Dietary Restriction against Parkinson's Disease: What We Know So Far. Nutrients 2022; 14:nu14194108. [PMID: 36235760 PMCID: PMC9571011 DOI: 10.3390/nu14194108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary restriction (DR) is defined as a moderate reduction in food intake while avoiding malnutrition. The beneficial effects of DR are being increasingly acknowledged in aging and in a series of age-related neurodegenerative disorders, for example, Parkinson's disease (PD). To date, the pathogenesis of PD remains elusive and there is no cure for it in spite of intensive research over decades. In this review, we summarize the current knowledge on the efficacy of DR on PD, focusing on the underlying mechanisms involving general metabolism, neuroendocrinolgy, neuroinflammation, gut microbiome, and so on. We anticipate that this review will provide future perspectives for PD prevention and treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110001, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| |
Collapse
|
127
|
Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen TL, Cremonini AL, Tagliafico L, Persia A, Caffa I, Monacelli F, Odetti P, Bonfiglio T, Nencioni A, Pigliautile M, Boccardi V, Mecocci P, Pike CJ, Cohen P, LaDu MJ, Pellegrini M, Xia K, Tran K, Ann B, Chowdhury D, Longo VD. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep 2022; 40:111417. [PMID: 36170815 PMCID: PMC9648488 DOI: 10.1016/j.celrep.2022.111417] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
The effects of fasting-mimicking diet (FMD) cycles in reducing many aging and disease risk factors indicate it could affect Alzheimer's disease (AD). Here, we show that FMD cycles reduce cognitive decline and AD pathology in E4FAD and 3xTg AD mouse models, with effects superior to those caused by protein restriction cycles. In 3xTg mice, long-term FMD cycles reduce hippocampal Aβ load and hyperphosphorylated tau, enhance genesis of neural stem cells, decrease microglia number, and reduce expression of neuroinflammatory genes, including superoxide-generating NADPH oxidase (Nox2). 3xTg mice lacking Nox2 or mice treated with the NADPH oxidase inhibitor apocynin also display improved cognition and reduced microglia activation compared with controls. Clinical data indicate that FMD cycles are feasible and generally safe in a small group of AD patients. These results indicate that FMD cycles delay cognitive decline in AD models in part by reducing neuroinflammation and/or superoxide production in the brain.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Fleur Lobo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Edoardo Parrella
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, BS 25123, Italy
| | - Nicolas Rochette
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Terri-Leigh Stephen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Anna Laura Cremonini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Martina Pigliautile
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Virginia Boccardi
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christian J Pike
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Pinchas Cohen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy., Los Angeles, CA 90089-0191, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Kyle Xia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Katelynn Tran
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Brandon Ann
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Dolly Chowdhury
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano, MI 20139, Italy.
| |
Collapse
|
128
|
Hofer SJ, Kroemer G, Kepp O. Autophagy-inducing nutritional interventions in experimental and clinical oncology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:125-158. [PMID: 36283765 DOI: 10.1016/bs.ircmb.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Numerous pro-autophagic dietary interventions are being investigated for their potential cancer-preventive or therapeutic effects. This applies to different fasting regimens, methionine restriction and ketogenic diets. In addition, the supplementation of specific micronutrients such as nicotinamide (vitamin B3) or spermidine induces autophagy. In humans, leanness, plant-based diets (that may lead to partial methionine restriction) and high dietary uptake of spermidine are associated with a low incidence of cancers. Moreover, clinical trials have demonstrated the capacity of nicotinamide to prevent non-melanoma skin carcinogenesis. Multiple interventional trials are evaluating the capacity of autophagy-inducing regimens to improve the outcome of chemotherapy and immunotherapy. Here, we discuss the mechanistic underpinnings of autophagy induction by nutritional interventions, as well as the mechanisms through which autophagy induction in malignant or immune cells improves anticancer immunosurveillance.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France; Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France; Institut du Cancer Paris Carpem, Department of Biology, APHP, Hôpital Européen Georges Pompidou, Paris, France.
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France.
| |
Collapse
|
129
|
Bravo-San Pedro JM, Pietrocola F. Fasting and cancer responses to therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:107-123. [PMID: 36283764 DOI: 10.1016/bs.ircmb.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The therapeutic outcome of multiple anticancer regimens relies upon a fine balance between tumor intrinsic and host-related factors. In this context, qualitative changes in dietary composition as well as alterations in total calorie supply influence essential aspects of cancer biology, spanning from tumor initiation to metastatic spreading. On the one hand, circumstances of nutritional imbalance or excessive calorie intake promote oncogenesis, accelerate tumor progression, and hamper the efficacy of anticancer treatments. On the other hand, approaches based on bulk (e.g., fasting, fasting mimicking diets) or selective (e.g., amino acids) shortage of nutrients are currently in the spotlight for their ability to potentiate the effect of anticancer drugs. While the chemosensitizing effect of fasting has long been attributed to the overdemanding metabolic requirements of neoplastic cells, recent findings suggest that caloric restriction improves the efficacy of chemotherapy and immunotherapy by boosting anticancer immunosurveillance. Here, we provide a critical overview of current preclinical and clinical studies that address the impact of nutritional interventions on the response to cancer therapy, laying particular emphasis on fasting-related interventions.
Collapse
Affiliation(s)
- José Manuel Bravo-San Pedro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Neo Blickagången 16, Huddinge, Sweden.
| |
Collapse
|
130
|
Shen S, Iyengar NM. Insulin-Lowering Diets in Metastatic Cancer. Nutrients 2022; 14:nu14173542. [PMID: 36079800 PMCID: PMC9460605 DOI: 10.3390/nu14173542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperinsulinemia is an independent risk factor for cancer mortality. Insulin-lowering dietary strategies such as calorie restriction (CR), low-carbohydrate or ketogenic diets (KD), and intermittent fasting (IF) are aimed at reducing systemic stores of nutrients utilized by cancer cells, attenuating insulin-related growth signaling, and improving obesity-related metabolic parameters. In this narrative review, we searched the published literature for studies that tested various insulin-lowering diets in metastatic cancer in preclinical and clinical settings. A total of 23 studies were identified. Of these, 14 were preclinical studies of dietary strategies that demonstrated improvements in insulin levels, inhibition of metastasis, and/or reduction in metastatic disease burden in animal models. The remaining nine clinical studies tested carbohydrate restriction, KD, or IF strategies which appear to be safe and feasible in patients with metastatic cancer. These approaches have also been shown to improve serum insulin and other metabolic parameters. Though promising, the anti-cancer efficacy of these interventions, such as impact on tumor response, disease-specific-, and overall survival, have not yet been conclusively demonstrated. Studies that are adequately powered to evaluate whether insulin-lowering diets improve cancer outcomes are warranted.
Collapse
Affiliation(s)
- Sherry Shen
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neil M. Iyengar
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical Center, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
131
|
Cortellino S, Raveane A, Chiodoni C, Delfanti G, Pisati F, Spagnolo V, Visco E, Fragale G, Ferrante F, Magni S, Iannelli F, Zanardi F, Casorati G, Bertolini F, Dellabona P, Colombo MP, Tripodo C, Longo VD. Fasting renders immunotherapy effective against low-immunogenic breast cancer while reducing side effects. Cell Rep 2022; 40:111256. [PMID: 36001966 DOI: 10.1016/j.celrep.2022.111256] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Immunotherapy is improving the prognosis and survival of cancer patients, but despite encouraging outcomes in different cancers, the majority of tumors are resistant to it, and the immunotherapy combinations are often accompanied by severe side effects. Here, we show that a periodic fasting-mimicking diet (FMD) can act on the tumor microenvironment and increase the efficacy of immunotherapy (anti-PD-L1 and anti-OX40) against the poorly immunogenic triple-negative breast tumors (TNBCs) by expanding early exhausted effector T cells, switching the cancer metabolism from glycolytic to respiratory, and reducing collagen deposition. Furthermore, FMD reduces the occurrence of immune-related adverse events (irAEs) by preventing the hyperactivation of the immune response. These results indicate that FMD cycles have the potential to enhance the efficacy of anti-cancer immune responses, expand the portion of tumors sensitive to immunotherapy, and reduce its side effects.
Collapse
Affiliation(s)
| | - Alessandro Raveane
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Claudia Chiodoni
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pisati
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | - Euplio Visco
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | | | - Serena Magni
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Fabio Iannelli
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan 20141, Italy; Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario P Colombo
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Claudio Tripodo
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy; University of Palermo School of Medicine, Palermo, Italy
| | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy; Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
132
|
Metabolic targeting of malignant tumors: a need for systemic approach. J Cancer Res Clin Oncol 2022; 149:2115-2138. [PMID: 35925428 DOI: 10.1007/s00432-022-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Dysregulated metabolism is now recognized as a fundamental hallmark of carcinogenesis inducing aggressive features and additional hallmarks. In this review, well-established metabolic changes displayed by tumors are highlighted in a comprehensive manner and corresponding therapeutical targets are discussed to set up a framework for integrating basic research findings with clinical translation in oncology setting. METHODS Recent manuscripts of high research impact and relevant to the field from PubMed (2000-2021) have been reviewed for this article. RESULTS Metabolic pathway disruption during tumor evolution is a dynamic process potentiating cell survival, dormancy, proliferation and invasion even under dismal conditions. Apart from cancer cells, though, tumor microenvironment has an acting role as extracellular metabolites, pH alterations and stromal cells reciprocally interact with malignant cells, ultimately dictating tumor-promoting responses, disabling anti-tumor immunity and promoting resistance to treatments. CONCLUSION In the field of cancer metabolism, there are several emerging prognostic and therapeutic targets either in the form of gene expression, enzyme activity or metabolites which could be exploited for clinical purposes; both standard-of-care and novel treatments may be evaluated in the context of metabolism rewiring and indeed, synergistic effects between metabolism-targeting and other therapies would be an attractive perspective for further research.
Collapse
|
133
|
Vella V, De Francesco EM, Bonavita E, Lappano R, Belfiore A. IFN-I signaling in cancer: the connection with dysregulated Insulin/IGF axis. Trends Endocrinol Metab 2022; 33:569-586. [PMID: 35691786 DOI: 10.1016/j.tem.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023]
Abstract
Type I interferons (IFN-Is) are prototypical inflammatory cytokines produced in response to stress. IFN-Is have a critical role in antitumor immunity by driving the activation of leukocytes and favoring the elimination of malignant cells. However, IFN-I signaling in cancer, specifically in the tumor microenvironment (TME), can have opposing roles. Sustained IFN-I stimulation can promote immune exhaustion or enable tumor cell-intrinsic malignant features. Herein, we discuss the potential impact of the insulin/insulin-like growth factor system (I/IGFs) and of metabolic disorders in aberrant IFN-I signaling in cancer. We consider the possibility that targeting I/IGFs, especially in patients with cancer affected by metabolic disorders, contributes to an effective strategy to inhibit deleterious IFN-I signaling, thereby restoring sensitivity to various cancer therapies, including immunotherapy.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Eduardo Bonavita
- IRCCS Humanitas Research Hospital, Fondazione Humanitas per la Ricerca, Laboratory of Cellular and Molecular Oncoimmunology, 20089 Rozzano, Italy; Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy.
| |
Collapse
|
134
|
Taylor SR, Falcone JN, Cantley LC, Goncalves MD. Developing dietary interventions as therapy for cancer. Nat Rev Cancer 2022; 22:452-466. [PMID: 35614234 DOI: 10.1038/s41568-022-00485-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells acquire distinct metabolic preferences based on their tissue of origin, genetic alterations and degree of interaction with systemic hormones and metabolites. These adaptations support the increased nutrient demand required for increased growth and proliferation. Diet is the major source of nutrients for tumours, yet dietary interventions lack robust evidence and are rarely prescribed by clinicians for the treatment of cancer. Well-controlled diet studies in patients with cancer are rare, and existing studies have been limited by nonspecific enrolment criteria that inappropriately grouped together subjects with disparate tumour and host metabolic profiles. This imprecision may have masked the efficacy of the intervention for appropriate candidates. Here, we review the metabolic alterations and key vulnerabilities that occur across multiple types of cancer. We describe how these vulnerabilities could potentially be targeted using dietary therapies including energy or macronutrient restriction and intermittent fasting regimens. We also discuss recent trials that highlight how dietary strategies may be combined with pharmacological therapies to treat some cancers, potentially ushering a path towards precision nutrition for cancer.
Collapse
Affiliation(s)
- Samuel R Taylor
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, NY, USA
| | - John N Falcone
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
135
|
Isaac-Lam MF, DeMichael KM. Calorie restriction and breast cancer treatment: a mini-review. J Mol Med (Berl) 2022; 100:1095-1109. [PMID: 35760911 DOI: 10.1007/s00109-022-02226-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Calorie restriction (CR), referred to as a reduction in dietary calorie intake without malnutrition, has been demonstrated to be a safe way to extend longevity of yeast, worms, and laboratory animals, and to decrease the risk factors in age-related diseases including cancer in humans. Pre-clinical studies in animal models demonstrated that CR may enhance the efficacy of chemotherapy, radiation therapy, and immunotherapy during breast cancer treatment. Reduced calorie intake ameliorates risk factors and delays the onset of cancer by altering metabolism and fostering health-enhancing characteristics including increased autophagy and insulin sensitivity, and decreased blood glucose levels, inflammation, angiogenesis, and growth factor signaling. CR is not a common protocol implemented by medical practitioners to the general public due to the lack of substantial clinical studies. Future research and clinical trials are urgently needed to understand fully the biochemical basis of CR or CR mimetics to support its benefits. Here, we present a mini-review of research studies integrating CR as an adjuvant to chemotherapy, radiation therapy, or immunotherapy during breast cancer treatment.
Collapse
Affiliation(s)
- Meden F Isaac-Lam
- Department of Chemistry and Physics, Purdue University Northwest, Westville, IN, 46391, USA.
| | - Kelly M DeMichael
- Department of Chemistry and Physics, Purdue University Northwest, Westville, IN, 46391, USA
| |
Collapse
|
136
|
Gregor A, Huber L, Auernigg-Haselmaier S, Sternberg F, Billerhart M, Dunkel A, Somoza V, Ogris M, Kofler B, Longo VD, König J, Duszka K. A Comparison of the Impact of Restrictive Diets on the Gastrointestinal Tract of Mice. Nutrients 2022; 14:nu14153120. [PMID: 35956298 PMCID: PMC9370610 DOI: 10.3390/nu14153120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The rate of gut inflammatory diseases is growing in modern society. Previously, we showed that caloric restriction (CR) shapes gut microbiota composition and diminishes the expression of inflammatory factors along the gastrointestinal (GI) tract. The current project aimed to assess whether prominent dietary restrictive approaches, including intermittent fasting (IF), fasting-mimicking diet (FMD), and ketogenic diet (KD) have a similar effect as CR. We sought to verify which of the restrictive dietary approaches is the most potent and if the molecular pathways responsible for the impact of the diets overlap. We characterized the impact of the diets in the context of several dietary restriction-related parameters, including immune status in the GI tract; microbiota and its metabolites; bile acids (BAs); gut morphology; as well as autophagy-, mitochondria-, and energy restriction-related parameters. The effects of the various diets are very similar, particularly between CR, IF, and FMD. The occurrence of a 50 kDa truncated form of occludin, the composition of the microbiota, and BAs distinguished KD from the other diets. Based on the results, we were able to provide a comprehensive picture of the impact of restrictive diets on the gut, indicating that restrictive protocols aimed at improving gut health may be interchangeable.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (A.G.); (L.H.); (S.A.-H.); (J.K.)
| | - Laura Huber
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (A.G.); (L.H.); (S.A.-H.); (J.K.)
| | - Sandra Auernigg-Haselmaier
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (A.G.); (L.H.); (S.A.-H.); (J.K.)
| | - Felix Sternberg
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Magdalena Billerhart
- Laboratory of Macromolecular Cancer Therapeutics (MMCT), Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (M.B.); (M.O.)
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany; (A.D.); (V.S.)
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany; (A.D.); (V.S.)
| | - Manfred Ogris
- Laboratory of Macromolecular Cancer Therapeutics (MMCT), Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (M.B.); (M.O.)
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Valter D. Longo
- Longevity Institute, Leonard Davis, Los Angeles, CA 90089, USA;
| | - Jürgen König
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (A.G.); (L.H.); (S.A.-H.); (J.K.)
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (A.G.); (L.H.); (S.A.-H.); (J.K.)
- Correspondence:
| |
Collapse
|
137
|
Wu Q, Gao ZJ, Yu X, Wang P. Dietary regulation in health and disease. Signal Transduct Target Ther 2022; 7:252. [PMID: 35871218 PMCID: PMC9308782 DOI: 10.1038/s41392-022-01104-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Nutriments have been deemed to impact all physiopathologic processes. Recent evidences in molecular medicine and clinical trials have demonstrated that adequate nutrition treatments are the golden criterion for extending healthspan and delaying ageing in various species such as yeast, drosophila, rodent, primate and human. It emerges to develop the precision-nutrition therapeutics to slow age-related biological processes and treat diverse diseases. However, the nutritive advantages frequently diversify among individuals as well as organs and tissues, which brings challenges in this field. In this review, we summarize the different forms of dietary interventions extensively prescribed for healthspan improvement and disease treatment in pre-clinical or clinical. We discuss the nutrient-mediated mechanisms including metabolic regulators, nutritive metabolism pathways, epigenetic mechanisms and circadian clocks. Comparably, we describe diet-responsive effectors by which dietary interventions influence the endocrinic, immunological, microbial and neural states responsible for improving health and preventing multiple diseases in humans. Furthermore, we expatiate diverse patterns of dietotheroapies, including different fasting, calorie-restricted diet, ketogenic diet, high-fibre diet, plants-based diet, protein restriction diet or diet with specific reduction in amino acids or microelements, potentially affecting the health and morbid states. Altogether, we emphasize the profound nutritional therapy, and highlight the crosstalk among explored mechanisms and critical factors to develop individualized therapeutic approaches and predictors.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhi-Jie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
138
|
Ligorio F, Fucà G, Provenzano L, Lobefaro R, Zanenga L, Vingiani A, Belfiore A, Lorenzoni A, Alessi A, Pruneri G, de Braud F, Vernieri C. Exceptional tumour responses to fasting-mimicking diet combined with standard anticancer therapies: A sub-analysis of the NCT03340935 trial. Eur J Cancer 2022; 172:300-310. [PMID: 35810555 DOI: 10.1016/j.ejca.2022.05.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cyclic fasting or calorie-restricted, low-carbohydrate, low-protein diets, collectively referred to as fasting-mimicking diets (FMDs), demonstrated additive or synergistic antitumour effects when combined with chemotherapy, targeted therapies, or immunotherapy in several preclinical in vivo models, including murine models of breast cancer, lung cancer, and colorectal cancer. However, no data on the antitumour efficacy of cyclic FMD in patients with cancer have been published so far. Here, we aim at reporting on patients with advanced cancer achieving complete and long-lasting tumour remissions with cyclic FMD in combination with standard anticancer therapies in the context of the phase Ib NCT03340935 trial. PATIENTS AND METHODS The NCT03340935 trial enrolled 101 patients with different tumour types, and it showed that a severely calorie-restricted FMD regimen is safe and feasible in patients with cancer receiving concomitant standard-of-care antineoplastic therapies. In addition, cyclic FMD resulted in positive metabolic and immunologic modifications, thus recapitulating the biological effects that in preclinical models were found to mediate the antitumour effects of fasting/FMD. RESULTS Of the 101 patients enrolled in the NCT03340935 trial, we identified five patients with advanced, poor prognosis solid neoplasms (n = 1: extensive stage small cell lung cancer; n = 1: metastatic pancreatic adenocarcinoma; n = 1: metastatic colorectal cancer; n = 2: metastatic triple-negative breast cancer), who achieved complete and long-lasting tumour responses when treated with a combination of cyclic FMD and standard systemic treatments in the context of the NCT03340935 trial. CONCLUSION These excellent responses prompt the initiation of clinical trials to investigate cyclic FMD in combination with standard antitumour therapies in specific clinical contexts.
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Giovanni Fucà
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Lucrezia Zanenga
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Andrea Vingiani
- Oncology and Haemato-Oncology Department, University of Milan, Milan 20122, Italy; Deparment of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori. Milan 20133, Italy
| | - Antonino Belfiore
- Deparment of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori. Milan 20133, Italy
| | - Alice Lorenzoni
- Department of Nuclear Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Alessandra Alessi
- Department of Nuclear Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Oncology and Haemato-Oncology Department, University of Milan, Milan 20122, Italy; Deparment of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori. Milan 20133, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy; Deparment of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori. Milan 20133, Italy
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
139
|
Vasan N, Cantley LC. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat Rev Clin Oncol 2022; 19:471-485. [PMID: 35484287 PMCID: PMC11215755 DOI: 10.1038/s41571-022-00633-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Numerous agents targeting various phosphatidylinositol 3-kinase (PI3K) pathway components, including PI3K, AKT and mTOR, have been tested in oncology clinical trials, resulting in regulatory approvals for the treatment of selected patients with breast cancer, certain other solid tumours or particular haematological malignancies. However, given the prominence of PI3K signalling in cancer and the crucial role of this pathway in linking cancer growth with metabolism, these clinical results could arguably be improved upon. In this Review, we discuss past and present efforts to overcome the somewhat limited clinical efficacy of PI3Kα pathway inhibitors, including optimization of inhibitor specificity, patient selection and biomarkers across cancer types, with a focus on breast cancer, as well as identification and abrogation of signalling-related and metabolic mechanisms of resistance, and interventions to improve management of prohibitive adverse events. We highlight the advantages and limitations of laboratory-based model systems used to study the PI3K pathway, and propose technologies and experimental inquiries to guide the future clinical deployment of PI3K pathway inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
140
|
Wang X, Su W, Jiang Y, Jia F, Huang W, Zhang J, Yin Y, Wang H. Regulation of Nucleotide Metabolism with Nutrient-Sensing Nanodrugs for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200482. [PMID: 35508896 PMCID: PMC9284143 DOI: 10.1002/advs.202200482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/27/2022] [Indexed: 05/03/2023]
Abstract
The continual growth of tumor cells requires considerable nutrient consumption. Methotrexate (MTX) is used to treat certain types of cancer by blocking the DNA and RNA productions through interfering one-carbon metabolism and de novo purine and pyrimidine synthesis. However, treatment of MTX may cause many serious adverse effects, which hamper its clinical application. Herein, the authors synthesize ferrous ions, histidine, and MTX assembled nanoparticles (FHM) to deliver MTX at tumor site and enhance the sensitivity of tumor cells to MTX with histidine catabolism. Furthermore, fasting-mimicking diet (FMD) is applied to intervene in the one-carbon metabolism and enhance the cytotoxicity of MTX. Meanwhile, FMD treatment can significantly augment the cellular uptake and tumor accumulation of FHM nanoparticles. Due to the triple inhibitions of the one-carbon metabolism, the proliferation of tumor cells is strongly disturbed, as which is highly replying on DNA and RNA production. Taken together, a 95% lower dose of MTX adopted in combined therapy significantly inhibits the growth of two types of murine tumors without evident systemic toxicity. This strategy may provide a promising nucleotide metabolism-based nanomedicine for cancer therapy.
Collapse
Affiliation(s)
- Xinye Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wen Su
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | | | - Fuhao Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yue Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
141
|
Savas P, Lo LL, Luen SJ, Blackley EF, Callahan J, Moodie K, van Geelen CT, Ko YA, Weng CF, Wein L, Silva MJ, Zivanovic Bujak A, Yeung MM, Ftouni S, Hicks RJ, Francis PA, Lee CK, Dawson SJ, Loi S. Alpelisib monotherapy for PI3K-altered, pre-treated advanced breast cancer: a phase 2 study. Cancer Discov 2022; 12:2058-2073. [PMID: 35771551 DOI: 10.1158/2159-8290.cd-21-1696] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/12/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
There is limited knowledge on the benefit of the α-subunit specific PI3K inhibitor alpelisib in later lines of therapy for advanced ER+HER2- and triple negative breast cancer (TNBC). We conducted a phase 2 multi-cohort study of alpelisib monotherapy in patients with advanced PI3K pathway mutant ER+HER2- and TNBC. In the intention to treat ER+ cohort, the overall response rate was 30% and the clinical benefit rate was 36%. Decline in PI3K pathway mutant ctDNA levels from baseline to week 8 while on therapy was significantly associated with a partial response, clinical benefit and improved progression free-survival (HR 0.24 95% CI 0.083 - 0.67, P = 0.0065). Detection of ESR1 mutations at baseline in plasma was also associated with clinical benefit and improved progression free survival (HR 0.22 95% CI 0.078 - 0.60, P = 0.003).
Collapse
Affiliation(s)
- Peter Savas
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Louisa L Lo
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen J Luen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Kate Moodie
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Yi-An Ko
- Peter MacCallum Cancer Centre, Australia
| | | | - Lironne Wein
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | | | - Sarah Ftouni
- Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | | | | | - Chee Khoon Lee
- University of Sydney, Sydney, New South Wales, Australia
| | | | - Sherene Loi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
142
|
Devericks EN, Carson MS, McCullough LE, Coleman MF, Hursting SD. The obesity-breast cancer link: a multidisciplinary perspective. Cancer Metastasis Rev 2022; 41:607-625. [PMID: 35752704 PMCID: PMC9470704 DOI: 10.1007/s10555-022-10043-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
Obesity, exceptionally prevalent in the USA, promotes the incidence and progression of numerous cancer types including breast cancer. Complex, interacting metabolic and immune dysregulation marks the development of both breast cancer and obesity. Obesity promotes chronic low-grade inflammation, particularly in white adipose tissue, which drives immune dysfunction marked by increased pro-inflammatory cytokine production, alternative macrophage activation, and reduced T cell function. Breast tissue is predominantly composed of white adipose, and developing breast cancer readily and directly interacts with cells and signals from adipose remodeled by obesity. This review discusses the biological mechanisms through which obesity promotes breast cancer, the role of obesity in breast cancer health disparities, and dietary interventions to mitigate the adverse effects of obesity on breast cancer. We detail the intersection of obesity and breast cancer, with an emphasis on the shared and unique patterns of immune dysregulation in these disease processes. We have highlighted key areas of breast cancer biology exacerbated by obesity, including incidence, progression, and therapeutic response. We posit that interception of obesity-driven breast cancer will require interventions that limit protumor signaling from obese adipose tissue and that consider genetic, structural, and social determinants of the obesity–breast cancer link. Finally, we detail the evidence for various dietary interventions to offset obesity effects in clinical and preclinical studies of breast cancer. In light of the strong associations between obesity and breast cancer and the rising rates of obesity in many parts of the world, the development of effective, safe, well-tolerated, and equitable interventions to limit the burden of obesity on breast cancer are urgently needed.
Collapse
Affiliation(s)
- Emily N Devericks
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meredith S Carson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael F Coleman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D Hursting
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
143
|
Wang N, Gu Y, Li L, Chi J, Liu X, Xiong Y, Zhong C. Development and Validation of a Prognostic Classifier Based on Lipid Metabolism-Related Genes for Breast Cancer. J Inflamm Res 2022; 15:3477-3499. [PMID: 35726216 PMCID: PMC9206459 DOI: 10.2147/jir.s357144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background The changes of lipid metabolism have been implicated in the development of many tumors, but its role in breast invasive carcinoma (BRCA) remains to be fully established. Here, we attempted to ascertain the prognostic value of lipid metabolism-related genes in BRCA. Methods We obtained RNA expression data and clinical information for BRCA and normal samples from public databases and downloaded a lipid metabolism-related gene set. Ingenuity Pathway Analysis (IPA) was applied to identify the potential pathways and functions of Differentially Expressed Genes (DEGs) related to lipid metabolism. Subsequently, univariate and multivariate Cox regression analyses were utilized to construct the prognostic gene signature. Functional enrichment analysis of prognostic genes was achieved by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Kaplan-Meier analysis, Receiver Operating Characteristic (ROC) curves, clinical follow-up results were employed to assess the prognostic potency. Potential compounds targeting prognostic genes were screened by Connectivity Map (CMap) database and a prognostic gene-drug interaction network was constructed using Comparative Toxicogenomics Database (CTD). Furthermore, we separately validated the selected marker genes in BRCA samples and human breast cancer cell lines (MCF-7, MDA-MB-231). Results IPA and functional enrichment analysis demonstrated that the 162 lipid metabolism-related DEGs we obtained were involved in many lipid metabolism and BRCA pathological signatures. The prognostic classifier we constructed comprising SDC1 and SORBS1 can serve as an independent prognostic marker for BRCA. CMap filtered 37 potential compounds against prognostic genes, of which 16 compounds could target both two prognostic genes were identified by CTD. The functions of the two prognostic genes in breast cancer cells were verified by cell function experiments. Conclusion Within this study, we identified a novel prognostic classifier based on two lipid metabolism-related genes: SDC1 and SORBS1. This result highlighted a new perspective on the metabolic exploration of BRCA.
Collapse
Affiliation(s)
- Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiangrui Chi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinwei Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chaochao Zhong
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
144
|
Caron JP, Kreher MA, Mickle AM, Wu S, Przkora R, Estores IM, Sibille KT. Intermittent Fasting: Potential Utility in the Treatment of Chronic Pain across the Clinical Spectrum. Nutrients 2022; 14:nu14122536. [PMID: 35745266 PMCID: PMC9228511 DOI: 10.3390/nu14122536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Dietary behavior can have a consequential and wide-ranging influence on human health. Intermittent fasting, which involves intermittent restriction in energy intake, has been shown to have beneficial cellular, physiological, and system-wide effects in animal and human studies. Despite the potential utility in preventing, slowing, and reversing disease processes, the clinical application of intermittent fasting remains limited. The health benefits associated with the simple implementation of a 12 to 16 h fast suggest a promising role in the treatment of chronic pain. A literature review was completed to characterize the physiologic benefits of intermittent fasting and to relate the evidence to the mechanisms underlying chronic pain. Research on different fasting regimens is outlined and an overview of research demonstrating the benefits of intermittent fasting across diverse health conditions is provided. Data on the physiologic effects of intermittent fasting are summarized. The physiology of different pain states is reviewed and the possible implications for intermittent fasting in the treatment of chronic pain through non-invasive management, prehabilitation, and rehabilitation following injury and invasive procedures are presented. Evidence indicates the potential utility of intermittent fasting in the comprehensive management of chronic pain and warrants further investigation.
Collapse
Affiliation(s)
- Jesse P. Caron
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Margaret Ann Kreher
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Angela M. Mickle
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Stanley Wu
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Rene Przkora
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
- Department of Anesthesiology, Division of Pain Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Irene M. Estores
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
| | - Kimberly T. Sibille
- Pain TRAIL—Translational Research in Assessment & Intervention Lab, Department of Physical Medicine & Rehabilitation, College of Medicine, University of Florida, Gainesville, FL 32607, USA; (J.P.C.); (M.A.K.); (A.M.M.); (S.W.); (R.P.); (I.M.E.)
- Department of Anesthesiology, Division of Pain Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
145
|
Zuo Q, Park NH, Lee JK, Madak Erdogan Z. Liver Metastatic Breast Cancer: Epidemiology, Dietary Interventions, and Related Metabolism. Nutrients 2022; 14:2376. [PMID: 35745105 PMCID: PMC9228756 DOI: 10.3390/nu14122376] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
The median overall survival of patients with metastatic breast cancer is only 2-3 years, and for patients with untreated liver metastasis, it is as short as 4-8 months. Improving the survival of women with breast cancer requires more effective anti-cancer strategies, especially for metastatic disease. Nutrients can influence tumor microenvironments, and cancer metabolism can be manipulated via a dietary modification to enhance anti-cancer strategies. Yet, there are no standard evidence-based recommendations for diet therapies before or during cancer treatment, and few studies provide definitive data that certain diets can mediate tumor progression or therapeutic effectiveness in human cancer. This review focuses on metastatic breast cancer, in particular liver metastatic forms, and recent studies on the impact of diets on disease progression and treatment.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
146
|
Koehler FC, Fu CY, Späth MR, Hoyer-Allo KJR, Bohl K, Göbel H, Lackmann JW, Grundmann F, Osterholt T, Gloistein C, Steiner JD, Antebi A, Benzing T, Schermer B, Schwarz G, Burst V, Müller RU. A systematic analysis of diet-induced nephroprotection reveals overlapping changes in cysteine catabolism. Transl Res 2022; 244:32-46. [PMID: 35189406 DOI: 10.1016/j.trsl.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/28/2023]
Abstract
Caloric Restriction (CR) extends lifespan and augments cellular stress-resistance from yeast to primates, making CR an attractive strategy for organ protection in the clinic. Translation of CR to patients is complex, due to problems regarding adherence, feasibility, and safety concerns in frail patients. Novel tailored dietary regimens, which modulate the dietary composition of macro- and micronutrients rather than reducing calorie intake promise similar protective effects and increased translatability. However, a direct head-to-head comparison to identify the most potent approach for organ protection, as well as overlapping metabolic consequences have not been performed. We systematically analyzed six dietary preconditioning protocols - fasting mimicking diet (FMD), ketogenic diet (KD), dietary restriction of branched chained amino acids (BCAA), two dietary regimens restricting sulfur-containing amino acids (SR80/100) and CR - in a rodent model of renal ischemia-reperfusion injury (IRI) to quantify diet-induced resilience in kidneys. Of the administered diets, FMD, SR80/100 and CR efficiently protect from kidney damage after IRI. Interestingly, these approaches show overlapping changes in oxidative and hydrogen sulfide (H2S)-dependent cysteine catabolism as a potential common mechanism of organ protection.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Chun-Yu Fu
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - K Johanna R Hoyer-Allo
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katrin Bohl
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Osterholt
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Claas Gloistein
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Joachim D Steiner
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Günter Schwarz
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| | - Volker Burst
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
147
|
Abstract
The mechanistic target of the rapamycin (mTOR) signaling pathway is the central regulator of cell growth and proliferation by integrating growth factor and nutrient availability. Under healthy physiological conditions, this process is tightly coordinated and essential to maintain whole-body homeostasis. Not surprisingly, dysregulated mTOR signaling underpins several diseases with increasing incidence worldwide, including obesity, diabetes, and cancer. Consequently, there is significant clinical interest in developing therapeutic strategies that effectively target this pathway. The transition of mTOR inhibitors from the bench to bedside, however, has largely been marked with challenges and shortcomings, such as the development of therapy resistance and adverse side effects in patients. In this review, we discuss the current status of first-, second-, and third-generation mTOR inhibitors as a cancer therapy in both preclinical and clinical settings, with a particular emphasis on the mechanisms of drug resistance. We focus especially on the emerging role of diet as an important environmental determinant of therapy response, and posit a conceptual framework that links nutrient availability and whole-body metabolic states such as obesity with many of the previously defined processes that drive resistance to mTOR-targeted therapies. Given the role of mTOR as a central integrator of cell metabolism and function, we propose that modulating nutrient inputs through dietary interventions may influence the signaling dynamics of this pathway and compensatory nodes. In doing so, new opportunities for exploiting diet/drug synergies are highlighted that may unlock the therapeutic potential of mTOR inhibitors as a cancer treatment.
Collapse
Affiliation(s)
- Nikos Koundouros
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021,USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: Nikos Koundouros, Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021 USA.
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021,USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: John Blenis, Meyer Cancer Center, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021 USA.
| |
Collapse
|
148
|
Fasting and Fasting Mimicking Diets in Obesity and Cardiometabolic Disease Prevention and Treatment. Phys Med Rehabil Clin N Am 2022; 33:699-717. [DOI: 10.1016/j.pmr.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
149
|
Kim AJ, Hong DS, George GC. Dietary Influences On Symptomatic And Non-Symptomatic Toxicities During Cancer Treatment: A Narrative Review. Cancer Treat Rev 2022; 108:102408. [DOI: 10.1016/j.ctrv.2022.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
|
150
|
Krstic J, Schindlmaier K, Prokesch A. Combination strategies to target metabolic flexibility in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:159-197. [PMID: 36283766 DOI: 10.1016/bs.ircmb.2022.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapeutically interfering with metabolic pathways has great merit to curtail tumor growth because the demand for copious amounts of energy for growth-supporting biomass production is common to all cancer entities. A major impediment to a straight implementation of metabolic cancer therapy is the metabolic flexibility and plasticity of cancer cells (and their microenvironment) resulting in therapy resistance and evasion. Metabolic combination therapies, therefore, are promising as they are designed to target several energetic routes simultaneously and thereby diminish the availability of alternative substrates. Thus, dietary restrictions, specific nutrient limitations, and/or pharmacological interventions impinging on metabolic pathways can be combined to improve cancer treatment efficacy, to overcome therapy resistance, or even act as a preventive measure. Here, we review the most recent developments in metabolic combination therapies particularly highlighting in vivo reports of synergistic effects and available clinical data. We close with identifying the challenges of the field (metabolic tumor heterogeneity, immune cell interactions, inter-patient variabilities) and suggest a "metabo-typing" strategy to tailor evidence-based metabolic combination therapies to the energetic requirements of the tumors and the patient's nutritional habits and status.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Katharina Schindlmaier
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|