101
|
Liu J, Wu Y, Zhang X, Gill RA, Hu M, Bai Z, Zhao C, Zhang Y, Liu Y, Hu Q, Cheng X, Huang J, Liu L, Yan S, Liu S. Functional and evolutionary study of MLO gene family in the regulation of Sclerotinia stem rot resistance in Brassica napus L. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:86. [PMID: 37217949 DOI: 10.1186/s13068-023-02325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Oilseed rape (Brassica napus L.) is known as one of the most important oilseed crops cultivated around the world. However, its production continuously faces a huge challenge of Sclerotinia stem rot (SSR), a destructive disease caused by the fungus Sclerotinia sclerotiorum, resulting in huge yield loss annually. The SSR resistance in B. napus is quantitative and controlled by a set of minor genes. Identification of these genes and pyramiding them into a variety are a major strategy for SSR resistance breeding in B. napus. RESULTS Here, we performed a genome-wide association study (GWAS) using a natural population of B. napus consisting of 222 accessions to identify BnaA08g25340D (BnMLO2_2) as a candidate gene that regulates the SSR resistance. BnMLO2_2 was a member of seven homolog genes of Arabidopsis Mildew Locus O 2 (MLO2) and the significantly SNPs were mainly distributed in the promoter of BnMLO2_2, suggesting a role of BnMLO2_2 expression level in the regulation of SSR resistance. We expressed BnMLO2_2 in Arabidopsis and the transgenic plants displayed an enhanced SSR resistance. Transcriptome profiling of different tissues of B. napus revealed that BnMLO2_2 had the most expression level in leaf and silique tissues among all the 7 BnMLO2 members and also expressed higher in the SSR resistant accession than in the susceptible accession. In Arabidopsis, mlo2 plants displayed reduced resistance to SSR, whereas overexpression of MLO2 conferred plants an enhanced SSR resistance. Moreover, a higher expression level of MLO2 showed a stronger SSR resistance in the transgenic plants. The regulation of MLO2 in SSR resistance may be associated with the cell death. Collinearity and phylogenetic analysis revealed a large expansion of MLO family in Brassica crops. CONCLUSION Our study revealed an important role of BnMLO2 in the regulation of SSR resistance and provided a new gene candidate for future improvement of SSR resistance in B. napus and also new insights into understanding of MLO family evolution in Brassica crops.
Collapse
Affiliation(s)
- Jie Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yupo Wu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Xiong Zhang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Rafaqat Ali Gill
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Ming Hu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zetao Bai
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Chuanji Zhao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | | | - Yueying Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Qiong Hu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junyan Huang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
| | - Lijiang Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
| | - Shunping Yan
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| |
Collapse
|
102
|
Biswal AK, Hernandez LRB, Castillo AIR, Debernardi JM, Dhugga KS. An efficient transformation method for genome editing of elite bread wheat cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1135047. [PMID: 37275249 PMCID: PMC10234211 DOI: 10.3389/fpls.2023.1135047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/17/2023] [Indexed: 06/07/2023]
Abstract
An efficient genetic transformation protocol is necessary to edit genes for trait improvement directly in elite bread wheat cultivars. We used a protein fusion between a wheat growth-regulating factor 4 (GRF4) and its interacting factor (GIF1) to develop a reproducible genetic transformation and regeneration protocol, which we then used to successfully transform elite bread wheat cultivars Baj, Kachu, Morocco, Reedling, RL6077, and Sujata in addition to the experimental cultivar Fielder. Immature embryos were transformed with the vector using particle bombardment method. Transformation frequency increased nearly 60-fold with the GRF4-GIF1-containing vectors as compared to the control vector and ranged from ~5% in the cultivar Kachu to 13% in the cultivar RL6077. We then edited two genes that confer resistance against leaf rust and powdery mildew directly in the aforementioned elite cultivars. A wheat promoter, TaU3 or TaU6, to drive the expression of guide RNA was effective in gene editing whereas the OsU3 promoter failed to generate any edits. Editing efficiency was nearly perfect with the wheat promoters. Our protocol has made it possible to edit genes directly in elite wheat cultivars and would be useful for gene editing in other wheat varieties, which have been recalcitrant to transformation thus far.
Collapse
Affiliation(s)
- Akshaya K. Biswal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Ana I. R. Castillo
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Juan M. Debernardi
- Plant Transformation Facility, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
103
|
He J, Zhang K, Yan S, Tang M, Zhou W, Yin Y, Chen K, Zhang C, Li M. Genome-scale targeted mutagenesis in Brassica napus using a pooled CRISPR library. Genome Res 2023; 33:798-809. [PMID: 37290935 PMCID: PMC10317123 DOI: 10.1101/gr.277650.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/19/2023] [Indexed: 06/10/2023]
Abstract
The recently constructed mutant libraries of diploid crops by the CRISPR-Cas9 system have provided abundant resources for functional genomics and crop breeding. However, because of the genome complexity, it is a big challenge to accomplish large-scale targeted mutagenesis in polyploid plants. Here, we demonstrate the feasibility of using a pooled CRISPR library to achieve genome-scale targeted editing in an allotetraploid crop of Brassica napus A total of 18,414 sgRNAs were designed to target 10,480 genes of interest, and afterward, 1104 regenerated transgenic plants harboring 1088 sgRNAs were obtained. Editing interrogation results revealed that 93 of the 178 genes were identified as mutated, thus representing an editing efficiency of 52.2%. Furthermore, we have discovered that Cas9-mediated DNA cleavages tend to occur at all the target sites guided by the same individual sgRNA, a novel finding in polyploid plants. Finally, we show the strong capability of reverse genetic screening for various traits with the postgenotyped plants. Several genes, which might dominate the fatty acid profile and seed oil content and have yet to be reported, were unveiled from the forward genetic studies. Our research provides valuable resources for functional genomics, elite crop breeding, and a good reference for high-throughput targeted mutagenesis in other polyploid plants.
Collapse
Affiliation(s)
- Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Shuxiang Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Mi Tang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Weixian Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|
104
|
Awan MJA, Mahmood MA, Naqvi RZ, Mansoor S. PASTE: a high-throughput method for large DNA insertions. TRENDS IN PLANT SCIENCE 2023; 28:509-511. [PMID: 36898908 DOI: 10.1016/j.tplants.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 05/22/2023]
Abstract
Prime editing (PE) enables precise genome editing at targeted locus without inducing double-stranded breaks (DSBs). Despite its precision, PE lacks the tendency to integrate large DNA fragments into the genome. Recently, Yarnall et al. reported clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 and an integrase-based system that conducts targeted integration of large DNA sequences (~36 kb) into the genome more efficiently.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan; Department of Biological Sciences, University of Sialkot, Sialkot, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan; International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
105
|
Song L, Liu J, Cao B, Liu B, Zhang X, Chen Z, Dong C, Liu X, Zhang Z, Wang W, Chai L, Liu J, Zhu J, Cui S, He F, Peng H, Hu Z, Su Z, Guo W, Xin M, Yao Y, Yan Y, Song Y, Bai G, Sun Q, Ni Z. Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat. Nature 2023; 617:118-124. [PMID: 37100915 PMCID: PMC10156601 DOI: 10.1038/s41586-023-06023-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/27/2023] [Indexed: 04/28/2023]
Abstract
Modern green revolution varieties of wheat (Triticum aestivum L.) confer semi-dwarf and lodging-resistant plant architecture owing to the Reduced height-B1b (Rht-B1b) and Rht-D1b alleles1. However, both Rht-B1b and Rht-D1b are gain-of-function mutant alleles encoding gibberellin signalling repressors that stably repress plant growth and negatively affect nitrogen-use efficiency and grain filling2-5. Therefore, the green revolution varieties of wheat harbouring Rht-B1b or Rht-D1b usually produce smaller grain and require higher nitrogen fertilizer inputs to maintain their grain yields. Here we describe a strategy to design semi-dwarf wheat varieties without the need for Rht-B1b or Rht-D1b alleles. We discovered that absence of Rht-B1 and ZnF-B (encoding a RING-type E3 ligase) through a natural deletion of a haploblock of about 500 kilobases shaped semi-dwarf plants with more compact plant architecture and substantially improved grain yield (up to 15.2%) in field trials. Further genetic analysis confirmed that the deletion of ZnF-B induced the semi-dwarf trait in the absence of the Rht-B1b and Rht-D1b alleles through attenuating brassinosteroid (BR) perception. ZnF acts as a BR signalling activator to facilitate proteasomal destruction of the BR signalling repressor BRI1 kinase inhibitor 1 (TaBKI1), and loss of ZnF stabilizes TaBKI1 to block BR signalling transduction. Our findings not only identified a pivotal BR signalling modulator but also provided a creative strategy to design high-yield semi-dwarf wheat varieties by manipulating the BR signal pathway to sustain wheat production.
Collapse
Affiliation(s)
- Long Song
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Beilu Cao
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Bin Liu
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Xiaoping Zhang
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Zhaoyan Chen
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Chaoqun Dong
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Xiangqing Liu
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Lingling Chai
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Jing Liu
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Jun Zhu
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Shubin Cui
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Fei He
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Zhenqi Su
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Yong Yan
- National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, China
| | - Yinming Song
- National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, China
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
106
|
Narayanan Z, Glick BR. Biotechnologically Engineered Plants. BIOLOGY 2023; 12:biology12040601. [PMID: 37106801 PMCID: PMC10135915 DOI: 10.3390/biology12040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
The development of recombinant DNA technology during the past thirty years has enabled scientists to isolate, characterize, and manipulate a myriad of different animal, bacterial, and plant genes. This has, in turn, led to the commercialization of hundreds of useful products that have significantly improved human health and well-being. Commercially, these products have been mostly produced in bacterial, fungal, or animal cells grown in culture. More recently, scientists have begun to develop a wide range of transgenic plants that produce numerous useful compounds. The perceived advantage of producing foreign compounds in plants is that compared to other methods of producing these compounds, plants seemingly provide a much less expensive means of production. A few plant-produced compounds are already commercially available; however, many more are in the production pipeline.
Collapse
Affiliation(s)
- Zareen Narayanan
- Division of Biological Sciences, School of STEM, University of Washington, Bothell, WA 98011, USA
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
107
|
Zhang H, Liu Y, Zhang X, Ji W, Kang Z. A necessary considering factor for breeding: growth-defense tradeoff in plants. STRESS BIOLOGY 2023; 3:6. [PMID: 37676557 PMCID: PMC10441926 DOI: 10.1007/s44154-023-00086-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/27/2023] [Indexed: 09/08/2023]
Abstract
Crop diseases cause enormous yield losses and threaten global food security. Deployment of resistant cultivars can effectively control the disease and to minimize crop losses. However, high level of genetic immunity to disease was often accompanied by an undesired reduction in crop growth and yield. Recently, literatures have been rapidly emerged in understanding the mechanism of disease resistance and development genes in crop plants. To determine how and why the costs and the likely benefit of resistance genes caused in crop varieties, we re-summarized the present knowledge about the crosstalk between plant development and disease resistance caused by those genes that function as plasma membrane residents, MAPK cassette, nuclear envelope (NE) channels components and pleiotropic regulators. Considering the growth-defense tradeoffs on the basis of current advances, finally, we try to understand and suggest that a reasonable balancing strategies based on the interplay between immunity with growth should be considered to enhance immunity capacity without yield penalty in future crop breeding.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yuanming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiangyu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
108
|
Ni L, Tian Z. Toward cis-regulation in soybean: a 3D genome scope. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:28. [PMID: 37313524 PMCID: PMC10248674 DOI: 10.1007/s11032-023-01374-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
In eukaryotic cells, 3D genome plays an important role in the regulation of gene spatiotemporal expression, which is essential for the biological and developmental processes in a life cycle. In the past decade, the development of high-throughput technologies greatly enhances our ability to map the 3D genome organization, identifies multiple 3D genome structures, and investigates the functional role of 3D genome organization in gene regulation, which facilitates our understandings of cis-regulatory landscape and biological development. Comparing with the comprehensive analyses of 3D genome in mammals and model plants, the progress in soybean is much less. Future development and application of tools to precisely manipulate 3D genome structure at different levels will significantly strengthen the functional genome study and molecular breeding in soybean. Here, we review the recent progresses in 3D genome study and discuss future directions, which may help to improve soybean 3D functional genome study and molecular breeding.
Collapse
Affiliation(s)
- Lingbin Ni
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
109
|
Yue JY, Jiao JL, Wang WW, Jie XR, Wang HZ. Silencing of the calcium-dependent protein kinase TaCDPK27 improves wheat resistance to powdery mildew. BMC PLANT BIOLOGY 2023; 23:134. [PMID: 36882703 PMCID: PMC9993671 DOI: 10.1186/s12870-023-04140-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Calcium ions (Ca2+), secondary messengers, are crucial for the signal transduction process of the interaction between plants and pathogens. Ca2+ signaling also regulates autophagy. As plant calcium signal-decoding proteins, calcium-dependent protein kinases (CDPKs) have been found to be involved in biotic and abiotic stress responses. However, information on their functions in response to powdery mildew attack in wheat crops is limited. RESULT In the present study, the expression levels of TaCDPK27, four essential autophagy-related genes (ATGs) (TaATG5, TaATG7, TaATG8, and TaATG10), and two major metacaspase genes, namely, TaMCA1 and TaMCA9, were increased by powdery mildew (Blumeria graminis f. sp. tritici, Bgt) infection in wheat seedling leaves. Silencing TaCDPK27 improves wheat seedling resistance to powdery mildew, with fewer Bgt hyphae occurring on TaCDPK27-silenced wheat seedling leaves than on normal seedlings. In wheat seedling leaves under powdery mildew infection, silencing TaCDPK27 induced excess contents of reactive oxygen species (ROS); decreased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); and led to an increase in programmed cell death (PCD). Silencing TaCDPK27 also inhibited autophagy in wheat seedling leaves, and silencing TaATG7 also enhanced wheat seedling resistance to powdery mildew infection. TaCDPK27-mCherry and GFP-TaATG8h colocalized in wheat protoplasts. Overexpressed TaCDPK27-mCherry fusions required enhanced autophagy activity in wheat protoplast under carbon starvation. CONCLUSION These results suggested that TaCDPK27 negatively regulates wheat resistance to PW infection, and functionally links with autophagy in wheat.
Collapse
Affiliation(s)
- Jie-Yu Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China.
| | - Jin-Lan Jiao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Wen-Wen Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Xin-Rui Jie
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Hua-Zhong Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China.
| |
Collapse
|
110
|
Shakir S, Zaidi SSEA, Hashemi FSG, Nyirakanani C, Vanderschuren H. Harnessing plant viruses in the metagenomics era: from the development of infectious clones to applications. TRENDS IN PLANT SCIENCE 2023; 28:297-311. [PMID: 36379846 DOI: 10.1016/j.tplants.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent metagenomic studies which focused on virus characterization in the entire plant environment have revealed a remarkable viral diversity in plants. The exponential discovery of viruses also requires the concomitant implementation of high-throughput methods to perform their functional characterization. Despite several limitations, the development of viral infectious clones remains a method of choice to understand virus biology, their role in the phytobiome, and plant resilience. Here, we review the latest approaches for efficient characterization of plant viruses and technical advances built on high-throughput sequencing and synthetic biology to streamline assembly of viral infectious clones. We then discuss the applications of plant viral vectors in fundamental and applied plant research as well as their technical and regulatory limitations, and we propose strategies for their safer field applications.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Farahnaz Sadat Golestan Hashemi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Department of Crop Science, School of Agriculture, University of Rwanda, Musanze, Rwanda
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, Leuven, Belgium.
| |
Collapse
|
111
|
Abstract
The advent of clustered regularly interspaced short palindromic repeat (CRISPR) genome editing, coupled with advances in computing and imaging capabilities, has initiated a new era in which genetic diseases and individual disease susceptibilities are both predictable and actionable. Likewise, genes responsible for plant traits can be identified and altered quickly, transforming the pace of agricultural research and plant breeding. In this Review, we discuss the current state of CRISPR-mediated genetic manipulation in human cells, animals, and plants along with relevant successes and challenges and present a roadmap for the future of this technology.
Collapse
Affiliation(s)
- Joy Y Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.,Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA.,Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| |
Collapse
|
112
|
Ni L, Liu Y, Ma X, Liu T, Yang X, Wang Z, Liang Q, Liu S, Zhang M, Wang Z, Shen Y, Tian Z. Pan-3D genome analysis reveals structural and functional differentiation of soybean genomes. Genome Biol 2023; 24:12. [PMID: 36658660 PMCID: PMC9850592 DOI: 10.1186/s13059-023-02854-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND High-order chromatin structure plays important roles in gene regulation. However, the diversity of the three-dimensional (3D) genome across plant accessions are seldom reported. RESULTS Here, we perform the pan-3D genome analysis using Hi-C sequencing data from 27 soybean accessions and comprehensively investigate the relationships between 3D genomic variations and structural variations (SVs) as well as gene expression. We find that intersection regions between A/B compartments largely contribute to compartment divergence. Topologically associating domain (TAD) boundaries in A compartments exhibit significantly higher density compared to those in B compartments. Pan-3D genome analysis shows that core TAD boundaries have the highest transcription start site (TSS) density and lowest GC content and repeat percentage. Further investigation shows that non-long terminal repeat (non-LTR) retrotransposons play important roles in maintaining TAD boundaries, while Gypsy elements and satellite repeats are associated with private TAD boundaries. Moreover, presence and absence variation (PAV) is found to be the major contributor to 3D genome variations. Nevertheless, approximately 55% of 3D genome variations are not associated with obvious genetic variations, and half of them affect the flanking gene expression. In addition, we find that the 3D genome may also undergo selection during soybean domestication. CONCLUSION Our study sheds light on the role of 3D genomes in plant genetic diversity and provides a valuable resource for studying gene regulation and genome evolution.
Collapse
Affiliation(s)
- Lingbin Ni
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tengfei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyue Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Wang
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
113
|
Zhao L, Yang Y, Chen J, Lin X, Zhang H, Wang H, Wang H, Bie X, Jiang J, Feng X, Fu X, Zhang X, Du Z, Xiao J. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biol 2023; 24:7. [PMID: 36639687 PMCID: PMC9837924 DOI: 10.1186/s13059-022-02844-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Plant and animal embryogenesis have conserved and distinct features. Cell fate transitions occur during embryogenesis in both plants and animals. The epigenomic processes regulating plant embryogenesis remain largely elusive. RESULTS Here, we elucidate chromatin and transcriptomic dynamics during embryogenesis of the most cultivated crop, hexaploid wheat. Time-series analysis reveals stage-specific and proximal-distal distinct chromatin accessibility and dynamics concordant with transcriptome changes. Following fertilization, the remodeling kinetics of H3K4me3, H3K27ac, and H3K27me3 differ from that in mammals, highlighting considerable species-specific epigenomic dynamics during zygotic genome activation. Polycomb repressive complex 2 (PRC2)-mediated H3K27me3 deposition is important for embryo establishment. Later H3K27ac, H3K27me3, and chromatin accessibility undergo dramatic remodeling to establish a permissive chromatin environment facilitating the access of transcription factors to cis-elements for fate patterning. Embryonic maturation is characterized by increasing H3K27me3 and decreasing chromatin accessibility, which likely participates in restricting totipotency while preventing extensive organogenesis. Finally, epigenomic signatures are correlated with biased expression among homeolog triads and divergent expression after polyploidization, revealing an epigenomic contributor to subgenome diversification in an allohexaploid genome. CONCLUSIONS Collectively, we present an invaluable resource for comparative and mechanistic analysis of the epigenomic regulation of crop embryogenesis.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinchao Chen
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongzhe Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaomin Bie
- Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiafu Jiang
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoqi Feng
- John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Xiangdong Fu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Zhuo Du
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
114
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
115
|
Liu T, Kawochar MA, Liu S, Cheng Y, Begum S, Wang E, Zhou T, Liu T, Cai X, Song B. Suppression of the tonoplast sugar transporter, StTST3.1, affects transitory starch turnover and plant growth in potato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:342-356. [PMID: 36444716 DOI: 10.1111/tpj.16050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/25/2022] [Accepted: 11/27/2022] [Indexed: 06/16/2023]
Abstract
Transitory starch and vacuolar sugars function as highly dynamic pools of instantly accessible metabolites in plant leaf cells. Their metabolic regulation is critical for plant survival. The tonoplast sugar transporters (TSTs), responsible for sugar uptake into vacuoles, regulate cellular sugar partitioning and vacuolar sugar accumulation. However, whether TSTs are involved in leaf transient starch turnover and plant growth is unclear. Here, we found that suppressing StTST3.1 resulted in growth retardation and pale green leaves in potato plants. StTST3.1-silenced plants displayed abnormal chloroplasts and impaired photosynthetic performance. The subcellular localization assay and the oscillation expression patterns revealed that StTST3.1 encoded a tonoplast-localized protein and responded to photoperiod. Moreover, RNA-seq analyses identified that starch synthase (SS2 and SS6) and glucan water, dikinase (GWD), were downregulated in StTST3.1-silenced lines. Correspondingly, the capacity for starch synthesis and degradation was decreased in StTST3.1-silenced lines. Surprisingly, StTST3.1-silenced leaves accumulated exceptionally high levels of maltose but low levels of sucrose and hexose. Additionally, chlorophyll content was reduced in StTST3.1-silenced leaves. Analysis of chlorophyll metabolic pathways found that Non-Yellow Coloring 1 (NYC1)-like (NOL), encoding a chloroplast-localized key enzyme that catalyzes the initial step of chlorophyll b degradation, was upregulated in StTST3.1-silenced leaves. Transient overexpression of StNOL accelerated chlorophyll b degradation in tobacco leaves. Our results indicated that StTST3.1 is involved in transitory starch turnover and chlorophyll metabolism, thereby playing a critical role in normal potato plant growth.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Md Abu Kawochar
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Shengxuan Liu
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunxia Cheng
- College of Plant Science, Tarim University, Alar, Xinjiang, 843300, People's Republic of China
| | - Shahnewaz Begum
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Enshuang Wang
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tingting Zhou
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tiantian Liu
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xingkui Cai
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
116
|
Zhang C, Zhang H, Zheng X, Wang Y, Ye W. Functional Characterization of Two Cell Wall Integrity Pathway Components of the MAPK Cascade in Phomopsis longicolla. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:47-58. [PMID: 36282555 DOI: 10.1094/mpmi-07-22-0156-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The pathogenic fungus Phomopsis longicolla causes numerous plant diseases, such as Phomopsis seed decay, pod and stem blight, and stem canker, which seriously affect the yield and quality of soybean production worldwide. Because of a lack of technology for efficient manipulation of genes for functional genomics, understanding of P. longicolla pathogenesis is limited. Here, we developed an efficient polyethylene glycol-mediated protoplast transformation system in P. longicolla that we used to characterize the functions of two genes involved in the cell wall integrity (CWI) pathway of the mitogen-activated protein kinase (MAPK) cascade, including PlMkk1, which encodes MAPK kinase, and its downstream gene PlSlt2, which encodes MAPK. Both gene knockout mutants ΔPlMkk1 and ΔPlSlt2 displayed a reduced growth rate, fragile aerial hyphae, abnormal polarized growth and pigmentation, defects in sporulation, inadequate CWI, enhanced sensitivity to abiotic stress agents, and significant deficiencies in virulence, although there were some differences in degree. The results suggest that PlMkk1 and PlSlt2 are crucial for a series of growth and development processes as well as pathogenicity. The developed transformation system will be a useful tool for additional gene function research and will aid in the elucidation of the pathogenic mechanisms of P. longicolla. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
117
|
Maharajan T, Chellasamy G, Tp AK, Ceasar SA, Yun K. The role of metal transporters in phytoremediation: A closer look at Arabidopsis. CHEMOSPHERE 2023; 310:136881. [PMID: 36257391 DOI: 10.1016/j.chemosphere.2022.136881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Pollution of the environment by heavy metals (HMs) has recently become a global issue, affecting the health of all living organisms. Continuous human activities (industrialization and urbanization) are the major causes of HM release into the environment. Over the years, two methods (physical and chemical) have been widely used to reduce HMs in polluted environment. However, these two methods are inefficient and very expensive to reduce the HMs released into the atmosphere. Alternatively, researchers are trying to remove the HMs by employing hyper-accumulator plants. This method, referred to phytoremediation, is highly efficient, cost-effective, and eco-friendly. Phytoremediation can be divided into five types: phytostabilization, phytodegradation, rhizofiltration, phytoextraction, and phytovolatilization, all of which contribute to HMs removal from the polluted environment. Brassicaceae family members (particularly Arabidopsis thaliana) can accumulate more HMs from the contaminated environment than those of other plants. This comprehensive review focuses on how HMs pollute the environment and discusses the phytoremediation measures required to reduce the impact of HMs on the environment. We discuss the role of metal transporters in phytoremediation with a focus on Arabidopsis. Then draw insights into the role of genome editing tools in enhancing phytoremediation efficiency. This review is expected to initiate further research to improve phytoremediation by biotechnological approaches to conserve the environment from pollution.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| | - Ajeesh Krishna Tp
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
118
|
Agronomic Trait Analysis and Genetic Mapping of a New Wheat Semidwarf Gene Rht-SN33d. Int J Mol Sci 2022; 24:ijms24010583. [PMID: 36614025 PMCID: PMC9820066 DOI: 10.3390/ijms24010583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Plant height is a key agronomic trait that is closely to the plant morphology and lodging resistance in wheat. However, at present, the few dwarf genes widely used in wheat breeding have narrowed wheat genetic diversity. In this study, we selected a semi-dwarf wheat mutant dwarf33 that exhibits decreased plant height with little serious negative impact on other agronomic traits. Genetic analysis and mutant gene mapping indicated that dwarf33 contains a new recessive semi-dwarf gene Rht-SN33d, which was mapped into ~1.3 Mb interval on the 3DL chromosome. The gibberellin metabolism-related gene TraesCS3D02G542800, which encodes gibberellin 2-beta-dioxygenase, is considered a potential candidate gene of Rht-SN33d. Rht-SN33d reduced plant height by approximately 22.4% in mutant dwarf33. Further study revealed that shorter stem cell length may be the main factor causing plant height decrease. In addition, the coleoptile length of dwarf33 was just 9.3% shorter than that of wild-type Shaannong33. These results will help to expand our understanding of new mechanisms of wheat height regulation, and obtain new germplasm for wheat improvement.
Collapse
|
119
|
Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, Yu L, Ding X, Ding F, Hong N, Wang G, Jin S. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Cells 2022; 11:3928. [PMID: 36497186 PMCID: PMC9736268 DOI: 10.3390/cells11233928] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and yield in less time with easy applications, high efficiency, and low cost in producing the targeted edits for rapid improvement of crop plants. Plant pathogens and the severe environment cause considerable crop losses worldwide. GE approaches have emerged and opened new doors for breeding multiple-resistance crop varieties. Here, we have summarized recent advances in CRISPR/Cas-mediated GE for resistance against biotic and abiotic stresses in a crop molecular breeding program that includes the modification and improvement of genes response to biotic stresses induced by fungus, virus, and bacterial pathogens. We also discussed in depth the application of CRISPR/Cas for abiotic stresses (herbicide, drought, heat, and cold) in plants. In addition, we discussed the limitations and future challenges faced by breeders using GE tools for crop improvement and suggested directions for future improvements in GE for agricultural applications, providing novel ideas to create super cultivars with broad resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Naeem Zafar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qurban Ali
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hakim Manghwar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Ding
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
120
|
Liu W, Zhang B. The landscape of genome sequencing and assembling in plants. Funct Integr Genomics 2022; 22:1147-1152. [PMID: 36376541 DOI: 10.1007/s10142-022-00916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Wanying Liu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
121
|
Song Y, Huang Q, Liu M, Cao L, Li F, Zhao P, Cao C. Wetting and deposition behaviors of pesticide droplets with different dilution ratios on wheat leaves infected by pathogens. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
122
|
Kuluev BR, Mikhailova EV, Kuluev AR, Galimova AA, Zaikina EA, Khlestkina EK. Genome Editing in Species of the Tribe Triticeae with the CRISPR/Cas System. Mol Biol 2022. [DOI: 10.1134/s0026893322060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
123
|
Hameed A, Poznanski P, Noman M, Ahmed T, Iqbal A, Nadolska-Orczyk A, Orczyk W. Barley Resistance to Fusarium graminearum Infections: From Transcriptomics to Field with Food Safety Concerns. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14571-14587. [PMID: 36350344 DOI: 10.1021/acs.jafc.2c05488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Global climate change and the urgency to transform food crops require substantial breeding efforts to meet the food security challenges. Barley, an important cereal, has remained a preferential host of phytotoxic diseases caused by the Fusarium graminearum that not only severely reduces the crop yield but also compromises its food quality due to the accumulation of mycotoxins. To develop resistance against Fusarium infections, a better understanding of the host-pathogen interaction is inevitable and could be tracked through molecular insights. Here, we focused precisely on the potential gene targets that are exclusive to this devastating pathosystem and could be harnessed for fast breeding of barley. We also discuss the eco-friendly applications of nanobio hybrid and the CRISPR technology for barley protection. This review covers the critical information gaps within the subject and may be useful for the sustainable improvement of barley from the perspective of food and environmental safety concerns.
Collapse
Affiliation(s)
- Amir Hameed
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Pawel Poznanski
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adnan Iqbal
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Wacław Orczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| |
Collapse
|
124
|
Hoffman NE. USDA's revised biotechnology regulation's contribution to increasing agricultural sustainability and responding to climate change. FRONTIERS IN PLANT SCIENCE 2022; 13:1055529. [PMID: 36507369 PMCID: PMC9726801 DOI: 10.3389/fpls.2022.1055529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Biotechnology can provide a valuable tool to meet UN Sustainable Development Goals and U.S. initiatives to find climate solutions and improve agricultural sustainability. The literature contains hundreds of examples of crops that may serve this purpose, yet most remain un-launched due to high regulatory barriers. Recently the USDA revised its biotechnology regulations to make them more risk-proportionate, science-based, and streamlined. Here, we review some of the promising leads that may enable agriculture to contribute to UN sustainability goals. We further describe and discuss how the revised biotechnology regulation would hypothetically apply to these cases.
Collapse
|
125
|
Jian L, Yan J, Liu J. De Novo Domestication in the Multi-Omics Era. PLANT & CELL PHYSIOLOGY 2022; 63:1592-1606. [PMID: 35762778 DOI: 10.1093/pcp/pcac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Most cereal crops were domesticated within the last 12,000 years and subsequently spread around the world. These crops have been nourishing the world by supplying a primary energy and nutrient source, thereby playing a critical role in determining the status of human health and sustaining the global population. Here, we review the major challenges of future agriculture and emphasize the utilization of wild germplasm. De novo domestication is one of the most straightforward strategies to manipulate domestication-related and/or other genes with known function, and thereby introduce desired traits into wild plants. We also summarize known causal variations and their corresponding pathways in order to better understand the genetic basis of crop evolution, and how this knowledge could facilitate de novo domestication. Indeed knowledge-driven de novo domestication has great potential for the development of new sustainable crops that have climate-resilient high yield with low resource input and meet individual nutrient needs. Finally, we discuss current opportunities for and barriers to knowledge-driven de novo domestication.
Collapse
Affiliation(s)
- Liumei Jian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
126
|
Kim CY, Song H, Lee YH. Ambivalent response in pathogen defense: A double-edged sword? PLANT COMMUNICATIONS 2022; 3:100415. [PMID: 35918895 PMCID: PMC9700132 DOI: 10.1016/j.xplc.2022.100415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 05/16/2023]
Abstract
Plants possess effective immune systems that defend against most microbial attackers. Recent plant immunity research has focused on the classic binary defense model involving the pivotal role of small-molecule hormones in regulating the plant defense signaling network. Although most of our current understanding comes from studies that relied on information derived from a limited number of pathosystems, newer studies concerning the incredibly diverse interactions between plants and microbes are providing additional insights into other novel mechanisms. Here, we review the roles of both classical and more recently identified components of defense signaling pathways and stress hormones in regulating the ambivalence effect during responses to diverse pathogens. Because of their different lifestyles, effective defense against biotrophic pathogens normally leads to increased susceptibility to necrotrophs, and vice versa. Given these opposing forces, the plant potentially faces a trade-off when it mounts resistance to a specific pathogen, a phenomenon referred to here as the ambivalence effect. We also highlight a novel mechanism by which translational control of the proteins involved in the ambivalence effect can be used to engineer durable and broad-spectrum disease resistance, regardless of the lifestyle of the invading pathogen.
Collapse
Affiliation(s)
- Chi-Yeol Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Korea; Center for Fungal Genetic Resources, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
127
|
Xu J, Zhang N, Wang K, Xian Q, Dong J, Chen X. Exploring new strategies in diseases resistance of horticultural crops. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1021350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Horticultural crops are susceptible to various biotic stressors including fungi, oomycetes, bacteria, viruses, and root-knot nematodes. These pathogens limit the growth, development, yield, and quality of horticultural crops, and also limit their adaptability and geographic distribution. The continuous cropping model in horticultural facilities exacerbates soil-borne diseases, and severely restricts yield, quality, and productivity. Recent progress in the understanding of mechanisms that confer tolerance to different diseases through innovative strategies including host-induced gene silencing (HIGS), targeting susceptibility genes, and rootstocks grafting applications are reviewed to systematically explore the resistance mechanisms against horticultural plant diseases. Future work should successfully breed resistant varieties using these strategies combined with molecular biologic methods.
Collapse
|
128
|
Zhang T, Shi C, Hu H, Zhang Z, Wang Z, Chen Z, Feng H, Liu P, Guo J, Lu Q, Zhong K, Chen Z, Liu J, Yu J, Chen J, Chen F, Yang J. N6-methyladenosine RNA modification promotes viral genomic RNA stability and infection. Nat Commun 2022; 13:6576. [PMID: 36323720 PMCID: PMC9629889 DOI: 10.1038/s41467-022-34362-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Molecular manipulation of susceptibility (S) genes that are antipodes to resistance (R) genes has been adopted as an alternative strategy for controlling crop diseases. Here, we show the S gene encoding Triticum aestivum m6A methyltransferase B (TaMTB) is identified by a genome-wide association study and subsequently shown to be a positive regulator for wheat yellow mosaic virus (WYMV) infection. TaMTB is localized in the nucleus, is translocated into the cytoplasmic aggregates by binding to WYMV NIb to upregulate the m6A level of WYMV RNA1 and stabilize the viral RNA, thus promoting viral infection. A natural mutant allele TaMTB-SNP176C is found to confer an enhanced susceptibility to WYMV infection through genetic variation analysis on 243 wheat varieties. Our discovery highlights this allele can be a useful target for the molecular wheat breeding in the future.
Collapse
Affiliation(s)
- Tianye Zhang
- grid.203507.30000 0000 8950 5267State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Chaonan Shi
- grid.108266.b0000 0004 1803 0494National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou, 450000 China
| | - Haichao Hu
- grid.203507.30000 0000 8950 5267State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Zhuo Zhang
- grid.410598.10000 0004 4911 9766Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410000 China
| | - Ziqiong Wang
- grid.203507.30000 0000 8950 5267State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Zhiqing Chen
- grid.203507.30000 0000 8950 5267State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Huimin Feng
- grid.203507.30000 0000 8950 5267State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Peng Liu
- grid.203507.30000 0000 8950 5267State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Jun Guo
- grid.203507.30000 0000 8950 5267State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Qisen Lu
- grid.203507.30000 0000 8950 5267State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Kaili Zhong
- grid.203507.30000 0000 8950 5267State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - ZhiHui Chen
- grid.8241.f0000 0004 0397 2876University of Dundee, School of Life Sciences, Dow Street, Dundee, DD1 5EH UK
| | - Jiaqian Liu
- grid.203507.30000 0000 8950 5267State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Jiancheng Yu
- grid.203507.30000 0000 8950 5267Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, Ningbo University, Ningbo, 315211 China
| | - Jianping Chen
- grid.203507.30000 0000 8950 5267State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Feng Chen
- grid.108266.b0000 0004 1803 0494National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou, 450000 China
| | - Jian Yang
- grid.203507.30000 0000 8950 5267State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| |
Collapse
|
129
|
Liu H, Han G, Gu T, Jin Y, Shi Z, Xing L, Yan H, Wang J, Hao C, Zhao M, An D. Identification of the major QTL QPm.cas-7D for adult plant resistance to wheat powdery mildew. FRONTIERS IN PLANT SCIENCE 2022; 13:1042399. [PMID: 36340342 PMCID: PMC9627495 DOI: 10.3389/fpls.2022.1042399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Developing effective and durable host plant resistance is crucial for controlling powdery mildew, a devastating disease caused by Blumeria graminis f. sp. tritici (Bgt). In the present study, we dissected the genetic basis of the adult plant resistance to powdery mildew using a recombinant inbred line (RIL) composed of 176 F9 RILs population derived from a cross between PuBing 3228 (P3228) and susceptible cultivar Gao 8901. P3228 exhibits stable adult-plant resistance to powdery mildew in the field over consecutive years. We identified two QTLs on chromosomes 7DS (QPm.cas-7D) and 1AL (QPm.cas-1A) contributed by P3228, and one QTL on 3DS (QPm.cas-3D) contributed by Gao 8901, which could explain 65.44%, 3.45%, and 2.18% of the phenotypic variances, respectively. By analyzing the annotated genes in the 1.168 Mb physical interval of the major QTL QPm.cas-7D, we locked a previously cloned adult-plant resistance gene Pm38 that was most probably the candidate gene of QPm.cas-7D. Sequence alignment analysis revealed that the candidate gene of QPm.cas-7D in P3228 was identical to the reported Pm38 sequence. Two haplotypes QPm-7D-R and QPm-7D-S were identified in the whole Pm38 genomic regions between P3228 and Gao 8901. To apply QPm.cas-7D in wheat breeding, we developed a kompetitive allele-specific PCR (KASP) marker Kasp5249 that is closely linked with these haplotypes. It is worth mentioning that the QPm-7D-R haplotype significantly decreased TKW and underwent negative selection for higher yields in China wheat breeding. In this study, we identified a major QTL QPm.cas-7D and revealed the relationship between its resistance and yield, which could be beneficial for further applications in wheat disease resistance and high-yield breeding.
Collapse
Affiliation(s)
- Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Lixian Xing
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Chenyang Hao
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meicheng Zhao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
130
|
Guo Z, Guo L, Qin J, Ye F, Sun D, Wu Q, Wang S, Crickmore N, Zhou X, Bravo A, Soberón M, Zhang Y. A single transcription factor facilitates an insect host combating Bacillus thuringiensis infection while maintaining fitness. Nat Commun 2022; 13:6024. [PMID: 36224245 PMCID: PMC9555685 DOI: 10.1038/s41467-022-33706-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Maintaining fitness during pathogen infection is vital for host survival as an excessive response can be as detrimental as the infection itself. Fitness costs are frequently associated with insect hosts countering the toxic effect of the entomopathogenic bacterium Bacillus thuringiensis (Bt), which delay the evolution of resistance to this pathogen. The insect pest Plutella xylostella has evolved a mechanism to resist Bt toxins without incurring significant fitness costs. Here, we reveal that non-phosphorylated and phosphorylated forms of a MAPK-modulated transcription factor fushi tarazu factor 1 (FTZ-F1) can respectively orchestrate down-regulation of Bt Cry1Ac toxin receptors and up-regulation of non-receptor paralogs via two distinct binding sites, thereby presenting Bt toxin resistance without growth penalty. Our findings reveal how host organisms can co-opt a master molecular switch to overcome pathogen invasion with low cost, and contribute to understanding the underlying mechanism of growth-defense tradeoffs during host-pathogen interactions in P. xylostella.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Le Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fan Ye
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton, BN1 9QE, UK
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, 62250, México
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, 62250, México
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
131
|
Gohar S, Sajjad M, Zulfiqar S, Liu J, Wu J, Rahman MU. Domestication of newly evolved hexaploid wheat—A journey of wild grass to cultivated wheat. Front Genet 2022; 13:1022931. [PMID: 36263418 PMCID: PMC9574122 DOI: 10.3389/fgene.2022.1022931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Domestication of wheat started with the dawn of human civilization. Since then, improvement in various traits including resistance to diseases, insect pests, saline and drought stresses, grain yield, and quality were improved through selections by early farmers and then planned hybridization after the discovery of Mendel’s laws. In the 1950s, genetic variability was created using mutagens followed by the selection of superior mutants. Over the last 3 decades, research was focused on developing superior hybrids, initiating marker-assisted selection and targeted breeding, and developing genetically modified wheat to improve the grain yield, tolerance to drought, salinity, terminal heat and herbicide, and nutritive quality. Acceptability of genetically modified wheat by the end-user remained a major hurdle in releasing into the environment. Since the beginning of the 21st century, changing environmental conditions proved detrimental to achieving sustainability in wheat production particularly in developing countries. It is suggested that high-tech phenotyping assays and genomic procedures together with speed breeding procedures will be instrumental in achieving food security beyond 2050.
Collapse
Affiliation(s)
- Sasha Gohar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sana Zulfiqar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Jiajun Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- *Correspondence: Jiajie Wu, ; Mehboob-ur- Rahman,
| | - Mehboob-ur- Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- *Correspondence: Jiajie Wu, ; Mehboob-ur- Rahman,
| |
Collapse
|
132
|
Mahmood MA, Naqvi RZ, Mansoor S. Engineering crop resistance by manipulating disease susceptibility genes. MOLECULAR PLANT 2022; 15:1511-1513. [PMID: 36127871 DOI: 10.1016/j.molp.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad, Pakistan; Department of Biological Sciences, University of Sialkot, Sialkot, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
133
|
Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111376. [PMID: 35835393 DOI: 10.1016/j.plantsci.2022.111376] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.
Collapse
Affiliation(s)
| | - Priya Das
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack 753006, India.
| | | |
Collapse
|
134
|
Hong Y, Zhang Y, Cui J, Meng J, Chen Y, Zhang C, Yang J, Luan Y. The lncRNA39896-miR166b-HDZs module affects tomato resistance to Phytophthora infestans. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1979-1993. [PMID: 35929655 DOI: 10.1111/jipb.13339] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The yield and quality of tomatoes (Solanum lycopersicum) is seriously affected by Phytophthora infestans. The long non-coding RNA (lncRNA) Sl-lncRNA39896 is induced after P. infestans infection and was previously predicted to act as an endogenous target mimic (eTM) for the microRNA Sl-miR166b, which function in stress responses. Here, we further examined the role of Sl-lncRNA39896 and Sl-miR166b in tomato resistance to P. infestans. Sl-miR166b levels were higher in Sl-lncRNA39896-knockout mutants than in wild-type plants, and the mutants displayed enhanced resistance to P. infestans. A six-point mutation in the region of Sl-lncRNA39896 that binds to Sl-miR166b disabled the interaction, suggesting that Sl-lncRNA39896 acts as an eTM for Sl-miR166b. Overexpressing Sl-miR166b yielded a similar phenotype to that produced by Sl-lncRNA39896-knockout, whereas silencing of Sl-miR166b impaired resistance. We verified that Sl-miR166b cleaved transcripts of its target class III homeodomain-leucine zipper genes SlHDZ34 and SlHDZ45. Silencing of SlHDZ34/45 decreased pathogen accumulation in plants infected with P. infestans. Additionally, jasmonic acid and ethylene contents were elevated following infection in the plants with enhanced resistance. Sl-lncRNA39896 is the first known lncRNA to negatively regulate resistance to P. infestans in tomato. We propose a novel mechanism in which the lncRNA39896-miR166b-HDZ module modulates resistance to P. infestans.
Collapse
Affiliation(s)
- Yuhui Hong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Chengwei Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100000, China
| | - Jinxiao Yang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100000, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
135
|
Yu C, Zhou F, Wang R, Ran Z, Tan W, Jiang L, Cui S, Xie Z, Xiao Y, Zhou Y, Duan L. B2, an abscisic acid mimic, improves salinity tolerance in winter wheat seedlings via improving activity of antioxidant enzymes. FRONTIERS IN PLANT SCIENCE 2022; 13:916287. [PMID: 36237496 PMCID: PMC9551657 DOI: 10.3389/fpls.2022.916287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Salinity severely inhibits growth and reduces yield of salt-sensitive plants like wheat, and this effect can be alleviated by plant growth regulators and phytohormones, among which abscisic acid (ABA) plays a central role in response to various stressful environments. ABA is highly photosensitive to light disruption, which this limits its application. Here, based on pyrabactin (a synthetic ABA agonist), we designed and synthesized a functional analog of ABA and named B2, then evaluated its role in salt resistance using winter wheat seedlings. The phenotypes showed that B2 significantly improved the salt tolerance of winter wheat seedlings by elevating the biomass. The physiological analysis found that B2 treatment reduced the generation rate of O2 -, electrolyte leakage, the content of proline, and the accumulation of malonaldehyde (MDA) and H2O2 and also significantly increased the contents of endogenous hormones zeatin riboside (ZA) and gibberellic acid (GA). Further biochemical analysis revealed that the activities of various antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), were enhanced by B2, and the activities of antioxidase isozymes SOD3, POD1/2, and APX1/2 were particularly increased, largely resembling ABA treatment. The abiotic stress response-related gene TaSOS1 was significantly upregulated by B2, while the TaTIP2;2 gene was suppressed. In conclusion, an ABA analog B2 was capable to enhance salt stress tolerance in winter wheat seedlings by stimulating the antioxidant system, providing a novel regulator for better survival of crops in saline soils and improving crop yield.
Collapse
Affiliation(s)
- Chunxin Yu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fan Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Institute of Biology, Shenyang Research Institute of Chemical Industry Co., Ltd., Shenyang, China
| | - Ruonan Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhaojin Ran
- Institute of Biology, Shenyang Research Institute of Chemical Industry Co., Ltd., Shenyang, China
| | - Weiming Tan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Linjiang Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shunyan Cui
- Institute of Biology, Shenyang Research Institute of Chemical Industry Co., Ltd., Shenyang, China
| | - Zhouli Xie
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yitao Xiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liusheng Duan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
136
|
Macho A, Wang P, Zhu JK. Modification of the susceptibility gene TaPsIPK1 - a win-win for wheat disease resistance and yield. STRESS BIOLOGY 2022; 2:40. [PMID: 37676463 PMCID: PMC10441897 DOI: 10.1007/s44154-022-00060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/21/2022] [Indexed: 09/08/2023]
Abstract
Wheat is one of the most important cereal crops, and it is essential for worldwide food security. However, wheat production is threatened by various diseases, including wheat stripe rust caused by the fungus Puccinia striiformis f. sp. tritici (Pst). The development of plant resistance against disease is usually challenged by potential reduction in crop yield due to the enhancement of plant immunity. In a recent article, Wang et al. found that TaPsIPK1 is a susceptibility gene targeted by rust effectors. Editing of TaPsIPK1 increases resistance to stripe rust without any developmental effects or yield penalty, providing an exceptional resource for developing disease resistance in wheat.
Collapse
Affiliation(s)
- Alberto Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
137
|
Li B, Fu C, Zhou J, Hui F, Wang Q, Wang F, Wang G, Xu Z, Che L, Yuan D, Wang Y, Zhang X, Jin S. Highly Efficient Genome Editing Using Geminivirus-Based CRISPR/Cas9 System in Cotton Plant. Cells 2022; 11:cells11182902. [PMID: 36139477 PMCID: PMC9496795 DOI: 10.3390/cells11182902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Upland cotton (Gossypium hirsutum), an allotetraploid, contains At- and Dt- subgenome and most genes have multiple homologous copies, which pose a huge challenge to investigate genes’ function due to the functional redundancy. Therefore, it is of great significance to establish effective techniques for the functional genomics in cotton. In this study, we tested two novel genome editing vectors and compared them with the CRISPR/Cas9 system (pRGEB32-GhU6.7) developed in our laboratory previously. In the first new vector, the sgRNA transcription unite was constructed into the replicon (LIR-Donor-SIR-Rep-LIR) of the bean yellow dwarf virus (BeYDV) and named as pBeYDV-Cas9-KO and in the second vector, the ubiquitin promoter that drives Cas9 protein was replaced with a constitutive CaMV 35S promoter and defined as pRGEB32-35S. The results from transgenic cotton calli/plants revealed that pBeYDV-Cas9-KO vector showed the highest editing efficiency of GhCLA1 in At and Dt subgenomes edited simultaneously up to 73.3% compared to the 44.6% of pRGEB32-GhU6.7 and 51.2% of pRGEB32-35S. The editing efficiency of GhCLA1 in At and Dt subgenome by pBeYDV-Cas9-KO was 85.7% and 97.2%, respectively, whereas the efficiency by pRGEB32-GhU6.7 and pRGEB32-35S vectors was 67.7%, 86.5%, 84%, and 87.2%, respectively. The editing profile of pBeYDV-Cas9-KO was mainly composed of fragment deletion, accounting for 84.0% and ranging 1–10 bp in length. The main editing sites are located at positions 11–17 upstream of PAM site. The off-target effects were not detected in all potential off-target sites. Taken together, the pBeYDV-Cas9-KO system has high editing efficiency and specificity with wide editing range than the traditional CRISPR/Cas9 system, which provides a powerful tool for cotton functional genomics research and molecular breeding.
Collapse
Affiliation(s)
- Bo Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Crop Biotechnology, Urumqi 830091, China
| | - Chunyang Fu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Zhou
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengjiao Hui
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fuqiu Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianlian Che
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Daojun Yuan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanqin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer 843300, China
- Correspondence: (Y.W.); (S.J.)
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (Y.W.); (S.J.)
| |
Collapse
|
138
|
Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
|
139
|
Sun X, Xie F, Chen Y, Guo Z, Dong L, Qin L, Shi Z, Xiong L, Yuan R, Deng W, Jiang Y. Glutamine synthetase gene PpGS1.1 negatively regulates the powdery mildew resistance in Kentucky bluegrass. HORTICULTURE RESEARCH 2022; 9:uhac196. [PMID: 36415534 PMCID: PMC9677456 DOI: 10.1093/hr/uhac196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/26/2022] [Indexed: 05/31/2023]
Abstract
Excessive nitrogen (N) application may induce powdery mildew (PM) in perennial grasses, but the resistance mechanisms to PM remain unclear. This study evaluated the physiological and molecular mechanisms of PM resistance affected by N supplies in Kentucky bluegrass (Poa pratensis L.). Cultivar 'Bluemoon' (N tolerant) and 'Balin' (N sensitive) were treated with low N (0.5 mM), normal N (15 mM), and high N (30 mM) for 21 d in a greenhouse. With increasing N levels, the disease growth was more severe in 'Balin' than in 'Bluemoon'. RNA-seq and weighted gene coexpression network analysis revealed that the PpGS1.1 gene encoding glutamine synthetase was a potential hub gene for PM resistance after comparisons across cultivars and N treatments. The N metabolism pathway was connected with the plant-pathogen interaction pathway via PpGS1.1. The expression of PpGS1.1 in rice protoplasts indicated that the protein was located in the nucleus and cytoplasm. Overexpression of PpGS1.1 in wild-type Kentucky bluegrass increased carbon and N contents, and the transgenic plants became more susceptible to PM with a lower wax density. The most differentially expressed genes (DEGs) for N metabolism were upregulated and DEGs for fatty acid metabolism pathway were downregulated in the overexpression lines. The results elucidated mechanisms of PM resistance in relation to N metabolism in Kentucky bluegrass.
Collapse
Affiliation(s)
- Xiaoyang Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | | | | | - Zhixin Guo
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Lili Dong
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Ligang Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhenjie Shi
- College of Horticulture, Northeast Agricultural University, Harbin, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangbing Xiong
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Runli Yuan
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Wenjing Deng
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
140
|
Increasing disease resistance in host plants through genome editing. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
141
|
Martínez-Fortún J, Phillips DW, Jones HD. Natural and artificial sources of genetic variation used in crop breeding: A baseline comparator for genome editing. Front Genome Ed 2022; 4:937853. [PMID: 36072906 PMCID: PMC9441798 DOI: 10.3389/fgeed.2022.937853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional breeding has successfully selected beneficial traits for food, feed, and fibre crops over the last several thousand years. The last century has seen significant technological advancements particularly in marker assisted selection and the generation of induced genetic variation, including over the last few decades, through mutation breeding, genetic modification, and genome editing. While regulatory frameworks for traditional varietal development and for genetic modification with transgenes are broadly established, those for genome editing are lacking or are still evolving in many regions. In particular, the lack of "foreign" recombinant DNA in genome edited plants and that the resulting SNPs or INDELs are indistinguishable from those seen in traditional breeding has challenged development of new legislation. Where products of genome editing and other novel breeding technologies possess no transgenes and could have been generated via traditional methods, we argue that it is logical and proportionate to apply equivalent legislative oversight that already exists for traditional breeding and novel foods. This review analyses the types and the scale of spontaneous and induced genetic variation that can be selected during traditional plant breeding activities. It provides a base line from which to judge whether genetic changes brought about by techniques of genome editing or other reverse genetic methods are indeed comparable to those routinely found using traditional methods of plant breeding.
Collapse
Affiliation(s)
| | | | - Huw D. Jones
- IBERS, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
142
|
Tong L, Yan M, Zhu M, Yang J, Li Y, Xu M. ZmCCT haplotype H5 improves yield, stalk-rot resistance, and drought tolerance in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:984527. [PMID: 36046586 PMCID: PMC9421135 DOI: 10.3389/fpls.2022.984527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/27/2022] [Indexed: 05/30/2023]
Abstract
The ZmCCT locus underlies both stalk-rot resistance and photoperiod sensitivity in maize (Zea mays L.). We previously introduced nine resistant ZmCCT haplotypes into seven elite but susceptible maize inbred lines (containing the haplotype H1) to generate 63 backcross families. Here, we continued backcrossing, followed by selfing, to develop 63 near-isogenic lines (NILs). We evaluated 22 of these NILs for stalk-rot resistance and flowering time under long-day conditions. Lines harboring the haplotype H5 outperformed the others, steadily reducing disease severity, while showing less photoperiod sensitivity. To demonstrate the value of haplotype H5 for maize production, we selected two pairs of NILs, 83B28 H1 /83B28 H5 and A5302 H1 /A5302 H5 , and generated F1 hybrids with the same genetic backgrounds but different ZmCCT alleles: 83B28 H1 × A5302 H1 , 83B28 H1 × A5302 H5 , 83B28 H5 × A5302 H1 , and 83B28 H5 × A5302 H5 . We performed field trials to investigate yield/yield-related traits, stalk-rot resistance, flowering time, and drought/salt tolerance in these four hybrids. 83B28 H5 × A5302 H1 performed the best, with significantly improved yield, stalk-rot resistance, and drought tolerance compared to the control (83B28 H1 × A5302 H1 ). Therefore, the ZmCCT haplotype H5 has great value for breeding maize varieties with high yield potential, stalk-rot resistance, and drought tolerance.
Collapse
Affiliation(s)
- Lixiu Tong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Mingzhu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Mang Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Jie Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
- Food Crops Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yipu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
143
|
Yang B, Zhao Y, Guo Z. Research Progress and Prospect of Alfalfa Resistance to Pathogens and Pests. PLANTS (BASEL, SWITZERLAND) 2022; 11:2008. [PMID: 35956485 PMCID: PMC9370300 DOI: 10.3390/plants11152008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022]
Abstract
Alfalfa is one of the most important legume forages in the world and contributes greatly to the improvement of ecosystems, nutrition, and food security. Diseases caused by pathogens and pests severely restrict the production of alfalfa. Breeding resistant varieties is the most economical and effective strategy for the control of alfalfa diseases and pests, and the key to breeding resistant varieties is to identify important resistance genes. Plant innate immunity is the theoretical basis for identifying resistant genes and breeding resistant varieties. In recent years, the framework of plant immunity theory has been gradually formed and improved, and considerable progress has been made in the identification of alfalfa resistance genes and the revelation of the related mechanisms. In this review, we summarize the basic theory of plant immunity and identify alfalfa resistance genes to different pathogens and insects and resistance mechanisms. The current situation, problems, and future prospects of alfalfa resistance research are also discussed. Breeding resistant cultivars with effective resistance genes, together with other novel plant protection technologies, will greatly improve alfalfa production.
Collapse
Affiliation(s)
- Bo Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yao Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
144
|
Zheng M, Terzaghi W, Wang H, Hua W. Integrated strategies for increasing rapeseed yield. TRENDS IN PLANT SCIENCE 2022; 27:742-745. [PMID: 35501261 DOI: 10.1016/j.tplants.2022.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Over the past few years, rapeseed yields have been considerably lower than those of cereal crops, and progress has been slow due to its limitations for genetic improvement. Here, we propose a comprehensive strategy to consider the interactions between genetics, management practices, and environment, concentrating on using ideotype and heterosis to maximize yield.
Collapse
Affiliation(s)
- Ming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | | | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China.
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China.
| |
Collapse
|
145
|
Najafi J, Palmgren M. Hexose transport reverts the growth penalty of mlo resistance. TRENDS IN PLANT SCIENCE 2022; 27:739-741. [PMID: 35469738 DOI: 10.1016/j.tplants.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The Mildew Resistance Locus O (MLO) promotes both symbiosis and biotrophic interactions with fungi. MLO disruption results in powdery mildew resistance but is associated with growth defects. New research by Li et al. demonstrates that they can be rescued by ectopic activation of a vacuolar hexose transporter.
Collapse
Affiliation(s)
- Javad Najafi
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Michael Palmgren
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
146
|
Wang N, Tang C, Fan X, He M, Gan P, Zhang S, Hu Z, Wang X, Yan T, Shu W, Yu L, Zhao J, He J, Li L, Wang J, Huang X, Huang L, Zhou JM, Kang Z, Wang X. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell 2022; 185:2961-2974.e19. [PMID: 35839760 DOI: 10.1016/j.cell.2022.06.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
Wheat crops are frequently devastated by pandemic stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). Here, we identify and characterize a wheat receptor-like cytoplasmic kinase gene, TaPsIPK1, that confers susceptibility to this pathogen. PsSpg1, a secreted fungal effector vital for Pst virulence, can bind TaPsIPK1, enhance its kinase activity, and promote its nuclear localization, where it phosphorylates the transcription factor TaCBF1d for gene regulation. The phosphorylation of TaCBF1d switches its transcriptional activity on the downstream genes. CRISPR-Cas9 inactivation of TaPsIPK1 in wheat confers broad-spectrum resistance against Pst without impacting important agronomic traits in two years of field tests. The disruption of TaPsIPK1 leads to immune priming without constitutive activation of defense responses. Taken together, TaPsIPK1 is a susceptibility gene known to be targeted by rust effectors, and it has great potential for developing durable resistance against rust by genetic modifications.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengying He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Gan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zeyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tong Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weixue Shu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ligang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinren Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiani He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueling Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
147
|
Egan LM, Stiller WN. The Past, Present, and Future of Host Plant Resistance in Cotton: An Australian Perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:895877. [PMID: 35873986 PMCID: PMC9297922 DOI: 10.3389/fpls.2022.895877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/06/2022] [Indexed: 05/24/2023]
Abstract
Cotton is a key global fiber crop. However, yield potential is limited by the presence of endemic and introduced pests and diseases. The introduction of host plant resistance (HPR), defined as the purposeful use of resistant crop cultivars to reduce the impact of pests and diseases, has been a key breeding target for the Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program. The program has seen success in releasing cultivars resistant to Bacterial blight, Verticillium wilt, Fusarium wilt, and Cotton bunchy top. However, emerging biotic threats such as Black root rot and secondary pests, are becoming more frequent in Australian cotton production systems. The uptake of tools and breeding methods, such as genomic selection, high throughput phenomics, gene editing, and landscape genomics, paired with the continued utilization of sources of resistance from Gossypium germplasm, will be critical for the future of cotton breeding. This review celebrates the success of HPR breeding activities in the CSIRO cotton breeding program and maps a pathway for the future in developing resistant cultivars.
Collapse
|
148
|
Bastías DA, Gundel PE, Johnson RD, Gianoli E. How and when fungal endophytes can eliminate the plant growth-defence trade-off: mechanistic perspectives. THE NEW PHYTOLOGIST 2022; 235:388-390. [PMID: 35548876 PMCID: PMC9321058 DOI: 10.1111/nph.18161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Daniel A. Bastías
- AgResearch LimitedGrasslands Research CentrePalmerston North4442New Zealand
| | - Pedro E. Gundel
- Facultad de AgronomíaIFEVAUniversidad de Buenos Aires, CONICETBuenos AiresC1417DSEArgentina
- Laboratorio de Biología VegetalInstituto de Ciencias BiológicasUniversidad de TalcaCampus LircayTalca3480094Chile
| | - Richard D. Johnson
- AgResearch LimitedGrasslands Research CentrePalmerston North4442New Zealand
| | - Ernesto Gianoli
- Departamento de BiologíaUniversidad de La SerenaCasilla 554La Serena1700000Chile
| |
Collapse
|
149
|
Du Y, Liu L, Zhang X, Li F, Kong F, Zhang J, Li J, Peng T, Sun H, Zhao Q. Regulation of OsPIL15 on rice quality. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:39. [PMID: 37313503 PMCID: PMC10248670 DOI: 10.1007/s11032-022-01311-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The phytochrome-interacting factor-like gene OsPIL15 negatively regulates grain size and 1000-grain weight, but its regulatory effect on rice quality traits is unknown. Here, knock-down, knock-out, and over-expression of OsPIL15 transgenic rice lines were used to investigate the effects of OsPIL15 on rice yield and quality traits. The results showed that knock-down or knock-out of OsPIL15 increased grain length and width, chalkiness, amylose content, glutenin and globulin content, and total protein content but reduced amylopectin content, total starch content, prolamin and albumin content, and gel consistency. Over-expression of OsPIL15 showed the opposite results, except for the reduction of prolamin content. Although OsPIL15 changed the grain size and weight, it had no effect on grain length/width ratio, brown rice rate, and milled rice rate. KEGG pathway enrichment analysis of differentially expressed genes between transgenic lines and wild type showed that OsPIL15 mainly regulated genes related to ribosome, metabolic pathways, and biosynthesis of secondary metabolites. Gene expression analysis showed that RNAi transgenic lines decreased OsCIN2 and OsSUS1 expression and increased OsGBSSI, OsSSI, OsAPGL2, and OsAPGL3 expression level, while over-expression of OsPIL15 increased OsCIN2, OsSUS1, OsSUS6, and OsSSI and decreased OsSSIIa, OsSSIIc, and OsAPGL2 expression level. These results revealed that OsPIL15 plays an important role in rice grain development. In addition to grain shape, OsPIL15 also regulates chalkiness, starch content, protein content, and gel consistency. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01311-x.
Collapse
Affiliation(s)
- Yanxiu Du
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Lingzhi Liu
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Xiaohua Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Fei Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Fanshu Kong
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Jing Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Junzhou Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Ting Peng
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Hongzheng Sun
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Quanzhi Zhao
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
150
|
Li W, Liu J, Zhang H, Liu Z, Wang Y, Xing L, He Q, Du H. Plant pan-genomics: recent advances, new challenges, and roads ahead. J Genet Genomics 2022; 49:833-846. [PMID: 35750315 DOI: 10.1016/j.jgg.2022.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
Pan-genomics can encompass most of the genetic diversity of a species or population and has proved to be a powerful tool for studying genomic evolution and the origin and domestication of species, and for providing information for plant improvement. Plant genomics has greatly progressed because of improvements in sequencing technologies and the rapid reduction of sequencing costs. Nevertheless, pan-genomics still presents many challenges, including computationally intensive assembly methods, high costs with large numbers of samples, ineffective integration of big data, and difficulty in applying it to downstream multi-omics analysis and breeding research. In this review, we summarize the definition and recent achievements of plant pan-genomics, computational technologies used for pan-genome construction, and the applications of pan-genomes in plant genomics and molecular breeding. We also discuss challenges and perspectives for future pan-genomics studies and provide a detailed pipeline for sample selection, genome assembly and annotation, structural variation identification, and construction and application of graph-based pan-genomes. The aim is to provide important guidance for plant pan-genome research and a better understanding of the genetic basis of genome evolution, crop domestication, and phenotypic diversity for future studies.
Collapse
Affiliation(s)
- Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Jianan Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China.
| |
Collapse
|