101
|
Yan L, Chen Y, Han Y, Tong C. Role of CD8 + T cell exhaustion in the progression and prognosis of acute respiratory distress syndrome induced by sepsis: a prospective observational study. BMC Emerg Med 2022; 22:182. [PMCID: PMC9675152 DOI: 10.1186/s12873-022-00733-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background CD8+ T cells are important for protective immunity against intracellular pathogens. Excessive amounts of antigen and/or inflammatory signals often lead to the gradual deterioration of CD8+ T cell function, a state called “exhaustion”. However, the association between CD8+ T cell exhaustion and acute respiratory distress syndrome (ARDS) has not been studied. This study was conducted to elucidate how CD8+ T cells and inhibitory receptors were related to the clinical prognosis of ARDS. Methods A prospective observational study in an emergency department enrolled patients who were diagnosed with sepsis-associated ARDS according to the sepsis-3 criteria and Berlin definition. Peripheral blood samples were collected within 24 h post recruitment. CD8+ T cell count, proliferation ratio, cytokine secretion, and the expression of coinhibitory receptors were assayed. Results Sixty-two patients with ARDS met the inclusion criteria. CD8+ T cell counts and proliferation rates were dramatically decreased in non-surviving ARDS patients. Increasing programmed cell death 1 (PD-1) expression on the CD8+ T cell surface was seen in patients with worse organ function, while an increasing level of T cell immunoglobulin mucin-3 (Tim-3) was associated with a longer duration of the shock. Kaplan–Meier analysis showed that low CD8+ T cell percentages and increased inhibitory molecule expression were significantly associated with a worse survival rate. Conclusions CD8+ T cells and coinhibitory receptors are promising independent prognostic markers of sepsis-induced ARDS, and increased CD8+ T cell exhaustion is significantly correlated with poor prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12873-022-00733-2.
Collapse
Affiliation(s)
- Lei Yan
- grid.8547.e0000 0001 0125 2443Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yumei Chen
- grid.8547.e0000 0001 0125 2443Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yi Han
- grid.8547.e0000 0001 0125 2443Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Chaoyang Tong
- grid.8547.e0000 0001 0125 2443Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
102
|
Beura LK, Scott MC, Pierson MJ, Joag V, Wijeyesinghe S, Semler MR, Quarnstrom CF, Busman-Sahay K, Estes JD, Hamilton SE, Vezys V, O'Connor DH, Masopust D. Novel Lymphocytic Choriomeningitis Virus Strain Sustains Abundant Exhausted Progenitor CD8 T Cells without Systemic Viremia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1691-1702. [PMID: 36122933 PMCID: PMC9588727 DOI: 10.4049/jimmunol.2200320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/21/2022] [Indexed: 01/04/2023]
Abstract
Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and a natural mouse pathogen. LCMV-Armstrong, an acutely resolved strain, and LCMV-clone 13, a mutant that establishes chronic infection, have provided contrasting infection models that continue to inform the fundamental biology of T cell differentiation, regulation of exhaustion, and response to checkpoint blockade. In this study, we report the isolation and characterization of LCMV-Minnesota (LCMV-MN), which was naturally transmitted to laboratory mice upon cohousing with pet shop mice and shares 80-95% amino acid homology with previously characterized LCMV strains. Infection of laboratory mice with purified LCMV-MN resulted in viral persistence that was intermediate between LCMV-Armstrong and -clone 13, with widely disseminated viral replication and viremia that was controlled within 15-30 d, unless CD4 T cells were depleted prior to infection. LCMV-MN-responding CD8+ T cells biased differentiation toward the recently described programmed death-1 (PD-1)+CXCR5+Tim-3lo stemlike CD8+ T cell population (also referred to as progenitor exhausted T cells) that effectuates responses to PD-1 blockade checkpoint inhibition, a therapy that rejuvenates responses against chronic infections and cancer. This subset resembled previously characterized PD-1+TCF1+ stemlike CD8+ T cells by transcriptional, phenotypic, and functional assays, yet was atypically abundant. LCMV-MN may provide a tool to better understand the breadth of immune responses in different settings of chronic Ag stimulation as well as the ontogeny of progenitor exhausted T cells and the regulation of responsiveness to PD-1 blockade.
Collapse
Affiliation(s)
- Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI;
| | - Milcah C Scott
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Mark J Pierson
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Vineet Joag
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Sathi Wijeyesinghe
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Matthew R Semler
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI; and
| | - Clare F Quarnstrom
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR
| | - Sara E Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Vaiva Vezys
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI; and
| | - David Masopust
- Center for Immunology, University of Minnesota, Minneapolis, MN;
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
103
|
Daniel B, Yost KE, Hsiung S, Sandor K, Xia Y, Qi Y, Hiam-Galvez KJ, Black M, J Raposo C, Shi Q, Meier SL, Belk JA, Giles JR, Wherry EJ, Chang HY, Egawa T, Satpathy AT. Divergent clonal differentiation trajectories of T cell exhaustion. Nat Immunol 2022; 23:1614-1627. [PMID: 36289450 PMCID: PMC11225711 DOI: 10.1038/s41590-022-01337-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
Chronic antigen exposure during viral infection or cancer promotes an exhausted T cell (Tex) state with reduced effector function. However, whether all antigen-specific T cell clones follow the same Tex differentiation trajectory remains unclear. Here, we generate a single-cell multiomic atlas of T cell exhaustion in murine chronic viral infection that redefines Tex phenotypic diversity, including two late-stage Tex subsets with either a terminal exhaustion (Texterm) or a killer cell lectin-like receptor-expressing cytotoxic (TexKLR) phenotype. We use paired single-cell RNA and T cell receptor sequencing to uncover clonal differentiation trajectories of Texterm-biased, TexKLR-biased or divergent clones that acquire both phenotypes. We show that high T cell receptor signaling avidity correlates with Texterm, whereas low avidity correlates with effector-like TexKLR fate. Finally, we identify similar clonal differentiation trajectories in human tumor-infiltrating lymphocytes. These findings reveal clonal heterogeneity in the T cell response to chronic antigen that influences Tex fates and persistence.
Collapse
Affiliation(s)
- Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Sunnie Hsiung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Yu Xia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yanyan Qi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kamir J Hiam-Galvez
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Mollie Black
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Colin J Raposo
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Quanming Shi
- Department of Pathology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Stefanie L Meier
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Julia A Belk
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
104
|
Li S, Bern MD, Miao B, Fan C, Xing X, Inoue T, Piersma SJ, Wang T, Colonna M, Kurosaki T, Yokoyama WM. The transcription factor Bach2 negatively regulates murine natural killer cell maturation and function. eLife 2022; 11:e77294. [PMID: 36190189 PMCID: PMC9560152 DOI: 10.7554/elife.77294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
BTB domain And CNC Homolog 2 (Bach2) is a transcription repressor that actively participates in T and B lymphocyte development, but it is unknown if Bach2 is also involved in the development of innate immune cells, such as natural killer (NK) cells. Here, we followed the expression of Bach2 during murine NK cell development, finding that it peaked in immature CD27+CD11b+ cells and decreased upon further maturation. Bach2 showed an organ and tissue-specific expression pattern in NK cells. Bach2 expression positively correlated with the expression of transcription factor TCF1 and negatively correlated with genes encoding NK effector molecules and those involved in the cell cycle. Lack of Bach2 expression caused changes in chromatin accessibility of corresponding genes. In the end, Bach2 deficiency resulted in increased proportions of terminally differentiated NK cells with increased production of granzymes and cytokines. NK cell-mediated control of tumor metastasis was also augmented in the absence of Bach2. Therefore, Bach2 is a key checkpoint protein regulating NK terminal maturation.
Collapse
Affiliation(s)
- Shasha Li
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Michael D Bern
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Benpeng Miao
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Changxu Fan
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Xiaoyun Xing
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
105
|
Globig AM, Mayer LS, Heeg M, Andrieux G, Ku M, Otto-Mora P, Hipp AV, Zoldan K, Pattekar A, Rana N, Schell C, Boerries M, Hofmann M, Neumann-Haefelin C, Kuellmer A, Schmidt A, Boettler T, Tomov V, Thimme R, Hasselblatt P, Bengsch B. Exhaustion of CD39-Expressing CD8 + T Cells in Crohn's Disease Is Linked to Clinical Outcome. Gastroenterology 2022; 163:965-981.e31. [PMID: 35738329 DOI: 10.1053/j.gastro.2022.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Exhaustion of CD8 T cells has been suggested to inform different clinical outcomes in Crohn's disease, but detailed analyses are lacking. This study aimed to identify the role of exhaustion on a single-cell level and identify relevant CD8 T cell populations in Crohn's disease. METHODS Blood and intestinal tissue from 58 patients with Crohn's disease (active disease or remission) were assessed for CD8 T cell expression of exhaustion markers and their cytokine profile by highly multiplexed flow and mass cytometry. Key disease-associated subsets were sorted and analyzed by RNA sequencing. CD39 inhibition assays were performed in vitro. RESULTS Activated CD39+ and CD39+PD-1+ CD8 T cell subsets expressing multiple exhaustion markers were enriched at low frequency in active Crohn's disease. Their cytokine production capacity was inversely linked to the Harvey-Bradshaw Index. Subset-level protein and transcriptome profiling revealed co-existence of effector and exhaustion programs in CD39+ and CD39+ PD-1+CD8 T cells, with CD39+ cells likely originating from the intestine. CD39 enzymatic activity controlled T cell cytokine production. Importantly, transcriptional exhaustion signatures were enriched in remission in CD39-expressing subsets with up-regulation of TOX. Subset-level transcriptomics revealed a CD39-related gene module that is associated with the clinical course. CONCLUSIONS These data showed a role for the exhaustion of peripheral CD39-expressing CD8 T cell subsets in Crohn's disease. Their low frequency illustrated the utility of single-cell cytometry methods for identification of relevant immune populations. Importantly, the link of their exhaustion status to the clinical activity and their specific gene signatures have implications for exhaustion-based personalized medicine approaches.
Collapse
Affiliation(s)
- Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Lena Sophie Mayer
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Patricia Otto-Mora
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Katharina Zoldan
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ajinkya Pattekar
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nisha Rana
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph Schell
- Institute for Surgical Pathology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Maike Hofmann
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Armin Kuellmer
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Arthur Schmidt
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Tobias Boettler
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Vesselin Tomov
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert Thimme
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Peter Hasselblatt
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany; Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
106
|
Gao Z, Feng Y, Xu J, Liang J. T-cell exhaustion in immune-mediated inflammatory diseases: New implications for immunotherapy. Front Immunol 2022; 13:977394. [PMID: 36211414 PMCID: PMC9538155 DOI: 10.3389/fimmu.2022.977394] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Immune-mediated inflammatory diseases(IMIDs) are referred to as highly disabling chronic diseases affecting different organs and systems. Inappropriate or excessive immune responses with chronic inflammation are typical manifestations. Usually in patients with chronic infection and cancer, due to long-term exposure to persistent antigens and inflammation microenvironment, T-cells are continuously stimulated and gradually differentiate into an exhausted state. Exhausted T-cells gradually lose effector function and characteristics of memory T-cells. However, existing studies have found that exhausted T-cells are not only present in the infection and tumor environment, but also in autoimmunity, and are associated with better prognosis of IMIDs. This suggests new prospects for the application of this reversible process of T-cell exhaustion in the treatment of IMID. This review will focus on the research progress of T-cell exhaustion in several IMIDs and its potential application for diagnosis and treatment in IMIDs.
Collapse
Affiliation(s)
- Zhanyan Gao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Shanghai Institute of Dermatology, Shanghai, China
- *Correspondence: Jun Liang, ; Jinhua Xu,
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jun Liang, ; Jinhua Xu,
| |
Collapse
|
107
|
Castillo-Aleman YM, Bencomo-Hernandez AA, Ventura-Carmenate Y, Villegas-Valverde CA, Rivero-Jimenez RA. Refractory pemphigus vulgaris and high-intensity extracorporeal photopheresis: A case report. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 39:296-300. [PMID: 36052754 DOI: 10.1111/phpp.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
A 41-year-old man with oral pemphigus vulgaris (PV) presented to our clinic with a history of no response to numerous immunosuppressant agents and was referred for extracorporeal photopheresis (ECP) therapy. Although the patient underwent a high-intensity ECP regimen for five months, which included two different photopheresis systems, his oral dysesthesia continued to interfere with oral intake, leading to continued weight loss and other adverse events. The intervention was associated with changes in several immune cell subpopulations without modifying the anti-epidermal antibody titers, aligned with his poor clinical outcome. To the best of the authors' knowledge, this is the first report to examine immunophenotyping of a PV patient who was refractory to previous immunosuppression and recalcitrant to high-intensity ECP therapy.
Collapse
|
108
|
Zebley CC, Youngblood B. Mechanisms of T cell exhaustion guiding next-generation immunotherapy. Trends Cancer 2022; 8:726-734. [PMID: 35570136 PMCID: PMC9388609 DOI: 10.1016/j.trecan.2022.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
The functional decline in T cells during their chronic stimulation, commonly referred to as T cell exhaustion, is a major limitation for current immunotherapy approaches. As modern medicine embraces therapeutic approaches that exploit the immuno-oncology interface, a primary question is how is T cell function maintained over time in scenarios of prolonged tumor burden. Deciphering the molecular mechanisms of T cell exhaustion is now enabling the field to begin using cardinal features of T cell differentiation to develop biomarkers that can delineate responders from nonresponders prior to treatment with T cell-based therapeutics. Furthermore, applying principles of basic T cell immunity toward the development of cancer treatments is laying a foundation for rational approaches to improve immunotherapy by redirecting T cells away from a dysfunctional developmental trajectory.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Ben Youngblood
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
109
|
Zhang Z, Chen L, Chen H, Zhao J, Li K, Sun J, Zhou M. Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy. EBioMedicine 2022; 83:104207. [PMID: 35961204 PMCID: PMC9382263 DOI: 10.1016/j.ebiom.2022.104207] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND T cells form the major component of anti-tumor immunity. A deeper understanding of T cell exhaustion (TEX) heterogeneity within the tumor microenvironment (TME) is key to overcoming TEX and improving checkpoint blockade immunotherapies in the clinical setting. METHODS We conducted a comprehensive pan-cancer analysis of TEX subsets from 9564 tumor samples across 30 bulk solid cancer types. Pan-cancer TEX subtypes were identified using literature-derived hierarchical TEX-specific developmental pathway signatures. The potential multi-omics and clinical features involved in TEX heterogeneity were determined. FINDINGS Our study yielded a dynamic, progressive roadmap and a hierarchical dysfunction landscape regarding TEX within the TME. In total, we identified five pan-cancer TEX subtypes, revealing tissue/cancer type-specific TEX patterns in low immunogenic tumors. By contrast, highly immunogenic tumors tend to harbor high frequencies of progenitor TEX subsets. In addition, the TEX profile also revealed distinct prognoses, intrinsic molecular subtype distribution, immune microenvironment and multi-omics features among the cancers. Network analysis identified four previously unknown TEX-associated cancer genes (tolloid-like 1, myosin heavy chain 111, P2Y receptor family member 8 and protein kinase D2), the possible association with anti-PD-1 immunotherapy response was validated using a single-cell dataset. Finally, a machine learning-based gene signature was developed to model the hierarchical TEX stages, verified in single-cell and immunotherapy patient cohorts. INTERPRETATION Our study provided a TEX-derived system that can be applied for the immune subtyping of cancers and may have implications for the further optimization of personalized cancer immunotherapy. FUNDING This study was supported by the National Natural Science Foundation of China (Grant No. 62072341 and 61973240). The funders had no roles in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Zicheng Zhang
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Lu Chen
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Hongyan Chen
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Jingting Zhao
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Ke Li
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Sun
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Meng Zhou
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
110
|
Tsui C, Kretschmer L, Rapelius S, Gabriel SS, Chisanga D, Knöpper K, Utzschneider DT, Nüssing S, Liao Y, Mason T, Torres SV, Wilcox SA, Kanev K, Jarosch S, Leube J, Nutt SL, Zehn D, Parish IA, Kastenmüller W, Shi W, Buchholz VR, Kallies A. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature 2022; 609:354-360. [PMID: 35978192 PMCID: PMC9452299 DOI: 10.1038/s41586-022-05105-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
CD8+ T cells that respond to chronic viral infections or cancer are characterized by the expression of inhibitory receptors such as programmed cell death protein 1 (PD-1) and by the impaired production of cytokines. This state of restrained functionality—which is referred to as T cell exhaustion1,2—is maintained by precursors of exhausted T (TPEX) cells that express the transcription factor T cell factor 1 (TCF1), self-renew and give rise to TCF1− exhausted effector T cells3–6. Here we show that the long-term proliferative potential, multipotency and repopulation capacity of exhausted T cells during chronic infection are selectively preserved in a small population of transcriptionally distinct CD62L+ TPEX cells. The transcription factor MYB is not only essential for the development of CD62L+ TPEX cells and maintenance of the antiviral CD8+ T cell response, but also induces functional exhaustion and thereby prevents lethal immunopathology. Furthermore, the proliferative burst in response to PD-1 checkpoint inhibition originates exclusively from CD62L+ TPEX cells and depends on MYB. Our findings identify CD62L+ TPEX cells as a stem-like population that is central to the maintenance of long-term antiviral immunity and responsiveness to immunotherapy. Moreover, they show that MYB is a transcriptional orchestrator of two fundamental aspects of exhausted T cell responses: the downregulation of effector function and the long-term preservation of self-renewal capacity. CD62L+ precursors of exhausted T cells retain long-term proliferative potential, multipotency and repopulation capacity, and the transcription factor MYB is essential for the development and function of this population of cells.
Collapse
Affiliation(s)
- Carlson Tsui
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Lorenz Kretschmer
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Svenja Rapelius
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Sarah S Gabriel
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Teisha Mason
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Santiago Valle Torres
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen A Wilcox
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Krystian Kanev
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Justin Leube
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany.
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
111
|
Ford BR, Vignali PDA, Rittenhouse NL, Scharping NE, Peralta R, Lontos K, Frisch AT, Delgoffe GM, Poholek AC. Tumor microenvironmental signals reshape chromatin landscapes to limit the functional potential of exhausted T cells. Sci Immunol 2022; 7:eabj9123. [PMID: 35930654 PMCID: PMC9851604 DOI: 10.1126/sciimmunol.abj9123] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Response rates to immunotherapy in solid tumors remain low due in part to the elevated prevalence of terminally exhausted T cells, a hypofunctional differentiation state induced through persistent antigen and stress signaling. However, the mechanisms promoting progression to terminal exhaustion in the tumor remain undefined. Using the low-input chromatin immunoprecipitation sequencing method CUT&RUN, we profiled the histone modification landscape of tumor-infiltrating CD8+ T cells throughout differentiation. We found that terminally exhausted T cells had unexpected chromatin features that limit their transcriptional potential. Terminally exhausted T cells had a substantial fraction of active chromatin, including active enhancers enriched for bZIP/AP-1 transcription factor motifs that lacked correlated gene expression, which was restored by immunotherapeutic costimulatory signaling. Reduced transcriptional potential was also driven by an increase in histone bivalency, which we linked directly to hypoxia exposure. Enforced expression of the hypoxia-insensitive histone demethylase Kdm6b was sufficient to overcome hypoxia, increase function, and promote antitumor immunity. Our study reveals the specific epigenetic changes mediated by histone modifications during T cell differentiation that support exhaustion in cancer, highlighting that their altered function is driven by improper costimulatory signals and environmental factors. These data suggest that even terminally exhausted T cells may remain competent for transcription in settings of increased costimulatory signaling and reduced hypoxia.
Collapse
Affiliation(s)
- B. Rhodes Ford
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paolo D. A. Vignali
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Natalie L. Rittenhouse
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nicole E. Scharping
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ronal Peralta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Konstantinos Lontos
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Department of Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Andrew T. Frisch
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Greg M. Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Corresponding author. (G.M.D.); (A.C.P.)
| | - Amanda C. Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Corresponding author. (G.M.D.); (A.C.P.)
| |
Collapse
|
112
|
Yu D, Walker LSK, Liu Z, Linterman MA, Li Z. Targeting T FH cells in human diseases and vaccination: rationale and practice. Nat Immunol 2022; 23:1157-1168. [PMID: 35817844 DOI: 10.1038/s41590-022-01253-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
Abstract
The identification of CD4+ T cells localizing to B cell follicles has revolutionized the knowledge of how humoral immunity is generated. Follicular helper T (TFH) cells support germinal center (GC) formation and regulate clonal selection and differentiation of memory and antibody-secreting B cells, thus controlling antibody affinity maturation and memory. TFH cells are essential in sustaining protective antibody responses necessary for pathogen clearance in infection and vaccine-mediated protection. Conversely, aberrant and excessive TFH cell responses mediate and sustain pathogenic antibodies to autoantigens, alloantigens, and allergens, facilitate lymphomagenesis, and even harbor viral reservoirs. TFH cell generation and function are determined by T cell antigen receptor (TCR), costimulation, and cytokine signals, together with specific metabolic and survival mechanisms. Such regulation is crucial to understanding disease pathogenesis and informing the development of emerging therapies for disease or novel approaches to boost vaccine efficacy.
Collapse
Affiliation(s)
- Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia. .,Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Zhanguo Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
113
|
Pichler AC, Cannons JL, Schwartzberg PL. The Road Less Taken: Less Appreciated Pathways for Manipulating CD8 + T Cell Exhaustion. Front Immunol 2022; 13:926714. [PMID: 35874734 PMCID: PMC9297918 DOI: 10.3389/fimmu.2022.926714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Exhausted CD8+ T (Tex) cells are a distinct cell population that arise during persistent antigen exposure in the context of chronic infections and cancers. Although characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression and distinct transcriptional and epigenetic programs, Tex cells are heterogeneous. Among these, a self-renewing TCF-1+ Tex population, having unique characteristics and the ability to respond to immune-checkpoint blockade, gives rise to TCF-1- terminally Tex cells. These TCF-1+ cells have stem cell-like properties similar to memory T cell populations, but the signals that regulate the developmental pathways and relationships among exhausted cell populations are still unclear. Here, we review our current understanding of Tex cell biology, and discuss some less appreciated molecules and pathways affecting T cell exhaustion. We highlight two co-stimulatory receptors, CD226 and CD137, and their role in inducing or restraining T cell exhaustion, as well as signaling pathways that may be amenable to pharmacological inhibition with a focus on Phosphoinositide-3 Kinase and IL-2 partial agonists. Finally, we discuss novel methods that may increase TCF-1+ populations and therefore improve immunotherapy responsiveness. Understanding features of and pathways to exhaustion has important implications for the success of immunotherapy, including checkpoint blockade and adoptive T-cell transfer therapies.
Collapse
Affiliation(s)
- Andrea C. Pichler
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer L. Cannons
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela L. Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
114
|
Alrubayyi A, Moreno-Cubero E, Hameiri-Bowen D, Matthews R, Rowland-Jones S, Schurich A, Peppa D. Functional Restoration of Exhausted CD8 T Cells in Chronic HIV-1 Infection by Targeting Mitochondrial Dysfunction. Front Immunol 2022; 13:908697. [PMID: 35865519 PMCID: PMC9295450 DOI: 10.3389/fimmu.2022.908697] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
CD8 T cell exhaustion is a hallmark of HIV-1 infection, characterized by phenotypic and functional CD8 T cell abnormalities that persist despite years of effective antiretroviral treatment (ART). More recently, the importance of cellular metabolism in shaping T cell antiviral function has emerged as a crucial aspect of immunotherapeutics aimed at re-invigorating exhausted CD8 T cells but remains under-investigated in HIV-1 infection. To gain a better insight into this process and identify new targets for effective CD8 T cell restoration we examined the metabolic profile of exhausted CD8 T cells in HIV-1 infection. We show that relative to HIV-1 elite controllers (EC) and HIV-1 seronegative donors, CD8 T cells from HIV-1 viraemic individuals are skewed toward a PD-1hiEOMEShiT-betlowTIGIT+ phenotype that is maintained during ART. This exhausted signature is enriched in HIV-specific CD8 T cells, compared to CMV-specific CD8 T cell populations, and further delineated by higher expression of the glucose transporter, Glut-1, impaired mitochondrial function and biogenesis, reflecting underlying metabolic defects. A notable improvement in antiviral HIV-specific CD8 T cell function was elicited via mitochondrial antioxidant treatment in combination with pharmacological modulation of mitochondrial dynamics and IL-15 treatment. These findings identify mitochondria as promising targets for combined reconstitution therapies in HIV-1 infection.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Elia Moreno-Cubero
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dan Hameiri-Bowen
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca Matthews
- Centre for Sexual Health and HIV Research, University College London (UCL), London, United Kingdom
| | - Sarah Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna Schurich
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
115
|
Peng Q, Guo X, Luo Y, Wang G, Zhong L, Zhu J, Li Y, Zeng X, Feng Z. Dynamic Immune Landscape and VZV-Specific T Cell Responses in Patients With Herpes Zoster and Postherpetic Neuralgia. Front Immunol 2022; 13:887892. [PMID: 35720399 PMCID: PMC9199063 DOI: 10.3389/fimmu.2022.887892] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Varicella-zoster virus (VZV) can induce herpes zoster (HZ) and postherpetic neuralgia (PHN). Immune cells play an important role in regulating HZ and PHN pathogenesis, but the dynamic immune profiles and molecular mechanisms remain unclear. This study aimed to screen dynamic immune signatures during HZ progression and elucidate the mechanism of VZV-specific T cells in PHN. Methods We used cytometry by time-of-flight (CyTOF) to analyze peripheral blood mononuclear cells (PBMC) samples from 45 patients with HZ and eight age-sex-matched healthy controls, eight PHN samples and seven non-PHN samples. Correlations between the immune subsets and clinical pain-related scores were performed. Further, the characteristics of VZV-specific T cells between PHN and non-PHN patients were evaluated by VZV peptide pools stimulation. The expression level of cytokines, including granzyme B, interleukin (IL)-2, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α was performed via cytometric bead array. Finally, we analyzed the alteration of Ca2+ signals in dorsal root ganglion (DRG)-derived cells after TNF-α stimulation. Results We investigated the dynamic characteristics of the immune landscape of peripheral blood samples of patients with HZ and PHN, and depicted two major dynamic signatures in NK, CD4+ and CD8+ T subsets in patients with HZ, which closely correlated with clinical pain-related scores. The frequency of PD-1+CD4+ T cells, VZV-specific PD-1+CD4+ T cells, and the amount of TNF-α produced by VZV-specific T cells were higher in patients with PHN than without PHN. Furthermore, we showed that TNF-α could induce calcium influx in DRG-derived cells in a dose-dependent manner. Conclusions Our results profiled the dynamic signatures of immune cells in patients with HZ and highlighted the important role of VZV-specific T cells in the pathogenesis of PHN.
Collapse
Affiliation(s)
- Qiao Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejiao Guo
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Luo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guocan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyu Zhong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Zhu
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunze Li
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Feng
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
116
|
Kersten K, Hu KH, Combes AJ, Samad B, Harwin T, Ray A, Rao AA, Cai E, Marchuk K, Artichoker J, Courau T, Shi Q, Belk J, Satpathy AT, Krummel MF. Spatiotemporal co-dependency between macrophages and exhausted CD8 + T cells in cancer. Cancer Cell 2022; 40:624-638.e9. [PMID: 35623342 PMCID: PMC9197962 DOI: 10.1016/j.ccell.2022.05.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/08/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022]
Abstract
T cell exhaustion is a major impediment to antitumor immunity. However, it remains elusive how other immune cells in the tumor microenvironment (TME) contribute to this dysfunctional state. Here, we show that the biology of tumor-associated macrophages (TAMs) and exhausted T cells (Tex) in the TME is extensively linked. We demonstrate that in vivo depletion of TAMs reduces exhaustion programs in tumor-infiltrating CD8+ T cells and reinvigorates their effector potential. Reciprocally, transcriptional and epigenetic profiling reveals that Tex express factors that actively recruit monocytes to the TME and shape their differentiation. Using lattice light sheet microscopy, we show that TAM and CD8+ T cells engage in unique, long-lasting, antigen-specific synaptic interactions that fail to activate T cells but prime them for exhaustion, which is then accelerated in hypoxic conditions. Spatially resolved sequencing supports a spatiotemporal self-enforcing positive feedback circuit that is aligned to protect rather than destroy a tumor.
Collapse
Affiliation(s)
- Kelly Kersten
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Kenneth H Hu
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Alexis J Combes
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bushra Samad
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tory Harwin
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arja Ray
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arjun Arkal Rao
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - En Cai
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kyle Marchuk
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jordan Artichoker
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tristan Courau
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Quanming Shi
- Department of Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia Belk
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA.
| |
Collapse
|
117
|
Best SA, Gubser PM, Sethumadhavan S, Kersbergen A, Negrón Abril YL, Goldford J, Sellers K, Abeysekera W, Garnham AL, McDonald JA, Weeden CE, Anderson D, Pirman D, Roddy TP, Creek DJ, Kallies A, Kingsbury G, Sutherland KD. Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung cancer. Cell Metab 2022; 34:874-887.e6. [PMID: 35504291 DOI: 10.1016/j.cmet.2022.04.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/28/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME) contains a rich source of nutrients that sustains cell growth and facilitate tumor development. Glucose and glutamine in the TME are essential for the development and activation of effector T cells that exert antitumor function. Immunotherapy unleashes T cell antitumor function, and although many solid tumors respond well, a significant proportion of patients do not benefit. In patients with KRAS-mutant lung adenocarcinoma, KEAP1 and STK11/Lkb1 co-mutations are associated with impaired response to immunotherapy. To investigate the metabolic and immune microenvironment of KRAS-mutant lung adenocarcinoma, we generated murine models that reflect the KEAP1 and STK11/Lkb1 mutational landscape in these patients. Here, we show increased glutamate abundance in the Lkb1-deficient TME associated with CD8 T cell activation in response to anti-PD1. Combination treatment with the glutaminase inhibitor CB-839 inhibited clonal expansion and activation of CD8 T cells. Thus, glutaminase inhibition negatively impacts CD8 T cells activated by anti-PD1 immunotherapy.
Collapse
Affiliation(s)
- Sarah A Best
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Patrick M Gubser
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | | | - Ariena Kersbergen
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | | | | | - Waruni Abeysekera
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Alexandra L Garnham
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jackson A McDonald
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Clare E Weeden
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Dovile Anderson
- Monash Proteomics and Metabolomics Facility, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | | | - Darren J Creek
- Monash Proteomics and Metabolomics Facility, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | | | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
118
|
Belk JA, Daniel B, Satpathy AT. Epigenetic regulation of T cell exhaustion. Nat Immunol 2022; 23:848-860. [PMID: 35624210 PMCID: PMC10439681 DOI: 10.1038/s41590-022-01224-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/06/2022] [Indexed: 12/15/2022]
Abstract
Chronic antigen stimulation during viral infections and cancer can lead to T cell exhaustion, which is characterized by reduced effector function and proliferation, and the expression of inhibitory immune checkpoint receptors. Recent studies have demonstrated that T cell exhaustion results in wholescale epigenetic remodeling that confers phenotypic stability to these cells and prevents T cell reinvigoration by checkpoint blockade. Here, we review foundational technologies to profile the epigenome at multiple scales, including mapping the locations of transcription factors and histone modifications, DNA methylation and three-dimensional genome conformation. We discuss how these technologies have elucidated the development and epigenetic regulation of exhausted T cells and functional implications across viral infection, cancer, autoimmunity and engineered T cell therapies. Finally, we cover emerging multi-omic and genome engineering technologies, current and upcoming opportunities to apply these to T cell exhaustion, and therapeutic opportunities for T cell engineering in the clinic.
Collapse
Affiliation(s)
- Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Bence Daniel
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA.
| |
Collapse
|
119
|
'Stem-like' precursors are the fount to sustain persistent CD8 + T cell responses. Nat Immunol 2022; 23:836-847. [PMID: 35624209 DOI: 10.1038/s41590-022-01219-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/07/2022] [Indexed: 01/22/2023]
Abstract
Virus-specific CD8+ T cells that differentiate in the context of resolved versus persisting infections exhibit divergent phenotypic and functional characteristics, which suggests that their differentiation trajectories are governed by distinct cellular dynamics, developmental pathways and molecular mechanisms. For acute infection, it is long known that antigen-specific T cell populations contain terminally differentiated effector T cells, known as short-lived effector T cells, and proliferation-competent and differentiation-competent memory precursor T cells. More recently, it was identified that a similar functional segregation occurs in chronic infections. A failure to generate proliferation-competent precursor cells in chronic infections and tumors results in the collapse of the T cell response. Thus, these precursor cells are major therapeutic and prophylactic targets of immune interventions. These observations suggest substantial commonality between T cell responses in acute and chronic infections but there are also critical differences. We are therefore reviewing the common features and peculiarities of precursor cells in acute infections, different types of persistent infection and cancer.
Collapse
|
120
|
Kagoya Y. Dissecting the heterogeneity of exhausted T cells at the molecular level. Int Immunol 2022; 34:547-553. [PMID: 35561668 DOI: 10.1093/intimm/dxac016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/11/2022] [Indexed: 11/14/2022] Open
Abstract
Our understanding of mechanisms underlying T cell exhaustion has been refined by analysis of exhausted T cells at the molecular level. The development and functions of exhausted T cells are regulated by a number of transcription factors, epigenetic factors and metabolic enzymes. In addition, recent work to dissect exhausted T cells at the single-cell level has enabled us to discover a precursor exhausted T cell subset equipped with long-term survival capacity. Starting from the analysis of mouse models, the existence of precursor exhausted T cells has also been documented in human T cells in the context of chronic virus infections or tumors. Clinical data suggest that evaluating the quality of exhausted T cells on the basis of their differentiation status may be helpful to predict the therapeutic response to inhibition of programmed death 1 (PD1). Moreover, beyond immune-checkpoint blockade, novel therapeutic approaches to re-invigorate exhausted T cells have been explored based on molecular insights into T cell exhaustion. Here I will discuss key molecular profiles associated with the development, maintenance and differentiation of exhausted T cells and how these findings can be applicable in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuki Kagoya
- Division of Immune Response, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-ku, Nagoya, Japan.,Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| |
Collapse
|
121
|
Zhao TV, Sato Y, Goronzy JJ, Weyand CM. T-Cell Aging-Associated Phenotypes in Autoimmune Disease. FRONTIERS IN AGING 2022; 3:867950. [PMID: 35821833 PMCID: PMC9261367 DOI: 10.3389/fragi.2022.867950] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 01/10/2023]
Abstract
The aging process causes profound restructuring of the host immune system, typically associated with declining host protection against cancer and infection. In the case of T cells, aging leads to the accumulation of a diverse set of T-cell aging-associated phenotypes (TASP), some of which have been implicated in driving tissue inflammation in autoimmune diseases. T cell aging as a risk determinant for autoimmunity is exemplified in two classical autoimmune conditions: rheumatoid arthritis (RA), a disease predominantly affecting postmenopausal women, and giant cell arteritis (GCA), an inflammatory vasculopathy exclusively occurring during the 6th-9th decade of life. Pathogenic T cells in RA emerge as a consequence of premature immune aging. They have shortening and fragility of telomeric DNA ends and instability of mitochondrial DNA. As a result, they produce a distinct profile of metabolites, disproportionally expand their endoplasmic reticulum (ER) membranes and release excess amounts of pro-inflammatory effector cytokines. Characteristically, they are tissue invasive, activate the inflammasome and die a pyroptotic death. Patients with GCA expand pathogenic CD4+ T cells due to aberrant expression of the co-stimulatory receptor NOTCH1 and the failure of the PD-1/PD-L1 immune checkpoint. In addition, GCA patients lose anti-inflammatory Treg cells, promoting tissue-destructive granulomatous vasculitis. In summary, emerging data identify T cell aging as a risk factor for autoimmune disease and directly link TASPs to the breakdown of T cell tolerance and T-cell-induced tissue inflammation.
Collapse
Affiliation(s)
- Tuantuan V. Zhao
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, United States
| | - Yuki Sato
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, United States
| | - Jorg J. Goronzy
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, United States
- School of Medicine, Stanford University, Stanford, CA, United States
| | - Cornelia M. Weyand
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, United States
- School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
122
|
Regulation of activated T cell survival in rheumatic autoimmune diseases. Nat Rev Rheumatol 2022; 18:232-244. [PMID: 35075294 DOI: 10.1038/s41584-021-00741-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
Adaptive immune responses rely on the proliferation of T lymphocytes able to recognize and eliminate pathogens. The magnitude and duration of the expansion of activated T cell clones are finely regulated to minimize immunopathology and avoid autoimmunity. In patients with rheumatic autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis, activated lymphocytes survive and exert effector functions for prolonged periods, defying the mechanisms that normally curb their capacities during acute and chronic infections. Here, we review the molecular mechanisms that limit the duration of immune responses in health and discuss the factors that alter such regulation in the setting of systemic lupus erythematosus and rheumatoid arthritis. We highlight defects that could contribute to the development and progression of autoimmune disease and describe how chronic inflammation can alter the regulation of activated lymphocyte survival, promoting its perpetuation. These concepts might contribute to the understanding of the mechanisms that underlie the chronicity of inflammation in the context of autoimmunity.
Collapse
|
123
|
Dähling S, Mansilla AM, Knöpper K, Grafen A, Utzschneider DT, Ugur M, Whitney PG, Bachem A, Arampatzi P, Imdahl F, Kaisho T, Zehn D, Klauschen F, Garbi N, Kallies A, Saliba AE, Gasteiger G, Bedoui S, Kastenmüller W. Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Immunity 2022; 55:656-670.e8. [PMID: 35366396 DOI: 10.1016/j.immuni.2022.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 12/21/2022]
Abstract
Reinvigoration of exhausted CD8+ T (Tex) cells by checkpoint immunotherapy depends on the activation of precursors of exhausted T (Tpex) cells, but the local anatomical context of their maintenance, differentiation, and interplay with other cells is not well understood. Here, we identified transcriptionally distinct Tpex subpopulations, mapped their differentiation trajectories via transitory cellular states toward Tex cells, and localized these cell states to specific splenic niches. Conventional dendritic cells (cDCs) were critical for successful αPD-L1 therapy and were required to mediate viral control. cDC1s were dispensable for Tpex cell expansion but provided an essential niche to promote Tpex cell maintenance, preventing their overactivation and T-cell-mediated immunopathology. Mechanistically, cDC1s insulated Tpex cells via MHC-I-dependent interactions to prevent their activation within other inflammatory environments that further aggravated their exhaustion. Our findings reveal that cDC1s maintain and safeguard Tpex cells within distinct anatomical niches to balance viral control, exhaustion, and immunopathology.
Collapse
Affiliation(s)
- Sabrina Dähling
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ana Maria Mansilla
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg im Breisgau, Germany
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Anika Grafen
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Milas Ugur
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Paul G Whitney
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Annabell Bachem
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | | | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97078 Würzburg, Germany
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, 641-8509 Wakayama, Japan
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilian University of Munich, 81675 Munich, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Axel Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97078 Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Sammy Bedoui
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
124
|
Wu W, Liang X, Li H, Huang X, Wan C, Xie Q, Liu Z. Landscape of T Cells in NK-AML(M4/M5) Revealed by Single-Cell Sequencing. J Leukoc Biol 2022; 112:745-758. [PMID: 35258858 DOI: 10.1002/jlb.5a0721-396rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Normal karyotype acute myeloid leukemia (NK-AML) is a highly heterogeneous malignancy that resides within a complex immune microenvironment, complicating efforts to reveal the interaction between leukemia cells and immune cells. Understanding tumor-infiltrating T cells is crucial to the advancement of immune therapies and the improvement of the prognosis for NK-AML patients. We performed single-cell RNA sequencing on bone marrow cells from 5 NK-AML (M4/M5) patients and 1 normal donor and paired single-cell T cell receptor (TCR) sequencing on single T cells. As a result, we identified 8 T cell clusters based on the gene expression characteristics of each subset in NK-AML and described their developmental trajectories. In NK-AML patients, specific clusters, such as mucosal-associated invariant T cells (MAITs), were preferentially enriched and potentially clonally expanded. These transcriptome and TCR data analyses provide valuable insights and rich resources for understanding the immune environment of NK-AML.
Collapse
Affiliation(s)
- Wenqi Wu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Liang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huiqun Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoke Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chengyao Wan
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiongni Xie
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhenfang Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
125
|
Abstract
Exhaustion of T cells occurs in response to long-term exposure to self and foreign antigens. It limits T cell capacity to proliferate and produce cytokines, leading to an impaired ability to clear chronic infections or eradicate tumors. T-cell exhaustion is associated with a specific transcriptional, epigenetic, and metabolic program and characteristic cell surface markers' expression. Recent studies have begun to elucidate the role of T-cell exhaustion in transplant. Higher levels of exhausted T cells have been associated with better graft function in kidney transplant recipients. In contrast, reinvigorating exhausted T cells by immune checkpoint blockade therapies, while promoting tumor clearance, increases the risk of acute rejection. Lymphocyte depletion and high alloantigen load have been identified as major drivers of T-cell exhaustion. This could account, at least in part, for the reduced rates of acute rejection in organ transplant recipients induced with thymoglobulin and for the pro-tolerogenic effects of a large organ such as the liver. Among the drugs that are widely used for maintenance immunosuppression, calcineurin inhibitors have a contrasting inhibitory effect on exhaustion of T cells, while the influence of mTOR inhibitors is still unclear. Harnessing or encouraging the natural processes of exhaustion may provide a novel strategy to promote graft survival and transplantation tolerance.
Collapse
|
126
|
Chen X, Lin Y, Yue S, Yang Y, Wang X, Pan Z, Yang X, Gao L, Zhou J, Li Z, Hu L, Tang J, Wu Q, Wang Y, Tian Q, Hao Y, Xu L, Zhu B, Huang Q, Ye L. Differential expression of inhibitory receptor NKG2A distinguishes disease-specific exhausted CD8 + T cells. MedComm (Beijing) 2022; 3:e111. [PMID: 35281793 PMCID: PMC8906559 DOI: 10.1002/mco2.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/11/2022] Open
Abstract
Exhausted CD8+ T (Tex) cells are caused by persistent antigenic stimulation during chronic viral infection or tumorigenesis. Tex cells upregulate and sustain the expressions of multiple immune inhibitory receptors (IRs). Blocking IRs of Tex cells, exemplified by PD-1, can partially restore their effector functions and thus lead to viral suppression or tumor remission. Tex cells derived from chronic viral infections share the expression spectrum of IRs with Tex cells derived from tumors; however, whether any IRs are selectively expressed by tumor-derived Tex cells or virus-derived Tex cells remains to be learnt. In the study, we found that Tex cells upregulate IR natural killer cell lectin-like receptor isoform A (NKG2A) specifically in the context of tumor but not chronic viral infection. Moreover, the NKG2A expression is attributed to tumor antigen recognition and thus bias expressed by tumor-specific Tex cells in the tumor microenvironment instead of their counterparts in the periphery. Such dichotomous NKG2A expression further dictates the differential responsiveness of Tex cells to NKG2A immune checkpoint blockade. Therefore, our study highlighted NKG2A as a disease-dependent IR and provided novel insights into the distinct regulatory mechanisms underlying T cell exhaustion between tumor and chronic viral infection.
Collapse
Affiliation(s)
- Xiangyu Chen
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
- Institute of Cancer, Xinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Yao Lin
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Shuai Yue
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Yang Yang
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Xinxin Wang
- Institute of Cancer, Xinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Zhiwei Pan
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Xiaofan Yang
- Dermatology HospitalSouthern Medical UniversityGuangzhouChina
| | - Leiqiong Gao
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Jing Zhou
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Zhirong Li
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Li Hu
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Jianfang Tang
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Qing Wu
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Yifei Wang
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Qin Tian
- Dermatology HospitalSouthern Medical UniversityGuangzhouChina
| | - Yaxing Hao
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Lifan Xu
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Bo Zhu
- Institute of Cancer, Xinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Qizhao Huang
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Lilin Ye
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| |
Collapse
|
127
|
Titov A, Kaminskiy Y, Ganeeva I, Zmievskaya E, Valiullina A, Rakhmatullina A, Petukhov A, Miftakhova R, Rizvanov A, Bulatov E. Knowns and Unknowns about CAR-T Cell Dysfunction. Cancers (Basel) 2022; 14:1078. [PMID: 35205827 PMCID: PMC8870103 DOI: 10.3390/cancers14041078] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a promising option for cancer treatment. However, T cells and CAR-T cells frequently become dysfunctional in cancer, where numerous evasion mechanisms impair antitumor immunity. Cancer frequently exploits intrinsic T cell dysfunction mechanisms that evolved for the purpose of defending against autoimmunity. T cell exhaustion is the most studied type of T cell dysfunction. It is characterized by impaired proliferation and cytokine secretion and is often misdefined solely by the expression of the inhibitory receptors. Another type of dysfunction is T cell senescence, which occurs when T cells permanently arrest their cell cycle and proliferation while retaining cytotoxic capability. The first section of this review provides a broad overview of T cell dysfunctional states, including exhaustion and senescence; the second section is focused on the impact of T cell dysfunction on the CAR-T therapeutic potential. Finally, we discuss the recent efforts to mitigate CAR-T cell exhaustion, with an emphasis on epigenetic and transcriptional modulation.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Yaroslav Kaminskiy
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexey Petukhov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
128
|
Schulz AM, Zehn D. Mastering an exhausting marathon: how CD8 + T cells fine-tune metabolic fitness. Immunol Cell Biol 2022; 100:83-86. [PMID: 34989026 DOI: 10.1111/imcb.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022]
Abstract
A recent study by Gabriel et al. provides novel insight into the metabolic pathways that contribute to T cell differentiation in chronic infection. The researchers discovered that metabolic plasticity and the function of exhausted T cells is regulated via the TGF-β-mTOR signaling axis.
Collapse
Affiliation(s)
- Anna M Schulz
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
129
|
|
130
|
Cheng J, Myers TG, Levinger C, Kumar P, Kumar J, Goshu BA, Bosque A, Catalfamo M. IL-27 induces IFN/STAT1-dependent genes and enhances function of TIGIT + HIVGag-specific T cells. iScience 2022; 25:103588. [PMID: 35005538 PMCID: PMC8717455 DOI: 10.1016/j.isci.2021.103588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-specific T cells have diminished effector function and fail to control/eliminate the virus. IL-27, a member of the IL-6/IL-12 cytokine superfamily has been shown to inhibit HIV replication. However, whether or not IL-27 can enhance HIV-specific T cell function is largely unknown. In the present manuscript, we investigated the role of IL-27 signaling in human T cells by evaluating the global transcriptional changes related to the function of HIV-specific T cells. We found that T cells from people living with HIV (PLWH), expressed higher levels of STAT1 leading to enhanced STAT1 activation upon IL-27 stimulation. Observed IL-27 induced transcriptional changes were associated with IFN/STAT1-dependent pathways in CD4 and CD8 T cells. Importantly, IL-27 dependent modulation of T-bet expression promoted IFNγ secretion by TIGIT+HIVGag-specific T cells. This new immunomodulatory effect of IL-27 on HIV-specific T cell function suggests its potential therapeutic use in cure strategies.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Callie Levinger
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Princy Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jai Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Bruktawit A. Goshu
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
| |
Collapse
|
131
|
Ozga AJ, Chow MT, Lopes ME, Servis RL, Di Pilato M, Dehio P, Lian J, Mempel TR, Luster AD. CXCL10 chemokine regulates heterogeneity of the CD8 + T cell response and viral set point during chronic infection. Immunity 2022; 55:82-97.e8. [PMID: 34847356 PMCID: PMC8755631 DOI: 10.1016/j.immuni.2021.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/19/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023]
Abstract
CD8+ T cells responding to chronic infection adapt an altered differentiation program that provides some restraint on pathogen replication yet limits immunopathology. This adaptation is imprinted in stem-like cells and propagated to their progeny. Understanding the molecular control of CD8+ T cell differentiation in chronic infection has important therapeutic implications. Here, we find that the chemokine receptor CXCR3 is highly expressed on viral-specific stem-like CD8+ T cells and that one of its ligands, CXCL10, regulates the persistence and heterogeneity of responding CD8+ T cells in spleens of mice chronically infected with lymphocytic choriomeningitis virus. CXCL10 is produced by inflammatory monocytes and fibroblasts of the splenic red pulp, where it grants stem-like cells access to signals promoting differentiation and limits their exposure to pro-survival niches in the white pulp. Consequently, functional CD8+ T cell responses are greater in Cxcl10-/- mice and are associated with a lower viral set point.
Collapse
Affiliation(s)
- Aleksandra J Ozga
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Melvyn T Chow
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Mateus E Lopes
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Rachel L Servis
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Mauro Di Pilato
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Philippe Dehio
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Jeffrey Lian
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
132
|
Green WD, Al-Shaer AE, Shi Q, Gowdy KM, MacIver NJ, Milner JJ, Beck MA, Shaikh SR. Metabolic and functional impairment of CD8 + T cells from the lungs of influenza-infected obese mice. J Leukoc Biol 2022; 111:147-159. [PMID: 33847405 PMCID: PMC8787296 DOI: 10.1002/jlb.4a0120-075rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is an independent risk factor for morbidity and mortality in response to influenza infection. However, the underlying mechanisms by which obesity impairs immunity are unclear. Herein, we investigated the effects of diet-induced obesity on pulmonary CD8+ T cell metabolism, cytokine production, and transcriptome as a potential mechanism of impairment during influenza virus infection in mice. Male C57BL/6J lean and obese mice were infected with sub-lethal mouse-adapted A/PR/8/34 influenza virus, generating a pulmonary anti-viral and inflammatory response. Extracellular metabolic flux analyses revealed pulmonary CD8+ T cells from obese mice, compared with lean controls, had suppressed oxidative and glycolytic metabolism at day 10 post-infection. Flow cytometry showed the impairment in pulmonary CD8+ T cell metabolism with obesity was independent of changes in glucose or fatty acid uptake, but concomitant with decreased CD8+ GrB+ IFNγ+ populations. Notably, the percent of pulmonary effector CD8+ GrB+ IFNγ+ T cells at day 10 post-infection correlated positively with total CD8+ basal extracellular acidification rate and basal oxygen consumption rate. Finally, next-generation RNA sequencing revealed complex and unique transcriptional regulation of sorted effector pulmonary CD8+ CD44+ T cells from obese mice compared to lean mice following influenza infection. Collectively, the data suggest diet-induced obesity increases influenza virus pathogenesis, in part, through CD8+ T cell-mediated metabolic reprogramming and impaired effector CD8+ T cell function.
Collapse
Affiliation(s)
- William D. Green
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Abrar E. Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nancie J. MacIver
- Department of Immunology, Department of Pediatrics, Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - J. Justin Milner
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Melinda A. Beck
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
133
|
Kok L, Masopust D, Schumacher TN. The precursors of CD8 + tissue resident memory T cells: from lymphoid organs to infected tissues. Nat Rev Immunol 2022; 22:283-293. [PMID: 34480118 PMCID: PMC8415193 DOI: 10.1038/s41577-021-00590-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 02/08/2023]
Abstract
CD8+ tissue resident memory T cells (TRM cells) are essential for immune defence against pathogens and malignancies, and the molecular processes that lead to TRM cell formation are therefore of substantial biomedical interest. Prior work has demonstrated that signals present in the inflamed tissue micro-environment can promote the differentiation of memory precursor cells into mature TRM cells, and it was therefore long assumed that TRM cell formation adheres to a 'local divergence' model, in which TRM cell lineage decisions are exclusively made within the tissue. However, a growing body of work provides evidence for a 'systemic divergence' model, in which circulating T cells already become preconditioned to preferentially give rise to the TRM cell lineage, resulting in the generation of a pool of TRM cell-poised T cells within the lymphoid compartment. Here, we review the emerging evidence that supports the existence of such a population of circulating TRM cell progenitors, discuss current insights into their formation and highlight open questions in the field.
Collapse
Affiliation(s)
- Lianne Kok
- grid.430814.a0000 0001 0674 1393Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David Masopust
- grid.17635.360000000419368657Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN USA
| | - Ton N. Schumacher
- grid.430814.a0000 0001 0674 1393Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
134
|
Montacchiesi G, Pace L. Epigenetics and CD8 + T cell memory. Immunol Rev 2021; 305:77-89. [PMID: 34923638 DOI: 10.1111/imr.13057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Following antigen recognition, CD8+ T lymphocytes can follow different patterns of differentiation, with the generation of different subsets characterized by distinct phenotypes, functions, and migration properties. The changes of transcription factors activity and chromatin structure dynamics drive the functional differentiation and phenotypic heterogeneity of these T cell subsets, which include short-lived effectors, long-term survival of memory, and also dysfunctional exhausted T cells. Recent progress in the field has shed light on the key contribution of chromatin organization to control the T cell fate specification. In fact, the understanding of these processes has important implications for the development of new immunotherapy protocols and to design new vaccination strategies. Here, we review the current understanding of the contribution of chromatin architecture and transcription factor activity orchestrating the gene expression programs guiding the CD8+ T cell subset commitment. We will focus on epigenetic changes, acting sequentially or in combination, which control the transcriptional programs governing T cell plasticity, stability, and memory. New molecular insights into the mechanisms of maintenance of cellular memory and identity, favoring or impeding the reprogramming, will be discussed in the context of T cell memory differentiation in infection and cancer.
Collapse
Affiliation(s)
- Gaia Montacchiesi
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS Candiolo (Turin), Turin, Italy.,University of Turin, Turin, Italy
| | - Luigia Pace
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, Turin, Italy.,University of Turin, Turin, Italy
| |
Collapse
|
135
|
Xu Y, Wu J, Yuan X, Liu W, Pan J, Xu B. MicroRNA-155 contributes to host immunity against Toxoplasma gondii. Parasite 2021; 28:83. [PMID: 34907898 PMCID: PMC8672677 DOI: 10.1051/parasite/2021082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/26/2021] [Indexed: 11/14/2022] Open
Abstract
Toxoplasma gondii is well known to infect almost all avian and mammalian species including humans, with worldwide distribution. This protozoan parasite can cause serious toxoplasmosis, posing with a risk to public health. The role of microRNAs in the pathogenesis of T. gondii has not been well described. The aim of the present study was to investigate the role of microRNA-155 (miR-155) in mediating innate and adaptive immune responses during T. gondii infection in mice models. The survival and parasite burden in T. gondii-infected miR-155−/− and wild-type (WT) C57BL6 mice were compared. In these two mouse models, ELISA tests were used for analysis of Th1-associated, Th2-associated, and Th17-associated cytokines, and flow cytometry was used for analysis of the subpopulations of NK, NKT, CD8+T, CD4+T cells and regulatory T cells (Tregs), as well as Ly6Chi inflammatory monocytes and dendritic cells. The lack of miR-155 led to increased parasite burden and decreased survival of infected mice in contrast to WT mice. Innate and adaptive immune responses were reduced in the absence of miR-155, along with decreased proinflammatory mediators, Th-1-associated and Th-2-associated cytokines and accumulation of lymphocyte subpopulations. Also, CD8+ T cell exhaustion was also worsened in the absence of miR-155 via targeting of SHIP-1 and SOCS1, showing as up-regulated recruitment of Tregs and expression of PD-1, and down-regulated expression of IFN-γ and TNF-α in CD8+ T cells. Our results show that miR-155 is a critical immune regulator for the control of T. gondii infection, suggesting that miR-155 can be explored as a potential molecular target for boosting immunity against T. gondii.
Collapse
Affiliation(s)
- Yanan Xu
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, PR China
| | - Junhua Wu
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, PR China
| | - Xiaoqi Yuan
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, PR China
| | - Wenyuan Liu
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, PR China
| | - Jiewen Pan
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, PR China
| | - Binbin Xu
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, PR China
| |
Collapse
|
136
|
Good CR, Aznar MA, Kuramitsu S, Samareh P, Agarwal S, Donahue G, Ishiyama K, Wellhausen N, Rennels AK, Ma Y, Tian L, Guedan S, Alexander KA, Zhang Z, Rommel PC, Singh N, Glastad KM, Richardson MW, Watanabe K, Tanyi JL, O'Hara MH, Ruella M, Lacey SF, Moon EK, Schuster SJ, Albelda SM, Lanier LL, Young RM, Berger SL, June CH. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 2021; 184:6081-6100.e26. [PMID: 34861191 DOI: 10.1016/j.cell.2021.11.016] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/13/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in hematological malignancies but remains ineffective in solid tumors, due in part to CAR T cell exhaustion in the solid tumor microenvironment. To study dysfunction of mesothelin-redirected CAR T cells in pancreatic cancer, we establish a robust model of continuous antigen exposure that recapitulates hallmark features of T cell exhaustion and discover, both in vitro and in CAR T cell patients, that CAR dysregulation is associated with a CD8+ T-to-NK-like T cell transition. Furthermore, we identify a gene signature defining CAR and TCR dysregulation and transcription factors, including SOX4 and ID3 as key regulators of CAR T cell exhaustion. Our findings shed light on the plasticity of human CAR T cells and demonstrate that genetic downmodulation of ID3 and SOX4 expression can improve the efficacy of CAR T cell therapy in solid tumors by preventing or delaying CAR T cell dysfunction.
Collapse
Affiliation(s)
- Charly R Good
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M Angela Aznar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shunichiro Kuramitsu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Parisa Samareh
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sangya Agarwal
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California San Francisco and the Parker Institute for Cancer Immunotherapy at the University of California San Francisco, San Francisco, California 94143, USA
| | - Nils Wellhausen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Austin K Rennels
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yujie Ma
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lifeng Tian
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia Guedan
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine A Alexander
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhen Zhang
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Philipp C Rommel
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathan Singh
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Karl M Glastad
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Max W Richardson
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keisuke Watanabe
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janos L Tanyi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark H O'Hara
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edmund K Moon
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco and the Parker Institute for Cancer Immunotherapy at the University of California San Francisco, San Francisco, California 94143, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
137
|
Zebley CC, Brown C, Mi T, Fan Y, Alli S, Boi S, Galletti G, Lugli E, Langfitt D, Metais JY, Lockey T, Meagher M, Triplett B, Talleur AC, Gottschalk S, Youngblood B. CD19-CAR T cells undergo exhaustion DNA methylation programming in patients with acute lymphoblastic leukemia. Cell Rep 2021; 37:110079. [PMID: 34852226 PMCID: PMC8800370 DOI: 10.1016/j.celrep.2021.110079] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
CD19-CAR T cell therapy has evolved into the standard of care for relapsed/refractory B cell acute lymphoblastic leukemia (ALL); however, limited persistence of the CAR T cells enables tumor relapse for many patients. To gain a deeper understanding of the molecular characteristics associated with CAR T cell differentiation, we performed longitudinal genome-wide DNA methylation profiling of CD8+ CD19-CAR T cells post-infusion in ALL patients. We report that CAR T cells undergo a rapid and broad erasure of repressive DNA methylation reprograms at effector-associated genes. The CAR T cell post-infusion changes are further characterized by repression of genes (e.g., TCF7 and LEF1) associated with memory potential and a DNA methylation signature (e.g., demethylation at CX3CR1, BATF, and TOX) demarcating a transition toward exhaustion-progenitor T cells. Thus, CD19-CAR T cells undergo exhaustion-associated DNA methylation programming, indicating that efforts to prevent this process may be an attractive approach to improve CAR T cell efficacy. Zebley et al. show that CD8+ CD19-CAR T cells undergo genome-wide DNA methylation changes during an antitumor response in patients with B cell acute lymphoblastic leukemia (ALL). Post-infusion CAR T cell differentiation involves acquisition of DNA methylation programs associated with effector function, repression of memory potential, and transition toward exhaustion.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Charmaine Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shannon Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Giovanni Galletti
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Deanna Langfitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jean-Yves Metais
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Timothy Lockey
- Therapeutics Production and Quality, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael Meagher
- Therapeutics Production and Quality, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
138
|
Lee AH, Sun L, Mochizuki AY, Reynoso JG, Orpilla J, Chow F, Kienzler JC, Everson RG, Nathanson DA, Bensinger SJ, Liau LM, Cloughesy T, Hugo W, Prins RM. Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma. Nat Commun 2021; 12:6938. [PMID: 34836966 PMCID: PMC8626557 DOI: 10.1038/s41467-021-26940-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Primary brain tumors, such as glioblastoma (GBM), are remarkably resistant to immunotherapy, even though pre-clinical models suggest effectiveness. To understand this better in patients, here we take advantage of our recent neoadjuvant treatment paradigm to map the infiltrating immune cell landscape of GBM and how this is altered following PD-1 checkpoint blockade using high dimensional proteomics, single cell transcriptomics, and quantitative multiplex immunofluorescence. Neoadjuvant PD-1 blockade increases T cell infiltration and the proportion of a progenitor exhausted population of T cells found within the tumor. We identify an early activated and clonally expanded CD8+ T cell cluster whose TCR overlaps with a CD8+ PBMC population. Distinct changes are also observed in conventional type 1 dendritic cells that may facilitate T cell recruitment. Macrophages and monocytes still constitute the majority of infiltrating immune cells, even after anti-PD-1 therapy. Interferon-mediated changes in the myeloid population are consistently observed following PD-1 blockade; these also mediate an increase in chemotactic factors that recruit T cells. However, sustained high expression of T-cell-suppressive checkpoints in these myeloid cells continue to prevent the optimal activation of the tumor infiltrating T cells. Therefore, future immunotherapeutic strategies may need to incorporate the targeting of these cells for clinical benefit.
Collapse
Affiliation(s)
- Alexander H Lee
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lu Sun
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Aaron Y Mochizuki
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeremy G Reynoso
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Joey Orpilla
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Frances Chow
- Department of Neurology/Neuro-Oncology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jenny C Kienzler
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Richard G Everson
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Linda M Liau
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy Cloughesy
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurology/Neuro-Oncology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Willy Hugo
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, Suite D3500, San Francisco, CA, 94129, USA.
- Department of Medicine/Dermatology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Robert M Prins
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, Suite D3500, San Francisco, CA, 94129, USA.
| |
Collapse
|
139
|
Newnes HV, Armitage JD, Audsley KM, Bosco A, Waithman J. Directing the Future Breakthroughs in Immunotherapy: The Importance of a Holistic Approach to the Tumour Microenvironment. Cancers (Basel) 2021; 13:cancers13235911. [PMID: 34885021 PMCID: PMC8656826 DOI: 10.3390/cancers13235911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Immunotherapies have changed the way we treat cancer and, while some patients have benefitted greatly, there are still those that do not respond to therapy. Understanding why some patients respond to therapy and others do not is critical in developing new immunotherapeutic strategies. The increasing awareness of the importance of investigating the tumour in its entirety, including the surrounding tissue and role of various immune cells is helping to differentiate responders and non-responders. In addition, the resolution gained by the development of sophisticated bioinformatic technologies allows for a deeper understanding of the complex roles of individual cells in the tumour. This advancement will be critical for the development of novel therapies to treat cancer. Abstract Immunotherapy has revolutionised the treatment of cancers by exploiting the immune system to eliminate tumour cells. Despite the impressive response in a proportion of patients, clinical benefit has been limited thus far. A significant focus to date has been the identification of specific markers associated with response to immunotherapy. Unfortunately, the heterogeneity between patients and cancer types means identifying markers of response to therapy is inherently complex. There is a growing appreciation for the role of the tumour microenvironment (TME) in directing response to immunotherapy. The TME is highly heterogeneous and contains immune, stromal, vascular and tumour cells that all communicate and interact with one another to form solid tumours. This review analyses major cell populations present within the TME with a focus on their diverse and often contradictory roles in cancer and how this informs our understanding of immunotherapy. Furthermore, we discuss the role of integrated omics in providing a comprehensive view of the TME and demonstrate the potential of leveraging multi-omics to decipher the underlying mechanisms of anti-tumour immunity for the development of novel immunotherapeutic strategies.
Collapse
|
140
|
Horton BL, Morgan DM, Momin N, Zagorulya M, Torres-Mejia E, Bhandarkar V, Wittrup KD, Love JC, Spranger S. Lack of CD8 + T cell effector differentiation during priming mediates checkpoint blockade resistance in non-small cell lung cancer. Sci Immunol 2021; 6:eabi8800. [PMID: 34714687 PMCID: PMC10786005 DOI: 10.1126/sciimmunol.abi8800] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In non–small cell lung cancer (NSCLC), response to immune checkpoint blockade (ICB) is associated with programmed cell death ligand 1 expression that is induced by interferon-γ–producing, tumor-infiltrating CD8+ T cells. However, not all tumors with a CD8+ T cell infiltrate respond to ICB, and little is known about the mechanisms governing ICB resistance in T cell–infiltrated NSCLC. We used an orthotopic NSCLC mouse model to study ICB-refractory CD8+ T cell responses. Single-cell RNA sequencing of the NSCLC mouse tumors revealed that lung cancer–specific tumor-infiltrating CD8+ T cells exhibited clonal expansion but lacked expression of genes associated with effector and exhausted T cell responses, indicating that they underwent a differentiation program distinct from conventional T cell exhaustion. This lung cancer–specific T cell dysfunction program was established early during priming in the mediastinal lymph node and was characterized by robust proliferation but a failed up-regulation of effector and exhausted T cell characteristics. Intriguingly, CD8+ T cells from patients with NSCLC expressed an analogous gene expression program, which appeared distinct from conventional T cell exhaustion. Administration of recombinant interleukin-2 (IL-2) and IL-12 was sufficient to restore effector T cell differentiation and induce control of KP lung tumors. These findings imply that a CD8+ T cell differentiation trajectory, activated during T cell priming in the mediastinal lymph node, limits the response of CD8+ T cells to ICB and thereby may contribute to failure of ICB in a subset T cell–infiltrated NSCLC.
Collapse
Affiliation(s)
- Brendan L. Horton
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Duncan M. Morgan
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Maria Zagorulya
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
| | - Elen Torres-Mejia
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Vidit Bhandarkar
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
141
|
Li Y, Wu D, Yang X, Zhou S. Immunotherapeutic Potential of T Memory Stem Cells. Front Oncol 2021; 11:723888. [PMID: 34604060 PMCID: PMC8485052 DOI: 10.3389/fonc.2021.723888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Memory T cells include T memory stem cells (TSCM) and central memory T cells (TCM). Compared with effector memory T cells (TEM) and effector T cells (TEFF), they have better durability and anti-tumor immunity. Recent studies have shown that although TSCM has excellent self-renewal ability and versatility, if it is often exposed to antigens and inflammatory signals, TSCM will behave as a variety of inhibitory receptors such as PD-1, TIM-3 and LAG-3 expression, and metabolic changes from oxidative phosphorylation to glycolysis. These changes can lead to the exhaustion of T cells. Cumulative evidence in animal experiments shows that it is the least differentiated cell in the memory T lymphocyte system and is a central participant in many physiological and pathological processes in humans. It has a good clinical application prospect, so it is more and more important to study the factors affecting the formation of TSCM. This article summarizes and prospects the phenotypic and functional characteristics of TSCM, the regulation mechanism of formation, and its application in treatment of clinical diseases.
Collapse
Affiliation(s)
- Yujie Li
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, China
| | - Dengqiang Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Xuejia Yang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Sufang Zhou
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, China.,National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| |
Collapse
|
142
|
Escobar G, Mangani D, Anderson AC. T cell factor 1: A master regulator of the T cell response in disease. Sci Immunol 2021; 5:5/53/eabb9726. [PMID: 33158974 DOI: 10.1126/sciimmunol.abb9726] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Recent advances have redefined a role for T cell factor 1 (TCF1) that goes beyond T cell development and T memory formation and encompasses new functions in the regulation of T cell biology. Here, we discuss the multifaceted and context-dependent role of TCF1 in peripheral T cells, particularly during disease-induced inflammatory states such as autoimmunity, cancer, and chronic infections. Understanding how TCF1 fine-tunes peripheral T cell biology holds the potential to tailor improved immune-targeted therapies.
Collapse
Affiliation(s)
- Giulia Escobar
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital Mass General Brigham, Boston, MA 02115, USA
| | - Davide Mangani
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital Mass General Brigham, Boston, MA 02115, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital Mass General Brigham, Boston, MA 02115, USA.
| |
Collapse
|
143
|
Yang K, Kallies A. Tissue-specific differentiation of CD8 + resident memory T cells. Trends Immunol 2021; 42:876-890. [PMID: 34531111 DOI: 10.1016/j.it.2021.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022]
Abstract
CD8+ tissue-resident memory T (TRM) cells play crucial roles in defense against infections and cancer and have been implicated in autoimmune diseases such as psoriasis. In mice and humans, they exist in all nonlymphoid organs and share key characteristics across all tissues, including downregulation of tissue egress and lymph node homing pathways. However, recent studies demonstrate considerable heterogeneity across TRM cells lodged in different tissues - linked to the activity of tissue-specific molecules, including chemokines, cytokines, and transcription factors. Current work indicates that transforming growth factor (TGF)-β plays a major role in generating TRM heterogeneity at phenotypic and functional levels. Here, we review common and unique features of TRM cells in different tissues and discuss putative strategies aimed at harnessing TRM cells for site-specific protection against infectious and malignant diseases.
Collapse
Affiliation(s)
- Kun Yang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Beijing, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
144
|
Gonzalez NM, Zou D, Gu A, Chen W. Schrödinger's T Cells: Molecular Insights Into Stemness and Exhaustion. Front Immunol 2021; 12:725618. [PMID: 34512656 PMCID: PMC8427607 DOI: 10.3389/fimmu.2021.725618] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/11/2021] [Indexed: 01/16/2023] Open
Abstract
T cell stemness and exhaustion coexist as two key contrasting phenomena during chronic antigen stimulation, such as infection, transplant, cancer, and autoimmunity. T cell exhaustion refers to the progressive loss of effector function caused by chronic antigen exposure. Exhausted T (TEX) cells highly express multiple inhibitory receptors and exhibit severe defects in cell proliferation and cytokine production. The term T cell stemness describes the stem cell-like behaviors of T cells, including self-renewal, multipotency, and functional persistence. It is well accepted that naïve and some memory T cell subsets have stem cell-like properties. When investigating the exhaustive differentiation of T cells in chronic infection and cancer, recent studies highlighted the stemness of "precursors of exhausted" T (TPEX) cells prior to their terminal differentiation to TEX cells. Clinically successful checkpoint blockades for cancer treatment appear to invigorate antitumor TPEX cells but not TEX cells. Here we discuss the transcriptional and epigenetic regulations of T cell stemness and exhaustion, with a focus on how systems immunology was and will be utilized to define the molecular basis underlying the transition of TPEX to TEX cells. We suggest a "stepwise model" of T cell stemness and exhaustion, in which loss of stemness and exhaustion progression are gradual multi-step processes. We provide perspectives on the research needed to define T cell stemness and exhaustion in the transplantation setting, in which allogenic T cells are also chronically exposed to alloantigens. A better understanding of T cell stemness and exhaustion will shed light on developing novel strategies for immunotherapies.
Collapse
Affiliation(s)
- Nancy M Gonzalez
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States.,College of Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Dawei Zou
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Andy Gu
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States.,Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
145
|
Jenkins MM, Bachus H, Botta D, Schultz MD, Rosenberg AF, León B, Ballesteros-Tato A. Lung dendritic cells migrate to the spleen to prime long-lived TCF1 hi memory CD8 + T cell precursors after influenza infection. Sci Immunol 2021; 6:eabg6895. [PMID: 34516781 DOI: 10.1126/sciimmunol.abg6895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Meagan M Jenkins
- Division of Clinical Immunology and Rheumatology Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Holly Bachus
- Division of Clinical Immunology and Rheumatology Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael D Schultz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander F Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
146
|
Foroutan M, Molania R, Pfefferle A, Behrenbruch C, Scheer S, Kallies A, Speed TP, Cursons J, Huntington ND. The Ratio of Exhausted to Resident Infiltrating Lymphocytes Is Prognostic for Colorectal Cancer Patient Outcome. Cancer Immunol Res 2021; 9:1125-1140. [PMID: 34413087 DOI: 10.1158/2326-6066.cir-21-0137] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapy success in colorectal cancer is mainly limited to patients whose tumors exhibit high microsatellite instability (MSI). However, there is variability in treatment outcomes within this group, which is in part driven by the frequency and characteristics of tumor-infiltrating immune cells. Indeed, the presence of specific infiltrating immune-cell subsets has been shown to correlate with immunotherapy response and is in many cases prognostic of treatment outcome. Tumor-infiltrating lymphocytes (TIL) can undergo distinct differentiation programs, acquiring features of tissue-residency or exhaustion, a process during which T cells upregulate inhibitory receptors, such as PD-1, and lose functionality. Although residency and exhaustion programs of CD8+ T cells are relatively well studied, these programs have only recently been appreciated in CD4+ T cells and remain largely unknown in tumor-infiltrating natural killer (NK) cells. In this study, we used single-cell RNA sequencing (RNA-seq) data to identify signatures of residency and exhaustion in colorectal cancer-infiltrating lymphocytes, including CD8+, CD4+, and NK cells. We then tested these signatures in independent single-cell data from tumor and normal tissue-infiltrating immune cells. Furthermore, we used versions of these signatures designed for bulk RNA-seq data to explore tumor-intrinsic mutations associated with residency and exhaustion from TCGA data. Finally, using two independent transcriptomic datasets from patients with colon adenocarcinoma, we showed that combinations of these signatures, in particular combinations of NK-cell activity signatures, together with tumor-associated signatures, such as TGFβ signaling, were associated with distinct survival outcomes in patients with colon adenocarcinoma.
Collapse
Affiliation(s)
- Momeneh Foroutan
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | - Ramyar Molania
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Aline Pfefferle
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,oNKo-innate Pty Ltd., Moonee Ponds, Victoria, Australia
| | - Corina Behrenbruch
- University of Melbourne Centre for Cancer Research, Parkville, Victoria, Australia
| | - Sebastian Scheer
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Terence P Speed
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,School of Mathematics & Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Joseph Cursons
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia. .,oNKo-innate Pty Ltd., Moonee Ponds, Victoria, Australia
| | - Nicholas D Huntington
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia. .,oNKo-innate Pty Ltd., Moonee Ponds, Victoria, Australia
| |
Collapse
|
147
|
Nagasawa M. Biomarkers of graft- vs-host disease: Understanding and applications for the future. World J Transplant 2021; 11:335-343. [PMID: 34447670 PMCID: PMC8371494 DOI: 10.5500/wjt.v11.i8.335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/25/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is widely performed as a treatment for malignant blood disorders, such as leukemia. To achieve good clinical outcomes in HSCT, it is necessary to minimize the unfavorable effects of acute graft-vs-host disease (GVHD) and induce the more tolerable, chronic form of the disease. For better management of GVHD, sensitive and specific biomarkers that predict the severity and prognosis of the disease have been intensively investigated using proteomics, transcriptomics, genomics, cytomics, and tandem mass spectrometry methods. Here, I will briefly review the current understanding of GVHD biomarkers and future prospects.
Collapse
Affiliation(s)
- Masayuki Nagasawa
- Department of Pediatrics, Musashino Red Cross Hospital, Musashino City 180-8610, Tokyo, Japan
| |
Collapse
|
148
|
Stoltzfus CR, Sivakumar R, Kunz L, Olin Pope BE, Menietti E, Speziale D, Adelfio R, Bacac M, Colombetti S, Perro M, Gerner MY. Multi-Parameter Quantitative Imaging of Tumor Microenvironments Reveals Perivascular Immune Niches Associated With Anti-Tumor Immunity. Front Immunol 2021; 12:726492. [PMID: 34421928 PMCID: PMC8375665 DOI: 10.3389/fimmu.2021.726492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Tumors are populated by a multitude of immune cell types with varied phenotypic and functional properties, which can either promote or inhibit anti-tumor responses. Appropriate localization and function of these cells within tumors is critical for protective immunity, with CD8 T cell infiltration being a biomarker of disease outcome and therapeutic efficacy. Recent multiplexed imaging approaches have revealed highly complex patterns of localization for these immune cell subsets and the generation of distinct tumor microenvironments (TMEs), which can vary among cancer types, individuals, and within individual tumors. While it is recognized that TMEs play a pivotal role in disease progression, a better understanding of their composition, organization, and heterogeneity, as well as how distinct TMEs are reshaped with immunotherapy, is necessary. Here, we performed spatial analysis using multi-parameter confocal imaging, histocytometry, and CytoMAP to study the microanatomical organization of immune cells in two widely used preclinical cancer models, the MC38 colorectal and KPC pancreatic murine tumors engineered to express human carcinoembryonic antigen (CEA). Immune responses were examined in either unperturbed tumors or after immunotherapy with a CEA T cell bispecific (CEA-TCB) surrogate antibody and anti-PD-L1 treatment. CEA-TCB mono and combination immunotherapy markedly enhanced intra-tumoral cellularity of CD8 T cells, dominantly driven by the expansion of TCF1-PD1+ effector T cells and with more minor increases in TCF1+PD1+ resource CD8 T cells. The majority of infiltrating T cells, particularly resource CD8 T cells, were colocalized with dendritic cells (DCs) or activated MHCII+ macrophages, but largely avoided the deeper tumor nest regions composed of cancer cells and non-activated macrophages. These myeloid cell - T cell aggregates were found in close proximity to tumor blood vessels, generating perivascular immune niches. This perivascular TME was present in untreated samples and markedly increased after CEA-TCB therapy, with its relative abundance positively associated with response to therapy. Together, these studies demonstrate the utility of advanced spatial analysis in cancer research by revealing that blood vessels are key organizational hubs of innate and adaptive immune cells within tumors, and suggesting the likely relevance of the perivascular immune TME in disease outcome.
Collapse
Affiliation(s)
- Caleb R. Stoltzfus
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States
| | - Ramya Sivakumar
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States
| | - Leo Kunz
- Pharmaceutical Research & Early Development (pRED), Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Brandy E. Olin Pope
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States
| | - Elena Menietti
- Pharmaceutical Research & Early Development (pRED), Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Dario Speziale
- Pharmaceutical Research & Early Development (pRED), Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Roberto Adelfio
- Pharmaceutical Research & Early Development (pRED), Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marina Bacac
- Pharmaceutical Research & Early Development (pRED), Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Sara Colombetti
- Pharmaceutical Research & Early Development (pRED), Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Mario Perro
- Pharmaceutical Research & Early Development (pRED), Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Michael Y. Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
149
|
Abstract
New reports glean further insight into the role of the transcription factor BATF in pivoting the differentiation of CD8+ T cells away from undergoing T cell exhaustion and facilitating transition of these cells into potent effectors.
Collapse
Affiliation(s)
- Shannon K Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
150
|
Zhang J, Lyu T, Cao Y, Feng H. Role of TCF-1 in differentiation, exhaustion, and memory of CD8 + T cells: A review. FASEB J 2021; 35:e21549. [PMID: 33913198 DOI: 10.1096/fj.202002566r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/14/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022]
Abstract
T cell factor-1 (TCF-1) (encoded by the TCF7 gene) is a transcription factor that plays important role during the T cell development and differentiation for T cell to exercise its functions including producing memory T cells. Not only TCF-1 can modulate the T cell development but also exerts various effects on the differentiation and function of mature CD8+ T cells. In addition, it drives the production and maintenance of the immune response of CD8+ T cells after PD-1 checkpoint blockade therapy. TCF-1 can serve as a potential target of immunotherapy and may provide promising novel treatment strategies for patients with cancer and infections. Moreover, TCF-1 is a potential biomarker of CD8+ T cell functionality to predict the efficacy of immunotherapy in fighting against cancer and infections. Herein, we summarize the role of TCF-1 in T cell development and its applications in the treatment of cancer and infectious diseases.
Collapse
Affiliation(s)
- Jiaxue Zhang
- The First Clinical Medicine Faculty, China Medical University, Shenyang, Liaoning Province, China
| | - Tong Lyu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Hui Feng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|