101
|
Sayed S, Sidorova OA, Hennig A, Augsburg M, Cortés Vesga CP, Abohawya M, Schmitt LT, Sürün D, Stange DE, Mircetic J, Buchholz F. Efficient Correction of Oncogenic KRAS and TP53 Mutations through CRISPR Base Editing. Cancer Res 2022; 82:3002-3015. [PMID: 35802645 PMCID: PMC9437569 DOI: 10.1158/0008-5472.can-21-2519] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
KRAS is the most frequently mutated oncogene in human cancer, and its activating mutations represent long-sought therapeutic targets. Programmable nucleases, particularly the CRISPR-Cas9 system, provide an attractive tool for genetically targeting KRAS mutations in cancer cells. Here, we show that cleavage of a panel of KRAS driver mutations suppresses growth in various human cancer cell lines, revealing their dependence on mutant KRAS. However, analysis of the remaining cell population after long-term Cas9 expression unmasked the occurence of oncogenic KRAS escape variants that were resistant to Cas9-cleavage. In contrast, the use of an adenine base editor to correct oncogenic KRAS mutations progressively depleted the targeted cells without the appearance of escape variants and allowed efficient and simultaneous correction of a cancer-associated TP53 mutation. Oncogenic KRAS and TP53 base editing was possible in patient-derived cancer organoids, suggesting that base editor approaches to correct oncogenic mutations could be developed for functional interrogation of vulnerabilities in a personalized manner for future precision oncology applications. SIGNIFICANCE Repairing KRAS mutations with base editors can be used for providing a better understanding of RAS biology and may lay the foundation for improved treatments for KRAS-mutant cancers.
Collapse
Affiliation(s)
- Shady Sayed
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Olga A. Sidorova
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander Hennig
- National Center for Tumor Diseases (NCT), Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Mildred Scheel Early Career Center (MSNZ) P2, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martina Augsburg
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Catherine P. Cortés Vesga
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moustafa Abohawya
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
| | - Lukas T. Schmitt
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Duran Sürün
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniel E. Stange
- National Center for Tumor Diseases (NCT), Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Mildred Scheel Early Career Center (MSNZ) P2, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
| | - Jovan Mircetic
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Mildred Scheel Early Career Center (MSNZ) P2, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany.,Corresponding Author: Frank Buchholz, Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. E-mail:
| |
Collapse
|
102
|
Cas-CLOVER is a novel high-fidelity nuclease for safe and robust generation of TSCM-enriched allogeneic CAR-T cells. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:979-995. [PMID: 36189080 PMCID: PMC9481872 DOI: 10.1016/j.omtn.2022.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/08/2022] [Indexed: 12/26/2022]
Abstract
The use of T cells from healthy donors for allogeneic chimeric antigen receptor T (CAR-T) cell cancer therapy is attractive because healthy donor T cells can produce versatile off-the-shelf CAR-T treatments. To maximize safety and durability of allogeneic products, the endogenous T cell receptor and major histocompatibility complex class I molecules are often removed via knockout of T cell receptor beta constant (TRBC) (or T cell receptor alpha constant [TRAC]) and B2M, respectively. However, gene editing tools (e.g., CRISPR-Cas9) can display poor fidelity, which may result in dangerous off-target mutations. Additionally, many gene editing technologies require T cell activation, resulting in a low percentage of desirable stem cell memory T cells (TSCM). We characterize an RNA-guided endonuclease, called Cas-CLOVER, consisting of the Clo051 nuclease domain fused with catalytically dead Cas9. In primary T cells from multiple donors, we find that Cas-CLOVER is a high-fidelity site-specific nuclease, with low off-target activity. Notably, Cas-CLOVER yields efficient multiplexed gene editing in resting T cells. In conjunction with the piggyBac transposon for delivery of a CAR transgene against the B cell maturation antigen (BCMA), we produce allogeneic CAR-T cells composed of high percentages of TSCM cells and possessing potent in vivo anti-tumor cytotoxicity.
Collapse
|
103
|
Yang Y, Zhang C, Song Y, Li Y, Li P, Huang M, Meng F, Zhang M. Small-molecule activators specific to adenine base editors through blocking the canonical TGF-β pathway. Nucleic Acids Res 2022; 50:9632-9646. [PMID: 36043443 PMCID: PMC9508813 DOI: 10.1093/nar/gkac742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/14/2022] Open
Abstract
Adenine base editors (ABEs) catalyze A-to-G conversions, offering therapeutic options to treat the major class of human pathogenic single nucleotide polymorphisms (SNPs). However, robust and precise editing at diverse genome loci remains challenging. Here, using high-throughput chemical screening, we identified and validated SB505124, a selective ALK5 inhibitor, as an ABE activator. Treating cells with SB505124 enhanced on-target editing at multiple genome loci, including epigenetically refractory regions, and showed little effect on off-target conversion on the genome. Furthermore, SB505124 facilitated the editing of disease-associated genes in vitro and in vivo. Intriguingly, SB505124 served as a specific activator by selectively promoting ABE activity. Mechanistically, SB505124 promotes ABE editing, at least in part, by enhancing ABE expression and modulating DNA repair-associated genes. Our findings reveal the role of the canonical transforming growth factor-β pathway in gene editing and equip ABEs with precise chemical control.
Collapse
Affiliation(s)
- Yudong Yang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai 200025, China
| | - Chi Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai 200025, China
| | - Yixuan Song
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai 200025, China
| | - Yawen Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai 200025, China
| | - Pingping Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai 200025, China
| | - Min Huang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feilong Meng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingliang Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai 200025, China
| |
Collapse
|
104
|
Li W, Huang C, Chen J. The application of CRISPR /Cas mediated gene editing in synthetic biology: Challenges and optimizations. Front Bioeng Biotechnol 2022; 10:890155. [PMID: 36091445 PMCID: PMC9452635 DOI: 10.3389/fbioe.2022.890155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and its associated enzymes (Cas) is a simple and convenient genome editing tool that has been used in various cell factories and emerging synthetic biology in the recent past. However, several problems, including off-target effects, cytotoxicity, and low efficiency of multi-gene editing, are associated with the CRISPR/Cas system, which have limited its application in new species. In this review, we briefly describe the mechanisms of CRISPR/Cas engineering and propose strategies to optimize the system based on its defects, including, but not limited to, enhancing targeted specificity, reducing toxicity related to Cas protein, and improving multi-point editing efficiency. In addition, some examples of improvements in synthetic biology are also highlighted. Finally, future perspectives of system optimization are discussed, providing a reference for developing safe genome-editing tools for new species.
Collapse
Affiliation(s)
- Wenqian Li
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing,China
| | - Can Huang
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing,China
| | - Jingyu Chen
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing,China
- *Correspondence: Jingyu Chen,
| |
Collapse
|
105
|
Reshetnikov VV, Chirinskaite AV, Sopova JV, Ivanov RA, Leonova EI. Translational potential of base-editing tools for gene therapy of monogenic diseases. Front Bioeng Biotechnol 2022; 10:942440. [PMID: 36032737 PMCID: PMC9399415 DOI: 10.3389/fbioe.2022.942440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 12/26/2022] Open
Abstract
Millions of people worldwide have rare genetic diseases that are caused by various mutations in DNA sequence. Classic treatments of rare genetic diseases are often ineffective, and therefore great hopes are placed on gene-editing methods. A DNA base-editing system based on nCas9 (Cas9 with a nickase activity) or dCas9 (a catalytically inactive DNA-targeting Cas9 enzyme) enables editing without double-strand breaks. These tools are constantly being improved, which increases their potential usefulness for therapies. In this review, we describe the main types of base-editing systems and their application to the treatment of monogenic diseases in experiments in vitro and in vivo. Additionally, to understand the therapeutic potential of these systems, the advantages and disadvantages of base-editing systems are examined.
Collapse
Affiliation(s)
- Vasiliy V. Reshetnikov
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Department of Molecular Genetics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Angelina V. Chirinskaite
- Сenter of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
| | - Julia V. Sopova
- Сenter of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Roman A. Ivanov
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
| | - Elena I. Leonova
- Сenter of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
106
|
Li A, Mitsunobu H, Yoshioka S, Suzuki T, Kondo A, Nishida K. Cytosine base editing systems with minimized off-target effect and molecular size. Nat Commun 2022; 13:4531. [PMID: 35941130 PMCID: PMC9359979 DOI: 10.1038/s41467-022-32157-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Cytosine base editing enables the installation of specific point mutations without double-strand breaks in DNA and is advantageous for various applications such as gene therapy, but further reduction of off-target risk and development of efficient delivery methods are desired. Here we show structure-based rational engineering of the cytosine base editing system Target-AID to minimize its off-target effect and molecular size. By intensive and careful truncation, DNA-binding domain of its deaminase PmCDA1 is eliminated and additional mutations are introduced to restore enzyme function. The resulting tCDA1EQ is effective in N-terminal fusion (AID-2S) or inlaid architecture (AID-3S) with Cas9, showing minimized RNA-mediated editing and gRNA-dependent/independent DNA off-targets, as assessed in human cells. Combining with the smaller Cas9 ortholog system (SaCas9), a cytosine base editing system is created that is within the size limit of AAV vector.
Collapse
Affiliation(s)
- Ang Li
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Hitoshi Mitsunobu
- Engineering Biology Research Center, Kobe University, Kobe, Hyogo, Japan
- Bio Palette inc, Kobe, Hyogo, Japan
| | - Shin Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Takahisa Suzuki
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- Tokyo Metropolitan University, Hachioji, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- Engineering Biology Research Center, Kobe University, Kobe, Hyogo, Japan
| | - Keiji Nishida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.
- Engineering Biology Research Center, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
107
|
Ottaviano G, Qasim W. Genome-Edited T Cell Therapies. Hematol Oncol Clin North Am 2022; 36:729-744. [PMID: 35773047 DOI: 10.1016/j.hoc.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Chimeric antigen receptor (CAR) T-cells are widely being investigated against malignancies, and allogeneic 'universal donor' CAR-T cells offer the possibility of widened access to pre-manufactured, off-the-shelf therapies. Different genome-editing platforms have been used to address human leukocyte antigen (HLA) barriers to generate universal CAR-T cell therapy and early applications have been reported in children and adults against B cell malignancies. Recently developed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based systems and related technologies offer the prospect of enhanced cellular immunotherapies for a wider range of hematological malignancies.
Collapse
Affiliation(s)
- Giorgio Ottaviano
- Infection, Immunity & Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Waseem Qasim
- Infection, Immunity & Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
108
|
SpG and SpRY variants expand the CRISPR toolbox for genome editing in zebrafish. Nat Commun 2022; 13:3421. [PMID: 35701400 PMCID: PMC9198057 DOI: 10.1038/s41467-022-31034-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Precise genetic modifications in model organisms are essential for biomedical research. The recent development of PAM-less base editors makes it possible to assess the functional impact and pathogenicity of nucleotide mutations in animals. Here we first optimize SpG and SpRY systems in zebrafish by purifying protein combined with synthetically modified gRNA. SpG shows high editing efficiency at NGN PAM sites, whereas SpRY efficiently edit PAM-less sites in the zebrafish genome. Then, we generate the SpRY-mediated cytosine base editor SpRY-CBE4max and SpRY-mediated adenine base editor zSpRY-ABE8e. Both target relaxed PAM with up to 96% editing efficiency and high product purity. With these tools, some previously inaccessible disease-relevant genetic variants are generated in zebrafish, supporting the utility of high-resolution targeting across genome-editing applications. Our study significantly improves CRISPR-Cas targeting in the genomic landscape of zebrafish, promoting the application of this model organism in revealing gene function, physiological mechanisms, and disease pathogenesis.
Collapse
|
109
|
Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 2022; 185:1764-1776.e12. [PMID: 35472302 DOI: 10.1016/j.cell.2022.03.039] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA (mtDNA) editing paves the way for disease modeling of mitochondrial genetic disorders in cell lines and animals and also for the treatment of these diseases in the future. Bacterial cytidine deaminase DddA-derived cytosine base editors (DdCBEs) enabling mtDNA editing, however, are largely limited to C-to-T conversions in the 5'-TC context (e.g., TC-to-TT conversions), suitable for generating merely 1/8 of all possible transition (purine-to-purine and pyrimidine-to-pyrimidine) mutations. Here, we present transcription-activator-like effector (TALE)-linked deaminases (TALEDs), composed of custom-designed TALE DNA-binding arrays, a catalytically impaired, full-length DddA variant or split DddA originated from Burkholderia cenocepacia, and an engineered deoxyadenosine deaminase derived from the E. coli TadA protein, which induce targeted A-to-G editing in human mitochondria. Custom-designed TALEDs were highly efficient in human cells, catalyzing A-to-G conversions at a total of 17 target sites in various mitochondrial genes with editing frequencies of up to 49%.
Collapse
|
110
|
Abstract
Over the past decade, CRISPR has become as much a verb as it is an acronym, transforming biomedical research and providing entirely new approaches for dissecting all facets of cell biology. In cancer research, CRISPR and related tools have offered a window into previously intractable problems in our understanding of cancer genetics, the noncoding genome and tumour heterogeneity, and provided new insights into therapeutic vulnerabilities. Here, we review the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Alyna Katti
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Bianca J Diaz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Christina M Caragine
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
111
|
Xiong X, Li Z, Liang J, Liu K, Li C, Li JF. A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants. Nucleic Acids Res 2022; 50:3565-3580. [PMID: 35286371 PMCID: PMC8989527 DOI: 10.1093/nar/gkac166] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas-derived base editing tools empower efficient alteration of genomic cytosines or adenines associated with essential genetic traits in plants and animals. Diversified target sequences and customized editing products call for base editors with distinct features regarding the editing window and target scope. Here we developed a toolkit of plant base editors containing AID10, an engineered human AID cytosine deaminase. When fused to the N-terminus or C-terminus of the conventional Cas9 nickase (nSpCas9), AID10 exhibited a broad or narrow activity window at the protospacer adjacent motif (PAM)-distal and -proximal protospacer, respectively, while AID10 fused to both termini conferred an additive activity window. We further replaced nSpCas9 with orthogonal or PAM-relaxed Cas9 variants to widen target scopes. Moreover, we devised dual base editors with AID10 located adjacently or distally to the adenine deaminase ABE8e, leading to juxtaposed or spaced cytosine and adenine co-editing at the same target sequence in plant cells. Furthermore, we expanded the application of this toolkit in plants for tunable knockdown of protein-coding genes via creating upstream open reading frame and for loss-of-function analysis of non-coding genes, such as microRNA sponges. Collectively, this toolkit increases the functional diversity and versatility of base editors in basic and applied plant research.
Collapse
Affiliation(s)
- Xiangyu Xiong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenxiang Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jieping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kehui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chenlong Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
112
|
Li G, Li X, Zhuang S, Wang L, Zhu Y, Chen Y, Sun W, Wu Z, Zhou Z, Chen J, Huang X, Wang J, Li D, Li W, Wang H, Wei W. Gene editing and its applications in biomedicine. SCIENCE CHINA. LIFE SCIENCES 2022; 65:660-700. [PMID: 35235150 PMCID: PMC8889061 DOI: 10.1007/s11427-021-2057-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
The steady progress in genome editing, especially genome editing based on the use of clustered regularly interspaced short palindromic repeats (CRISPR) and programmable nucleases to make precise modifications to genetic material, has provided enormous opportunities to advance biomedical research and promote human health. The application of these technologies in basic biomedical research has yielded significant advances in identifying and studying key molecular targets relevant to human diseases and their treatment. The clinical translation of genome editing techniques offers unprecedented biomedical engineering capabilities in the diagnosis, prevention, and treatment of disease or disability. Here, we provide a general summary of emerging biomedical applications of genome editing, including open challenges. We also summarize the tools of genome editing and the insights derived from their applications, hoping to accelerate new discoveries and therapies in biomedicine.
Collapse
Affiliation(s)
- Guanglei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiangyang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Songkuan Zhuang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Liren Wang
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yifan Zhu
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yangcan Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeguang Wu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jin Wang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Dali Li
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China.
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
113
|
Weng N, Miller M, Pham AK, Komor AC, Broide DH. Single-base editing of rs12603332 on chromosome 17q21 with a cytosine base editor regulates ORMDL3 and ATF6α expression. Allergy 2022; 77:1139-1149. [PMID: 34525218 DOI: 10.1111/all.15092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Genetic association studies have demonstrated that the SNP rs12603332 located on chromosome 17q21 is highly associated with the risk of the development of asthma. METHODS To determine whether SNP rs1260332 is functional in regulating levels of ORMDL3 expression, we used a Cytosine Base Editor (CBE) plasmid DNA or a CBE mRNA to edit the rs12603332 C risk allele to the T non-risk allele in a human lymphocyte cell line (i.e., Jurkat cells) and in primary human CD4 T cells that carry the C risk alleles. RESULTS Jurkat cells with the rs12603332 C risk allele expressed significantly higher levels of ORMDL3 mRNA, as well as the ORMDL3 regulated gene ATF6α as assessed by qPCR compared to Jurkat clones with the T non-risk allele. In primary human CD4 T cells, we edited 90 ± 3% of the rs12603332-C risk allele to the T non-risk allele and observed a reduction in ORMDL3 and ATF6α expression. Bioinformatic analysis predicted that the non-risk allele rs12603332-T could be the central element of the E-box binding motif (CANNTG) recognized by the E47 transcription factor. An EMSA assay confirmed the bioinformatics prediction demonstrating that a rs12603332-T containing probe bound to the transcription factor E47 in vitro. CONCLUSIONS SNP rs12603332 is functional in regulating the expression of ORMDL3 as well as ORMDL3 regulated gene ATF6α expression. In addition, we demonstrate the use of CBE technology in functionally interrogating asthma-associated SNPs using studies of primary human CD4 cells.
Collapse
Affiliation(s)
- Ning Weng
- Department of Medicine University of California San Diego La Jolla California USA
| | - Marina Miller
- Department of Medicine University of California San Diego La Jolla California USA
| | - Alexa K. Pham
- Department of Medicine University of California San Diego La Jolla California USA
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry University of California San Diego La Jolla California USA
| | - David H. Broide
- Department of Medicine University of California San Diego La Jolla California USA
| |
Collapse
|
114
|
Rallapalli KL, Ranzau BL, Ganapathy KR, Paesani F, Komor AC. Combined Theoretical, Bioinformatic, and Biochemical Analyses of RNA Editing by Adenine Base Editors. CRISPR J 2022; 5:294-310. [PMID: 35353638 PMCID: PMC9347300 DOI: 10.1089/crispr.2021.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/25/2021] [Indexed: 11/13/2022] Open
Abstract
Adenine base editors (ABEs) have been subjected to multiple rounds of mutagenesis with the goal of optimizing their function as efficient and precise genome editing agents. Despite an ever-expanding data set of ABE mutants and their corresponding DNA or RNA-editing activity, the molecular mechanisms defining these changes remain to be elucidated. In this study, we provide a systematic interpretation of the nature of these mutations using an entropy-based classification model that relies on evolutionary data from extant protein sequences. Using this model in conjunction with experimental analyses, we identify two previously reported mutations that form an epistatic pair in the RNA-editing functional landscape of ABEs. Molecular dynamics simulations reveal the atomistic details of how these two mutations affect substrate-binding and catalytic activity, via both individual and cooperative effects, hence providing insights into the mechanisms through which these two mutations are epistatically coupled.
Collapse
Affiliation(s)
- Kartik L. Rallapalli
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA; University of California San Diego, La Jolla, California, USA
| | - Brodie L. Ranzau
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA; University of California San Diego, La Jolla, California, USA
| | - Kaushik R. Ganapathy
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, California, USA; University of California San Diego, La Jolla, California, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA; University of California San Diego, La Jolla, California, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, California, USA; and University of California San Diego, La Jolla, California, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, USA
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA; University of California San Diego, La Jolla, California, USA
| |
Collapse
|
115
|
Hua K, Han P, Zhu JK. Improvement of base editors and prime editors advances precision genome engineering in plants. PLANT PHYSIOLOGY 2022; 188:1795-1810. [PMID: 34962995 PMCID: PMC8968349 DOI: 10.1093/plphys/kiab591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 05/11/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas)-mediated gene disruption has revolutionized biomedical research as well as plant and animal breeding. However, most disease-causing mutations and agronomically important genetic variations are single base polymorphisms (single-nucleotide polymorphisms) that require precision genome editing tools for correction of the sequences. Although homology-directed repair of double-stranded breaks (DSBs) can introduce precise changes, such repairs are inefficient in differentiated animal and plant cells. Base editing and prime editing are two recently developed genome engineering approaches that can efficiently introduce precise edits into target sites without requirement of DSB formation or donor DNA templates. They have been applied in several plant species with promising results. Here, we review the extensive literature on improving the efficiency, target scope, and specificity of base editors and prime editors in plants. We also highlight recent progress on base editing in plant organellar genomes and discuss how these precision genome editing tools are advancing basic plant research and crop breeding.
Collapse
Affiliation(s)
- Kai Hua
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Peijin Han
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
116
|
Barka A, Berríos KN, Bailer P, Schutsky EK, Wang T, Kohli RM. The Base-Editing Enzyme APOBEC3A Catalyzes Cytosine Deamination in RNA with Low Proficiency and High Selectivity. ACS Chem Biol 2022; 17:629-636. [PMID: 35262324 PMCID: PMC9949940 DOI: 10.1021/acschembio.1c00919] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human APOBEC3A (A3A) is a nucleic acid-modifying enzyme that belongs to the cytidine deaminase family. Canonically, A3A catalyzes the deamination of cytosine into uracil in single-stranded DNA, an activity that makes A3A both a critical antiviral defense factor and a useful tool for targeted genome editing. However, mutagenesis by A3A has also been readily detected in both cellular DNA and RNA, activities that have been implicated in cancer. Given the importance of substrate discrimination for the physiological, pathological, and biotechnological activities of A3A, here we explore the mechanistic basis for its preferential targeting of DNA over RNA. Using a chimeric substrate containing a target ribocytidine within an otherwise DNA backbone, we demonstrate that a single hydroxyl at the sugar of the target base acts as a major selectivity determinant for deamination. To assess the contribution of bases neighboring the target cytosine, we show that overall RNA deamination is greatly reduced relative to that of DNA but can be observed when ideal features are present, such as preferred sequence context and secondary structure. A strong dependence on idealized substrate features can also be observed with a mutant of A3A (eA3A, N57G), which has been employed for genome editing due to altered selectivity for DNA over RNA. Altogether, our work reveals a relationship between the overall decreased reactivity of A3A and increased substrate selectivity, and our results hold implications both for characterizing off-target mutagenesis and for engineering optimized DNA deaminases for base-editing technologies.
Collapse
Affiliation(s)
- Aleksia Barka
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kiara N. Berríos
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Peter Bailer
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Emily K. Schutsky
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tong Wang
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Rahul M. Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
117
|
Dimitri A, Herbst F, Fraietta JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer 2022; 21:78. [PMID: 35303871 PMCID: PMC8932053 DOI: 10.1186/s12943-022-01559-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Chimeric Antigen Receptor (CAR) T-cells represent a breakthrough in personalized cancer therapy. In this strategy, synthetic receptors comprised of antigen recognition, signaling, and costimulatory domains are used to reprogram T-cells to target tumor cells for destruction. Despite the success of this approach in refractory B-cell malignancies, optimal potency of CAR T-cell therapy for many other cancers, particularly solid tumors, has not been achieved. Factors such as T-cell exhaustion, lack of CAR T-cell persistence, cytokine-related toxicities, and bottlenecks in the manufacturing of autologous products have hampered the safety, effectiveness, and availability of this approach. With the ease and accessibility of CRISPR-Cas9-based gene editing, it is possible to address many of these limitations. Accordingly, current research efforts focus on precision engineering of CAR T-cells with conventional CRISPR-Cas9 systems or novel editors that can install desired genetic changes with or without introduction of a double-stranded break (DSB) into the genome. These tools and strategies can be directly applied to targeting negative regulators of T-cell function, directing therapeutic transgenes to specific genomic loci, and generating reproducibly safe and potent allogeneic universal CAR T-cell products for on-demand cancer immunotherapy. This review evaluates several of the ongoing and future directions of combining next-generation CRISPR-Cas9 gene editing with synthetic biology to optimize CAR T-cell therapy for future clinical trials toward the establishment of a new cancer treatment paradigm.
Collapse
Affiliation(s)
- Alexander Dimitri
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, South Pavilion Expansion (SPE), Room 9-104, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA, 19104-5156, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Friederike Herbst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Translational Medical Oncology, National Center for Tumor Diseases, Dresden and German Cancer Research Center, Heidelberg, Germany
| | - Joseph A Fraietta
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, South Pavilion Expansion (SPE), Room 9-104, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA, 19104-5156, USA. .,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
118
|
Yin J, Lu R, Xin C, Wang Y, Ling X, Li D, Zhang W, Liu M, Xie W, Kong L, Si W, Wei P, Xiao B, Lee HY, Liu T, Hu J. Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nat Commun 2022; 13:1204. [PMID: 35260581 PMCID: PMC8904484 DOI: 10.1038/s41467-022-28900-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/18/2022] [Indexed: 12/27/2022] Open
Abstract
The mechanism underlying unwanted structural variations induced by CRISPR-Cas9 remains poorly understood, and no effective strategy is available to inhibit the generation of these byproducts. Here we find that the generation of a high level of translocations is dependent on repeated cleavage at the Cas9-targeting sites. Therefore, we employ a strategy in which Cas9 is fused with optimized TREX2 to generate Cas9TX, a Cas9 exo-endonuclease, which prevents perfect DNA repair and thereby avoids repeated cleavage. In comparison with CRISPR-Cas9, CRISPR-Cas9TX greatly suppressed translocation levels and enhanced the editing efficiency of single-site editing. The number of large deletions associated with Cas9TX was also reduced to very low level. The application of CRISPR-Cas9TX for multiplex gene editing in chimeric antigen receptor T cells nearly eliminated deleterious chromosomal translocations. We report the mechanism underlying translocations induced by Cas9, and propose a general strategy for reducing chromosomal abnormalities induced by CRISPR-RNA-guided endonucleases.
Collapse
Affiliation(s)
- Jianhang Yin
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Rusen Lu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Changchang Xin
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Yuhong Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Xinyu Ling
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Dong Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Weiwei Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Mengzhu Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Wutao Xie
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Lingyun Kong
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Wen Si
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Ping Wei
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, 100034, Beijing, China
| | - Hsiang-Ying Lee
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China.
| |
Collapse
|
119
|
Nguyen Tran MT, Kc R, Hewitt AW. A Taxonomic and Phylogenetic Classification of Diverse Base Editors. CRISPR J 2022; 5:311-328. [PMID: 35244489 DOI: 10.1089/crispr.2021.0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Base editors mediate the targeted conversion of single nucleobases in a therapeutically relevant manner. Herein, we present a hypothetical taxonomic and phylogenetic framework for the classification of more than 200 different DNA base editors, and we categorize them based on their described properties. Following evaluation of their in situ activity windows, which were derived by cataloguing their activity in published literature, organization is done hierarchically, with specific base editor signatures being subcategorized according to their on-target activity or nonspecific, genome- or transcriptome-wide activity. Based on this categorization, we curate a phylogenetic framework, based on protein homology alignment, and describe a taxonomic structure that clusters base editor variants on their target chemistry, endonuclease component, identity of their deaminase component, and their described properties into discrete taxa. Thus, we establish a hypothetical taxonomic structure that can describe and organize current and potentially future base editing variants into clearly defined groups that are defined by their characteristics. Finally, we summarize our findings into a navigable database (ShinyApp in R) that allows users to select through our repository to nominate ideal base editor candidates as a starting point for further testing in their specific application.
Collapse
Affiliation(s)
- Minh Thuan Nguyen Tran
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Tasmania, Australia; and The University of Melbourne, Melbourne, Australia
| | - Rajendra Kc
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Tasmania, Australia; and The University of Melbourne, Melbourne, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Tasmania, Australia; and The University of Melbourne, Melbourne, Australia.,Centre for Eye Research Australia, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
120
|
Kocher T, Petkovic I, Bischof J, Koller U. Current developments in gene therapy for epidermolysis bullosa. Expert Opin Biol Ther 2022; 22:1137-1150. [PMID: 35235467 DOI: 10.1080/14712598.2022.2049229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The genodermatosis epidermolysis bullosa (EB) is a monogenetic disease, characterized by severe blister formation on the skin and mucous membranes upon minimal mechanical trauma. Causes for the disease are mutations in genes encoding proteins that are essential for skin integrity. In EB, one of these proteins is either functionally impaired or completely absent. Therefore, the development and improvement of DNA and RNA-based therapeutic approaches for this severe blistering skin disease is mandatory to achieve a treatment option for the patients. AREAS COVERED Currently, there are several forms of DNA/RNA therapies potentially feasible for EB. Whereas some of them are still at the preclinical stage, others are clinically advanced and have already been applied to patients. In particular, this is the case for a cDNA replacement approach successfully applied for a small number of patients with junctional EB. EXPERT OPINION The heterogeneity of EB justifies the development of therapeutic options with distinct modes of action at a DNA or RNA level. Besides, splicing-modulating therapies, based on RNA trans-splicing or short antisense oligonucleotides, especially designer nucleases, have steadily improved in efficiency and safety and thus likely represent the most promising gene therapy tool in the near future.
Collapse
Affiliation(s)
- Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Igor Petkovic
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
121
|
Lu Z, He S, Jiang J, Zhuang L, Wang Y, Yang G, Jiang X, Nie Y, Fu J, Zhang X, Lu Y, Bian X, Chang HC, Xiong Z, Huang X, Liu Z, Sun Q. Base-edited Cynomolgus Monkeys mimic core symptoms of STXBP1 encephalopathy. Mol Ther 2022; 30:2163-2175. [DOI: 10.1016/j.ymthe.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022] Open
|
122
|
Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat Biotechnol 2022; 40:946-955. [PMID: 35145313 DOI: 10.1038/s41587-021-01180-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
Current methods for programmed RNA editing using endogenous ADAR enzymes and engineered ADAR-recruiting RNAs (arRNAs) suffer from low efficiency and bystander off-target editing. Here, we describe LEAPER 2.0, an updated version of LEAPER that uses covalently closed circular arRNAs, termed circ-arRNAs. We demonstrate on average ~3.1-fold higher editing efficiency than their linear counterparts when expressed in cells or delivered as in vitro-transcribed circular RNA oligonucleotides. To lower off-target editing we deleted pairings of uridines with off-target adenosines, which almost completely eliminated bystander off-target adenosine editing. Engineered circ-arRNAs enhanced the efficiency and fidelity of editing endogenous CTNNB1 and mutant TP53 transcripts in cell culture. Delivery of circ-arRNAs using adeno-associated virus in a mouse model of Hurler syndrome corrected the pathogenic point mutation and restored α-L-iduronidase catalytic activity, lowering glycosaminoglycan accumulation in the liver. LEAPER 2.0 provides a new design of arRNA that enables more precise, efficient RNA editing with broad applicability for therapy and basic research.
Collapse
|
123
|
Li S, Liu L, Sun W, Zhou X, Zhou H. A large-scale genome and transcriptome sequencing analysis reveals the mutation landscapes induced by high-activity adenine base editors in plants. Genome Biol 2022; 23:51. [PMID: 35139891 PMCID: PMC8826654 DOI: 10.1186/s13059-022-02618-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
Background The high-activity adenine base editors (ABEs), engineered with the recently-developed tRNA adenosine deaminases (TadA8e and TadA9), show robust base editing activity but raise concerns about off-target effects. Results In this study, we perform a comprehensive evaluation of ABE8e- and ABE9-induced DNA and RNA mutations in Oryza sativa. Whole-genome sequencing analysis of plants transformed with four ABEs, including SpCas9n-TadA8e, SpCas9n-TadA9, SpCas9n-NG-TadA8e, and SpCas9n-NG-TadA9, reveal that ABEs harboring TadA9 lead to a higher number of off-target A-to-G (A>G) single-nucleotide variants (SNVs), and that those harboring CRISPR/SpCas9n-NG lead to a higher total number of off-target SNVs in the rice genome. An analysis of the T-DNAs carrying the ABEs indicates that the on-target mutations could be introduced before and/or after T-DNA integration into plant genomes, with more off-target A>G SNVs forming after the ABEs had integrated into the genome. Furthermore, we detect off-target A>G RNA mutations in plants with high expression of ABEs but not in plants with low expression of ABEs. The off-target A>G RNA mutations tend to cluster, while off-target A>G DNA mutations rarely clustered. Conclusion Our findings that Cas proteins, TadA variants, temporal expression of ABEs, and expression levels of ABEs contribute to ABE specificity in rice provide insight into the specificity of ABEs and suggest alternative ways to increase ABE specificity besides engineering TadA variants. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02618-w.
Collapse
Affiliation(s)
- Shaofang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Lang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin, 541399, China.,Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Zhejiang, Hangzhou, China
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin, 541399, China.
| |
Collapse
|
124
|
Bloomer H, Khirallah J, Li Y, Xu Q. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Adv Drug Deliv Rev 2022; 181:114087. [PMID: 34942274 PMCID: PMC8844242 DOI: 10.1016/j.addr.2021.114087] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.
Collapse
Affiliation(s)
- Hanan Bloomer
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,School of Medicine and Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, US
| | - Jennifer Khirallah
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,Corresponding Authors: (Y. Li) and (Q. Xu)
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,Corresponding Authors: (Y. Li) and (Q. Xu)
| |
Collapse
|
125
|
Roy RK, Debashree I, Srivastava S, Rishi N, Srivastava A. CRISPR/ Cas9 Off-targets: Computational Analysis of Causes, Prediction,
Detection, and Overcoming Strategies. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210708150439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
CRISPR/Cas9 technology is a highly flexible RNA-guided endonuclease (RGEN)
based gene-editing tool that has transformed the field of genomics, gene therapy, and genome/
epigenome imaging. Its wide range of applications provides immense scope for understanding
as well as manipulating genetic/epigenetic elements. However, the RGEN is prone to
off-target mutagenesis that leads to deleterious effects. This review details the molecular and cellular
mechanisms underlying the off-target activity, various available detection tools and prediction
methodology ranging from sequencing to machine learning approaches, and the strategies to
overcome/minimise off-targets. A coherent and concise method increasing target precision would
prove indispensable to concrete manipulation and interpretation of genome editing results that
can revolutionise therapeutics, including clarity in genome regulatory mechanisms during development.
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313, India
| | - Ipsita Debashree
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313, India
| | - Sonal Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| |
Collapse
|
126
|
Habib O, Habib G, Hwang GH, Bae S. Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Res 2022; 50:1187-1197. [PMID: 35018468 PMCID: PMC8789035 DOI: 10.1093/nar/gkab1295] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Prime editing is a versatile and precise genome editing technique that can directly copy desired genetic modifications into target DNA sites without the need for donor DNA. This technique holds great promise for the analysis of gene function, disease modeling, and the correction of pathogenic mutations in clinically relevant cells such as human pluripotent stem cells (hPSCs). Here, we comprehensively tested prime editing in hPSCs by generating a doxycycline-inducible prime editing platform. Prime editing successfully induced all types of nucleotide substitutions and small insertions and deletions, similar to observations in other human cell types. Moreover, we compared prime editing and base editing for correcting a disease-related mutation in induced pluripotent stem cells derived form a patient with α 1-antitrypsin (A1AT) deficiency. Finally, whole-genome sequencing showed that, unlike the cytidine deaminase domain of cytosine base editors, the reverse transcriptase domain of a prime editor does not lead to guide RNA-independent off-target mutations in the genome. Our results demonstrate that prime editing in hPSCs has great potential for complementing previously developed CRISPR genome editing tools.
Collapse
Affiliation(s)
- Omer Habib
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| | - Gizem Habib
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| | - Gue-Ho Hwang
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 08826, South Korea
| |
Collapse
|
127
|
Sultan Q, Ashraf S, Munir A, Khan SH, Munawar N, Abd-Elsalam KA, Ahmad A. Beyond Genome Editing: CRISPR Approaches. THE CRISPR/CAS TOOL KIT FOR GENOME EDITING 2022:187-218. [DOI: 10.1007/978-981-16-6305-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
128
|
Wang Y, Wang H, Jian Y, Luo Z, Shao H, Zhang W. Strategies for optimization of the CRISPR-based genome editing system for enhanced editing specificity. Hum Gene Ther 2021; 33:358-370. [PMID: 34963339 DOI: 10.1089/hum.2021.283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is inarguably the most valuable gene editing tool ever discovered. Currently, three classes of CRISPR-based genome editing systems have been developed for gene editing, including CRISPR/Cas nucleases, base editors (BEs) and prime editors (PEs). Ever-evolving CRISPR technology plays an important role in medicine; however, the biggest obstacle to its use in clinical practice is the induction of off-target effects (OTEs) during targeted editing. Therefore, continuous improvement and optimization of the CRISPR system for reduction of OTEs is a major focus in the field of CRISPR research. This review aims to provide a comprehensive guide for optimization of the CRISPR-based genome editing system.
Collapse
Affiliation(s)
- Yangmin Wang
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Haozheng Wang
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Yingzhen Jian
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Zhongtao Luo
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Hongwei Shao
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Wenfeng Zhang
- Guangdong Pharmaceutical University, 71237, School of Biosciences and Biopharmaceutics , 28 E. Rd outside the City of Guangzhou University, Guangzhou, China, 510006;
| |
Collapse
|
129
|
Modell AE, Lim D, Nguyen TM, Sreekanth V, Choudhary A. CRISPR-based therapeutics: current challenges and future applications. Trends Pharmacol Sci 2021; 43:151-161. [PMID: 34952739 DOI: 10.1016/j.tips.2021.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
The discovery, only a decade ago, of the genome editing power of clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases is already reinventing the therapeutic process, from how new drugs are discovered to novel ways to treat diseases. CRISPR-based screens can aid therapeutic development by quickly identifying a drug's mechanism of action and escape mutants. Additionally, CRISPR-Cas has advanced emerging ex vivo therapeutics, such as cell replacement therapies. However, Cas9 is limited as an in vivo therapeutic due to ineffective delivery, unwanted immune responses, off-target effects, unpredictable repair outcomes, and cellular stress. To address these limitations, controls that inhibit or degrade Cas9, biomolecule-Cas9 conjugates, and base editors have been developed. Herein, we discuss CRISPR-Cas systems that advance both conventional and emerging therapeutics.
Collapse
Affiliation(s)
- Ashley E Modell
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Donghyun Lim
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tuan M Nguyen
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vedagopuram Sreekanth
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA; Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA.
| |
Collapse
|
130
|
Buchumenski I, Roth SH, Kopel E, Katsman E, Feiglin A, Levanon EY, Eisenberg E. Global quantification exposes abundant low-level off-target activity by base editors. Genome Res 2021; 31:2354-2361. [PMID: 34667118 PMCID: PMC8647836 DOI: 10.1101/gr.275770.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022]
Abstract
Base editors are dedicated engineered deaminases that enable directed conversion of specific bases in the genome or transcriptome in a precise and efficient manner, and hold promise for correcting pathogenic mutations. A major concern limiting application of this powerful approach is the issue of off-target edits. Several recent studies have shown substantial off-target RNA activity induced by base editors and demonstrated that off-target mutations may be suppressed by improved deaminases versions or optimized guide RNAs. Here, we describe a new class of off-target events that are invisible to the established methods for detection of genomic variations and were thus far overlooked. We show that nonspecific, seemingly stochastic, off-target events affect a large number of sites throughout the genome or the transcriptome, and account for the majority of off-target activity. We develop and employ a different, complementary approach that is sensitive to the stochastic off-target activity and use it to quantify the abundant off-target RNA mutations due to current, optimized deaminase editors. We provide a computational tool to quantify global off-target activity, which can be used to optimize future base editors. Engineered base editors enable directed manipulation of the genome or transcriptome at single-base resolution. We believe that implementation of this computational approach would facilitate design of more specific base editors.
Collapse
Affiliation(s)
- Ilana Buchumenski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shalom Hillel Roth
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Eli Kopel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Efrat Katsman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ariel Feiglin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
131
|
Controllable genome editing with split-engineered base editors. Nat Chem Biol 2021; 17:1262-1270. [PMID: 34663942 PMCID: PMC8981362 DOI: 10.1038/s41589-021-00880-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
DNA deaminase enzymes play key roles in immunity and have recently been harnessed for their biotechnological applications. In base editors (BEs), the combination of DNA deaminase mutator activity with CRISPR-Cas localization confers the powerful ability to directly convert one target DNA base into another. While efforts have been made to improve targeting efficiency and precision, all BEs so far use a constitutively active DNA deaminase. The absence of regulatory control over promiscuous deaminase activity remains a major limitation to accessing the widespread potential of BEs. Here, we reveal sites that permit splitting of DNA cytosine deaminases into two inactive fragments, whose reapproximation reconstitutes activity. These findings allow for the development of split-engineered BEs (seBEs), which newly enable small-molecule control over targeted mutator activity. We show that the seBE strategy facilitates robust regulated editing with BE scaffolds containing diverse deaminases, offering a generalizable solution for temporally controlling precision genome editing.
Collapse
|
132
|
Xie YX, Lv WQ, Chen YK, Hong S, Yao XP, Chen WJ, Zhao M. Advances in gene therapy for neurogenetic diseases: a brief review. J Mol Med (Berl) 2021; 100:385-394. [PMID: 34837498 DOI: 10.1007/s00109-021-02167-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
Neurogenetic diseases are neurological conditions with a genetic cause (s). There are thousands of neurogenetic diseases, and most of them are incurable. The development of bioinformatics and elucidation of the mechanism of pathogenesis have allowed the development of gene therapy approaches, which show great potential in treating neurogenetic diseases. Viral vectors delivery, antisense oligonucleotides, gene editing, RNA interference, and burgeoning viroid delivery technique are promising gene therapy strategies, and commendable therapeutic effects in the treatment of neurogenetic diseases have been achieved (Fig. 1). This review highlights a sampling of advances in gene therapies for neurogenetic disorders. Fig. 1 Examples of gene therapy strategies used in the treatment of neurogenetic diseases. The schematic diagram shows different gene therapy approaches used for treating a sampling of neurogenetic disorders, such as ASO therapy, gene editing, gene augmentation, and RNA interference.
Collapse
Affiliation(s)
- Ying-Xuan Xie
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Wen-Qi Lv
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Yi-Kun Chen
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Shunyan Hong
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Xiang-Ping Yao
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Miao Zhao
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
133
|
Rees HA, Minella AC, Burnett CA, Komor AC, Gaudelli NM. CRISPR-derived genome editing therapies: Progress from bench to bedside. Mol Ther 2021; 29:3125-3139. [PMID: 34619370 PMCID: PMC8572140 DOI: 10.1016/j.ymthe.2021.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The development of CRISPR-derived genome editing technologies has enabled the precise manipulation of DNA sequences within the human genome. In this review, we discuss the initial development and cellular mechanism of action of CRISPR nucleases and DNA base editors. We then describe factors that must be taken into consideration when developing these tools into therapeutic agents, including the potential for unintended and off-target edits when using these genome editing tools, and methods to characterize these types of edits. We finish by considering specific challenges associated with bringing a CRISPR-based therapy to the clinic, including manufacturing, regulatory oversight, and considerations for clinical trials that involve genome editing agents.
Collapse
|
134
|
Newby GA, Liu DR. In vivo somatic cell base editing and prime editing. Mol Ther 2021; 29:3107-3124. [PMID: 34509669 PMCID: PMC8571176 DOI: 10.1016/j.ymthe.2021.09.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Recent advances in genome editing technologies have magnified the prospect of single-dose cures for many genetic diseases. For most genetic disorders, precise DNA correction is anticipated to best treat patients. To install desired DNA changes with high precision, our laboratory developed base editors (BEs), which can correct the four most common single-base substitutions, and prime editors, which can install any substitution, insertion, and/or deletion over a stretch of dozens of base pairs. Compared to nuclease-dependent editing approaches that involve double-strand DNA breaks (DSBs) and often result in a large percentage of uncontrolled editing outcomes, such as mixtures of insertions and deletions (indels), larger deletions, and chromosomal rearrangements, base editors and prime editors often offer greater efficiency with fewer byproducts in slowly dividing or non-dividing cells, such as those that make up most of the cells in adult animals. Both viral and non-viral in vivo delivery methods have now been used to deliver base editors and prime editors in animal models, establishing that base editors and prime editors can serve as effective agents for in vivo therapeutic genome editing in animals. This review summarizes examples of in vivo somatic cell (post-natal) base editing and prime editing and prospects for future development.
Collapse
Affiliation(s)
- Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02142 USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02142 USA.
| |
Collapse
|
135
|
Fu J, Li Q, Liu X, Tu T, Lv X, Yin X, Lv J, Song Z, Qu J, Zhang J, Li J, Gu F. Human cell based directed evolution of adenine base editors with improved efficiency. Nat Commun 2021; 12:5897. [PMID: 34625552 PMCID: PMC8501064 DOI: 10.1038/s41467-021-26211-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Adenine base editors (ABE) are genome-editing tools that have been harnessed to introduce precise A•T to G•C conversion. However, the low activity of ABE at certain sites remains a major bottleneck that precludes efficacious applications. Here, to address it, we develop a directional screening system in human cells to evolve the deaminase component of the ABE, and identify three high-activity NG-ABEmax variants: NG-ABEmax-SGK (R101S/D139G/E140K), NG-ABEmax-R (Q154R) and NG-ABEmax-K (N127K). With further engineering, we create a consolidated variant [NG-ABEmax-KR (N127K/Q154R)] which exhibit superior editing activity both in human cells and in mouse disease models, compared to the original NG-ABEmax. We also find that NG-ABEmax-KR efficiently introduce natural mutations in gamma globin gene promoters with more than four-fold increase in editing activity. This work provides a broadly applicable, rapidly deployable platform to directionally screen and evolve user-specified traits in base editors that extend beyond augmented editing activity.
Collapse
Affiliation(s)
- Junhao Fu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Tianxiang Tu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiujuan Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xidi Yin
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jineng Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Zongming Song
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China.
| |
Collapse
|
136
|
Yang L, Tang J, Ma X, Lin Y, Ma G, Shan M, Wang L, Yang Y. Progression and application of CRISPR-Cas genomic editors. Methods 2021; 194:65-74. [PMID: 33774156 DOI: 10.1016/j.ymeth.2021.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 12/27/2022] Open
Abstract
Base editing technology is an efficient tool for genome editing, particularly in the correction of base mutations. Diverse base editing systems were developed according to the dCas9 or nCas9 linked with different deaminase or reverse transcriptase in the editors, including ABEs, CBEs, PEs and dual-functional of base editor (such as CGBE1, A&C-BEmax, ACBE, etc.). Currently, Base editing technology has been widely applied to various fields such as microorganisms, plants, animals and medicine for basic research and therapeutics. Here, we reviewed the advancement of base editing technology. We also discussed the application of base editors in different areas in the future.
Collapse
Affiliation(s)
- Li Yang
- Basic Medical School, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jing Tang
- Basic Medical School, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xuelei Ma
- Basic Medical School, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yuan Lin
- Basic Medical School, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Guorong Ma
- Basic Medical School, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Minghai Shan
- General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Libin Wang
- General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China.
| | - Yanhui Yang
- Basic Medical School, Ningxia Medical University, Yinchuan, People's Republic of China.
| |
Collapse
|
137
|
González Castro N, Bjelic J, Malhotra G, Huang C, Alsaffar SH. Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies. Int J Mol Sci 2021; 22:10355. [PMID: 34638696 PMCID: PMC8509008 DOI: 10.3390/ijms221910355] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Recent advances in programmable nucleases including meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) have propelled genome editing from explorative research to clinical and industrial settings. Each technology, however, features distinct modes of action that unevenly impact their applicability across the entire genome and are often tested under significantly different conditions. While CRISPR-Cas is currently leading the field due to its versatility, quick adoption, and high degree of support, it is not without limitations. Currently, no technology can be regarded as ideal or even applicable to every case as the context dictates the best approach for genetic modification within a target organism. In this review, we implement a four-pillar framework (context, feasibility, efficiency, and safety) to assess the main genome editing platforms, as a basis for rational decision-making by an expanding base of users, regulators, and consumers. Beyond carefully considering their specific use case with the assessment framework proposed here, we urge stakeholders interested in genome editing to independently validate the parameters of their chosen platform prior to commitment. Furthermore, safety across all applications, particularly in clinical settings, is a paramount consideration and comprehensive off-target detection strategies should be incorporated within workflows to address this. Often neglected aspects such as immunogenicity and the inadvertent selection of mutants deficient for DNA repair pathways must also be considered.
Collapse
Affiliation(s)
- Nicolás González Castro
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
| | - Jan Bjelic
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
| | - Gunya Malhotra
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
| | - Cong Huang
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
| | - Salman Hasan Alsaffar
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
- Biotechnology Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| |
Collapse
|
138
|
Abstract
CRISPR-based genome editing holds promise for genome engineering and other applications in diverse organisms. Defining and improving the genome-wide and transcriptome-wide specificities of these editing tools are essential for realizing their full potential in basic research and biomedical therapeutics. This review provides an overview of CRISPR-based DNA- and RNA-editing technologies, methods to quantify their specificities, and key solutions to reduce off-target effects for research and improve therapeutic applications. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hainan Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Tong Li
- Shanghai Center for Brain Science and Brain-Inspired Technology, Science and Technology Commission of Shanghai Municipality, Shanghai 200031, China
| | - Yidi Sun
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Hui Yang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
139
|
Savadi S, Mangalassery S, Sandesh MS. Advances in genomics and genome editing for breeding next generation of fruit and nut crops. Genomics 2021; 113:3718-3734. [PMID: 34517092 DOI: 10.1016/j.ygeno.2021.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Fruit tree crops are an essential part of the food production systems and are key to achieve food and nutrition security. Genetic improvement of fruit trees by conventional breeding has been slow due to the long juvenile phase. Advancements in genomics and molecular biology have paved the way for devising novel genetic improvement tools like genome editing, which can accelerate the breeding of these perennial crops to a great extent. In this article, advancements in genomics of fruit trees covering genome sequencing, transcriptome sequencing, genome editing technologies (GET), CRISPR-Cas system based genome editing, potential applications of CRISPR-Cas9 in fruit tree crops improvement, the factors influencing the CRISPR-Cas editing efficiency and the challenges for CRISPR-Cas9 applications in fruit tree crops improvement are reviewed. Besides, base editing, a recently emerging more precise editing system, and the future perspectives of genome editing in the improvement of fruit and nut crops are covered.
Collapse
Affiliation(s)
- Siddanna Savadi
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India.
| | | | - M S Sandesh
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India
| |
Collapse
|
140
|
Randall LB, Sretenovic S, Wu Y, Yin D, Zhang T, Eck JV, Qi Y. Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor. PLANT PHYSIOLOGY 2021; 187:73-87. [PMID: 34618139 PMCID: PMC8418419 DOI: 10.1093/plphys/kiab264] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/13/2021] [Indexed: 05/17/2023]
Abstract
Cytosine base editors (CBEs) are the promising tools for precise genome editing in plants. It is important to investigate potential off-target effects of an efficient CBE at the genome and transcriptome levels in a major crop. Based on comparison of five cytidine deaminases and two different promoters for expressing single-guide RNAs (sgRNAs), we tested a highly efficient A3A/Y130F-BE3 system for efficient C-to-T base editing in tomato (Solanum lycopersicum). We then conducted whole-genome sequencing of four base-edited tomato plants, three Green fluorescent protein (GFP)-expressing control plants, and two wild-type plants. The sequencing depths ranged from 25× to 49× with read mapping rates >97%. No sgRNA-dependent off-target mutations were detected. Our data show an average of approximately 1,000 single-nucleotide variations (SNVs) and approximately 100 insertions and deletions (indels) per GFP control plant. Base-edited plants had on average elevated levels of SNVs (approximately 1,250) and indels (approximately 300) per plant. On average, about 200 more C-to-T (G-to-A) mutations were found in a base-edited plant than a GFP control plant, suggesting some level of sgRNA-independent off-target effects, though the difference is not statistically significant. We also conducted RNA sequencing of the same four base-edited plants and three GFP control plants. An average of approximately 200 RNA SNVs was discovered per plant for either base-edited or GFP control plants. Furthermore, no specific enrichment of C-to-U mutations can be found in the base-edited plants. Hence, we cannot find any evidence for bona fide off-target mutations by A3A/Y130F-BE3 at the transcriptome level.
Collapse
Affiliation(s)
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Desuo Yin
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, New York 14853, USA
- Plant Breeding and Genetics Section, Cornell University, Ithaca, New York 14853, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
| |
Collapse
|
141
|
Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:342-354. [PMID: 34484861 PMCID: PMC8399085 DOI: 10.1016/j.omtn.2021.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by chromatin relaxation of the D4Z4 repeat resulting in misexpression of the D4Z4-encoded DUX4 gene in skeletal muscle. One of the key genetic requirements for the stable production of full-length DUX4 mRNA in skeletal muscle is a functional polyadenylation signal (ATTAAA) in exon three of DUX4 that is used in somatic cells. Base editors hold great promise to treat DNA lesions underlying genetic diseases through their ability to carry out specific and rapid nucleotide mutagenesis even in postmitotic cells such as skeletal muscle. In this study, we present a simple and straightforward strategy for mutagenesis of the somatic DUX4 polyadenylation signal by adenine base editing in immortalized myoblasts derived from independent FSHD-affected individuals. We show that mutating this critical cis-regulatory element results in downregulation of DUX4 mRNA and its direct transcriptional target genes. Our findings identify the somatic DUX4 polyadenylation signal as a therapeutic target and represent the first step toward clinical application of the CRISPR-Cas9 base editing platform for FSHD gene therapy.
Collapse
|
142
|
Wei C, Wang C, Jia M, Guo HX, Luo PY, Wang MG, Zhu JK, Zhang H. Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1595-1599. [PMID: 33751803 DOI: 10.1111/jipb.13089] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
A new deaminase, TadA8e, was recently evolved in the laboratory. TadA8e catalyzes DNA deamination over 1,000 times faster than ABE7.10. We developed a high-efficiency adenine base editor, rABE8e (rice ABE8e), combining monomeric TadA8e, bis-bpNLS and codon optimization. rABE8e had substantially increased editing efficiencies at NG-protospacer adjacent motif (PAM) and NGG-PAM target sequences compared with ABEmax. For most targets, rABE8e exhibited nearly 100% editing efficiency and high homozygous substitution rates in the specific editing window, especially at Positions A5 and A6. The ability to rapidly generate plant materials with homozygous base substitutions will benefit gene function research and precision molecular breeding.
Collapse
Affiliation(s)
- Chuang Wei
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chong Wang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Meng Jia
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Xuan Guo
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Peng-Yu Luo
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mu-Gui Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hui Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
143
|
Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. NATURE PLANTS 2021; 7:1166-1187. [PMID: 34518669 DOI: 10.1038/s41477-021-00991-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/26/2021] [Indexed: 05/06/2023]
Abstract
The development of CRISPR-Cas systems has sparked a genome editing revolution in plant genetics and breeding. These sequence-specific RNA-guided nucleases can induce DNA double-stranded breaks, resulting in mutations by imprecise non-homologous end joining (NHEJ) repair or precise DNA sequence replacement by homology-directed repair (HDR). However, HDR is highly inefficient in many plant species, which has greatly limited precise genome editing in plants. To fill the vital gap in precision editing, base editing and prime editing technologies have recently been developed and demonstrated in numerous plant species. These technologies, which are mainly based on Cas9 nickases, can introduce precise changes into the target genome at a single-base resolution. This Review provides a timely overview of the current status of base editors and prime editors in plants, covering both technological developments and biological applications.
Collapse
Affiliation(s)
- Kutubuddin A Molla
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India.
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Kailash C Bansal
- The Alliance of Bioversity International and the International Centre for Tropical Agriculture, Asia-India, New Delhi, India
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
144
|
Marquart KF, Allam A, Janjuha S, Sintsova A, Villiger L, Frey N, Krauthammer M, Schwank G. Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nat Commun 2021; 12:5114. [PMID: 34433819 PMCID: PMC8387386 DOI: 10.1038/s41467-021-25375-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Base editors are chimeric ribonucleoprotein complexes consisting of a DNA-targeting CRISPR-Cas module and a single-stranded DNA deaminase. They enable transition of C•G into T•A base pairs and vice versa on genomic DNA. While base editors have great potential as genome editing tools for basic research and gene therapy, their application has been hampered by a broad variation in editing efficiencies on different genomic loci. Here we perform an extensive analysis of adenine- and cytosine base editors on a library of 28,294 lentivirally integrated genetic sequences and establish BE-DICT, an attention-based deep learning algorithm capable of predicting base editing outcomes with high accuracy. BE-DICT is a versatile tool that in principle can be trained on any novel base editor variant, facilitating the application of base editing for research and therapy. Base editors enable precise genetic alterations but vary in efficiency at different loci. Here the authors analyse ABEs and CBEs at over 28,000 integrated sequences to train BE-DICT, a machine learning model capable of predicting base editing outcomes.
Collapse
Affiliation(s)
- Kim F Marquart
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.,Department of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ahmed Allam
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Sharan Janjuha
- Department of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lukas Villiger
- Department of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nina Frey
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.,Department of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michael Krauthammer
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
| | - Gerald Schwank
- Department of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
145
|
Highly Multiplexed Analysis of CRISPR Genome Editing Outcomes in Mammalian Cells. Methods Mol Biol 2021. [PMID: 34228292 DOI: 10.1007/978-1-0716-1441-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
CRISPR-Cas-based genome editing has enabled efficient genetic engineering of a range of organisms and sparked revolutions in many fields of biology. After Streptococcus pyogenes Cas9 was first demonstrated for mammalian genome editing, many CRISPR-associated (Cas) protein variants have been isolated from different species and adopted for genome editing. Furthermore, various effector domains have been fused to these Cas proteins to expand their genome-editing abilities. Although the number of genome-editing tools has been rapidly increasing, the throughput of cell-based characterization of new genome-editing tools remains limited. Here we describe a highly multiplexed genome editing and sequencing library preparation protocol that allows high-resolution analysis of mutation outcomes and frequencies induced by hundreds to thousands of different genome-editing reagents in mammalian cells. We have successful experiences of developing several key genome-editing tools using this protocol. The protocol also is designed to be compatible with robotic liquid handling systems for further scalability.
Collapse
|
146
|
Rothgangl T, Dennis MK, Lin PJC, Oka R, Witzigmann D, Villiger L, Qi W, Hruzova M, Kissling L, Lenggenhager D, Borrelli C, Egli S, Frey N, Bakker N, Walker JA, Kadina AP, Victorov DV, Pacesa M, Kreutzer S, Kontarakis Z, Moor A, Jinek M, Weissman D, Stoffel M, van Boxtel R, Holden K, Pardi N, Thöny B, Häberle J, Tam YK, Semple SC, Schwank G. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol 2021; 39:949-957. [PMID: 34012094 PMCID: PMC8352781 DOI: 10.1038/s41587-021-00933-4] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 02/02/2023]
Abstract
Most known pathogenic point mutations in humans are C•G to T•A substitutions, which can be directly repaired by adenine base editors (ABEs). In this study, we investigated the efficacy and safety of ABEs in the livers of mice and cynomolgus macaques for the reduction of blood low-density lipoprotein (LDL) levels. Lipid nanoparticle-based delivery of mRNA encoding an ABE and a single-guide RNA targeting PCSK9, a negative regulator of LDL, induced up to 67% editing (on average, 61%) in mice and up to 34% editing (on average, 26%) in macaques. Plasma PCSK9 and LDL levels were stably reduced by 95% and 58% in mice and by 32% and 14% in macaques, respectively. ABE mRNA was cleared rapidly, and no off-target mutations in genomic DNA were found. Re-dosing in macaques did not increase editing, possibly owing to the detected humoral immune response to ABE upon treatment. These findings support further investigation of ABEs to treat patients with monogenic liver diseases.
Collapse
Affiliation(s)
- Tanja Rothgangl
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | | | | | - Rurika Oka
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Dominik Witzigmann
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Lukas Villiger
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Martina Hruzova
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Lucas Kissling
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Sabina Egli
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Nina Frey
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Noëlle Bakker
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | | | | | | | - Martin Pacesa
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Susanne Kreutzer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
- Genome Engineering and Measurement Laboratory, ETH Zurich, Zurich, Switzerland
| | - Zacharias Kontarakis
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
- Genome Engineering and Measurement Laboratory, ETH Zurich, Zurich, Switzerland
| | - Andreas Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Markus Stoffel
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ruben van Boxtel
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beat Thöny
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ying K Tam
- Acuitas Therapeutics Inc., Vancouver, BC, Canada
| | | | - Gerald Schwank
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland.
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
147
|
Baglaenko Y, Macfarlane D, Marson A, Nigrovic PA, Raychaudhuri S. Genome editing to define the function of risk loci and variants in rheumatic disease. Nat Rev Rheumatol 2021; 17:462-474. [PMID: 34188205 PMCID: PMC10782829 DOI: 10.1038/s41584-021-00637-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Discoveries in human genetic studies have revolutionized our understanding of complex rheumatic and autoimmune diseases, including the identification of hundreds of genetic loci and single nucleotide polymorphisms that potentially predispose individuals to disease. However, in most cases, the exact disease-causing variants and their mechanisms of action remain unresolved. Functional follow-up of these findings is most challenging for genomic variants that are in non-coding genomic regions, where the large majority of common disease-associated variants are located, and/or that probably affect disease progression via cell type-specific gene regulation. To deliver on the therapeutic promise of human genetic studies, defining the mechanisms of action of these alleles is essential. Genome editing technology, such as CRISPR-Cas, has created a vast toolbox for targeted genetic and epigenetic modifications that presents unprecedented opportunities to decipher disease-causing loci, genes and variants in autoimmunity. In this Review, we discuss the past 5-10 years of progress in resolving the mechanisms underlying rheumatic disease-associated alleles, with an emphasis on how genomic editing techniques can enable targeted dissection and mechanistic studies of causal autoimmune risk variants.
Collapse
Affiliation(s)
- Yuriy Baglaenko
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Dana Macfarlane
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexander Marson
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter A Nigrovic
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
148
|
Lee HJ, Lee SJ. Advances in Accurate Microbial Genome-Editing CRISPR Technologies. J Microbiol Biotechnol 2021; 31:903-911. [PMID: 34261850 PMCID: PMC9723281 DOI: 10.4014/jmb.2106.06056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Previous studies have modified microbial genomes by introducing gene cassettes containing selectable markers and homologous DNA fragments. However, this requires several steps including homologous recombination and excision of unnecessary DNA regions, such as selectable markers from the modified genome. Further, genomic manipulation often leaves scars and traces that interfere with downstream iterative genome engineering. A decade ago, the CRISPR/Cas system (also known as the bacterial adaptive immune system) revolutionized genome editing technology. Among the various CRISPR nucleases of numerous bacteria and archaea, the Cas9 and Cas12a (Cpf1) systems have been largely adopted for genome editing in all living organisms due to their simplicity, as they consist of a single polypeptide nuclease with a target-recognizing RNA. However, accurate and fine-tuned genome editing remains challenging due to mismatch tolerance and protospacer adjacent motif (PAM)-dependent target recognition. Therefore, this review describes how to overcome the aforementioned hurdles, which especially affect genome editing in higher organisms. Additionally, the biological significance of CRISPR-mediated microbial genome editing is discussed, and future research and development directions are also proposed.
Collapse
Affiliation(s)
- Ho Joung Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
149
|
Fan J, Ding Y, Ren C, Song Z, Yuan J, Chen Q, Du C, Li C, Wang X, Shu W. Cytosine and adenine deaminase base-editors induce broad and nonspecific changes in gene expression and splicing. Commun Biol 2021; 4:882. [PMID: 34272468 PMCID: PMC8285404 DOI: 10.1038/s42003-021-02406-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Cytosine or adenine base editors (CBEs or ABEs) hold great promise in therapeutic applications because they enable the precise conversion of targeted base changes without generating of double-strand breaks. However, both CBEs and ABEs induce substantial off-target DNA editing, and extensive off-target RNA single nucleotide variations in transfected cells. Therefore, the potential effects of deaminases induced by DNA base editors are of great importance for their clinical applicability. Here, the transcriptome-wide deaminase effects on gene expression and splicing is examined. Differentially expressed genes (DEGs) and differential alternative splicing (DAS) events, induced by base editors, are identified. Both CBEs and ABEs generated thousands of DEGs and hundreds of DAS events. For engineered CBEs or ABEs, base editor-induced variants had little effect on the elimination of DEGs and DAS events. Interestingly, more DEGs and DAS events are observed as a result of over expressions of cytosine and adenine deaminases. This study reveals a previously overlooked aspect of deaminase effects in transcriptome-wide gene expression and splicing, and underscores the need to fully characterize such effects of deaminase enzymes in base editor platforms. Jiao Fan, Yige Ding, et al. examine the impact of cytosine and adenine deaminases on transcriptome-wide gene expression and splicing in HeLa and HEK293T cells. They found that both kinds of editors could induce broad changes in expression and splicing, independent of Cas9 activity, highlighting the need for further efforts to characterize deaminase enzymes in base editor platforms.
Collapse
Affiliation(s)
- Jiao Fan
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.,Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yige Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chao Ren
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ziguo Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jie Yuan
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qiuzhen Chen
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.,Computer School, University of South China, Hengyang, China
| | - Chenchen Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Wenjie Shu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
150
|
Jayarajan V, Kounatidou E, Qasim W, Di W. Ex vivo gene modification therapy for genetic skin diseases-recent advances in gene modification technologies and delivery. Exp Dermatol 2021; 30:887-896. [PMID: 33657662 PMCID: PMC8432139 DOI: 10.1111/exd.14314] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
Genetic skin diseases, also known as genodermatoses, are inherited disorders affecting skin and constitute a large and heterogeneous group of diseases. While genodermatoses are rare with the prevalence rate of less than 1 in 50,000 - 200,000, they frequently occur at birth or early in life and are generally chronic, severe, and could be life-threatening. The quality of life of patients and their families are severely compromised by the negative psychosocial impact of disease, physical manifestations, and the lack or loss of autonomy. Currently, there are no curative treatments for these conditions. Ex vivo gene modification therapy that involves modification or correction of mutant genes in patients' cells in vitro and then transplanted back to patients to restore functional gene expression has being developed for genodermatoses. In this review, the ex vivo gene modification therapy strategies for genodermatoses are reviewed, focusing on current advances in gene modification and correction in patients' cells and delivery of genetically modified cells to patients with discussions on gene therapy trials which have been performed in this area.
Collapse
Affiliation(s)
- Vignesh Jayarajan
- Infection, Immunity and Inflammation Research & Teaching Department, Immunobiology SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Evangelia Kounatidou
- Infection, Immunity and Inflammation Research & Teaching Department, Immunobiology SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Waseem Qasim
- Infection, Immunity and Inflammation Research & Teaching Department, Molecular and Cellular Immunology SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Wei‐Li Di
- Infection, Immunity and Inflammation Research & Teaching Department, Immunobiology SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|