101
|
Deng C, Chen T, Qiu Z, Zhou H, Li B, Zhang Y, Xu X, Lian C, Qiao X, Yu K. A mixed blessing of influent leachate microbes in downstream biotreatment systems of a full-scale landfill leachate treatment plant. WATER RESEARCH 2024; 253:121310. [PMID: 38368734 DOI: 10.1016/j.watres.2024.121310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
In landfill leachate treatment plants (LLTPs), the microbiome plays a pivotal role in the decomposition of organic compounds, reduction in nutrient levels, and elimination of toxins. However, the effects of microbes in landfill leachate influents on downstream treatment systems remain poorly understood. To address this knowledge gap, we collected 23 metagenomic and 12 metatranscriptomic samples from landfill leachate and activated sludge from various treatment units in a full-scale LLTP. We successfully recovered 1,152 non-redundant metagenome-assembled genomes (MAGs), encompassing a wide taxonomic range, including 48 phyla, 95 classes, 166 orders, 247 families, 238 genera, and 1,152 species. More diverse microbes were observed in the influent leachate than in the downstream biotreatment systems, among which, an unprecedented ∼30 % of microbes with transcriptional expression migrated from the influent to the biological treatment units. Network analysis revealed that 399 shared MAGs across the four units exhibited high node centrality and degree, thus supporting enhanced interactions and increased stability of microbial communities. Functional reconstruction and genome characterization of MAGs indicated that these shared MAGs possessed greater capabilities for carbon, nitrogen, sulfur, and arsenic metabolism compared to non-shared MAGs. We further identified a novel species of Zixibacteria in the leachate influent with discrete lineages from those in other environments that accounted for up to 17 % of the abundance of the shared microbial community and exhibited notable metabolic versatility. Meanwhile, we presented groundbreaking evidence of the involvement of Zixibacteria-encoded genes in the production of harmful gas emissions, such as N2O and H2S, at the transcriptional level, thus suggesting that influent microbes may pose safety risks to downstream treatment systems. In summary, this study revealed the complex impact of the influent microbiome on LLTP and emphasizes the need to consider these microbial characteristics when designing treatment technologies and strategies for landfill leachate management.
Collapse
Affiliation(s)
- Chunfang Deng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810000, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuanyan Zhang
- Jiangxi Academy of Eco-Environmental Sciences & Planning, Nanchang 330029, PR China
| | - Xuming Xu
- Institute of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Chunang Lian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
102
|
Baker BA, Gutiérrez-Preciado A, Rodríguez Del Río Á, McCarthy CGP, López-García P, Huerta-Cepas J, Susko E, Roger AJ, Eme L, Moreira D. Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments. Nat Microbiol 2024; 9:964-975. [PMID: 38519541 DOI: 10.1038/s41564-024-01647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Extremely halophilic archaea (Haloarchaea, Nanohaloarchaeota, Methanonatronarchaeia and Halarchaeoplasmatales) thrive in saturating salt concentrations where they must maintain osmotic equilibrium with their environment. The evolutionary history of adaptations enabling salt tolerance remains poorly understood, in particular because the phylogeny of several lineages is conflicting. Here we present a resolved phylogeny of extremely halophilic archaea obtained using improved taxon sampling and state-of-the-art phylogenetic approaches designed to cope with the strong compositional biases of their proteomes. We describe two uncultured lineages, Afararchaeaceae and Asbonarchaeaceae, which break the long branches at the base of Haloarchaea and Nanohaloarchaeota, respectively. We obtained 13 metagenome-assembled genomes (MAGs) of these archaea from metagenomes of hypersaline aquatic systems of the Danakil Depression (Ethiopia). Our phylogenomic analyses including these taxa show that at least four independent adaptations to extreme halophily occurred during archaeal evolution. Gene-tree/species-tree reconciliation suggests that gene duplication and horizontal gene transfer played an important role in this process, for example, by spreading key genes (such as those encoding potassium transporters) across extremely halophilic lineages.
Collapse
Affiliation(s)
- Brittany A Baker
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Ana Gutiérrez-Preciado
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Charley G P McCarthy
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Edward Susko
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J Roger
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
| |
Collapse
|
103
|
Suárez‐Moo P, Prieto‐Davó A. Biosynthetic potential of the sediment microbial subcommunities of an unexplored karst ecosystem and its ecological implications. Microbiologyopen 2024; 13:e1407. [PMID: 38593340 PMCID: PMC11003711 DOI: 10.1002/mbo3.1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024] Open
Abstract
Microbial communities from various environments have been studied in the quest for new natural products with a broad range of applications in medicine and biotechnology. We employed an enrichment method and genome mining tools to examine the biosynthetic potential of microbial communities in the sediments of a coastal sinkhole within the karst ecosystem of the Yucatán Peninsula, Mexico. Our investigation led to the detection of 203 biosynthetic gene clusters (BGCs) and 55 secondary metabolites (SMs) within 35 high-quality metagenome-assembled genomes (MAGs) derived from these subcommunities. The most abundant types of BGCs were Terpene, Nonribosomal peptide-synthetase, and Type III polyketide synthase. Some of the in silico identified BGCs and SMs have been previously reported to exhibit biological activities against pathogenic bacteria and fungi. Others could play significant roles in the sinkhole ecosystem, such as iron solubilization and osmotic stress protection. Interestingly, 75% of the BGCs showed no sequence homology with bacterial BGCs previously reported in the MiBIG database. This suggests that the microbial communities in this environment could be an untapped source of genes encoding novel specialized compounds. The majority of the BGCs were identified in pathways found in the genus Virgibacillus, followed by Sporosarcina, Siminovitchia, Rhodococcus, and Halomonas. The latter, along with Paraclostridium and Lysinibacillus, had the highest number of identified BGC types. This study offers fresh insights into the potential ecological role of SMs from sediment microbial communities in an unexplored environment, underscoring their value as a source of novel natural products.
Collapse
Affiliation(s)
- Pablo Suárez‐Moo
- Unidad de Química‐Sisal, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoSisalYucatánMéxico
| | - Alejandra Prieto‐Davó
- Unidad de Química‐Sisal, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoSisalYucatánMéxico
| |
Collapse
|
104
|
Edwin NR, Fitzpatrick AH, Brennan F, Abram F, O'Sullivan O. An in-depth evaluation of metagenomic classifiers for soil microbiomes. ENVIRONMENTAL MICROBIOME 2024; 19:19. [PMID: 38549112 PMCID: PMC10979606 DOI: 10.1186/s40793-024-00561-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Recent endeavours in metagenomics, exemplified by projects such as the human microbiome project and TARA Oceans, have illuminated the complexities of microbial biomes. A robust bioinformatic pipeline and meticulous evaluation of their methodology have contributed to the success of these projects. The soil environment, however, with its unique challenges, requires a specialized methodological exploration to maximize microbial insights. A notable limitation in soil microbiome studies is the dearth of soil-specific reference databases available to classifiers that emulate the complexity of soil communities. There is also a lack of in-vitro mock communities derived from soil strains that can be assessed for taxonomic classification accuracy. RESULTS In this study, we generated a custom in-silico mock community containing microbial genomes commonly observed in the soil microbiome. Using this mock community, we simulated shotgun sequencing data to evaluate the performance of three leading metagenomic classifiers: Kraken2 (supplemented with Bracken, using a custom database derived from GTDB-TK genomes along with its own default database), Kaiju, and MetaPhlAn, utilizing their respective default databases for a robust analysis. Our results highlight the importance of optimizing taxonomic classification parameters, database selection, as well as analysing trimmed reads and contigs. Our study showed that classifiers tailored to the specific taxa present in our samples led to fewer errors compared to broader databases including microbial eukaryotes, protozoa, or human genomes, highlighting the effectiveness of targeted taxonomic classification. Notably, an optimal classifier performance was achieved when applying a relative abundance threshold of 0.001% or 0.005%. The Kraken2 supplemented with bracken, with a custom database demonstrated superior precision, sensitivity, F1 score, and overall sequence classification. Using a custom database, this classifier classified 99% of in-silico reads and 58% of real-world soil shotgun reads, with the latter identifying previously overlooked phyla using a custom database. CONCLUSION This study underscores the potential advantages of in-silico methodological optimization in metagenomic analyses, especially when deciphering the complexities of soil microbiomes. We demonstrate that the choice of classifier and database significantly impacts microbial taxonomic profiling. Our findings suggest that employing Kraken2 with Bracken, coupled with a custom database of GTDB-TK genomes and fungal genomes at a relative abundance threshold of 0.001% provides optimal accuracy in soil shotgun metagenome analysis.
Collapse
Affiliation(s)
- Niranjana Rose Edwin
- Teagasc, Moorepark Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Functional Environmental Microbiology, School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| | | | - Fiona Brennan
- Teagasc, Soils, Environment and Landuse Department, Johnstown Castle, Wexford, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Orla O'Sullivan
- Teagasc, Moorepark Food Research Centre, Moorepark, Fermoy, Cork, Ireland.
- VistaMilk SFI Research Centre, Cork, Ireland.
| |
Collapse
|
105
|
Blake KS, Kumar H, Loganathan A, Williford EE, Diorio-Toth L, Xue YP, Tang WK, Campbell TP, Chong DD, Angtuaco S, Wencewicz TA, Tolia NH, Dantas G. Sequence-structure-function characterization of the emerging tetracycline destructase family of antibiotic resistance enzymes. Commun Biol 2024; 7:336. [PMID: 38493211 PMCID: PMC10944477 DOI: 10.1038/s42003-024-06023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Tetracycline destructases (TDases) are flavin monooxygenases which can confer resistance to all generations of tetracycline antibiotics. The recent increase in the number and diversity of reported TDase sequences enables a deep investigation of the TDase sequence-structure-function landscape. Here, we evaluate the sequence determinants of TDase function through two complementary approaches: (1) constructing profile hidden Markov models to predict new TDases, and (2) using multiple sequence alignments to identify conserved positions important to protein function. Using the HMM-based approach we screened 50 high-scoring candidate sequences in Escherichia coli, leading to the discovery of 13 new TDases. The X-ray crystal structures of two new enzymes from Legionella species were determined, and the ability of anhydrotetracycline to inhibit their tetracycline-inactivating activity was confirmed. Using the MSA-based approach we identified 31 amino acid positions 100% conserved across all known TDase sequences. The roles of these positions were analyzed by alanine-scanning mutagenesis in two TDases, to study the impact on cell and in vitro activity, structure, and stability. These results expand the diversity of TDase sequences and provide valuable insights into the roles of important residues in TDases, and flavin monooxygenases more broadly.
Collapse
Affiliation(s)
- Kevin S Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hirdesh Kumar
- Host-Pathogen Interactions and Structural Vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Anisha Loganathan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily E Williford
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yao-Peng Xue
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wai Kwan Tang
- Host-Pathogen Interactions and Structural Vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tayte P Campbell
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David D Chong
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Angtuaco
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
106
|
Qiu Z, Yuan L, Lian CA, Lin B, Chen J, Mu R, Qiao X, Zhang L, Xu Z, Fan L, Zhang Y, Wang S, Li J, Cao H, Li B, Chen B, Song C, Liu Y, Shi L, Tian Y, Ni J, Zhang T, Zhou J, Zhuang WQ, Yu K. BASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis. Nat Commun 2024; 15:2179. [PMID: 38467684 PMCID: PMC10928208 DOI: 10.1038/s41467-024-46539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Metagenomic binning is an essential technique for genome-resolved characterization of uncultured microorganisms in various ecosystems but hampered by the low efficiency of binning tools in adequately recovering metagenome-assembled genomes (MAGs). Here, we introduce BASALT (Binning Across a Series of Assemblies Toolkit) for binning and refinement of short- and long-read sequencing data. BASALT employs multiple binners with multiple thresholds to produce initial bins, then utilizes neural networks to identify core sequences to remove redundant bins and refine non-redundant bins. Using the same assemblies generated from Critical Assessment of Metagenome Interpretation (CAMI) datasets, BASALT produces up to twice as many MAGs as VAMB, DASTool, or metaWRAP. Processing assemblies from a lake sediment dataset, BASALT produces ~30% more MAGs than metaWRAP, including 21 unique class-level prokaryotic lineages. Functional annotations reveal that BASALT can retrieve 47.6% more non-redundant opening-reading frames than metaWRAP. These results highlight the robust handling of metagenomic sequencing data of BASALT.
Collapse
Affiliation(s)
- Zhiguang Qiu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
| | - Li Yuan
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Chun-Ang Lian
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
| | - Bin Lin
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
| | - Jie Chen
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Rong Mu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Xuejiao Qiao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Liyu Zhang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Zheng Xu
- Southern University of Sciences and Technology Yantian Hospital, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Junyi Li
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Huiluo Cao
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Bing Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Wuhan Benagen Technology Co., Ltd, Wuhan, China
| | - Yongxin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lili Shi
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yonghong Tian
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - Tong Zhang
- Department of Civil Engineering, University of Hong Kong, Hong Kong, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Ke Yu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China.
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China.
| |
Collapse
|
107
|
Beavogui A, Lacroix A, Wiart N, Poulain J, Delmont TO, Paoli L, Wincker P, Oliveira PH. The defensome of complex bacterial communities. Nat Commun 2024; 15:2146. [PMID: 38459056 PMCID: PMC10924106 DOI: 10.1038/s41467-024-46489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Bacteria have developed various defense mechanisms to avoid infection and killing in response to the fast evolution and turnover of viruses and other genetic parasites. Such pan-immune system (defensome) encompasses a growing number of defense lines that include well-studied innate and adaptive systems such as restriction-modification, CRISPR-Cas and abortive infection, but also newly found ones whose mechanisms are still poorly understood. While the abundance and distribution of defense systems is well-known in complete and culturable genomes, there is a void in our understanding of their diversity and richness in complex microbial communities. Here we performed a large-scale in-depth analysis of the defensomes of 7759 high-quality bacterial population genomes reconstructed from soil, marine, and human gut environments. We observed a wide variation in the frequency and nature of the defensome among large phyla, which correlated with lifestyle, genome size, habitat, and geographic background. The defensome's genetic mobility, its clustering in defense islands, and genetic variability was found to be system-specific and shaped by the bacterial environment. Hence, our results provide a detailed picture of the multiple immune barriers present in environmentally distinct bacterial communities and set the stage for subsequent identification of novel and ingenious strategies of diversification among uncultivated microbes.
Collapse
Affiliation(s)
- Angelina Beavogui
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Auriane Lacroix
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Nicolas Wiart
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara GOsee, Paris, France
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara GOsee, Paris, France
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, 8093, Switzerland
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes lab, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara GOsee, Paris, France
| | - Pedro H Oliveira
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France.
| |
Collapse
|
108
|
Mills J, Gebhard LJ, Schubotz F, Shevchenko A, Speth DR, Liao Y, Duggin IG, Marchfelder A, Erdmann S. Extracellular vesicle formation in Euryarchaeota is driven by a small GTPase. Proc Natl Acad Sci U S A 2024; 121:e2311321121. [PMID: 38408251 DOI: 10.1073/pnas.2311321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/14/2024] [Indexed: 02/28/2024] Open
Abstract
Since their discovery, extracellular vesicles (EVs) have changed our view on how organisms interact with their extracellular world. EVs are able to traffic a diverse array of molecules across different species and even domains, facilitating numerous functions. In this study, we investigate EV production in Euryarchaeota, using the model organism Haloferax volcanii. We uncover that EVs enclose RNA, with specific transcripts preferentially enriched, including those with regulatory potential, and conclude that EVs can act as an RNA communication system between haloarchaea. We demonstrate the key role of an EV-associated small GTPase for EV formation in H. volcanii that is also present across other diverse evolutionary branches of Archaea. We propose the name, ArvA, for the identified family of archaeal vesiculating GTPases. Additionally, we show that two genes in the same operon with arvA (arvB and arvC) are also involved in EV formation. Both, arvB and arvC, are closely associated with arvA in the majority of other archaea encoding ArvA. Our work demonstrates that small GTPases involved in membrane deformation and vesiculation, ubiquitous in Eukaryotes, are also present in Archaea and are widely distributed across diverse archaeal phyla.
Collapse
Affiliation(s)
- Joshua Mills
- Archaeal Virology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - L Johanna Gebhard
- Archaeal Virology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Daan R Speth
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Yan Liao
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Iain G Duggin
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | | - Susanne Erdmann
- Archaeal Virology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| |
Collapse
|
109
|
Abdulkadir N, Saraiva JP, Zhang J, Stolte S, Gillor O, Harms H, Rocha U. Genome-centric analyses of 165 metagenomes show that mobile genetic elements are crucial for the transmission of antimicrobial resistance genes to pathogens in activated sludge and wastewater. Microbiol Spectr 2024; 12:e0291823. [PMID: 38289113 PMCID: PMC10913551 DOI: 10.1128/spectrum.02918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/25/2023] [Indexed: 03/06/2024] Open
Abstract
Wastewater is considered a reservoir of antimicrobial resistance genes (ARGs), where the abundant antimicrobial-resistant bacteria and mobile genetic elements facilitate horizontal gene transfer. However, the prevalence and extent of these phenomena in different taxonomic groups that inhabit wastewater are still not fully understood. Here, we determined the presence of ARGs in metagenome-assembled genomes (MAGs) and evaluated the risks of MAG-carrying ARGs in potential human pathogens. The potential of these ARGs to be transmitted horizontally or vertically was also determined. A total of 5,916 MAGs (completeness >50%, contamination <10%) were recovered, covering 68 phyla and 279 genera. MAGs were dereplicated into 1,204 genome operational taxonomic units (gOTUs) as a proxy for species ( average nucleotide identity >0.95). The dominant ARG classes detected were bacitracin, multi-drug, macrolide-lincosamide-streptogramin (MLS), glycopeptide, and aminoglycoside, and 10.26% of them were located on plasmids. The main hosts of ARGs belonged to Escherichia, Klebsiella, Acinetobacter, Gresbergeria, Mycobacterium, and Thauera. Our data showed that 253 MAGs carried virulence factor genes (VFGs) divided into 44 gOTUs, of which 45 MAGs were carriers of ARGs, indicating that potential human pathogens carried ARGs. Alarmingly, the MAG assigned as Escherichia coli contained 159 VFGs, of which 95 were located on chromosomes and 10 on plasmids. In addition to shedding light on the prevalence of ARGs in individual genomes recovered from activated sludge and wastewater, our study demonstrates a workflow that can identify antimicrobial-resistant pathogens in complex microbial communities. IMPORTANCE Antimicrobial resistance (AMR) threatens the health of humans, animals, and natural ecosystems. In our study, an analysis of 165 metagenomes from wastewater revealed antibiotic-targeted alteration, efflux, and inactivation as the most prevalent AMR mechanisms. We identified several genera correlated with multiple ARGs, including Klebsiella, Escherichia, Acinetobacter, Nitrospira, Ottowia, Pseudomonas, and Thauera, which could have significant implications for AMR transmission. The abundance of bacA, mexL, and aph(3")-I in the genomes calls for their urgent management in wastewater. Our approach could be applied to different ecosystems to assess the risk of potential pathogens containing ARGs. Our findings highlight the importance of managing AMR in wastewater and can help design measures to reduce the transmission and evolution of AMR in these systems.
Collapse
Affiliation(s)
- Nafi’u Abdulkadir
- Department of Environmental Microbiology, Helmholtz Center for Environmental Research-UFZ, Leipzig, Germany
- Department of Biochemistry, Faculty of Natural Science, University of Leipzig, Leipzig, Germany
| | - Joao Pedro Saraiva
- Department of Environmental Microbiology, Helmholtz Center for Environmental Research-UFZ, Leipzig, Germany
| | - Junya Zhang
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Stefan Stolte
- Institute of Water Chemistry, Technical University of Dresden, Dresden, Germany
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion, Israel
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Center for Environmental Research-UFZ, Leipzig, Germany
- Department of Biochemistry, Faculty of Natural Science, University of Leipzig, Leipzig, Germany
| | - Ulisses Rocha
- Department of Environmental Microbiology, Helmholtz Center for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
110
|
Wang F, Yu L, Ren Y, Zhang Q, He S, Zhao M, He Z, Gao Q, Chen J. An optimized culturomics strategy for isolation of human milk microbiota. Front Microbiol 2024; 15:1272062. [PMID: 38495514 PMCID: PMC10940525 DOI: 10.3389/fmicb.2024.1272062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/05/2024] [Indexed: 03/19/2024] Open
Abstract
Viable microorganisms and a diverse microbial ecosystem found in human milk play a crucial role in promoting healthy immune system and shaping the microbial community in the infant's gut. Culturomics is a method to obtain a comprehensive repertoire of human milk microbiota. However, culturomics is an onerous procedure, and needs expertise, making it difficult to be widely implemented. Currently, there is no efficient and feasible culturomics method specifically designed for human milk microbiota yet. Therefore, the aim of this study was to develop a more efficient and feasible culturomics method specifically designed for human milk microbiota. We obtained fresh samples of human milk from healthy Chinese mothers and conducted a 27-day enrichment process using blood culture bottles. Bacterial isolates were harvested at different time intervals and cultured on four different types of media. Using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, we identified a total of 6601 colonies and successfully obtained 865 strains, representing 4 phyla, 21 genera, and 54 species. By combining CBA and MRS media, we were able to cultivate over 94.4% of bacterial species with high diversity, including species-specific microorganisms. Prolonged pre-incubation in blood culture bottles significantly increased the number of bacterial species by about 33% and improved the isolation efficiency of beneficial bacteria with low abundance in human milk. After optimization, we reduced the pre-incubation time in blood culture bottles and selected optimal picking time-points (0, 3, and 6 days) at 37°C. By testing 6601 colonies using MALDI-TOF MS, we estimated that this new protocol could obtain more than 90% of bacterial species, reducing the workload by 57.0%. In conclusion, our new culturomics strategy, which involves the combination of CBA and MRS media, extended pre-incubation enrichment, and optimized picking time-points, is a feasible method for studying the human milk microbiota. This protocol significantly improves the efficiency of culturomics and allows for the establishment of a comprehensive repertoire of bacterial species and strains in human milk.
Collapse
Affiliation(s)
- Fan Wang
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Lingmin Yu
- YingTan City people’s Hospital, Yingtan, China
| | - Yuting Ren
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Qianwen Zhang
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Shanshan He
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Minlei Zhao
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Zhili He
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Qi Gao
- Beijing Hotgen Biotechnology Inc., Beijing, China
| | - Jianguo Chen
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| |
Collapse
|
111
|
Whitman WB, Chuvochina M, Hedlund BP, Konstantinidis KT, Palmer M, Rodriguez‐R LM, Sutcliffe I, Wang F. Why and how to use the SeqCode. MLIFE 2024; 3:1-13. [PMID: 38827511 PMCID: PMC11139209 DOI: 10.1002/mlf2.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 06/04/2024]
Abstract
The SeqCode, formally called the Code of Nomenclature of Prokaryotes Described from Sequence Data, is a new code of nomenclature in which genome sequences are the nomenclatural types for the names of prokaryotic species. While similar to the International Code of Nomenclature of Prokaryotes (ICNP) in structure and rules of priority, it does not require the deposition of type strains in international culture collections. Thus, it allows for the formation of permanent names for uncultured prokaryotes whose nearly complete genome sequences have been obtained directly from environmental DNA as well as other prokaryotes that cannot be deposited in culture collections. Because the diversity of uncultured prokaryotes greatly exceeds that of readily culturable prokaryotes, the SeqCode is the only code suitable for naming the majority of prokaryotic species. The start date of the SeqCode was January 1, 2022, and the online Registry (https://seqco.de/) was created to ensure valid publication of names. The SeqCode recognizes all names validly published under the ICNP before 2022. After that date, names validly published under the SeqCode compete with ICNP names for priority. As a result, species can have only one name, either from the SeqCode or ICNP, enabling effective communication and the creation of unified taxonomies of uncultured and cultured prokaryotes. The SeqCode is administered by the SeqCode Committee, which is comprised of the SeqCode Community and elected administrative components. Anyone with an interest in the systematics of prokaryotes is encouraged to join the SeqCode Community and participate in the development of this resource.
Collapse
Affiliation(s)
| | - Maria Chuvochina
- School of Chemistry and Molecular Biosciences, Australian Centre for EcogenomicsThe University of QueenslandSt LuciaAustralia
| | | | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering, and School of Biological Sciences, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Marike Palmer
- Department of MicrobiologyUniversity of ManitobaWinnipegManitobaCanada
- School of Life SciencesUniversity of Nevada Las VegasLas VegasNevadaUSA
| | - Luis M. Rodriguez‐R
- Department of Microbiology and Digital Science Center (DiSC)University of InnsbruckInnsbruckAustria
| | - Iain Sutcliffe
- Faculty of Health & Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Fengping Wang
- School of Oceanography, International Center for Deep Life InvestigationShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
112
|
Cheng M, Luo S, Zhang P, Xiong G, Chen K, Jiang C, Yang F, Huang H, Yang P, Liu G, Zhang Y, Ba S, Yin P, Xiong J, Miao W, Ning K. A genome and gene catalog of the aquatic microbiomes of the Tibetan Plateau. Nat Commun 2024; 15:1438. [PMID: 38365793 PMCID: PMC10873407 DOI: 10.1038/s41467-024-45895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
The Tibetan Plateau supplies water to nearly 2 billion people in Asia, but climate change poses threats to its aquatic microbial resources. Here, we construct the Tibetan Plateau Microbial Catalog by sequencing 498 metagenomes from six water ecosystems (saline lakes, freshwater lakes, rivers, hot springs, wetlands and glaciers). Our catalog expands knowledge of regional genomic diversity by presenting 32,355 metagenome-assembled genomes that de-replicated into 10,723 representative genome-based species, of which 88% were unannotated. The catalog contains nearly 300 million non-redundant gene clusters, of which 15% novel, and 73,864 biosynthetic gene clusters, of which 50% novel, thus expanding known functional diversity. Using these data, we investigate the Tibetan Plateau aquatic microbiome's biogeography along a distance of 2,500 km and >5 km in altitude. Microbial compositional similarity and the shared gene count with the Tibetan Plateau microbiome decline along with distance and altitude difference, suggesting a dispersal pattern. The Tibetan Plateau Microbial Catalog stands as a substantial repository for high-altitude aquatic microbiome resources, providing potential for discovering novel lineages and functions, and bridging knowledge gaps in microbiome biogeography.
Collapse
Affiliation(s)
- Mingyue Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Luo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Peng Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, China
| | - Guangzhou Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chuanqi Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fangdian Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, China
| | - Hanhui Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxi Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Sang Ba
- Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China.
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, China.
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China.
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
113
|
Finn DR. A metagenomic alpha-diversity index for microbial functional biodiversity. FEMS Microbiol Ecol 2024; 100:fiae019. [PMID: 38337180 PMCID: PMC10939414 DOI: 10.1093/femsec/fiae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
Alpha-diversity indices are an essential tool for describing and comparing biodiversity. Microbial ecologists apply indices originally intended for, or adopted by, macroecology to address questions relating to taxonomy (conserved marker) and function (metagenome-based data). In this Perspective piece, I begin by discussing the nature and mathematical quirks important for interpreting routinely employed alpha-diversity indices. Secondly, I propose a metagenomic alpha-diversity index (MD) that measures the (dis)similarity of protein-encoding genes within a community. MD has defined limits, whereby a community comprised mostly of similar, poorly diverse protein-encoding genes pulls the index to the lower limit, while a community rich in divergent homologs and unique genes drives it toward the upper limit. With data acquired from an in silico and three in situ metagenome studies, I derive MD and typical alpha-diversity indices applied to taxonomic (ribosomal rRNA) and functional (all protein-encoding) genes, and discuss their relationships with each other. Not all alpha-diversity indices detect biological trends, and taxonomic does not necessarily follow functional biodiversity. Throughout, I explain that protein Richness and MD provide complementary and easily interpreted information, while probability-based indices do not. Finally, considerations regarding the unique nature of microbial metagenomic data and its relevance for describing functional biodiversity are discussed.
Collapse
Affiliation(s)
- Damien R Finn
- Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Braunschweig 38116, Germany
- Institut für Geoökologie, Technische Universität Braunschweig, Braunschweig 38106, Germany
| |
Collapse
|
114
|
López-Sánchez R, Rebollar EA, Gutiérrez-Ríos RM, Garciarrubio A, Juarez K, Segovia L. Metagenomic analysis of carbohydrate-active enzymes and their contribution to marine sediment biodiversity. World J Microbiol Biotechnol 2024; 40:95. [PMID: 38349445 PMCID: PMC10864421 DOI: 10.1007/s11274-024-03884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
Marine sediments constitute the world's most substantial long-term carbon repository. The microorganisms dwelling in these sediments mediate the transformation of fixed oceanic carbon, but their contribution to the carbon cycle is not fully understood. Previous culture-independent investigations into sedimentary microorganisms have underscored the significance of carbohydrates in the carbon cycle. In this study, we employ a metagenomic methodology to investigate the distribution and abundance of carbohydrate-active enzymes (CAZymes) in 37 marine sediments sites. These sediments exhibit varying oxygen availability and were isolated in diverse regions worldwide. Our comparative analysis is based on the metabolic potential for oxygen utilisation, derived from genes present in both oxic and anoxic environments. We found that extracellular CAZyme modules targeting the degradation of plant and algal detritus, necromass, and host glycans were abundant across all metagenomic samples. The analysis of these results indicates that the oxic/anoxic conditions not only influence the taxonomic composition of the microbial communities, but also affect the occurrence of CAZyme modules involved in the transformation of necromass, algae and plant detritus. To gain insight into the sediment microbial taxa, we reconstructed metagenome assembled genomes (MAG) and examined the presence of primary extracellular carbohydrate active enzyme (CAZyme) modules. Our findings reveal that the primary CAZyme modules and the CAZyme gene clusters discovered in our metagenomes were prevalent in the Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria classes. We compared those MAGs to organisms from the same taxonomic classes found in soil, and we found that they were similar in its CAZyme repertoire, but the soil MAG contained a more abundant and diverse CAZyme content. Furthermore, the data indicate that abundant classes in our metagenomic samples, namely Alphaproteobacteria, Bacteroidia and Gammaproteobacteria, play a pivotal role in carbohydrate transformation within the initial few metres of the sediments.
Collapse
Affiliation(s)
- Rafael López-Sánchez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rosa María Gutiérrez-Ríos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alejandro Garciarrubio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Katy Juarez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lorenzo Segovia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
115
|
Liu ZX, Zhang S, Zhu HZ, Chen ZH, Yang Y, Li LQ, Lei Y, Liu Y, Li DY, Sun A, Li CP, Tan SQ, Wang GL, Shen JY, Jin S, Gao C, Liu JJG. Hydrolytic endonucleolytic ribozyme (HYER) is programmable for sequence-specific DNA cleavage. Science 2024; 383:eadh4859. [PMID: 38301022 DOI: 10.1126/science.adh4859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024]
Abstract
Ribozymes are catalytic RNAs with diverse functions including self-splicing and polymerization. This work aims to discover natural ribozymes that behave as hydrolytic and sequence-specific DNA endonucleases, which could be repurposed as DNA manipulation tools. Focused on bacterial group II-C introns, we found that many systems without intron-encoded protein propagate multiple copies in their resident genomes. These introns, named HYdrolytic Endonucleolytic Ribozymes (HYERs), cleaved RNA, single-stranded DNA, bubbled double-stranded DNA (dsDNA), and plasmids in vitro. HYER1 generated dsDNA breaks in the mammalian genome. Cryo-electron microscopy analysis revealed a homodimer structure for HYER1, where each monomer contains a Mg2+-dependent hydrolysis pocket and captures DNA complementary to the target recognition site (TRS). Rational designs including TRS extension, recruiting sequence insertion, and heterodimerization yielded engineered HYERs showing improved specificity and flexibility for DNA manipulation.
Collapse
Affiliation(s)
- Zi-Xian Liu
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shouyue Zhang
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Han-Zhou Zhu
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi-Hang Chen
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yun Yang
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Long-Qi Li
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Lei
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Liu
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dan-Yuan Li
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ao Sun
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cheng-Ping Li
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shun-Qing Tan
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gao-Li Wang
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jie-Yi Shen
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuai Jin
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Jie Gogo Liu
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
116
|
Hosokawa M, Nishikawa Y. Tools for microbial single-cell genomics for obtaining uncultured microbial genomes. Biophys Rev 2024; 16:69-77. [PMID: 38495448 PMCID: PMC10937852 DOI: 10.1007/s12551-023-01124-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/23/2023] [Indexed: 03/19/2024] Open
Abstract
The advent of next-generation sequencing technologies has facilitated the acquisition of large amounts of DNA sequence data at a relatively low cost, leading to numerous breakthroughs in decoding microbial genomes. Among the various genome sequencing activities, metagenomic analysis, which entails the direct analysis of uncultured microbial DNA, has had a profound impact on microbiome research and has emerged as an indispensable technology in this field. Despite its valuable contributions, metagenomic analysis is a "bulk analysis" technique that analyzes samples containing a wide diversity of microbes, such as bacteria, yielding information that is averaged across the entire microbial population. In order to gain a deeper understanding of the heterogeneous nature of the microbial world, there is a growing need for single-cell analysis, similar to its use in human cell biology. With this paradigm shift in mind, comprehensive single-cell genomics technology has become a much-anticipated innovation that is now poised to revolutionize microbiome research. It has the potential to enable the discovery of differences at the strain level and to facilitate a more comprehensive examination of microbial ecosystems. In this review, we summarize the current state-of-the-art in microbial single-cell genomics, highlighting the potential impact of this technology on our understanding of the microbial world. The successful implementation of this technology is expected to have a profound impact in the field, leading to new discoveries and insights into the diversity and evolution of microbes.
Collapse
Affiliation(s)
- Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480 Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555 Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041 Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555 Japan
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041 Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555 Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041 Japan
| |
Collapse
|
117
|
Reji L, Darnajoux R, Zhang X. A genomic view of environmental and life history controls on microbial nitrogen acquisition strategies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13220. [PMID: 38057292 PMCID: PMC10866080 DOI: 10.1111/1758-2229.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
Microorganisms have evolved diverse strategies to acquire the vital element nitrogen (N) from the environment. Ecological and physiological controls on the distribution of these strategies among microbes remain unclear. In this study, we examine the distribution of 10 major N acquisition strategies in taxonomically and metabolically diverse microbial genomes, including those from the Genomic Catalogue of Earth's Microbiomes dataset. We utilize a marker gene-based approach to assess relationships between N acquisition strategy prevalence and microbial life history strategies. Our results underscore energetic costs of assimilation as a broad control on strategy distribution. The most prevalent strategies are the uptake of ammonium and simple amino acids, which have relatively low energetic costs, while energy-intensive biological nitrogen fixation is the least common. Deviations from the energy-based framework include the higher-than-expected prevalence of the assimilatory pathway for chitin, a large organic polymer. Energy availability is also important, with aerobic chemoorganotrophs and oxygenic phototrophs notably possessing ~2-fold higher numbers of total strategies compared to anaerobic microbes. Environmental controls are evidenced by the enrichment of inorganic N assimilation strategies among free-living taxa compared to host-associated taxa. Physiological constraints such as pathway incompatibility add complexity to N acquisition strategy distributions. Finally, we discuss the necessity for microbially-relevant spatiotemporal environmental metadata for improving mechanistic and prediction-oriented analyses of genomic data.
Collapse
Affiliation(s)
- Linta Reji
- Department of GeosciencesPrinceton UniversityPrincetonNew JerseyUSA
- High Meadows Environmental InstitutePrinceton UniversityPrincetonNew JerseyUSA
| | - Romain Darnajoux
- Department of GeosciencesPrinceton UniversityPrincetonNew JerseyUSA
| | - Xinning Zhang
- Department of GeosciencesPrinceton UniversityPrincetonNew JerseyUSA
- High Meadows Environmental InstitutePrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
118
|
Rodríguez Del Río Á, Giner-Lamia J, Cantalapiedra CP, Botas J, Deng Z, Hernández-Plaza A, Munar-Palmer M, Santamaría-Hernando S, Rodríguez-Herva JJ, Ruscheweyh HJ, Paoli L, Schmidt TSB, Sunagawa S, Bork P, López-Solanilla E, Coelho LP, Huerta-Cepas J. Functional and evolutionary significance of unknown genes from uncultivated taxa. Nature 2024; 626:377-384. [PMID: 38109938 PMCID: PMC10849945 DOI: 10.1038/s41586-023-06955-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.
Collapse
Affiliation(s)
- Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Joaquín Giner-Lamia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Universidad de Sevilla-CSIC, Seville, Spain
| | - Carlos P Cantalapiedra
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Jorge Botas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Ziqi Deng
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Ana Hernández-Plaza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Martí Munar-Palmer
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Saray Santamaría-Hernando
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - José J Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Shanghai, China
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
119
|
Shen Y, Liu N, Wang Z. Recent advances in the culture-independent discovery of natural products using metagenomic approaches. Chin J Nat Med 2024; 22:100-111. [PMID: 38342563 DOI: 10.1016/s1875-5364(24)60585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 02/13/2024]
Abstract
Natural products derived from bacterial sources have long been pivotal in the discovery of drug leads. However, the cultivation of only about 1% of bacteria in laboratory settings has left a significant portion of biosynthetic diversity hidden within the genomes of uncultured bacteria. Advances in sequencing technologies now enable the exploration of genetic material from these metagenomes through culture-independent methods. This approach involves extracting genetic sequences from environmental DNA and applying a hybrid methodology that combines functional screening, sequence tag-based homology screening, and bioinformatic-assisted chemical synthesis. Through this process, numerous valuable natural products have been identified and synthesized from previously uncharted metagenomic territories. This paper provides an overview of the recent advancements in the utilization of culture-independent techniques for the discovery of novel biosynthetic gene clusters and bioactive small molecules within metagenomic libraries.
Collapse
Affiliation(s)
- Yiping Shen
- Laboratory of Microbial Drug Discovery, China Pharmaceutical University, Nanjing 211198, China
| | - Nan Liu
- Laboratory of Microbial Drug Discovery, China Pharmaceutical University, Nanjing 211198, China
| | - Zongqiang Wang
- Laboratory of Microbial Drug Discovery, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
120
|
Bowers RM, Gonzalez-Pena V, Wardhani K, Goudeau D, Blow MJ, Udwary D, Klein D, Vill AC, Brito IL, Woyke T, Malmstrom R, Gawad C. scMicrobe PTA: Near Complete Genomes from Single Bacterial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577819. [PMID: 38352480 PMCID: PMC10862798 DOI: 10.1101/2024.01.30.577819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Microbial genomes produced by single-cell amplification are largely incomplete. Here, we show that primary template amplification (PTA), a novel single-cell amplification technique, generated nearly complete genomes from three bacterial isolate species. Furthermore, taxonomically diverse genomes recovered from aquatic and soil microbiomes using PTA had a median completeness of 81%, whereas genomes from standard amplification approaches were usually <30% complete. PTA-derived genomes also included more associated viruses and biosynthetic gene clusters.
Collapse
Affiliation(s)
- Robert M Bowers
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Kartika Wardhani
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Danielle Goudeau
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew James Blow
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Klein
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | | | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex Malmstrom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Charles Gawad
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
121
|
Xie F, Zhao S, Zhan X, Zhou Y, Li Y, Zhu W, Pope PB, Attwood GT, Jin W, Mao S. Unraveling the phylogenomic diversity of Methanomassiliicoccales and implications for mitigating ruminant methane emissions. Genome Biol 2024; 25:32. [PMID: 38263062 PMCID: PMC10804542 DOI: 10.1186/s13059-024-03167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Methanomassiliicoccales are a recently identified order of methanogens that are diverse across global environments particularly the gastrointestinal tracts of animals; however, their metabolic capacities are defined via a limited number of cultured strains. RESULTS Here, we profile and analyze 243 Methanomassiliicoccales genomes assembled from cultured representatives and uncultured metagenomes recovered from various biomes, including the gastrointestinal tracts of different animal species. Our analyses reveal the presence of numerous undefined genera and genetic variability in metabolic capabilities within Methanomassiliicoccales lineages, which is essential for adaptation to their ecological niches. In particular, gastrointestinal tract Methanomassiliicoccales demonstrate the presence of co-diversified members with their hosts over evolutionary timescales and likely originated in the natural environment. We highlight the presence of diverse clades of vitamin transporter BtuC proteins that distinguish Methanomassiliicoccales from other archaeal orders and likely provide a competitive advantage in efficiently handling B12. Furthermore, genome-centric metatranscriptomic analysis of ruminants with varying methane yields reveal elevated expression of select Methanomassiliicoccales genera in low methane animals and suggest that B12 exchanges could enable them to occupy ecological niches that possibly alter the direction of H2 utilization. CONCLUSIONS We provide a comprehensive and updated account of divergent Methanomassiliicoccales lineages, drawing from numerous uncultured genomes obtained from various habitats. We also highlight their unique metabolic capabilities involving B12, which could serve as promising targets for mitigating ruminant methane emissions by altering H2 flow.
Collapse
Affiliation(s)
- Fei Xie
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengwei Zhao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiu Zhan
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yang Zhou
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yin Li
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Phillip B Pope
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Graeme T Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wei Jin
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
122
|
Duan N, Hand E, Pheko M, Sharma S, Emiola A. Structure-guided discovery of anti-CRISPR and anti-phage defense proteins. Nat Commun 2024; 15:649. [PMID: 38245560 PMCID: PMC10799925 DOI: 10.1038/s41467-024-45068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Bacteria use a variety of defense systems to protect themselves from phage infection. In turn, phages have evolved diverse counter-defense measures to overcome host defenses. Here, we use protein structural similarity and gene co-occurrence analyses to screen >66 million viral protein sequences and >330,000 metagenome-assembled genomes for the identification of anti-phage and counter-defense systems. We predict structures for ~300,000 proteins and perform large-scale, pairwise comparison to known anti-CRISPR (Acr) and anti-phage proteins to identify structural homologs that otherwise may not be uncovered using primary sequence search. This way, we identify a Bacteroidota phage Acr protein that inhibits Cas12a, and an Akkermansia muciniphila anti-phage defense protein, termed BxaP. Gene bxaP is found in loci encoding Bacteriophage Exclusion (BREX) and restriction-modification defense systems, but confers immunity independently. Our work highlights the advantage of combining protein structural features and gene co-localization information in studying host-phage interactions.
Collapse
Affiliation(s)
- Ning Duan
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Emily Hand
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Mannuku Pheko
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Shikha Sharma
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Akintunde Emiola
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
123
|
Joyce SA, Clarke DJ. Microbial metabolites as modulators of host physiology. Adv Microb Physiol 2024; 84:83-133. [PMID: 38821635 DOI: 10.1016/bs.ampbs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The gut microbiota is increasingly recognised as a key player in influencing human health and changes in the gut microbiota have been strongly linked with many non-communicable conditions in humans such as type 2 diabetes, obesity and cardiovascular disease. However, characterising the molecular mechanisms that underpin these associations remains an important challenge for researchers. The gut microbiota is a complex microbial community that acts as a metabolic interface to transform ingested food (and other xenobiotics) into metabolites that are detected in the host faeces, urine and blood. Many of these metabolites are only produced by microbes and there is accumulating evidence to suggest that these microbe-specific metabolites do act as effectors to influence human physiology. For example, the gut microbiota can digest dietary complex polysaccharides (such as fibre) into short-chain fatty acids (SCFA) such as acetate, propionate and butyrate that have a pervasive role in host physiology from nutrition to immune function. In this review we will outline our current understanding of the role of some key microbial metabolites, such as SCFA, indole and bile acids, in human health. Whilst many studies linking microbial metabolites with human health are correlative we will try to highlight examples where genetic evidence is available to support a specific role for a microbial metabolite in host health and well-being.
Collapse
Affiliation(s)
- Susan A Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
124
|
Lumian J, Grettenberger C, Jungblut AD, Mackey TJ, Hawes I, Alatorre-Acevedo E, Sumner DY. Genomic profiles of four novel cyanobacteria MAGs from Lake Vanda, Antarctica: insights into photosynthesis, cold tolerance, and the circadian clock. Front Microbiol 2024; 14:1330602. [PMID: 38282730 PMCID: PMC10812107 DOI: 10.3389/fmicb.2023.1330602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024] Open
Abstract
Cyanobacteria in polar environments face environmental challenges, including cold temperatures and extreme light seasonality with small diurnal variation, which has implications for polar circadian clocks. However, polar cyanobacteria remain underrepresented in available genomic data, and there are limited opportunities to study their genetic adaptations to these challenges. This paper presents four new Antarctic cyanobacteria metagenome-assembled genomes (MAGs) from microbial mats in Lake Vanda in the McMurdo Dry Valleys in Antarctica. The four MAGs were classified as Leptolyngbya sp. BulkMat.35, Pseudanabaenaceae cyanobacterium MP8IB2.15, Microcoleus sp. MP8IB2.171, and Leptolyngbyaceae cyanobacterium MP9P1.79. The MAGs contain 2.76 Mbp - 6.07 Mbp, and the bin completion ranges from 74.2-92.57%. Furthermore, the four cyanobacteria MAGs have average nucleotide identities (ANIs) under 90% with each other and under 77% with six existing polar cyanobacteria MAGs and genomes. This suggests that they are novel cyanobacteria and demonstrates that polar cyanobacteria genomes are underrepresented in reference databases and there is continued need for genome sequencing of polar cyanobacteria. Analyses of the four novel and six existing polar cyanobacteria MAGs and genomes demonstrate they have genes coding for various cold tolerance mechanisms and most standard circadian rhythm genes with the Leptolyngbya sp. BulkMat.35 and Leptolyngbyaceae cyanobacterium MP9P1.79 contained kaiB3, a divergent homolog of kaiB.
Collapse
Affiliation(s)
- Jessica Lumian
- Department of Earth and Planetary Sciences, Microbiology Graduate Group, University of California Davis, Davis, CA, United States
| | - Christen Grettenberger
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
- Department of Environmental Toxicology, University of California Davis, Davis, CA, United States
| | - Anne D. Jungblut
- Department of Sciences, The Natural History Museum, London, United Kingdom
| | - Tyler J. Mackey
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga, New Zealand
| | - Eduardo Alatorre-Acevedo
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
| | - Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
| |
Collapse
|
125
|
Ariaeenejad S, Gharechahi J, Foroozandeh Shahraki M, Fallah Atanaki F, Han JL, Ding XZ, Hildebrand F, Bahram M, Kavousi K, Hosseini Salekdeh G. Precision enzyme discovery through targeted mining of metagenomic data. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:7. [PMID: 38200389 PMCID: PMC10781932 DOI: 10.1007/s13659-023-00426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Metagenomics has opened new avenues for exploring the genetic potential of uncultured microorganisms, which may serve as promising sources of enzymes and natural products for industrial applications. Identifying enzymes with improved catalytic properties from the vast amount of available metagenomic data poses a significant challenge that demands the development of novel computational and functional screening tools. The catalytic properties of all enzymes are primarily dictated by their structures, which are predominantly determined by their amino acid sequences. However, this aspect has not been fully considered in the enzyme bioprospecting processes. With the accumulating number of available enzyme sequences and the increasing demand for discovering novel biocatalysts, structural and functional modeling can be employed to identify potential enzymes with novel catalytic properties. Recent efforts to discover new polysaccharide-degrading enzymes from rumen metagenome data using homology-based searches and machine learning-based models have shown significant promise. Here, we will explore various computational approaches that can be employed to screen and shortlist metagenome-derived enzymes as potential biocatalyst candidates, in conjunction with the wet lab analytical methods traditionally used for enzyme characterization.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Foroozandeh Shahraki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Fereshteh Fallah Atanaki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Jian-Lin Han
- Livestock Genetics Program, International Livestock Research, Institute (ILRI), Nairobi, 00100, Kenya
- CAAS-ILRI Joint Laboratory On Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xue-Zhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730050, China
| | - Falk Hildebrand
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, Norfolk, UK
- Digital Biology, Earlham Institute, Norwich, Norfolk, UK
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51, Uppsala, Sweden
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | | |
Collapse
|
126
|
Jiménez DJ, Rosado AS. SeqCode in the golden age of prokaryotic systematics. THE ISME JOURNAL 2024; 18:wrae109. [PMID: 38896025 PMCID: PMC11384910 DOI: 10.1093/ismejo/wrae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
The SeqCode is a new code of prokaryotic nomenclature that was developed to validate taxon names using genome sequences as the type material. The present article provides an independent view about the SeqCode, highlighting its history, current status, basic features, pros and cons, and use to date. We also discuss important topics to consider for validation of novel prokaryotic taxon names using genomes as the type material. Owing to significant advances in metagenomics and cultivation methods, hundreds of novel prokaryotic species are expected to be discovered in the coming years. This manuscript aims to stimulate and enrich the debate around the use of the SeqCode in the upcoming golden age of prokaryotic taxon discovery and systematics.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Alexandre Soares Rosado
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
127
|
Medvedeva S, Borrel G, Gribaldo S. Sheaths are diverse and abundant cell surface layers in archaea. THE ISME JOURNAL 2024; 18:wrae225. [PMID: 39499655 PMCID: PMC11576556 DOI: 10.1093/ismejo/wrae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
Prokaryotic cells employ multiple protective layers crucial for defense, structural integrity, and cellular interactions in the environment. Archaea often feature an S-layer, with some species possessing additional and remarkably resistant sheaths. The archaeal sheath has been studied in Methanothrix and Methanospirillum, revealing a complex structure consisting of amyloid proteins organized into rings. Here, we conducted a comprehensive survey of sheath-forming proteins (SH proteins) across archaeal genomes. Structural modeling reveals a rich diversity of SH proteins, indicating the presence of a sheath in members of the TACK superphylum (Thermoprotei), as well as in the methanotrophic ANME-1. SH proteins are present in up to 40 copies per genome and display diverse domain arrangements suggesting multifunctional roles within the sheath, and potential involvement in cell-cell interaction with syntrophic partners. We uncover a complex evolutionary dynamic, indicating active exchange of SH proteins in archaeal communities. We find that viruses infecting sheathed archaea encode a diversity of SH-like proteins and we use them as markers to identify 580 vOTUs potentially associated with sheathed archaea. Structural modeling suggests that viral SH proteins can form complexes with the host SH proteins. We propose a previously unreported egress strategy where the expression of viral SH-like proteins may disrupt the integrity of the host sheath and facilitate viral exit during lysis. Together, our results significantly expand knowledge of the diversity and evolution of the archaeal sheath, which has been largely understudied but might have an important role in shaping microbial communities.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Institut Pasteur, Université Paris Cité, Microbiology Department, Evolutionary Biology of the Microbial Cell, 25 rue du dr Roux, 75015, Paris, France
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, Microbiology Department, Evolutionary Biology of the Microbial Cell, 25 rue du dr Roux, 75015, Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, Microbiology Department, Evolutionary Biology of the Microbial Cell, 25 rue du dr Roux, 75015, Paris, France
| |
Collapse
|
128
|
Wallace BA, Varona NS, Hesketh-Best PJ, Stiffler AK, Silveira CB. Globally distributed bacteriophage genomes reveal mechanisms of tripartite phage-bacteria-coral interactions. THE ISME JOURNAL 2024; 18:wrae132. [PMID: 39030686 PMCID: PMC11309003 DOI: 10.1093/ismejo/wrae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Reef-building corals depend on an intricate community of microorganisms for functioning and resilience. The infection of coral-associated bacteria by bacteriophages can modify bacterial ecological interactions, yet very little is known about phage functions in the holobiont. This gap stems from methodological limitations that have prevented the recovery of high-quality viral genomes and bacterial host assignment from coral samples. Here, we introduce a size fractionation approach that increased bacterial and viral recovery in coral metagenomes by 9-fold and 2-fold, respectively, and enabled the assembly and binning of bacterial and viral genomes at relatively low sequencing coverage. We combined these viral genomes with those derived from 677 publicly available metagenomes, viromes, and bacterial isolates from stony corals to build a global coral virus database of over 20,000 viral genomic sequences spanning four viral realms. The tailed bacteriophage families Kyanoviridae and Autographiviridae were the most abundant, replacing groups formerly referred to as Myoviridae and Podoviridae, respectively. Prophage and CRISPR spacer linkages between these viruses and 626 bacterial metagenome-assembled genomes and bacterial isolates showed that most viruses infected Alphaproteobacteria, the most abundant class, and less abundant taxa like Halanaerobiia and Bacteroidia. A host-phage-gene network identified keystone viruses with the genomic capacity to modulate bacterial metabolic pathways and direct molecular interactions with eukaryotic cells. This study reveals the genomic basis of nested symbioses between bacteriophage, bacteria, and the coral host and its endosymbiotic algae.
Collapse
Affiliation(s)
- Bailey A Wallace
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Natascha S Varona
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Poppy J Hesketh-Best
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
- Department Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Alexandra K Stiffler
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Cynthia B Silveira
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| |
Collapse
|
129
|
Yu J, Lee JYY, Tang SN, Lee PKH. Niche differentiation in microbial communities with stable genomic traits over time in engineered systems. THE ISME JOURNAL 2024; 18:wrae042. [PMID: 38470313 PMCID: PMC10987969 DOI: 10.1093/ismejo/wrae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Microbial communities in full-scale engineered systems undergo dynamic compositional changes. However, mechanisms governing assembly of such microbes and succession of their functioning and genomic traits under various environmental conditions are unclear. In this study, we used the activated sludge and anaerobic treatment systems of four full-scale industrial wastewater treatment plants as models to investigate the niches of microbes in communities and the temporal succession patterns of community compositions. High-quality representative metagenome-assembled genomes revealed that taxonomic, functional, and trait-based compositions were strongly shaped by environmental selection, with replacement processes primarily driving variations in taxonomic and functional compositions. Plant-specific indicators were associated with system environmental conditions and exhibited strong determinism and trajectory directionality over time. The partitioning of microbes in a co-abundance network according to groups of plant-specific indicators, together with significant between-group differences in genomic traits, indicated the occurrence of niche differentiation. The indicators of the treatment plant with rich nutrient input and high substrate removal efficiency exhibited a faster predicted growth rate, lower guanine-cytosine content, smaller genome size, and higher codon usage bias than the indicators of the other plants. In individual plants, taxonomic composition displayed a more rapid temporal succession than functional and trait-based compositions. The succession of taxonomic, functional, and trait-based compositions was correlated with the kinetics of treatment processes in the activated sludge systems. This study provides insights into ecological niches of microbes in engineered systems and succession patterns of their functions and traits, which will aid microbial community management to improve treatment performance.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Justin Y Y Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Siang Nee Tang
- Facility Management and Environmental Engineering, TAL Group, Kowloon, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
130
|
Shen L, Liu Y, Chen L, Lei T, Ren P, Ji M, Song W, Lin H, Su W, Wang S, Rooman M, Pucci F. Genomic basis of environmental adaptation in the widespread poly-extremophilic Exiguobacterium group. THE ISME JOURNAL 2024; 18:wrad020. [PMID: 38365240 PMCID: PMC10837837 DOI: 10.1093/ismejo/wrad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024]
Abstract
Delineating cohesive ecological units and determining the genetic basis for their environmental adaptation are among the most important objectives in microbiology. In the last decade, many studies have been devoted to characterizing the genetic diversity in microbial populations to address these issues. However, the impact of extreme environmental conditions, such as temperature and salinity, on microbial ecology and evolution remains unclear so far. In order to better understand the mechanisms of adaptation, we studied the (pan)genome of Exiguobacterium, a poly-extremophile bacterium able to grow in a wide range of environments, from permafrost to hot springs. To have the genome for all known Exiguobacterium type strains, we first sequenced those that were not yet available. Using a reverse-ecology approach, we showed how the integration of phylogenomic information, genomic features, gene and pathway enrichment data, regulatory element analyses, protein amino acid composition, and protein structure analyses of the entire Exiguobacterium pangenome allows to sharply delineate ecological units consisting of mesophilic, psychrophilic, halophilic-mesophilic, and halophilic-thermophilic ecotypes. This in-depth study clarified the genetic basis of the defined ecotypes and identified some key mechanisms driving the environmental adaptation to extreme environments. Our study points the way to organizing the vast microbial diversity into meaningful ecologically units, which, in turn, provides insight into how microbial communities adapt and respond to different environmental conditions in a changing world.
Collapse
Affiliation(s)
- Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, and Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, Anhui Normal University, Wuhu 241000, China
| | - Yongqin Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Liangzhong Chen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Tingting Lei
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ping Ren
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Weizhi Song
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wei Su
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai 200030, China
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels 1050, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels 1050, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels 1050, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels 1050, Belgium
| |
Collapse
|
131
|
Camargo AP, Call L, Roux S, Nayfach S, Huntemann M, Palaniappan K, Ratner A, Chu K, Mukherjeep S, Reddy TBK, Chen IM, Ivanova N, Eloe-Fadrosh E, Woyke T, Baltrus D, Castañeda-Barba S, de la Cruz F, Funnell BE, Hall JJ, Mukhopadhyay A, Rocha EC, Stalder T, Top E, Kyrpides N. IMG/PR: a database of plasmids from genomes and metagenomes with rich annotations and metadata. Nucleic Acids Res 2024; 52:D164-D173. [PMID: 37930866 PMCID: PMC10767988 DOI: 10.1093/nar/gkad964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023] Open
Abstract
Plasmids are mobile genetic elements found in many clades of Archaea and Bacteria. They drive horizontal gene transfer, impacting ecological and evolutionary processes within microbial communities, and hold substantial importance in human health and biotechnology. To support plasmid research and provide scientists with data of an unprecedented diversity of plasmid sequences, we introduce the IMG/PR database, a new resource encompassing 699 973 plasmid sequences derived from genomes, metagenomes and metatranscriptomes. IMG/PR is the first database to provide data of plasmid that were systematically identified from diverse microbiome samples. IMG/PR plasmids are associated with rich metadata that includes geographical and ecosystem information, host taxonomy, similarity to other plasmids, functional annotation, presence of genes involved in conjugation and antibiotic resistance. The database offers diverse methods for exploring its extensive plasmid collection, enabling users to navigate plasmids through metadata-centric queries, plasmid comparisons and BLAST searches. The web interface for IMG/PR is accessible at https://img.jgi.doe.gov/pr. Plasmid metadata and sequences can be downloaded from https://genome.jgi.doe.gov/portal/IMG_PR.
Collapse
Affiliation(s)
- Antonio Pedro Camargo
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lee Call
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stephen Nayfach
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marcel Huntemann
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Anna Ratner
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ken Chu
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Supratim Mukherjeep
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - T B K Reddy
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - I-Min A Chen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalia N Ivanova
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emiley A Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson AZ, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | | | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas – Universidad de Cantabria), Cantabria, Spain
| | - Barbara E Funnell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Eva Top
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
132
|
Schmidt TSB, Fullam A, Ferretti P, Orakov A, Maistrenko OM, Ruscheweyh HJ, Letunic I, Duan Y, Van Rossum T, Sunagawa S, Mende DR, Finn RD, Kuhn M, Pedro Coelho L, Bork P. SPIRE: a Searchable, Planetary-scale mIcrobiome REsource. Nucleic Acids Res 2024; 52:D777-D783. [PMID: 37897342 PMCID: PMC10767986 DOI: 10.1093/nar/gkad943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Meta'omic data on microbial diversity and function accrue exponentially in public repositories, but derived information is often siloed according to data type, study or sampled microbial environment. Here we present SPIRE, a Searchable Planetary-scale mIcrobiome REsource that integrates various consistently processed metagenome-derived microbial data modalities across habitats, geography and phylogeny. SPIRE encompasses 99 146 metagenomic samples from 739 studies covering a wide array of microbial environments and augmented with manually-curated contextual data. Across a total metagenomic assembly of 16 Tbp, SPIRE comprises 35 billion predicted protein sequences and 1.16 million newly constructed metagenome-assembled genomes (MAGs) of medium or high quality. Beyond mapping to the high-quality genome reference provided by proGenomes3 (http://progenomes.embl.de), these novel MAGs form 92 134 novel species-level clusters, the majority of which are unclassified at species level using current tools. SPIRE enables taxonomic profiling of these species clusters via an updated, custom mOTUs database (https://motu-tool.org/) and includes several layers of functional annotation, as well as crosslinks to several (micro-)biological databases. The resource is accessible, searchable and browsable via http://spire.embl.de.
Collapse
Affiliation(s)
- Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Pamela Ferretti
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Askarbek Orakov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Oleksandr M Maistrenko
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Hans-Joachim Ruscheweyh
- Institute of Microbiology, Department of Biology and Swiss Institute of Bioinformatics, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Ivica Letunic
- Biobyte solutions GmbH, Bothestr. 142, 69117 Heidelberg, Germany
| | - Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Thea Van Rossum
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology and Swiss Institute of Bioinformatics, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Daniel R Mende
- Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Robert D Finn
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Department of Bioinformatics, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
- Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
133
|
Hirsch P, Tagirdzhanov A, Kushnareva A, Olkhovskii I, Graf S, Schmartz GP, Hegemann JD, Bozhüyük KAJ, Müller R, Keller A, Gurevich A. ABC-HuMi: the Atlas of Biosynthetic Gene Clusters in the Human Microbiome. Nucleic Acids Res 2024; 52:D579-D585. [PMID: 37994699 PMCID: PMC10767846 DOI: 10.1093/nar/gkad1086] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
The human microbiome has emerged as a rich source of diverse and bioactive natural products, harboring immense potential for therapeutic applications. To facilitate systematic exploration and analysis of its biosynthetic landscape, we present ABC-HuMi: the Atlas of Biosynthetic Gene Clusters (BGCs) in the Human Microbiome. ABC-HuMi integrates data from major human microbiome sequence databases and provides an expansive repository of BGCs compared to the limited coverage offered by existing resources. Employing state-of-the-art BGC prediction and analysis tools, our database ensures accurate annotation and enhanced prediction capabilities. ABC-HuMi empowers researchers with advanced browsing, filtering, and search functionality, enabling efficient exploration of the resource. At present, ABC-HuMi boasts a catalog of 19 218 representative BGCs derived from the human gut, oral, skin, respiratory and urogenital systems. By capturing the intricate biosynthetic potential across diverse human body sites, our database fosters profound insights into the molecular repertoire encoded within the human microbiome and offers a comprehensive resource for the discovery and characterization of novel bioactive compounds. The database is freely accessible at https://www.ccb.uni-saarland.de/abc_humi/.
Collapse
Affiliation(s)
- Pascal Hirsch
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| | - Azat Tagirdzhanov
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Aleksandra Kushnareva
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Ilia Olkhovskii
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Saarbrücken Graduate School of Computer Science, Saarland University, Saarbrücken 66123, Germany
| | - Simon Graf
- Department of Computer Science, Saarland University, Saarbrücken 66123, Germany
| | - Georges P Schmartz
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Kenan A J Bozhüyük
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Andreas Keller
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Alexey Gurevich
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Computer Science, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
134
|
Wang X, Feng X. Challenges in estimating effective population sizes from metagenome-assembled genomes. Front Microbiol 2024; 14:1331583. [PMID: 38249456 PMCID: PMC10797056 DOI: 10.3389/fmicb.2023.1331583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Effective population size (Ne) plays a critical role in shaping the relative efficiency between natural selection and genetic drift, thereby serving as a cornerstone for understanding microbial ecological dynamics. Direct Ne estimation relies on neutral genetic diversity within closely related genomes, which is, however, often constrained by the culturing difficulties for the vast majority of prokaryotic lineages. Metagenome-assembled genomes (MAGs) offer a high-throughput alternative for genomic data acquisition, yet their accuracy in Ne estimation has not been fully verified. This study examines the Thermococcus genus, comprising 66 isolated strains and 29 MAGs, to evaluate the reliability of MAGs in Ne estimation. Despite the even distribution across the Thermococcus phylogeny and the comparable internal average nucleotide identity (ANI) between isolate populations and MAG populations, our results reveal consistently lower Ne estimates from MAG populations. This trend of underestimation is also observed in various MAG populations across three other bacterial genera. The underrepresentation of genetic variation in MAGs, including loss of allele frequency data and variable genomic segments, likely contributes to the underestimation of Ne. Our findings underscore the necessity for caution when employing MAGs for evolutionary studies, which often depend on high-quality genome assemblies and nucleotide-level diversity.
Collapse
Affiliation(s)
- Xiaojun Wang
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoyuan Feng
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
135
|
Birth N, Leppich N, Schirmacher J, Andreae N, Steinkamp R, Blanke M, Meinicke P. CoCoPyE: feature engineering for learning and prediction of genome quality indices. Gigascience 2024; 13:giae079. [PMID: 39452613 PMCID: PMC11503480 DOI: 10.1093/gigascience/giae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The exploration of the microbial world has been greatly advanced by the reconstruction of genomes from metagenomic sequence data. However, the rapidly increasing number of metagenome-assembled genomes has also resulted in a wide variation in data quality. It is therefore essential to quantify the achieved completeness and possible contamination of a reconstructed genome before it is used in subsequent analyses. The classical approach for the estimation of quality indices solely relies on a relatively small number of universal single-copy genes. Recent tools try to extend the genomic coverage of estimates for an increased accuracy. RESULTS We developed CoCoPyE, a fast tool based on a novel 2-stage feature extraction and transformation scheme. First, it identifies genomic markers and then refines the marker-based estimates with a machine learning approach. In our simulation studies, CoCoPyE showed a more accurate prediction of quality indices than the existing tools. While the CoCoPyE web server offers an easy way to try out the tool, the freely available Python implementation enables integration into existing genome reconstruction pipelines. CONCLUSIONS CoCoPyE provides a new approach to assess the quality of genome data. It complements and improves existing tools and may help researchers to better distinguish between low-quality draft and high-quality genome assemblies in metagenome sequencing projects.
Collapse
Affiliation(s)
- Niklas Birth
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Nicolina Leppich
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Julia Schirmacher
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Nina Andreae
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Rasmus Steinkamp
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Matthias Blanke
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Peter Meinicke
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| |
Collapse
|
136
|
Centurion VB, Rossi A, Orellana E, Ghiotto G, Kakuk B, Morlino MS, Basile A, Zampieri G, Treu L, Campanaro S. A unified compendium of prokaryotic and viral genomes from over 300 anaerobic digestion microbiomes. ENVIRONMENTAL MICROBIOME 2024; 19:1. [PMID: 38167520 PMCID: PMC10762816 DOI: 10.1186/s40793-023-00545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The anaerobic digestion process degrades organic matter into simpler compounds and occurs in strictly anaerobic and microaerophilic environments. The process is carried out by a diverse community of microorganisms where each species has a unique role and it has relevant biotechnological applications since it is used for biogas production. Some aspects of the microbiome, including its interaction with phages, remains still unclear: a better comprehension of the community composition and role of each species is crucial for a cured understanding of the carbon cycle in anaerobic systems and improving biogas production. RESULTS The primary objective of this study was to expand our understanding on the anaerobic digestion microbiome by jointly analyzing its prokaryotic and viral components. By integrating 192 additional datasets into a previous metagenomic database, the binning process generated 11,831 metagenome-assembled genomes from 314 metagenome samples published between 2014 and 2022, belonging to 4,568 non-redundant species based on ANI calculation and quality verification. CRISPR analysis on these genomes identified 76 archaeal genomes with active phage interactions. Moreover, single-nucleotide variants further pointed to archaea as the most critical members of the community. Among the MAGs, two methanogenic archaea, Methanothrix sp. 43zhSC_152 and Methanoculleus sp. 52maCN_3230, had the highest number of SNVs, with the latter having almost double the density of most other MAGs. CONCLUSIONS This study offers a more comprehensive understanding of microbial community structures that thrive at different temperatures. The findings revealed that the fraction of archaeal species characterized at the genome level and reported in public databases is higher than that of bacteria, although still quite limited. The identification of shared spacers between phages and microbes implies a history of phage-bacterial interactions, and specifically lysogenic infections. A significant number of SNVs were identified, primarily comprising synonymous and nonsynonymous variants. Together, the findings indicate that methanogenic archaea are subject to intense selective pressure and suggest that genomic variants play a critical role in the anaerobic digestion process. Overall, this study provides a more balanced and diverse representation of the anaerobic digestion microbiota in terms of geographic location, temperature range and feedstock utilization.
Collapse
Affiliation(s)
| | - Alessandro Rossi
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Esteban Orellana
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Gabriele Ghiotto
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, 12 Somogyi B. U. 4., Szeged, 6720, Hungary
| | - Maria Silvia Morlino
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Arianna Basile
- MRC Toxicology Unit, University of Cambridge, Gleeson Building Tennis Court Road, Cambridge, UK
| | - Guido Zampieri
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy.
| | - Laura Treu
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| |
Collapse
|
137
|
Sanchez FB, Sato Guima SE, Setubal JC. How to Obtain and Compare Metagenome-Assembled Genomes. Methods Mol Biol 2024; 2802:135-163. [PMID: 38819559 DOI: 10.1007/978-1-0716-3838-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Metagenome-assembled genomes, or MAGs, are genomes retrieved from metagenome datasets. In the vast majority of cases, MAGs are genomes from prokaryotic species that have not been isolated or cultivated in the lab. They, therefore, provide us with information on these species that are impossible to obtain otherwise, at least until new cultivation methods are devised. Thanks to improvements and cost reductions of DNA sequencing technologies and growing interest in microbial ecology, the rise in number of MAGs in genome repositories has been exponential. This chapter covers the basics of MAG retrieval and processing and provides a practical step-by-step guide using a real dataset and state-of-the-art tools for MAG analysis and comparison.
Collapse
Affiliation(s)
- Fabio Beltrame Sanchez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Suzana Eiko Sato Guima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
138
|
Bowers RM, Gonzalez-Pena V, Wardhani K, Goudeau D, Blow MJ, Udwary D, Klein D, Vill AC, Brito IL, Woyke T, Malmstrom RR, Gawad C. scMicrobe PTA: near complete genomes from single bacterial cells. ISME COMMUNICATIONS 2024; 4:ycae085. [PMID: 39021442 PMCID: PMC11253033 DOI: 10.1093/ismeco/ycae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Microbial genomes produced by standard single-cell amplification methods are largely incomplete. Here, we show that primary template-directed amplification (PTA), a novel single-cell amplification technique, generated nearly complete genomes from three bacterial isolate species. Furthermore, taxonomically diverse genomes recovered from aquatic and soil microbiomes using PTA had a median completeness of 81%, whereas genomes from standard multiple displacement amplification-based approaches were usually <30% complete. PTA-derived genomes also included more associated viruses and biosynthetic gene clusters.
Collapse
Affiliation(s)
- Robert M Bowers
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | - Kartika Wardhani
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Danielle Goudeau
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Matthew James Blow
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Daniel Udwary
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - David Klein
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Albert C Vill
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Ilana L Brito
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Rex R Malmstrom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Charles Gawad
- Department of Pediatrics, Stanford University, Stanford, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
139
|
Pold G, Bonilla-Rosso G, Saghaï A, Strous M, Jones CM, Hallin S. Phylogenetics and environmental distribution of nitric oxide-forming nitrite reductases reveal their distinct functional and ecological roles. ISME COMMUNICATIONS 2024; 4:ycae020. [PMID: 38584645 PMCID: PMC10999283 DOI: 10.1093/ismeco/ycae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 04/09/2024]
Abstract
The two evolutionarily unrelated nitric oxide-producing nitrite reductases, NirK and NirS, are best known for their redundant role in denitrification. They are also often found in organisms that do not perform denitrification. To assess the functional roles of the two enzymes and to address the sequence and structural variation within each, we reconstructed robust phylogenies of both proteins with sequences recovered from 6973 isolate and metagenome-assembled genomes and identified 32 well-supported clades of structurally distinct protein lineages. We then inferred the potential niche of each clade by considering other functional genes of the organisms carrying them as well as the relative abundances of each nir gene in 4082 environmental metagenomes across diverse aquatic, terrestrial, host-associated, and engineered biomes. We demonstrate that Nir phylogenies recapitulate ecology distinctly from the corresponding organismal phylogeny. While some clades of the nitrite reductase were equally prevalent across biomes, others had more restricted ranges. Nitrifiers make up a sizeable proportion of the nitrite-reducing community, especially for NirK in marine waters and dry soils. Furthermore, the two reductases showed distinct associations with genes involved in oxidizing and reducing other compounds, indicating that the NirS and NirK activities may be linked to different elemental cycles. Accordingly, the relative abundance and diversity of NirS versus NirK vary between biomes. Our results show the divergent ecological roles NirK and NirS-encoding organisms may play in the environment and provide a phylogenetic framework to distinguish the traits associated with organisms encoding the different lineages of nitrite reductases.
Collapse
Affiliation(s)
- Grace Pold
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Germán Bonilla-Rosso
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Marc Strous
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Christopher M Jones
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
140
|
Novikova PV, Bhanu Busi S, Probst AJ, May P, Wilmes P. Functional prediction of proteins from the human gut archaeome. ISME COMMUNICATIONS 2024; 4:ycad014. [PMID: 38486809 PMCID: PMC10939349 DOI: 10.1093/ismeco/ycad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 03/17/2024]
Abstract
The human gastrointestinal tract contains diverse microbial communities, including archaea. Among them, Methanobrevibacter smithii represents a highly active and clinically relevant methanogenic archaeon, being involved in gastrointestinal disorders, such as inflammatory bowel disease and obesity. Herein, we present an integrated approach using sequence and structure information to improve the annotation of M. smithii proteins using advanced protein structure prediction and annotation tools, such as AlphaFold2, trRosetta, ProFunc, and DeepFri. Of an initial set of 873 481 archaeal proteins, we found 707 754 proteins exclusively present in the human gut. Having analysed archaeal proteins together with 87 282 994 bacterial proteins, we identified unique archaeal proteins and archaeal-bacterial homologs. We then predicted and characterized functional domains and structures of 73 unique and homologous archaeal protein clusters linked the human gut and M. smithii. We refined annotations based on the predicted structures, extending existing sequence similarity-based annotations. We identified gut-specific archaeal proteins that may be involved in defense mechanisms, virulence, adhesion, and the degradation of toxic substances. Interestingly, we identified potential glycosyltransferases that could be associated with N-linked and O-glycosylation. Additionally, we found preliminary evidence for interdomain horizontal gene transfer between Clostridia species and M. smithii, which includes sporulation Stage V proteins AE and AD. Our study broadens the understanding of archaeal biology, particularly M. smithii, and highlights the importance of considering both sequence and structure for the prediction of protein function.
Collapse
Affiliation(s)
- Polina V Novikova
- Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Susheel Bhanu Busi
- Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8 BB, United Kingdom
| | - Alexander J Probst
- Environmental Metagenomics, Department of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, for Environmental Microbiology and Biotechnology, University Duisburg-Essen, Duisburg 47057, Germany
| | - Patrick May
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Paul Wilmes
- Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| |
Collapse
|
141
|
Nishimura Y, Yamada K, Okazaki Y, Ogata H. DiGAlign: Versatile and Interactive Visualization of Sequence Alignment for Comparative Genomics. Microbes Environ 2024; 39:ME23061. [PMID: 38508742 PMCID: PMC10982109 DOI: 10.1264/jsme2.me23061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/08/2024] [Indexed: 03/22/2024] Open
Abstract
With the explosion of available genomic information, comparative genomics has become a central approach to understanding microbial ecology and evolution. We developed DiGAlign (https://www.genome.jp/digalign/), a web server that provides versatile functionality for comparative genomics with an intuitive interface. It allows the user to perform the highly customizable visualization of a synteny map by simply uploading nucleotide sequences of interest, ranging from a specific region to the whole genome landscape of microorganisms and viruses. DiGAlign will serve a wide range of biological researchers, particularly experimental biologists, with multifaceted features that allow the rapid characterization of genomic sequences of interest and the generation of a publication-ready figure.
Collapse
Affiliation(s)
- Yosuke Nishimura
- Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237–0061, Japan
| | - Kohei Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan
| | - Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan
| |
Collapse
|
142
|
Kop LFM, Koch H, Jetten MSM, Daims H, Lücker S. Metabolic and phylogenetic diversity in the phylum Nitrospinota revealed by comparative genome analyses. ISME COMMUNICATIONS 2024; 4:ycad017. [PMID: 38317822 PMCID: PMC10839748 DOI: 10.1093/ismeco/ycad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
The most abundant known nitrite-oxidizing bacteria in the marine water column belong to the phylum Nitrospinota. Despite their importance in marine nitrogen cycling and primary production, there are only few cultured representatives that all belong to the class Nitrospinia. Moreover, although Nitrospinota were traditionally thought to be restricted to marine environments, metagenome-assembled genomes have also been recovered from groundwater. Over the recent years, metagenomic sequencing has led to the discovery of several novel classes of Nitrospinota (UBA9942, UBA7883, 2-12-FULL-45-22, JACRGO01, JADGAW01), which remain uncultivated and have not been analyzed in detail. Here, we analyzed a nonredundant set of 98 Nitrospinota genomes with focus on these understudied Nitrospinota classes and compared their metabolic profiles to get insights into their potential role in biogeochemical element cycling. Based on phylogenomic analysis and average amino acid identities, the highly diverse phylum Nitrospinota could be divided into at least 33 different genera, partly with quite distinct metabolic capacities. Our analysis shows that not all Nitrospinota are nitrite oxidizers and that members of this phylum have the genomic potential to use sulfide and hydrogen for energy conservation. This study expands our knowledge of the phylogeny and potential ecophysiology of the phylum Nitrospinota and offers new avenues for the isolation and cultivation of these elusive bacteria.
Collapse
Affiliation(s)
- Linnea F M Kop
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau 3430, Austria
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
143
|
Hribovšek P, Olesin Denny E, Dahle H, Mall A, Øfstegaard Viflot T, Boonnawa C, Reeves EP, Steen IH, Stokke R. Putative novel hydrogen- and iron-oxidizing sheath-producing Zetaproteobacteria thrive at the Fåvne deep-sea hydrothermal vent field. mSystems 2023; 8:e0054323. [PMID: 37921472 PMCID: PMC10734525 DOI: 10.1128/msystems.00543-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.
Collapse
Affiliation(s)
- Petra Hribovšek
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Emily Olesin Denny
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Håkon Dahle
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Achim Mall
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas Øfstegaard Viflot
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Chanakan Boonnawa
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Eoghan P. Reeves
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Ida Helene Steen
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Runar Stokke
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
144
|
Quinones-Olvera N, Owen SV, McCully LM, Marin MG, Rand EA, Fan AC, Martins Dosumu OJ, Paul K, Sanchez Castaño CE, Petherbridge R, Paull JS, Baym M. Diverse and abundant phages exploit conjugative plasmids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.532758. [PMID: 36993299 PMCID: PMC10055259 DOI: 10.1101/2023.03.19.532758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Phages exert profound evolutionary pressure on bacteria by interacting with receptors on the cell surface to initiate infection. While the majority of phages use chromosomally-encoded cell surface structures as receptors, plasmid-dependent phages exploit plasmid-encoded conjugation proteins, making their host range dependent on horizontal transfer of the plasmid. Despite their unique biology and biotechnological significance, only a small number of plasmid-dependent phages have been characterized. Here we systematically search for new plasmid-dependent phages targeting IncP and IncF plasmids using a targeted discovery platform, and find that they are common and abundant in wastewater, and largely unexplored in terms of their genetic diversity. Plasmid-dependent phages are enriched in non-canonical types of phages, and all but one of the 64 phages we isolated were non-tailed, and members of the lipid-containing tectiviruses, ssDNA filamentous phages or ssRNA phages. We show that plasmid-dependent tectiviruses exhibit profound differences in their host range which is associated with variation in the phage holin protein. Despite their relatively high abundance in wastewater, plasmid-dependent tectiviruses are missed by metaviromic analyses, underscoring the continued importance of culture-based phage discovery. Finally, we identify a tailed phage dependent on the IncF plasmid, and find related structural genes in phages that use the orthogonal type 4 pilus as a receptor, highlighting the promiscuous use of these distinct contractile structures by multiple groups of phages. Taken together, these results indicate plasmid-dependent phages play an under-appreciated evolutionary role in constraining horizontal gene transfer via conjugative plasmids.
Collapse
Affiliation(s)
- Natalia Quinones-Olvera
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Siân V. Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lucy M. McCully
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maximillian G. Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Eleanor A. Rand
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice C. Fan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Boston University, Boston, MA 02215, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Oluremi J. Martins Dosumu
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Kay Paul
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Cleotilde E. Sanchez Castaño
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Roxbury Community College, Boston, MA, 02120, USA
| | - Rachel Petherbridge
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jillian S. Paull
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
145
|
Reyes-Umana V, Ewens SD, Meier DAO, Coates JD. Integration of molecular and computational approaches paints a holistic portrait of obscure metabolisms. mBio 2023; 14:e0043123. [PMID: 37855625 PMCID: PMC10746228 DOI: 10.1128/mbio.00431-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Microorganisms are essential drivers of earth's geochemical cycles. However, the significance of elemental redox cycling mediated by microorganisms is often underestimated beyond the most well-studied nutrient cycles. Phosphite, (per)chlorate, and iodate are each considered esoteric substrates metabolized by microorganisms. However, recent investigations have indicated that these metabolisms are widespread and ubiquitous, affirming a need to continue studying the underlying microbiology to understand their biogeochemical effects and their interface with each other and our biosphere. This review focuses on combining canonical techniques of culturing microorganisms with modern omic approaches to further our understanding of obscure metabolic pathways and elucidate their importance in global biogeochemical cycles. Using these approaches, marker genes of interest have already been identified for phosphite, (per)chlorate, and iodate using traditional microbial physiology and genetics. Subsequently, their presence was queried to reveal the distribution of metabolic pathways in the environment using publicly available databases. In conjunction with each other, computational and experimental techniques provide a more comprehensive understanding of the location of these microorganisms, their underlying biochemistry and genetics, and how they tie into our planet's geochemical cycles.
Collapse
Affiliation(s)
- Victor Reyes-Umana
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Sophia D. Ewens
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - David A. O. Meier
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - John D. Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
146
|
Jaarsma AH, Zervas A, Sipes K, Campuzano Jiménez F, Smith AC, Svendsen LV, Thøgersen MS, Stougaard P, Benning LG, Tranter M, Anesio AM. The undiscovered biosynthetic potential of the Greenland Ice Sheet microbiome. Front Microbiol 2023; 14:1285791. [PMID: 38149278 PMCID: PMC10749974 DOI: 10.3389/fmicb.2023.1285791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
The Greenland Ice Sheet is a biome which is mainly microbially driven. Several different niches can be found within the glacial biome for those microbes able to withstand the harsh conditions, e.g., low temperatures, low nutrient conditions, high UV radiation in summer, and contrasting long and dark winters. Eukaryotic algae can form blooms during the summer on the ice surface, interacting with communities of bacteria, fungi, and viruses. Cryoconite holes and snow are also habitats with their own microbial community. Nevertheless, the microbiome of supraglacial habitats remains poorly studied, leading to a lack of representative genomes from these environments. Under-investigated extremophiles, like those living on the Greenland Ice Sheet, may provide an untapped reservoir of chemical diversity that is yet to be discovered. In this study, an inventory of the biosynthetic potential of these organisms is made, through cataloging the presence of biosynthetic gene clusters in their genomes. There were 133 high-quality metagenome-assembled genomes (MAGs) and 28 whole genomes of bacteria obtained from samples of the ice sheet surface, cryoconite, biofilm, and snow using culturing-dependent and -independent approaches. AntiSMASH and BiG-SCAPE were used to mine these genomes and subsequently analyze the resulting predicted gene clusters. Extensive sets of predicted Biosynthetic Gene Clusters (BGCs) were collected from the genome collection, with limited overlap between isolates and MAGs. Additionally, little overlap was found in the biosynthetic potential among different environments, suggesting specialization of organisms in specific habitats. The median number of BGCs per genome was significantly higher for the isolates compared to the MAGs. The most talented producers were found among Proteobacteria. We found evidence for the capacity of these microbes to produce antimicrobials, carotenoid pigments, siderophores, and osmoprotectants, indicating potential survival mechanisms to cope with extreme conditions. The majority of identified BGCs, including those in the most prevalent gene cluster families, have unknown functions, presenting a substantial potential for bioprospecting. This study underscores the diverse biosynthetic potential in Greenland Ice Sheet genomes, revealing insights into survival strategies and highlighting the need for further exploration and characterization of these untapped resources.
Collapse
Affiliation(s)
- Ate H. Jaarsma
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Katie Sipes
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | | | | | | | - Peter Stougaard
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Liane G. Benning
- German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Martyn Tranter
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | |
Collapse
|
147
|
Doran BA, Chen RY, Giba H, Behera V, Barat B, Sundararajan A, Lin H, Sidebottom A, Pamer EG, Raman AS. An evolution-based framework for describing human gut bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569969. [PMID: 38105970 PMCID: PMC10723311 DOI: 10.1101/2023.12.04.569969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The human gut microbiome contains many bacterial strains of the same species ('strain-level variants'). Describing strains in a biologically meaningful way rather than purely taxonomically is an important goal but challenging due to the genetic complexity of strain-level variation. Here, we measured patterns of co-evolution across >7,000 strains spanning the bacterial tree-of-life. Using these patterns as a prior for studying hundreds of gut commensal strains that we isolated, sequenced, and metabolically profiled revealed widespread structure beneath the phylogenetic level of species. Defining strains by their co-evolutionary signatures enabled predicting their metabolic phenotypes and engineering consortia from strain genome content alone. Our findings demonstrate a biologically relevant organization to strain-level variation and motivate a new schema for describing bacterial strains based on their evolutionary history.
Collapse
Affiliation(s)
- Benjamin A. Doran
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60637
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637
| | - Robert Y. Chen
- Department of Psychiatry, University of Washington, Seattle, WA, 98195
| | - Hannah Giba
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60637
- Department of Pathology, University of Chicago, Chicago, IL, 60637
| | - Vivek Behera
- Department of Medicine, University of Chicago, Chicago, IL, 60637
| | - Bidisha Barat
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60637
| | | | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60637
| | - Ashley Sidebottom
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60637
| | - Eric G. Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60637
- Department of Medicine, University of Chicago, Chicago, IL, 60637
| | - Arjun S. Raman
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60637
- Department of Pathology, University of Chicago, Chicago, IL, 60637
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL, 60637
| |
Collapse
|
148
|
Simon SA, Schmidt K, Griesdorn L, Soares AR, Bornemann TLV, Probst AJ. Dancing the Nanopore limbo - Nanopore metagenomics from small DNA quantities for bacterial genome reconstruction. BMC Genomics 2023; 24:727. [PMID: 38041056 PMCID: PMC10693096 DOI: 10.1186/s12864-023-09853-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND While genome-resolved metagenomics has revolutionized our understanding of microbial and genetic diversity in environmental samples, assemblies of short-reads often result in incomplete and/or highly fragmented metagenome-assembled genomes (MAGs), hampering in-depth genomics. Although Nanopore sequencing has increasingly been used in microbial metagenomics as long reads greatly improve the assembly quality of MAGs, the recommended DNA quantity usually exceeds the recoverable amount of DNA of environmental samples. Here, we evaluated lower-than-recommended DNA quantities for Nanopore library preparation by determining sequencing quality, community composition, assembly quality and recovery of MAGs. RESULTS We generated 27 Nanopore metagenomes using the commercially available ZYMO mock community and varied the amount of input DNA from 1000 ng (the recommended minimum) down to 1 ng in eight steps. The quality of the generated reads remained stable across all input levels. The read mapping accuracy, which reflects how well the reads match a known reference genome, was consistently high across all libraries. The relative abundance of the species in the metagenomes was stable down to input levels of 50 ng. High-quality MAGs (> 95% completeness, ≤ 5% contamination) could be recovered from metagenomes down to 35 ng of input material. When combined with publicly available Illumina reads for the mock community, Nanopore reads from input quantities as low as 1 ng improved the quality of hybrid assemblies. CONCLUSION Our results show that the recommended DNA amount for Nanopore library preparation can be substantially reduced without any adverse effects to genome recovery and still bolster hybrid assemblies when combined with short-read data. We posit that the results presented herein will enable studies to improve genome recovery from low-biomass environments, enhancing microbiome understanding.
Collapse
Affiliation(s)
- Sophie A Simon
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany.
| | - Katharina Schmidt
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - Lea Griesdorn
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - André R Soares
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
149
|
Vulcano F, Hribovšek P, Denny EO, Steen IH, Stokke R. Potential for homoacetogenesis via the Wood-Ljungdahl pathway in Korarchaeia lineages from marine hydrothermal vents. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:698-707. [PMID: 37218095 PMCID: PMC10667645 DOI: 10.1111/1758-2229.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
The Wood-Ljungdahl pathway (WLP) is a key metabolic component of acetogenic bacteria where it acts as an electron sink. In Archaea, despite traditionally being linked to methanogenesis, the pathway has been found in several Thermoproteota and Asgardarchaeota lineages. In Bathyarchaeia and Lokiarchaeia, its presence has been linked to a homoacetogenic metabolism. Genomic evidence from marine hydrothermal genomes suggests that lineages of Korarchaeia could also encode the WLP. In this study, we reconstructed 50 Korarchaeia genomes from marine hydrothermal vents along the Arctic Mid-Ocean Ridge, substantially expanding the Korarchaeia class with several taxonomically novel genomes. We identified a complete WLP in several deep-branching lineages, showing that the presence of the WLP is conserved at the root of the Korarchaeia. No methyl-CoM reductases were encoded by genomes with the WLP, indicating that the WLP is not linked to methanogenesis. By assessing the distribution of hydrogenases and membrane complexes for energy conservation, we show that the WLP is likely used as an electron sink in a fermentative homoacetogenic metabolism. Our study confirms previous hypotheses that the WLP has evolved independently from the methanogenic metabolism in Archaea, perhaps due to its propensity to be combined with heterotrophic fermentative metabolisms.
Collapse
Affiliation(s)
- Francesca Vulcano
- Department of Biological Sciences, Centre for Deep Sea ResearchUniversity of BergenBergenNorway
| | - Petra Hribovšek
- Department of Biological Sciences, Centre for Deep Sea ResearchUniversity of BergenBergenNorway
- Department of Earth Science, Centre for Deep Sea ResearchUniversity of BergenBergenNorway
| | - Emily Olesin Denny
- Department of Biological Sciences, Centre for Deep Sea ResearchUniversity of BergenBergenNorway
- Department of Informatics, Computational Biological UnitUniversity of BergenBergenNorway
| | - Ida H. Steen
- Department of Biological Sciences, Centre for Deep Sea ResearchUniversity of BergenBergenNorway
| | - Runar Stokke
- Department of Biological Sciences, Centre for Deep Sea ResearchUniversity of BergenBergenNorway
| |
Collapse
|
150
|
Farmer M, Rajasabhai R, Tarpeh W, Tyo K, Wells G. Meta-omic profiling reveals ubiquity of genes encoding for the nitrogen-rich biopolymer cyanophycin in activated sludge microbiomes. Front Microbiol 2023; 14:1287491. [PMID: 38033562 PMCID: PMC10687191 DOI: 10.3389/fmicb.2023.1287491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Recovering nitrogen (N) from municipal wastewater is a promising approach to prevent nutrient pollution, reduce energy use, and transition toward a circular N bioeconomy, but remains a technologically challenging endeavor. Existing N recovery techniques are optimized for high-strength, low-volume wastewater. Therefore, developing methods to concentrate dilute N from mainstream wastewater will bridge the gap between existing technologies and practical implementation. The N-rich biopolymer cyanophycin is a promising candidate for N bioconcentration due to its pH-tunable solubility characteristics and potential for high levels of accumulation. However, the cyanophycin synthesis pathway is poorly explored in engineered microbiomes. In this study, we analyzed over 3,700 publicly available metagenome assembled genomes (MAGs) and found that the cyanophycin synthesis gene cphA was ubiquitous across common activated sludge bacteria. We found that cphA was present in common phosphorus accumulating organisms (PAO) Ca. 'Accumulibacter' and Tetrasphaera, suggesting potential for simultaneous N and P bioconcentration in the same organisms. Using metatranscriptomic data, we confirmed the expression of cphA in lab-scale bioreactors enriched with PAO. Our findings suggest that cyanophycin synthesis is a ubiquitous metabolic activity in activated sludge microbiomes. The possibility of combined N and P bioconcentration could lower barriers to entry for N recovery, since P concentration by PAO is already a widespread biotechnology in municipal wastewater treatment. We anticipate this work to be a starting point for future evaluations of combined N and P bioaccumulation, with the ultimate goal of advancing widespread adoption of N recovery from municipal wastewater.
Collapse
Affiliation(s)
- McKenna Farmer
- Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Rashmi Rajasabhai
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - William Tarpeh
- Chemical Engineering, Stanford University, Stanford, CA, United States
| | - Keith Tyo
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - George Wells
- Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|