101
|
Giacomini E, Scotti GM, Vanni VS, Lazarevic D, Makieva S, Privitera L, Signorelli S, Cantone L, Bollati V, Murdica V, Tonon G, Papaleo E, Candiani M, Viganò P. Global transcriptomic changes occur in uterine fluid-derived extracellular vesicles during the endometrial window for embryo implantation. Hum Reprod 2021; 36:2249-2274. [PMID: 34190319 PMCID: PMC8289330 DOI: 10.1093/humrep/deab123] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/22/2021] [Indexed: 01/16/2023] Open
Abstract
STUDY QUESTION Are uterine fluid-derived extracellular vesicles (UF-EVs) a 'liquid biopsy' reservoir of biomarkers for real-time monitoring of endometrial status? SUMMARY ANSWER The transcriptomic cargo of UF-EVs reflects the RNA profile of the endometrial tissue as well as changes between the non-receptive and the receptive phase, possibly supporting its use for a novel endometrial receptivity test. WHAT IS KNOWN ALREADY EVs have been previously isolated from uterine fluid, where they likely contribute to the embryo-endometrium crosstalk during implantation. Based on a meta-analysis of studies on endometrial tissue implantation-associated genes and the human exosomes database, 28 of the 57 transcripts considered as receptivity markers refer to proteins present in human exosomes. However, the specific transcriptomic content of receptive phase UF-EVs has yet to be defined. STUDY DESIGN, SIZE, DURATION Two experimental series were set up. First, we simultaneously sequenced RNA species derived from paired UF-EVs and endometrial tissue samples collected from physiologically cycling women. Second, we analyzed RNA species of UF-EVs collected during the non-receptive (LH + 2) and receptive (LH + 7) phase of proven fertile women and from the receptive (LH + 7) phase of a population of women undergoing ART and transfer of euploid blastocysts. PARTICIPANTS/MATERIALS, SETTING, METHODS For paired UF-endometrial tissue sampling, endometrial tissue biopsies were obtained with the use of a Pipelle immediately after UF collection performed by lavage of the endometrial cavity. Overall, n = 87 UF samples were collected and fresh-processed for EV isolation and total RNA extraction, while western blotting was used to confirm the expression of EV protein markers of the isolated vesicles. Physical characterization of UF-EVs was performed by Nanoparticle Tracking Analysis. To define the transcriptomic cargo of UF-EV samples, RNA-seq libraries were successfully prepared from n = 83 UF-EVs samples and analyzed by RNA-seq analysis. Differential gene expression (DGE) analysis was used to compare RNA-seq results between different groups of samples. Functional enrichment analysis was performed by gene set enrichment analysis with g:Profiler. Pre-ranked gene set enrichment analysis (GSEA) with WebGestalt was used to compare RNA-seq results with the gene-set evaluated in a commercially available endometrial receptivity array. MAIN RESULTS AND THE ROLE OF CHANCE A highly significant correlation was found between transcriptional profiles of endometrial biopsies and pairwise UF-EV samples (Pearson's r = 0.70 P < 0.0001; Spearman's ρ = 0.65 P < 0.0001). In UF-EVs from fertile controls, 942 gene transcripts were more abundant and 1305 transcripts less abundant in the LH + 7 receptive versus the LH + 2 non-receptive phase. GSEA performed to evaluate concordance in transcriptional profile between the n = 238 genes included in the commercially available endometrial receptivity array and the LH + 7 versus LH + 2 UF-EV comparison demonstrated an extremely significant and consistent enrichment, with a normalized enrichment score (NES)=9.38 (P < 0.001) for transcripts up-regulated in LH + 7 in the commercial array and enriched in LH + 7 UF-EVs, and a NES = -5.40 (P < 0.001) for transcripts down-regulated in LH + 7 in the commercial array and depleted in LH + 7 UF-EVs. When analyzing LH + 7 UF-EVs of patients with successful versus failed implantation after transfer of one euploid blastocyst in the following cycle, we found 97 genes whose transcript levels were increased and 64 genes whose transcript levels were decreased in the group of women who achieved a pregnancy. GSEA performed to evaluate concordance in transcriptional profile between the commercially available endometrial receptivity array genes and the comparison of LH + 7 UF-EVs of women with successful versus failed implantation, demonstrated a significant enrichment with a NES = 2.14 (P = 0.001) for transcripts up-regulated in the commercial array in the receptive phase and enriched in UF-EVs of women who conceived, and a not significant NES = -1.18 (P = 0.3) for transcripts down-regulated in the commercial array and depleted in UF-EVs. In terms of physical features, UF-EVs showed a homogeneity among the different groups analyzed except for a slight but significant difference in EV size, being smaller in women with a successful implantation compared to patients who failed to conceive after euploid blastocyst transfer (mean diameter ± SD 205.5± 22.97 nm vs 221.5 ± 20.57 nm, respectively, P = 0.014). LARGE SCALE DATA Transcriptomic data were deposited in NCBI Gene Expression Omnibus (GEO) and can be retrieved using GEO series accession number: GSE158958. LIMITATIONS, REASONS FOR CAUTION Separation of RNA species associated with EV membranes might have been incomplete, and membrane-bound RNA species-rather than the internal RNA content of EVs-might have contributed to our RNA-seq results. Also, we cannot definitely distinguish the relative contribution of exosomes, microvesicles and apoptotic bodies to our findings. When considering patients undergoing ART, we did not collect UFs in the same cycle of the euploid embryo transfer but in the one immediately preceding. We considered this approach as the most appropriate in relation to the novel, explorative nature of our study. Based on our results, a validation of UF-EV RNA-seq analyses in the same cycle in which embryo transfer is performed could be hypothesized. WIDER IMPLICATIONS OF THE FINDINGS On the largest sample size of human EVs ever analyzed with RNA-seq, this study establishes a gene signature to use for less-invasive endometrial receptivity tests. This report is indeed the first to show that the transcriptome of UF-EVs correlates with the endometrial tissue transcriptome, that RNA signatures in UF-EVs change with endometrial status, and that UF-EVs could serve as a reservoir for potential less-invasive collection of receptivity markers. This article thus represents a step forward in the design of less-invasive approaches for real-time monitoring of endometrial status, necessary for advancing the field of reproductive medicine. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by a competitive grant from European Society of Human Reproduction and Embryology (ESHRE Research Grant 2016-1). The authors have no financial or non-financial competing interests to disclose. TRIAL REGISTRATION NUMBER NA.
Collapse
Affiliation(s)
- E Giacomini
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Ital, Milan, Italy
| | - G M Scotti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - V S Vanni
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Ital, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - D Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Makieva
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Ital, Milan, Italy
| | - L Privitera
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Signorelli
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - L Cantone
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - V Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - V Murdica
- Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - G Tonon
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - E Papaleo
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Ital, Milan, Italy
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Candiani
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Ital, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - P Viganò
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Ital, Milan, Italy
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
102
|
Heng S, Samarajeewa N, Aberkane A, Essahib W, Van de Velde H, Scelwyn M, Hull ML, Vollenhoven B, Rombauts LJ, Nie G. Podocalyxin inhibits human embryo implantation in vitro and luminal podocalyxin in putative receptive endometrium is associated with implantation failure in fertility treatment. Fertil Steril 2021; 116:1391-1401. [PMID: 34272065 DOI: 10.1016/j.fertnstert.2021.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To study whether endometrial epithelial podocalyxin (PCX) inhibits implantation of human embryos in vitro and in patients undergoing in vitro fertilization (IVF). DESIGN We have recently identified PCX as a key negative regulator of endometrial epithelial receptivity. Podocalyxin is expressed in all epithelial cells in the nonreceptive endometrium, but is selectively downregulated in the luminal epithelium (LE) for receptivity. In the current study, we first investigated whether high levels of PCX in Ishikawa monolayer inhibit attachment and/or penetration of human blastocysts in in vitro models. We then examined PCX by immunohistochemistry in putative receptive endometrial tissues biopsied from 81 IVF patients who underwent frozen embryo transfer in the next natural cycle and retrospectively analyzed the association between PCX staining in LE and clinical pregnancy as a proxy of successful implantation. SETTING RMIT University, Australia; Vrije Universiteit Brussel, Belgium. PATIENT(S) In vitro fertilization patients undergoing frozen/thawed embryo transfer. INTERVENTION(S) N/A. MAIN OUTCOME MEASURE(S) Endometrial epithelial PCX inhibits implantation of human embryos in vitro and in IVF patients. RESULT(S) High levels of PCX in Ishikawa monolayer significantly inhibited blastocyst attachment and penetration. Among the 81 putative receptive tissues, 73% were negative, but 27% were heterogeneously positive for PCX in LE. The clinical pregnancy rate was 53% in those with a PCX-negative LE but only 18% in those with a PCX-positive LE. If LE was positive for PCX, the odds ratio of no clinical pregnancy was 4.95 (95% Confidence interval, 1.48-14.63). CONCLUSION(S) Podocalyxin inhibits embryo implantation. Assessment of PCX may aid the evaluation and optimization of endometrial receptivity in fertility treatment.
Collapse
Affiliation(s)
- Sophea Heng
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Victoria, Australia
| | - Nirukshi Samarajeewa
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Victoria, Australia
| | - Asma Aberkane
- Research Group of Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wafaa Essahib
- Research Group of Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hilde Van de Velde
- Research Group of Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - M Louise Hull
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Beverley Vollenhoven
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia; Womens and Newborn Programme, Monash Health, Clayton, Victoria, Australia
| | - Luk J Rombauts
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia; Womens and Newborn Programme, Monash Health, Clayton, Victoria, Australia
| | - Guiying Nie
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Victoria, Australia; Hudson Institute of Medical Research, Clayton, Victoria, Australia.
| |
Collapse
|
103
|
Li T, Greenblatt EM, Shin ME, Brown TJ, Chan C. Endometrial laminin subunit beta-3 expression associates with reproductive outcome in patients with repeated implantation failure. J Assist Reprod Genet 2021; 38:1835-1842. [PMID: 33715134 PMCID: PMC8324716 DOI: 10.1007/s10815-021-02135-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/25/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Endometrial laminin subunit beta-3 (LAMB3) is a candidate gene whose expression distinguishes the endometrial window of receptivity (WOR) in human. This study aims to examine endometrial LAMB3 levels in patients with repeated implantation failure (RIF), in order to assess the ability of LAMB3 to predict pregnancy outcome. METHODS Endometrial biopsies were taken during the WOR from 21 healthy volunteers in natural menstrual cycles and from 50 RIF patients in mock cycles prior to frozen embryo transfer (FET) cycles. Immunohistochemistry (IHC) staining of LAMB3 was performed, and the H-score was correlated with the pregnancy outcome in subsequent FETs. RESULTS In healthy volunteers, endometrial LAMB3 was demonstrated to be highly expressed during the WOR with the staining exclusively in the cytoplasm of the epithelial cells. In a discovery set of RIF patients, the LAMB3 expression level was found to be significantly higher in those who conceived compared to those who did not in subsequent FETs. A receiving operator characteristic (ROC) analysis revealed an area under the curve (AUC) of 0.7818 (95% confidence interval 59.92-96.44%) with an H-score cutoff of 4.129 to differentiate cases with positive or negative pregnancy outcomes. This cutoff achieved an accuracy of 75% in pregnancy prediction in a following validation set of RIF patients, in which the pregnancy rate in subsequent FETs was three-fold higher when the mock cycle LAMB3 H-score was ≥ 4.129 compared to < 4.129. CONCLUSIONS IHC measurement of endometrial LAMB3 expression could be a promising prognostic method to predict pregnancy outcome for RIF patients undergoing FETs.
Collapse
Affiliation(s)
- Tiantian Li
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
| | - Ellen M Greenblatt
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
- Mount Sinai Fertility (MSF), Sinai Health System, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | | | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Crystal Chan
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario, Canada.
- Mount Sinai Fertility (MSF), Sinai Health System, Toronto, Ontario, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
104
|
Ticconi C, Di Simone N, Campagnolo L, Fazleabas A. Clinical consequences of defective decidualization. Tissue Cell 2021; 72:101586. [PMID: 34217128 DOI: 10.1016/j.tice.2021.101586] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Decidualization is characterized by a series of genetic, metabolic, morphological, biochemical, vascular and immune changes occurring in the endometrial stroma in response to the implanting embryo or even before conception and involves the stromal cells of the endometrium. It is a fundamental reproductive event occurring in mammalian species with hemochorial placentation. A growing body of experimental and clinical evidence strongly suggests that defective or disrupted decidualization contributes to the establishment of an inappropriate maternal-fetal interface. This has relevant clinical consequences, ranging from recurrent implantation failure and recurrent pregnancy loss in early pregnancy to several significant complications of advanced gestation. Moreover, recent evidence indicates that selected diseases of the endometrium, such as chronic endometritis and endometriosis, can have a detrimental impact on the decidualization response in the endometrium and may help explain some aspects of the reduced reproductive outcome associated with these conditions. Further research efforts are needed to fully understand the biomolecular mechanisms ans events underlying an abnormal decidualization response. This will permit the development of new diagnostic and therapeutic strategies aimed to improve the likelihood of achieveing a successful pregnancy.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS, Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
105
|
Extracellular vesicles as a potential diagnostic tool in assisted reproduction. Curr Opin Obstet Gynecol 2021; 32:179-184. [PMID: 32205524 DOI: 10.1097/gco.0000000000000621] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Extracellular vesicles have emerged as a promising field of research for their potential to serve as biomarkers. In the pathophysiology of reproduction, they have attracted significant attention because of their diverse roles in gametogenesis and embryo-endometrial cross-talk. Advances in extracellular vesicle translational potential are herein reviewed with a particular focus in oocyte competence, semen quality diagnostics, embryo selection and detection of endometrial receptivity. RECENT FINDINGS Specific miRNAs present in follicular fluid-derived extracellular vesicles have been associated with follicle development and oocyte maturation. Some proteins known to regulate sperm function and capacitation such as glycodelin, and CRISP1 have been found as overrepresented in semen exosomes isolated from severe asthenozoospermic compared to normozoospermic men. In vitro developed human embryos can secrete extracellular vesicles whose propitiousness for preimplantation genetic testing is being increasingly investigated. Endometrial cell-derived extracellular vesicles recovered from uterine flushings might represent a reservoir of molecular markers potentially exploited for monitoring the endometrial status. SUMMARY Accumulated knowledge on extracellular vesicles deriving from endometrium, follicular fluid, embryos or male reproductive system may be translated to clinical practice to inform diagnostics in assisted reproduction technology (ART). Validation studies and technology developments are required to implement the profiling of extracellular vesicles as diagnostic tests in ART.
Collapse
|
106
|
Barrenetxea G, Romero I, Celis R, Abio A, Bilbao M, Barrenetxea J. Correlation between plasmatic progesterone, endometrial receptivity genetic assay and implantation rates in frozen-thawed transferred euploid embryos. A multivariate analysis. Eur J Obstet Gynecol Reprod Biol 2021; 263:192-197. [PMID: 34229182 DOI: 10.1016/j.ejogrb.2021.05.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/21/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To ascertain the predictive value of different parameters to determine endometrial receptivity among assisted reproduction treatments in which single embryo transfer of frozen-thawed euploid blastocysts are performed. STUDY DESIGN Observational study involving 104 patients recruited between September.2018 and June.2019 at a University associated assisted reproduction center. The relationship of different parameters (age, body mass index (BMI), duration of hormonal preparation, plasmatic progesterone levels, endometrial parameters at ultrasound assessment and endometrial receptivity determined by endometrial receptivity assay (ERA) was evaluated by a multivariable logistic (binomial) analysis after hormonal preparation. According to the ERA test results a personalized endometrial transfer (pET) was scheduled and live birth rate was assessed. Only single transfers of frozen euploid blastocysts were performed. RESULTS ERA test report predicted receptive endometrium (RE) in 54,64% patients and non-receptive (NR) in 45,31% patients. Among NR endometrial samples, 20,62% were classified as pre-receptive or early receptive, whereas 24,74% as post-receptive or late-receptive. The univariate analysis showed a relationship between BMI, doses of progesterone administered before biopsy and the receptivity of endometrium. There was no relationship between age of women, duration of hormonal supplementation, and the results of ERA test. In our series, endometrial receptivity was not related neither to endometrial thickness nor plasmatic progesterone levels. The multivariate analysis showed that both, BMI and cumulative progesterone administered prior to the test are independent predictive factors of endometrial receptivity (p = 0,047 and p = 0,034 respectively). The overall live birth rate after FET of euploid embryos was 62,35%. The odd of pregnancy was higher when ERA test was performed prior to the first embryo transfer (93,10% vs. 46,43%; OR = 15,58;95%CI 3,38-71,89). Overall, ongoing pregnancy rates showed a favorable trend after "non-receptive" endometria had been diagnosed and, thus, a modified (pET) preparation was performed (70,00% vs. 55,56%; OR = 1,87; 95% CI 0,76-4,57). CONCLUSION Regarding implantation potential of genetically screened blastocysts, the traditional tools used for assessing endometrial receptivity such as transvaginal evaluation of endometrial thickness and pattern or progesterone levels determination were not useful among our patients for predicting a receptive endometrium.
Collapse
Affiliation(s)
- G Barrenetxea
- Reproducción Bilbao, Spain; Universidad del País Vasco/Euskal Herriko Univertsitatea/University of the Basque Country (UPV/EHU), Spain.
| | | | | | - A Abio
- Reproducción Bilbao, Spain
| | | | - J Barrenetxea
- Reproducción Bilbao, Spain; Osakidetza, Servicio Vasco de Salud, Basque Health Service, Spain
| |
Collapse
|
107
|
Yu SL, Kim TH, Han YH, Kang Y, Jeong DU, Lee DC, Kang J, Park SR. Transcriptomic analysis and competing endogenous RNA network in the human endometrium between proliferative and mid-secretory phases. Exp Ther Med 2021; 21:660. [PMID: 33968190 PMCID: PMC8097233 DOI: 10.3892/etm.2021.10092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Successful embryo implantation is the first step for establishing natural pregnancy and is dependent on the crosstalk between the embryo and a receptive endometrium. However, the molecular signaling events for successful embryo implantation are not entirely understood. To identify differentially expressed transcripts [long-noncoding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs] and competing endogenous RNA (ceRNA) networks associated with endometrial receptivity, the current study analyzed gene expression profiles between proliferative and mid-secretory endometria in fertile women. A total of 247 lncRNAs, 67 miRNAs and 2,154 mRNAs were identified as differentially expressed between proliferative and mid-secretory endometria. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that these differentially expressed genes were significantly enriched for 'cell adhesion molecules.' Additionally, 98 common mRNAs were significantly involved in tryptophan metabolism, metabolic pathways and FoxO signaling. From the differentially expressed lncRNA/miRNA/mRNA ceRNA network, hub RNAs that formed three axes were identified: The DLX6-AS1/miR-141 or miR-200a/OLFM1 axis, the WDFY3-AS2/miR-135a or miR-183/STC1 axis, and the LINC00240/miR-182/NDRG1 axis. These may serve important roles in the regulation of endometrial receptivity. The hub network of the current study may be developed as a candidate marker for endometrial receptivity.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Tae-Hyun Kim
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Republic of Korea
| | - Young-Hyun Han
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Yujin Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Da-Un Jeong
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jaeku Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Seok-Rae Park
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
- Department of Microbiology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| |
Collapse
|
108
|
Paule SG, Heng S, Samarajeewa N, Li Y, Mansilla M, Webb AI, Nebl T, Young SL, Lessey BA, Hull ML, Scelwyn M, Lim R, Vollenhoven B, Rombauts LJ, Nie G. Podocalyxin is a key negative regulator of human endometrial epithelial receptivity for embryo implantation. Hum Reprod 2021; 36:1353-1366. [PMID: 33822049 DOI: 10.1093/humrep/deab032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/09/2020] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION How is endometrial epithelial receptivity, particularly adhesiveness, regulated at the luminal epithelial surface for embryo implantation in the human? SUMMARY ANSWER Podocalyxin (PCX), a transmembrane protein, was identified as a key negative regulator of endometrial epithelial receptivity; specific downregulation of PCX in the luminal epithelium in the mid-secretory phase, likely mediated by progesterone, may act as a critical step in converting endometrial surface from a non-receptive to an implantation-permitting state. WHAT IS KNOWN ALREADY The human endometrium must undergo major molecular and cellular changes to transform from a non-receptive to a receptive state to accommodate embryo implantation. However, the fundamental mechanisms governing receptivity, particularly at the luminal surface where the embryo first interacts with, are not well understood. A widely held view is that upregulation of adhesion-promoting molecules is important, but the details are not well characterized. STUDY DESIGN, SIZE, DURATION This study first aimed to identify novel adhesion-related membrane proteins with potential roles in receptivity in primary human endometrial epithelial cells (HEECs). Further experiments were then conducted to determine candidates' in vivo expression pattern in the human endometrium across the menstrual cycle, regulation by progesterone using cell culture, and functional importance in receptivity using in vitro human embryo attachment and invasion models. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary HEECs (n = 9) were isolated from the proliferative phase endometrial tissue, combined into three pools, subjected to plasma membrane protein enrichment by ultracentrifugation followed by proteomics analysis, which led to the discovery of PCX as a novel candidate of interest. Immunohistochemical analysis determined the in vivo expression pattern and cellular localization of PCX in the human endometrium across the menstrual cycle (n = 23). To investigate whether PCX is regulated by progesterone, the master driver of endometrial differentiation, primary HEECs were treated in culture with estradiol and progesterone and analyzed by RT-PCR (n = 5) and western blot (n = 4). To demonstrate that PCX acts as a negative regulator of receptivity, PCX was overexpressed in Ishikawa cells (a receptive line) and the impact on receptivity was determined using in vitro attachment (n = 3-5) and invasion models (n = 4-6), in which an Ishikawa monolayer mimicked the endometrial surface and primary human trophoblast spheroids mimicked embryos. Mann-Whitney U-test and ANOVA analyses established statistical significance at *P ≤ 0.05 and **P ≤ 0.01. MAIN RESULTS AND THE ROLE OF CHANCE PCX was expressed on the apical surface of all epithelial and endothelial cells in the non-receptive endometrium, but selectively downregulated in the luminal epithelium from the mid-secretory phase coinciding with the establishment of receptivity. Progesterone was confirmed to be able to suppress PCX in primary HEECs, suggesting this hormone likely mediates the downregulation of luminal PCX in vivo for receptivity. Overexpression of PCX in Ishikawa monolayer inhibited not only the attachment but also the penetration of human embryo surrogates, demonstrating that PCX acts as an important negative regulator of epithelial receptivity for implantation. LIMITATIONS, REASONS FOR CAUTION Primary HEECs isolated from the human endometrial tissue contained a mixture of luminal and glandular epithelial cells, as further purification into subtypes was not possible due to the lack of specific markers. Future study would need to investigate how progesterone differentially regulates PCX in endometrial epithelial subtypes. In addition, this study used primary human trophoblast spheroids as human embryo mimics and Ishikawa as endometrial epithelial cells in functional models, future studies with human blastocysts and primary epithelial cells would further validate the findings. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study add important new knowledge to the understanding of human endometrial remodeling for receptivity. The identification of PCX as a negative regulator of epithelial receptivity and the knowledge that its specific downregulation in the luminal epithelium coincides with receptivity development may provide new avenues to assess endometrial receptivity and individualize endometrial preparation protocols in assisted reproductive technology (ART). The study also discovered PCX as progesterone target in HEECs, identifying a potentially useful functional biomarker to monitor progesterone action, such as in the optimization of progesterone type/dose/route of administration for luteal support. STUDY FUNDING/COMPETING INTEREST(S) Study funding was obtained from ESHRE, Monash IVF and NHMRC. LR reports potential conflict of interests (received grants from Ferring Australia; personal fees from Monash IVF Group and Ferring Australia; and non-financial support from Merck Serono, MSD, and Guerbet outside the submitted work. LR is also a minority shareholder and the Group Medical Director for Monash IVF Group, a provider of fertility preservation services). The remaining authors have no potential conflict of interest to declare. TRIAL REGISTRATION NUMBER NA.
Collapse
Affiliation(s)
- Sarah G Paule
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sophea Heng
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Nirukshi Samarajeewa
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Ying Li
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Mary Mansilla
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Andrew I Webb
- Advance Technology and Biology Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Thomas Nebl
- Advance Technology and Biology Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health System, Greenville, SC, USA
| | - M Louise Hull
- The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | | | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Beverley Vollenhoven
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.,Womens and Newborn Programme, Monash Health, Clayton, VIC, Australia
| | - Luk J Rombauts
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.,Womens and Newborn Programme, Monash Health, Clayton, VIC, Australia
| | - Guiying Nie
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| |
Collapse
|
109
|
Sola-Leyva A, Andrés-León E, Molina NM, Terron-Camero LC, Plaza-Díaz J, Sáez-Lara MJ, Gonzalvo MC, Sánchez R, Ruíz S, Martínez L, Altmäe S. Mapping the entire functionally active endometrial microbiota. Hum Reprod 2021; 36:1021-1031. [PMID: 33598714 DOI: 10.1093/humrep/deaa372] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Does endometrium harbour functionally active microorganisms and whether the microbial composition differs between proliferative and mid-secretory phases? SUMMARY ANSWER Endometrium harbours functionally alive microorganisms including bacteria, viruses, archaea and fungi whose composition and metabolic functions change along the menstrual cycle. WHAT IS KNOWN ALREADY Resident microbes in the endometrium have been detected, where microbial dysfunction has been associated with reproductive health and disease. Nevertheless, the core microorganismal composition in healthy endometrium is not determined and whether the identified bacterial DNA sequences refer to alive/functionally active microbes is not clear. Furthermore, whether there are cyclical changes in the microbial composition remains an open issue. STUDY DESIGN, SIZE, DURATION RNA sequencing (RNAseq) data from 14 endometrial paired samples from healthy women, 7 samples from the mid-secretory phase and 7 samples from the consecutive proliferative phase were analysed for the microbial RNA sequences. PARTICIPANTS/MATERIALS, SETTING, METHODS The raw RNAseq data were converted into FASTQ format using SRA Toolkit. The unmapped reads to human sequences were aligned to the reference database Kraken2 and visualised with Krona software. Menstrual phase taxonomic differences were performed by R package metagenomeSeq. The functional analysis of endometrial microbiota was obtained with HUMANn2 and the comparison between menstrual phases was conducted by one-way ANOVA. Human RNAseq analysis was performed using miARma-Seq and the functional enrichment analysis was carried out using gene set enrichment analysis (GSEA; HumanCyc). The integration of metabolic pathways between host and microbes was investigated. The developed method of active microbiota mapping was validated in independent sample set. MAIN RESULTS AND THE ROLE OF CHANCE With the novel metatranscriptomic approach, we mapped the entire alive microbiota composing of >5300 microorganisms within the endometrium of healthy women. Microbes such as bacteria, fungi, viruses and archaea were identified. The validation of three independent endometrial samples from different ethnicity confirmed the findings. Significant differences in the microbial abundances in the mid-secretory vs. proliferative phases were detected with possible metabolic activity in the host-microbiota crosstalk in receptive phase endometrium, specifically in the prostanoid biosynthesis pathway and L-tryptophan metabolism. LARGE SCALE DATA The raw RNAseq data used in the current study are available at GEO GSE86491 and at BioProject PRJNA379542. LIMITATIONS, REASONS FOR CAUTION These pioneering results should be confirmed in a bigger sample size. WIDER IMPLICATIONS OF THE FINDINGS Our study confirms the presence of active microbes, bacteria, fungi, viruses and archaea in the healthy human endometrium with implications in receptive phase endometrial functions, meaning that microbial dysfunction could impair the metabolic pathways important for endometrial receptivity. The results of this study contribute to the better understanding of endometrial microbiota composition in healthy women and its possible role in endometrial functions. In addition, our novel methodological pipeline for analysing alive microbes with transcriptional and metabolic activities could serve to inspire new analysis approaches in reproductive medicine. STUDY FUNDING/COMPETING INTERESTS This work is supported by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER): grants RYC-2016-21199 and ENDORE SAF2017-87526-R; FEDER/Junta de Andalucía-Consejería de Economía y Conocimiento: MENDO (B-CTS-500-UGR18) and by the University of Granada Plan Propio de Investigación 2016 - Excellence actions: Unit of Excellence on Exercise and Health (UCEES) (SOMM17/6107/UGR). A.S.-L. and N.M.M. are funded by the Spanish Ministry of Science, Innovation and Universities (PRE2018-0854409 and FPU19/01638). S.A. has received honoraria for lectures from Merck. The funder had no role in this study.
Collapse
Affiliation(s)
- Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada 18071, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain
| | - Eduardo Andrés-León
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), Granada 18016, Spain
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada 18071, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain
| | - Laura Carmen Terron-Camero
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), Granada 18016, Spain
| | - Julio Plaza-Díaz
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada 18071, Spain.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - María José Sáez-Lara
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada 18071, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain.,Institute of Nutrition and Food Technology (INYTA), "José Mataix Verdú" Biomedical Research Centre (CIBM), University of Granada, Armilla, Granada 18016, Spain
| | - María Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain.,Unidad Reproducción, UGC Laboratorio clínico y UGC Obstetricia y Ginecología. Hospital Universitario Virgen de las Nieves, Granada 18014, Spain
| | - Rocío Sánchez
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain.,Unidad Reproducción, UGC Laboratorio clínico y UGC Obstetricia y Ginecología. Hospital Universitario Virgen de las Nieves, Granada 18014, Spain
| | - Susana Ruíz
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain.,Unidad Reproducción, UGC Laboratorio clínico y UGC Obstetricia y Ginecología. Hospital Universitario Virgen de las Nieves, Granada 18014, Spain
| | - Luís Martínez
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain.,Unidad Reproducción, UGC Laboratorio clínico y UGC Obstetricia y Ginecología. Hospital Universitario Virgen de las Nieves, Granada 18014, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada 18071, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain.,Competence Centre on Health Technologies, Tartu 50411, Estonia
| |
Collapse
|
110
|
Retis-Resendiz AM, González-García IN, León-Juárez M, Camacho-Arroyo I, Cerbón M, Vázquez-Martínez ER. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium. Clin Epigenetics 2021; 13:116. [PMID: 34034824 PMCID: PMC8146649 DOI: 10.1186/s13148-021-01103-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The human endometrium is a highly dynamic tissue whose function is mainly regulated by the ovarian steroid hormones estradiol and progesterone. The serum levels of these and other hormones are associated with three specific phases that compose the endometrial cycle: menstrual, proliferative, and secretory. Throughout this cycle, the endometrium exhibits different transcriptional networks according to the genes expressed in each phase. Epigenetic mechanisms are crucial in the fine-tuning of gene expression to generate such transcriptional networks. The present review aims to provide an overview of current research focused on the epigenetic mechanisms that regulate gene expression in the cyclical endometrium and discuss the technical and clinical perspectives regarding this topic. MAIN BODY The main epigenetic mechanisms reported are DNA methylation, histone post-translational modifications, and non-coding RNAs. These epigenetic mechanisms induce the expression of genes associated with transcriptional regulation, endometrial epithelial growth, angiogenesis, and stromal cell proliferation during the proliferative phase. During the secretory phase, epigenetic mechanisms promote the expression of genes associated with hormone response, insulin signaling, decidualization, and embryo implantation. Furthermore, the global content of specific epigenetic modifications and the gene expression of non-coding RNAs and epigenetic modifiers vary according to the menstrual cycle phase. In vitro and cell type-specific studies have demonstrated that epithelial and stromal cells undergo particular epigenetic changes that modulate their transcriptional networks to accomplish their function during decidualization and implantation. CONCLUSION AND PERSPECTIVES Epigenetic mechanisms are emerging as key players in regulating transcriptional networks associated with key processes and functions of the cyclical endometrium. Further studies using next-generation sequencing and single-cell technology are warranted to explore the role of other epigenetic mechanisms in each cell type that composes the endometrium throughout the menstrual cycle. The application of this knowledge will definitively provide essential information to understand the pathological mechanisms of endometrial diseases, such as endometriosis and endometrial cancer, and to identify potential therapeutic targets and improve women's health.
Collapse
Affiliation(s)
- Alejandra Monserrat Retis-Resendiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Ixchel Nayeli González-García
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico.
| |
Collapse
|
111
|
Zhao F, Guo Y, Shi Z, Wu M, Lv Y, Song W. hsa_circ_001946 elevates HOXA10 expression and promotes the development of endometrial receptivity via sponging miR-135b. Diagn Pathol 2021; 16:44. [PMID: 33993878 PMCID: PMC8127197 DOI: 10.1186/s13000-021-01104-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
Background Impaired endometrial receptivity is a major reason for embryo implantation failure. There’s a paucity of information regarding the role of circRNAs on endometrial receptivity. Here, we investigated the function of hsa_circ_001946 on endometrial receptivity and its mechanisms. Methods A total of 50 women composing 25 with recurrent implantation failure and 25 who conceived after their implantation were recruited in this study. Expression of hsa_circ_001946, miR-135b, and HOXA10 was evaluated by quantitative RT-PCR (qRT-PCR) in biopsied endometrial tissue samples. The levels of HOXA10, and cell cycle markers (CCNB1, CDK1, and CCND1) were determined by IHC and western blotting assays. Binding relationship among miR-135b, hsa_circ_001946 and HOXA10 were confirmed by dual luciferase reporter assays and western blotting. MTT assays and cell cycle assays by FACS were employed to evaluate the proliferation and cell cycle of cells. T-HESCs were cultured with 1 µM medroxyprogesterone acetate (MPA) and 0.5 mM 8-bromoadenosine 3’:5’-cyclic monophosphate (8-Br-cAMP) to induce decidualization. The mechanisms and functions of hsa_circ_001946 on decidualization were further assessed by qRT-PCR evaluating the expression of hsa_circ_001946, miR-135b, HOXA10 and decidual markers (PRL and IGFBP1) in T-HESCs. Results Endometrial tissues from patients with recurrent implantation failure had lower hsa_circ_001946 expression, higher miR-135b expression, and lower HOXA10 expression. Hsa_circ_001946 promoted HOXA10 expression by sponging miR-135b in T-HESCs. Overexpression of hsa_circ_001946 restored cell proliferation and cell cycle that were disrupted by miR-135b overexpression in T-HESCs. Decidualized T-HESCs had higher hsa_circ_001946 expression, lower miR-135b expression, and higher HOXA10 expression. Overexpression of hsa_circ_001946 reversed the expression of decidual markers (PRL and IGFBP1) that were suppressed by miR-135b overexpression in T-HESCs. Conclusions In conclusion, our findings suggest that hsa_circ_001946 promotes cell proliferation and cell cycle process and increases expression of decidualization markers to enhance endometrial receptivity progression via sponging miR-135b and elevating HOXA10.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Henan, 450000, Zhengzhou, PR China
| | - Yihong Guo
- Department of Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Henan, 450000, Zhengzhou, PR China.
| | - Zhanrong Shi
- Department of Reproductive Medical Center, Jiaozuo Maternity and Child Health Hospital, Jiaozuo, China
| | - Menglan Wu
- Department of Reproductive Medical Center, Jiaozuo Maternity and Child Health Hospital, Jiaozuo, China
| | - Yuzhen Lv
- Department of Reproductive Medical Center, Jiaozuo Maternity and Child Health Hospital, Jiaozuo, China
| | - Wenyue Song
- Department of Reproductive Medical Center, Jiaozuo Maternity and Child Health Hospital, Jiaozuo, China
| |
Collapse
|
112
|
He A, Zou Y, Wan C, Zhao J, Zhang Q, Yao Z, Tian F, Wu H, Huang X, Fu J, Hu C, Sun Y, Xiao L, Yang T, Hou Z, Dong X, Lu S, Li Y. The role of transcriptomic biomarkers of endometrial receptivity in personalized embryo transfer for patients with repeated implantation failure. J Transl Med 2021; 19:176. [PMID: 33910562 PMCID: PMC8082865 DOI: 10.1186/s12967-021-02837-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/16/2021] [Indexed: 11/24/2022] Open
Abstract
Background Window of implantation (WOI) displacement is one of the endometrial origins of embryo implantation failure, especially repeated implantation failure (RIF). An accurate prediction tool for endometrial receptivity (ER) is extraordinarily needed to precisely guide successful embryo implantation. We aimed to establish an RNA-Seq-based endometrial receptivity test (rsERT) tool using transcriptomic biomarkers and to evaluate the benefit of personalized embryo transfer (pET) guided by this tool in patients with RIF. Methods This was a two-phase strategy comprising tool establishment with retrospective data and benefit evaluation with a prospective, nonrandomized controlled trial. In the first phase, rsERT was established by sequencing and analyzing the RNA of endometrial tissues from 50 IVF patients with normal WOI timing. In the second phase, 142 patients with RIF were recruited and grouped by patient self-selection (experimental group, n = 56; control group, n = 86). pET guided by rsERT was performed in the experimental group and conventional ET in the control group. Results The rsERT, comprising 175 biomarker genes, showed an average accuracy of 98.4% by using tenfold cross-validation. The intrauterine pregnancy rate (IPR) of the experimental group (50.0%) was significantly improved compared to that (23.7%) of the control group (RR, 2.107; 95% CI 1.159 to 3.830; P = 0.017) when transferring day-3 embryos. Although not significantly different, the IPR of the experimental group (63.6%) was still 20 percentage points higher than that (40.7%) of the control group (RR, 1.562; 95% CI 0.898 to 2.718; P = 0.111) when transferring blastocysts. Conclusions The rsERT was developed to accurately predict the WOI period and significantly improve the pregnancy outcomes of patients with RIF, indicating the clinical potential of rsERT-guided pET. Trial registration Chinese Clinical Trial Registry: ChiCTR-DDD-17013375. Registered 14 November 2017, http://www.chictr.org.cn/index.aspx Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02837-y.
Collapse
Affiliation(s)
- Aihua He
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, Hunan, China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, 410000, Hunan, China
| | - Yangyun Zou
- Department of Clinical Research, Yikon Genomics Company, Ltd., #301, Building A3, No. 218, Xinghu Street, Suzhou, 215123, Jiangsu, China
| | - Cheng Wan
- Department of Clinical Research, Yikon Genomics Company, Ltd., #301, Building A3, No. 218, Xinghu Street, Suzhou, 215123, Jiangsu, China
| | - Jing Zhao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, Hunan, China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, 410000, Hunan, China
| | - Qiong Zhang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, Hunan, China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, 410000, Hunan, China
| | - Zhongyuan Yao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, Hunan, China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, 410000, Hunan, China
| | - Fen Tian
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, Hunan, China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, 410000, Hunan, China
| | - Hong Wu
- Department of ENT, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Key Laboratory of Otolaryngology in Hunan Province, Changsha, 410000, Hunan, China
| | - Xi Huang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, Hunan, China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, 410000, Hunan, China
| | - Jing Fu
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, Hunan, China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, 410000, Hunan, China
| | - Chunxu Hu
- Department of Clinical Research, Yikon Genomics Company, Ltd., #301, Building A3, No. 218, Xinghu Street, Suzhou, 215123, Jiangsu, China
| | - Yue Sun
- Department of Clinical Research, Yikon Genomics Company, Ltd., #301, Building A3, No. 218, Xinghu Street, Suzhou, 215123, Jiangsu, China
| | - Lan Xiao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, Hunan, China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, 410000, Hunan, China
| | - Tianli Yang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, Hunan, China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, 410000, Hunan, China
| | - Zhaojuan Hou
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, Hunan, China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, 410000, Hunan, China
| | - Xin Dong
- Department of Clinical Research, Yikon Genomics Company, Ltd., #301, Building A3, No. 218, Xinghu Street, Suzhou, 215123, Jiangsu, China
| | - Sijia Lu
- Department of Clinical Research, Yikon Genomics Company, Ltd., #301, Building A3, No. 218, Xinghu Street, Suzhou, 215123, Jiangsu, China.
| | - Yanping Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, Hunan, China. .,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, 410000, Hunan, China.
| |
Collapse
|
113
|
Siristatidis C, Stavros S, Drakeley A, Bettocchi S, Pouliakis A, Drakakis P, Papapanou M, Vlahos N. Omics and Artificial Intelligence to Improve In Vitro Fertilization (IVF) Success: A Proposed Protocol. Diagnostics (Basel) 2021; 11:diagnostics11050743. [PMID: 33919350 PMCID: PMC8143333 DOI: 10.3390/diagnostics11050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The prediction of in vitro fertilization (IVF) outcome is an imperative achievement in assisted reproduction, substantially aiding infertile couples, health systems and communities. To date, the assessment of infertile couples depends on medical/reproductive history, biochemical indications and investigations of the reproductive tract, along with data obtained from previous IVF cycles, if any. Our project aims to develop a novel tool, integrating omics and artificial intelligence, to propose optimal treatment options and enhance treatment success rates. For this purpose, we will proceed with the following: (1) recording subfertile couples’ lifestyle and demographic parameters and previous IVF cycle characteristics; (2) measurement and evaluation of metabolomics, transcriptomics and biomarkers, and deep machine learning assessment of the oocyte, sperm and embryo; (3) creation of artificial neural network models to increase objectivity and accuracy in comparison to traditional techniques for the improvement of the success rates of IVF cycles following an IVF failure. Therefore, “omics” data are a valuable parameter for embryo selection optimization and promoting personalized IVF treatment. “Omics” combined with predictive models will substantially promote health management individualization; contribute to the successful treatment of infertile couples, particularly those with unexplained infertility or repeated implantation failures; and reduce multiple gestation rates.
Collapse
Affiliation(s)
- Charalampos Siristatidis
- Second Department of Obstetrics and Gynecology, “Aretaieion Hospital”, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece; (M.P.); (N.V.)
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, “Aretaieion Hospital”, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece
- Correspondence: ; Tel.: +30-69-3229-4994
| | - Sofoklis Stavros
- Assisted Reproduction Unit, First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra Hospital, 80 Vas. Sofias Av. and Lourou str., 11528 Athens, Greece; (S.S.); (P.D.)
| | - Andrew Drakeley
- Hewitt Fertility Centre, Liverpool Women’s NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK;
| | - Stefano Bettocchi
- Second Unit of Obstetrics and Gynecology, Department of Biomedical and Human Oncologic Science, Policlinico University of Bari, 70124 Bari, Italy;
| | - Abraham Pouliakis
- Second Department of Pathology, National and Kapodistrian University of Athens, “Attikon” University Hospital, Rimini 1, Chaidari, 12642 Athens, Greece;
| | - Peter Drakakis
- Assisted Reproduction Unit, First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra Hospital, 80 Vas. Sofias Av. and Lourou str., 11528 Athens, Greece; (S.S.); (P.D.)
| | - Michail Papapanou
- Second Department of Obstetrics and Gynecology, “Aretaieion Hospital”, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece; (M.P.); (N.V.)
| | - Nikolaos Vlahos
- Second Department of Obstetrics and Gynecology, “Aretaieion Hospital”, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece; (M.P.); (N.V.)
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, “Aretaieion Hospital”, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece
| |
Collapse
|
114
|
Ruiz-Alonso M, Valbuena D, Gomez C, Cuzzi J, Simon C. Endometrial Receptivity Analysis (ERA): data versus opinions. Hum Reprod Open 2021; 2021:hoab011. [PMID: 33880420 PMCID: PMC8045472 DOI: 10.1093/hropen/hoab011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
This article summarises and contextualises the accumulated basic and clinical data on the ERA test and addresses specific comments and opinions presented by the opponent as part of an invited debate. Progress in medicine depends on new technologies and concepts that translate to practice to solve long-standing problems. In a key example, combining RNA sequencing data (transcriptomics) with artificial intelligence (AI) led to a clinical revolution in personalising disease diagnosis and fostered the concept of precision medicine. The reproductive field is no exception. Translation of endometrial transcriptomics to the clinic yielded an objective definition of the limited time period during which the maternal endometrium is receptive to an embryo, known as the window of implantation (WOI). The WOI is induced by the presence of exogenous and/or endogenous progesterone (P) after proper oestradiol (E2) priming. The window lasts 30-36 hours and, depending on the patient, occurs between LH + 6 and LH + 9 in natural cycles or between P + 4 and P + 7 in hormonal replacement therapy (HRT) cycles. In approximately 30% of IVF cycles in which embryo transfer is performed blindly, the WOI is displaced and embryo-endometrial synchrony is not achieved. Extending this application of endometrial transcriptomics, the endometrial receptivity analysis (ERA) test couples next-generation sequencing (NGS) to a computational predictor to identify transcriptomic signatures for each endometrial stage: proliferative (PRO), pre-receptive (PRE), receptive (R) and post-receptive (POST). In this way, personalised embryo transfer (pET) may be possible by synchronising embryo transfer with each patient's WOI. Data are the only way to confront arguments sustained in opinions and/or misleading concepts; it is up to the reader to make their own conclusions regarding its clinical utility.
Collapse
Affiliation(s)
- Maria Ruiz-Alonso
- Igenomix Foundation-INCLIVA, Valencia, Spain
- Igenomix SL, Valencia, Spain
| | - Diana Valbuena
- Igenomix Foundation-INCLIVA, Valencia, Spain
- Igenomix SL, Valencia, Spain
| | | | | | - Carlos Simon
- Igenomix Foundation-INCLIVA, Valencia, Spain
- Department of Pediatrics, Obstetrics & Gynecology, University of
Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, BIMDC, Harvard
University, Boston, MA, USA
| |
Collapse
|
115
|
Sebastian-Leon P, Devesa-Peiro A, Aleman A, Parraga-Leo A, Arnau V, Pellicer A, Diaz-Gimeno P. Transcriptional changes through menstrual cycle reveal a global transcriptional derepression underlying the molecular mechanism involved in the window of implantation. Mol Hum Reprod 2021; 27:6217366. [PMID: 33830236 DOI: 10.1093/molehr/gaab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
The human endometrium is a dynamic tissue that only is receptive to host the embryo during a brief time in the middle secretory phase, called the window of implantation (WOI). Despite its importance, regulation of the menstrual cycle remains incompletely understood. The aim of this study was to characterize the gene cooperation and regulation of menstrual cycle progression, to dissect the molecular complexity underlying acquisition of endometrial receptivity for a successful pregnancy, and to provide the scientific community with detailed gene co-expression information throughout the menstrual cycle on a user-friendly web-tool database. A retrospective gene co-expression analysis was performed based on the endometrial receptivity array (ERarray) gene signature from 523 human endometrial samples collected across the menstrual cycle, including during the WOI. Gene co-expression analysis revealed the WOI as having the significantly smallest proportion of negative correlations for transcriptional profiles associated with successful pregnancies compared to other cycle stages, pointing to a global transcriptional derepression being involved in acquisition of endometrial receptivity. Regulation was greatest during the transition between proliferative and secretory endometrial phases. Further, we prioritized nuclear hormone receptors as major regulators of this derepression and proved that some genes and transcription factors involved in this process were dysregulated in patients with recurrent implantation failure. We also compiled the wealth of gene co-expression data to stimulate hypothesis-driven single-molecule endometrial studies in a user-friendly database: Menstrual Cycle Gene Co-expression Network (www.menstrualcyclegcn.com). This study revealed a global transcriptional repression across the menstrual cycle, which relaxes when the WOI opens for transcriptional profiles associated with successful pregnancies. These findings suggest that a global transcriptional derepression is needed for embryo implantation and early development.
Collapse
Affiliation(s)
- P Sebastian-Leon
- Department of Genomic & Systems Reproductive Medicine, IVI-RMA IVI Foundation-Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - A Devesa-Peiro
- Department of Genomic & Systems Reproductive Medicine, IVI-RMA IVI Foundation-Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynaecology, University of Valencia, Valencia, Spain
| | - A Aleman
- Department of Genomic & Systems Reproductive Medicine, IVI-RMA IVI Foundation-Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - A Parraga-Leo
- Department of Genomic & Systems Reproductive Medicine, IVI-RMA IVI Foundation-Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynaecology, University of Valencia, Valencia, Spain
| | - V Arnau
- Bioinformatics, Escuela Técnica Superior de Ingeniería, Universidad de Valencia, Burjassot, Spain.,Institute for Integrative Systems Biology (I2SysBio), Universidad de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), C/Catedrático Agustín Escardino Benlloch, Paterna, Spain
| | - A Pellicer
- Department of Genomic & Systems Reproductive Medicine, IVI-RMA IVI Foundation-Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynaecology, University of Valencia, Valencia, Spain.,Reproductive Medicine, IVI-RMA IVI Rome, Rome, Italy
| | - P Diaz-Gimeno
- Department of Genomic & Systems Reproductive Medicine, IVI-RMA IVI Foundation-Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
116
|
Zafir S, Zhou W, Menkhorst E, Santos L, Dimitriadis E. MAML1: a coregulator that alters endometrial epithelial cell adhesive capacity. FERTILITY RESEARCH AND PRACTICE 2021; 7:8. [PMID: 33773601 PMCID: PMC8004388 DOI: 10.1186/s40738-021-00100-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Abnormalities in endometrial receptivity has been identified as a major barrier to successful embryo implantation. Endometrial receptivity refers to the conformational and biochemical changes occurring in the endometrial epithelial layer which make it adhesive and receptive to blastocyst attachment. This takes place during the mid-secretory phase of woman's menstrual cycle and is a result of a delicate interplay between numerous hormones, cytokines and other factors. Outside of this window, the endometrium is refractory to an implanting blastocyst. It has been shown that Notch ligands and receptors are dysregulated in the endometrium of infertile women. Mastermind Like Transcriptional Coactivator 1 (MAML1) is a known coactivator of the Notch signaling pathway. This study aimed to determine the role of MAML1 in regulating endometrial receptivity. METHODS The expression and localization of MAML1 in the fertile human endometrium (non-receptive proliferative phase versus receptive mid-secretory phase) were determined by immunohistochemistry. Ishikawa cells were used as an endometrial epithelial model to investigate the functional consequences of MAML1 knockdown on endometrial adhesive capacity to HTR8/SVneo (trophoblast cell line) spheroids. After MAML1 knockdown in Ishikawa cells, the expression of endometrial receptivity markers and Notch dependent and independent pathway members were assessed by qPCR. Two-tailed unpaired or paired student's t-test were used for statistical analysis with a significance threshold of P < 0.05. RESULTS MAML1 was localized in the luminal epithelium, glandular epithelium and stroma of human endometrium and the increased expression identified in the mid-secretory phase was restricted only to the luminal epithelium (P < 0.05). Functional analysis using Ishikawa cells demonstrated that knockdown of MAML1 significantly reduced epithelial adhesive capacity (P < 0.01) to HTR8/SVneo (trophoblast cell line) spheroids compared to control. MAML1 knockdown significantly affected the expression of classical receptivity markers (SPP1, DPP4) and this response was not directly via hormone receptors. The expression level of Hippo pathway target Ankyrin repeat domain-containing protein 1 (ANKRD1) was also affected after MAML1 knockdown in Ishikawa cells. CONCLUSION Our data strongly suggest that MAML1 is involved in regulating the endometrial adhesive capacity and may facilitate embryo attachment, either directly or indirectly through the Notch signaling pathway.
Collapse
Affiliation(s)
- Sadaf Zafir
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Leilani Santos
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia. .,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
117
|
Devesa-Peiro A, Sebastian-Leon P, Pellicer A, Diaz-Gimeno P. Guidelines for biomarker discovery in endometrium: correcting for menstrual cycle bias reveals new genes associated with uterine disorders. Mol Hum Reprod 2021; 27:gaab011. [PMID: 33576824 PMCID: PMC8063681 DOI: 10.1093/molehr/gaab011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Transcriptomic approaches are increasingly used in reproductive medicine to identify candidate endometrial biomarkers. However, it is known that endometrial progression in the molecular biology of the menstrual cycle is a main factor that could affect the discovery of disorder-related genes. Therefore, the aim of this study was to systematically review current practices for considering the menstrual cycle effect and to demonstrate its bias in the identification of potential biomarkers. From the 35 studies meeting the criteria, 31.43% did not register the menstrual cycle phase. We analysed the menstrual cycle effect in 11 papers (including 12 studies) from Gene Expression Omnibus: three evaluating endometriosis, two evaluating recurrent implantation failure, one evaluating recurrent pregnancy loss, one evaluating uterine fibroids and five control studies, which collected endometrial samples throughout menstrual cycle. An average of 44.2% more genes were identified after removing menstrual cycle bias using linear models. This effect was observed even if studies were balanced in the proportion of samples collected at different endometrial stages or only in the mid-secretory phase. Our bias correction method increased the statistical power by retrieving more candidate genes than per-phase independent analyses. Thanks to this practice, we discovered 544 novel candidate genes for eutopic endometriosis, 158 genes for ectopic ovarian endometriosis and 27 genes for recurrent implantation failure. In conclusion, we demonstrate that menstrual cycle progression masks molecular biomarkers, provides new guidelines to unmask them and proposes a new classification that distinguishes between biomarkers of disorder or/and menstrual cycle progression.
Collapse
Affiliation(s)
- Almudena Devesa-Peiro
- Department of Genomic & Systems Reproductive Medicine, IVI-RMA IVI Foundation, Valencia, Spain—Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Valencia 46026, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, Universidad de Valencia, Valencia 46010, Spain
| | - Patricia Sebastian-Leon
- Department of Genomic & Systems Reproductive Medicine, IVI-RMA IVI Foundation, Valencia, Spain—Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Valencia 46026, Spain
| | - Antonio Pellicer
- Department of Genomic & Systems Reproductive Medicine, IVI-RMA IVI Foundation, Valencia, Spain—Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Valencia 46026, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, Universidad de Valencia, Valencia 46010, Spain
- IVI-RMA IVI Rome, Reproductive medicine clinic, Largo Ildebrando Pizzetti, 1, Rome 00197, Italy
| | - Patricia Diaz-Gimeno
- Department of Genomic & Systems Reproductive Medicine, IVI-RMA IVI Foundation, Valencia, Spain—Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Valencia 46026, Spain
| |
Collapse
|
118
|
Rai A, Poh QH, Fatmous M, Fang H, Gurung S, Vollenhoven B, Salamonsen LA, Greening DW. Proteomic profiling of human uterine extracellular vesicles reveal dynamic regulation of key players of embryo implantation and fertility during menstrual cycle. Proteomics 2021; 21:e2000211. [PMID: 33634576 DOI: 10.1002/pmic.202000211] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
Endometrial extracellular vesicles (EVs) are emerging as important players in reproductive biology. However, how their proteome is regulated throughout the menstrual cycle is not known. Such information can provide novel insights into biological processes critical for embryo development, implantation, and successful pregnancy. Using mass spectrometry-based quantitative proteomics, we show that small EVs (sEVs) isolated from uterine lavage of fertile women (UL-sEV), compared to infertile women, are laden with proteins implicated in antioxidant activity (SOD1, GSTO1, MPO, CAT). Functionally, sEVs derived from endometrial cells enhance antioxidant function in trophectoderm cells. Moreover, there was striking enrichment of invasion-related proteins (LGALS1/3, S100A4/11) in fertile UL-sEVs in the secretory (estrogen plus progesterone-driven, EP) versus proliferative (estrogen-driven, E) phase, with several players downregulated in infertile UL-sEVs. Consistent with this, sEVs from EP- versus E-primed endometrial epithelial cells promote invasion of trophectoderm cells. Interestingly, UL-sEVs from fertile versus infertile women carry known players/predictors of embryo implantation (PRDX2, IDHC), endometrial receptivity (S100A4, FGB, SERPING1, CLU, ANXA2), and implantation success (CAT, YWHAE, PPIA), highlighting their potential to inform regarding endometrial status/pregnancy outcomes. Thus, this study provides novel insights into proteome reprograming of sEVs and soluble secretome in uterine fluid, with potential to enhance embryo implantation and hence fertility.
Collapse
Affiliation(s)
- Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Qi Hui Poh
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Monique Fatmous
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
| | - Shanti Gurung
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Beverley Vollenhoven
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,Monash IVF, Clayton, Victoria, Australia.,Women's and Newborn Program, Monash Health, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
119
|
RNA Sequencing of Decidua Reveals Differentially Expressed Genes in Recurrent Pregnancy Loss. Reprod Sci 2021; 28:2261-2269. [DOI: 10.1007/s43032-021-00482-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/31/2021] [Indexed: 12/20/2022]
|
120
|
Devesa-Peiro A, Sebastian-Leon P, Garcia-Garcia F, Arnau V, Aleman A, Pellicer A, Diaz-Gimeno P. Uterine disorders affecting female fertility: what are the molecular functions altered in endometrium? Fertil Steril 2021; 113:1261-1274. [PMID: 32482256 DOI: 10.1016/j.fertnstert.2020.01.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/26/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To determine the molecular functions of genes exhibiting altered expression in the endometrium of women with uterine disorders affecting fertility. DESIGN Retrospective analysis integrating case and control data from multiple cohorts with endometrium gene expression in women with uterine disorders. SETTING Infertility research department affiliated with a university hospital. PATIENT(S) Two hundred and forty women, 121 of whom were controls, 119 of whom had endometrial adenocarcinoma (ADC), recurrent implantation failure (RIF), recurrent pregnancy loss (RPL), or stage II-IV endometriosis. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Genomewide gene expression and altered molecular functions in the endometrium of each uterine disorder. RESULT(S) Using robust analysis methods, we identified statistically significantly altered endometrial functions in all the uterine disorders. Cell cycle alterations were shared among all the pathologies investigated. Endometriosis was characterized by the down-regulation of ciliary processes. Among the endometriosis, ADC, and RIF samples, mitochondrial dysfunction and protein degradation were shared dysregulated processes. In addition, RPL had the most distinct functional profile, and 95% of affected functions were down-regulated. CONCLUSION(S) The most robust functions dysregulated in the endometrium of patients with uterine disorders across sample cohorts implicated an endometrial factor at the gene expression level. This shared endometrial factor affects endometrial receptivity processes.
Collapse
Affiliation(s)
- Almudena Devesa-Peiro
- Department of Genomic and Systems Reproductive Medicine, IVI-RMA (Instituto Valenciano de Infertilidad, Reproductive Medicine Associates) IVI Foundation, Valencia, Spain; Department of Pediatrics, Obstetrics and Gynaecology, University of Valencia, Valencia, Spain
| | - Patricia Sebastian-Leon
- Department of Genomic and Systems Reproductive Medicine, IVI-RMA (Instituto Valenciano de Infertilidad, Reproductive Medicine Associates) IVI Foundation, Valencia, Spain; Instituto de Investigación Sanitaria INCLIVA, University of Valencia, Valencia, Spain
| | - Francisco Garcia-Garcia
- Unit of Bioinformatics and Biostatistics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Vicente Arnau
- Department of Computer Science, Escuela Técnica Superior de Ingenierías, University of Valencia, Burjassot, Spain, Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| | - Alejandro Aleman
- Department of Genomic and Systems Reproductive Medicine, IVI-RMA (Instituto Valenciano de Infertilidad, Reproductive Medicine Associates) IVI Foundation, Valencia, Spain
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynaecology, University of Valencia, Valencia, Spain; IVI-RMA IVI Rome, Rome, Italy
| | - Patricia Diaz-Gimeno
- Department of Genomic and Systems Reproductive Medicine, IVI-RMA (Instituto Valenciano de Infertilidad, Reproductive Medicine Associates) IVI Foundation, Valencia, Spain; Instituto de Investigación Sanitaria INCLIVA, University of Valencia, Valencia, Spain.
| |
Collapse
|
121
|
Transcriptomic analysis of endometrial receptivity for a genomic diagnostics model of Chinese women. Fertil Steril 2021; 116:157-164. [PMID: 33589135 DOI: 10.1016/j.fertnstert.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To define the transcriptomic signature with respect to human endometrial receptivity in Chinese women by next-generation sequencing and to develop a more refined and customized bioinformatic predictive method for endometrial dating in Chinese women. DESIGN Randomized. SETTING A tertiary hospital-based reproductive medicine center. PATIENT(S) Ninety healthy, fertile Chinese women. INTERVENTION(S) Human endometrial biopsies. MAIN OUTCOME MEASURE(S) Gene expression of endometrial biopsies. RESULT(S) Ninety endometrial samples from healthy Chinese women during their menstrual cycles-including prereceptive (luteinizing hormone [LH] + 3 days/LH + 5 days), receptive (LH + 7 days), and post-receptive (LH + 9 days) phases-were subjected to transcriptomic analysis using messenger RNA (mRNA)-enriched RNA-Seq. Feature genes were obtained and used to train the predictor for endometrial dating, with 63 samples for the training set and 27 samples for the validation set. Differentially expressed genes (DEGs) were identified by comparing samples from different phases of the menstrual cycle. Based on the transcriptomic feature genes, we constructed a bioinformatic predictor for endometrial dating. The accuracy on assessment of the endometrium on days LH + 3, LH + 5, LH + 7, and LH + 9 was 100% in the training set and 85.19% in the validation set. CONCLUSION(S) Our transcriptomic profiling method can be used to monitor the window of implantation with regard to the endometrium in the Chinese population. This method potentially provides an evaluation of endometrial status, and can be used to predict a personal window of implantation by reproductive medicine clinicians.
Collapse
|
122
|
Luo Y, Cui C, Han X, Wang Q, Zhang C. The role of miRNAs in polycystic ovary syndrome with insulin resistance. J Assist Reprod Genet 2021; 38:289-304. [PMID: 33405004 PMCID: PMC7884539 DOI: 10.1007/s10815-020-02019-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This review aims to summarize the key findings of several miRNAs and their roles in polycystic ovary syndrome with insulin resistance, characterize the disease pathogenesis, and establish a new theoretical basis for diagnosing, treating, and preventing polycystic ovary syndrome. METHODS Relevant scientific literature was covered from 1992 to 2020 by searching the PubMed database with search terms: insulin/insulin resistance, polycystic ovary syndrome, microRNAs, and metabolic diseases. References of relevant studies were cross-checked. RESULTS The related miRNAs (including differentially expressed miRNAs) and their roles in pathogenesis, and possible therapeutic targets and pathways, are discussed, highlighting controversies and offering thoughts for future directions. CONCLUSION We found abundant evidence on the role of differentially expressed miRNAs with its related phenotypes in PCOS. Considering the essential role of insulin resistance in the pathogenesis of PCOS, the alterations of associated miRNAs need more research attention. We speculate that race/ethnicity or PCOS phenotype and differences in methodological differences might lead to inconsistencies in research findings; thus, several miRNA profiles need to be investigated further to qualify for the potential therapeutic targets for PCOS-IR.
Collapse
Affiliation(s)
- Yingliu Luo
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Chenchen Cui
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Xiao Han
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Qian Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Cuilian Zhang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China.
| |
Collapse
|
123
|
Mishra A, Ashary N, Sharma R, Modi D. Extracellular vesicles in embryo implantation and disorders of the endometrium. Am J Reprod Immunol 2021; 85:e13360. [PMID: 33064348 DOI: 10.1111/aji.13360] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Implantation of the embryo is a rate-limiting step for a successful pregnancy, and it requires an intricate crosstalk between the embryo and the endometrium. Extracellular vesicles (EVs) are membrane-enclosed, nano-sized structures produced by cells to mediate cell to cell communication and modulate a diverse set of biological processes. Herein, we review the involvement of EVs in the process of embryo implantation and endometrial diseases. EVs have been isolated from uterine fluid, cultured endometrial epithelial/stromal cells and trophectodermal cells. The endometrial epithelial and stromal/decidual cell-derived EVs and its cargo are internalized bythe trophoblast cells, and they regulate a diverse set of genes involved in adhesion, invasion and migration. Conversely, the embryo-derived EVs and its cargo are internalized by epithelial and immune cells of the endometrium for biosensing and immunomodulation required for successful implantation. EVs have also been shown to play a role in infertility, recurrent implantation failure, endometriosis, endometritis and endometrial cancer. Further research should set a stage for EVs as non-invasive "liquid biopsy" tools for assessment of endometrial health.
Collapse
Affiliation(s)
- Anuradha Mishra
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Nancy Ashary
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Richa Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| |
Collapse
|
124
|
Androglobin gene expression patterns and FOXJ1-dependent regulation indicate its functional association with ciliogenesis. J Biol Chem 2021; 296:100291. [PMID: 33453283 PMCID: PMC7949040 DOI: 10.1016/j.jbc.2021.100291] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Androglobin (ADGB) represents the latest addition to the globin superfamily in metazoans. The chimeric protein comprises a calpain domain and a unique circularly permutated globin domain. ADGB expression levels are most abundant in mammalian testis, but its cell-type-specific expression, regulation, and function have remained unexplored. Analyzing bulk and single-cell mRNA-Seq data from mammalian tissues, we found that—in addition to the testes—ADGB is prominently expressed in the female reproductive tract, lungs, and brain, specifically being associated with cell types forming motile cilia. Correlation analysis suggested coregulation of ADGB with FOXJ1, a crucial transcription factor of ciliogenesis. Investigating the transcriptional regulation of the ADGB gene, we characterized its promoter using epigenomic datasets, exogenous promoter-dependent luciferase assays, and CRISPR/dCas9-VPR-mediated activation approaches. Reporter gene assays revealed that FOXJ1 indeed substantially enhanced luciferase activity driven by the ADGB promoter. ChIP assays confirmed binding of FOXJ1 to the endogenous ADGB promoter region. We dissected the minimal sequence required for FOXJ1-dependent regulation and fine mapped the FOXJ1 binding site to two evolutionarily conserved regions within the ADGB promoter. FOXJ1 overexpression significantly increased endogenous ADGB mRNA levels in HEK293 and MCF-7 cells. Similar results were observed upon RFX2 overexpression, another key transcription factor in ciliogenesis. The complex transcriptional regulation of the ADGB locus was illustrated by identifying a distal enhancer, responsible for synergistic regulation by RFX2 and FOXJ1. Finally, cell culture studies indicated an ADGB-dependent increase in the number of ciliated cells upon overexpression of the full-length protein, confirming a ciliogenesis-associated role of ADGB in mammals.
Collapse
|
125
|
Ojosnegros S, Seriola A, Godeau AL, Veiga A. Embryo implantation in the laboratory: an update on current techniques. Hum Reprod Update 2021; 27:501-530. [PMID: 33410481 DOI: 10.1093/humupd/dmaa054] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The embryo implantation process is crucial for the correct establishment and progress of pregnancy. During implantation, the blastocyst trophectoderm cells attach to the epithelium of the endometrium, triggering intense cell-to-cell crosstalk that leads to trophoblast outgrowth, invasion of the endometrial tissue, and formation of the placenta. However, this process, which is vital for embryo and foetal development in utero, is still elusive to experimentation because of its inaccessibility. Experimental implantation is cumbersome and impractical in adult animal models and is inconceivable in humans. OBJECTIVE AND RATIONALE A number of custom experimental solutions have been proposed to recreate different stages of the implantation process in vitro, by combining a human embryo (or a human embryo surrogate) and endometrial cells (or a surrogate for the endometrial tissue). In vitro models allow rapid high-throughput interrogation of embryos and cells, and efficient screening of molecules, such as cytokines, drugs, or transcription factors, that control embryo implantation and the receptivity of the endometrium. However, the broad selection of available in vitro systems makes it complicated to decide which system best fits the needs of a specific experiment or scientific question. To orient the reader, this review will explore the experimental options proposed in the literature, and classify them into amenable categories based on the embryo/cell pairs employed.The goal is to give an overview of the tools available to study the complex process of human embryo implantation, and explain the differences between them, including the advantages and disadvantages of each system. SEARCH METHODS We performed a comprehensive review of the literature to come up with different categories that mimic the different stages of embryo implantation in vitro, ranging from initial blastocyst apposition to later stages of trophoblast invasion or gastrulation. We will also review recent breakthrough advances on stem cells and organoids, assembling embryo-like structures and endometrial tissues. OUTCOMES We highlight the most relevant systems and describe the most significant experiments. We focus on in vitro systems that have contributed to the study of human reproduction by discovering molecules that control implantation, including hormones, signalling molecules, transcription factors and cytokines. WIDER IMPLICATIONS The momentum of this field is growing thanks to the use of stem cells to build embryo-like structures and endometrial tissues, and the use of bioengineering to extend the life of embryos in culture. We propose to merge bioengineering methods derived from the fields of stem cells and reproduction to develop new systems covering a wider window of the implantation process.
Collapse
Affiliation(s)
- Samuel Ojosnegros
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Seriola
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Amélie L Godeau
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Veiga
- B arcelona Stem Cell Bank, Regenerative Medicine Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain.,Reproductive Medicine Service, Dexeus Mujer, Hospital Universitari Dexeus, Barcelona, Spain
| |
Collapse
|
126
|
Multidimensional transcriptomic mapping of human endometrium at single-cell resolution. Nat Med 2020; 26:1513-1514. [PMID: 32929267 DOI: 10.1038/s41591-020-1075-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
127
|
Suthaporn S, Jayaprakasan K, Thornton J, Walker K, Medrano JH, Castellanos M, May S, Polanski L, Raine-Fenning N, Maalouf WE. Suboptimal mid-luteal progesterone concentrations are associated with aberrant endometrial gene expression, potentially resulting in implantation failure. Reprod Biomed Online 2020; 42:595-608. [PMID: 33608186 DOI: 10.1016/j.rbmo.2020.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/13/2020] [Accepted: 10/29/2020] [Indexed: 11/17/2022]
Abstract
RESEARCH QUESTION What is the difference in endometrial transcriptomics between women with normal and with low mid-luteal progesterone during the implantation window? DESIGN An endometrial biopsy and serum progesterone concentration were taken from participants during the mid-luteal phase (LH+7 to LH+9). A total of 12 participants were recruited and categorized into two groups based on their progesterone concentrations: normal progesterone (>15 ng/ml, n = 6) and low progesterone (<15 ng/ml, n = 6). Global endometrial gene expression between the two groups was compared by microarray techniques. Principal component analysis was used to display the gene's expression pattern. Pathway and gene ontology enrichment analysis were performed to determine the biological mechanism of progesterone on the endometrium. RESULTS Several key genes related to endometrial receptivity were found to be regulated by progesterone. With regard to gene ontology and pathway analysis, progesterone was shown to be mainly involved in structure morphogenesis predominantly during a process of decidualization, extracellular matrix-receptor interaction and cell adhesion. Distinct differences were observed in the transcriptomic profiles between the two groups, indicating potential impairment of endometrial receptivity in women with suboptimal progesterone concentrations. There was a relatively similar pattern of gene expression between endometrial samples with progesterone concentrations approximately 10 ng/ml and >15 ng/ml. Thus, a progesterone concentration of between 10 and 15 ng/ml appears to be sufficient to induce endometrial receptivity. CONCLUSIONS Abnormally low progesterone below the threshold of 10-15 ng/ml during the implantation window results in aberrant endometrial gene expression that may affect implantation potential.
Collapse
Affiliation(s)
- Sutham Suthaporn
- Division of Obstetrics and Gynaecology, School of Clinical Sciences, University of Nottingham, Nottingham, UK
| | | | - Jim Thornton
- Division of Obstetrics and Gynaecology, School of Clinical Sciences, University of Nottingham, Nottingham, UK
| | - Kate Walker
- Division of Obstetrics and Gynaecology, School of Clinical Sciences, University of Nottingham, Nottingham, UK
| | - Juan Hernandez Medrano
- Division of Obstetrics and Gynaecology, School of Clinical Sciences, University of Nottingham, Nottingham, UK
| | - Marcos Castellanos
- Nottingham Arabidopsis Stock Centre, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Sean May
- Nottingham Arabidopsis Stock Centre, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Lukasz Polanski
- Division of Obstetrics and Gynaecology, School of Clinical Sciences, University of Nottingham, Nottingham, UK
| | - Nick Raine-Fenning
- Nurture Fertility, The East Midlands Fertility Centre, Bostocks Lane, Nottingham, UK
| | - Walid E Maalouf
- Division of Obstetrics and Gynaecology, School of Clinical Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
128
|
Determining the Molecular Background of Endometrial Receptivity in Adenomyosis. Biomolecules 2020; 10:biom10091311. [PMID: 32933042 PMCID: PMC7563201 DOI: 10.3390/biom10091311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background: Adenomyosis is a gynaecological condition with limited evidence of negative impact to endometrial receptivity. It is commonly associated with endometriosis, which has been shown to alter endometrial expression patterns. Therefore, the candidate genes identified in endometriosis could serve as a source to study endometrial function in adenomyosis. Methods: Transcripts/proteins associated with endometrial receptivity in women with adenomyosis or endometriosis and healthy women were obtained from publications and their nomenclature was adopted according to the HUGO Gene Nomenclature Committee (HGNC). Retrieved genes were analysed for enriched pathways using Cytoscape/Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Reactome tools to prioritise candidates for endometrial receptivity. These were used for validation on women with (n = 9) and without (n = 13) adenomyosis. Results: Functional enrichment analysis of 173, 42 and 151 genes associated with endometriosis, adenomyosis and healthy women, respectively, revealed signalling by interleukins and interleukin-4 and interleukin-13 signalling pathways, from which annotated LIF, JUNB, IL6, FOS, IL10 and SOCS3 were prioritised. Selected genes showed downregulated expression levels in adenomyosis compared to the control group, but without statistical significance. Conclusion: This is the first integrative study providing putative candidate genes and pathways characterising endometrial receptivity in women with adenomyosis in comparison to healthy women and women with endometriosis.
Collapse
|
129
|
Saare M, Laisk T, Teder H, Paluoja P, Palta P, Koel M, Kirss F, Karro H, Sõritsa D, Salumets A, Krjutškov K, Peters M. A molecular tool for menstrual cycle phase dating of endometrial samples in endometriosis transcriptome studies†. Biol Reprod 2020; 101:1-3. [PMID: 31004479 DOI: 10.1093/biolre/ioz072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 01/30/2023] Open
Affiliation(s)
- Merli Saare
- Competence Centre on Health Technologies; Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu; Tartu, Estonia
| | - Triin Laisk
- Competence Centre on Health Technologies; Tartu, Estonia.,Estonian Genome Center Science Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Hindrek Teder
- Competence Centre on Health Technologies; Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Priit Paluoja
- Competence Centre on Health Technologies; Tartu, Estonia.,Institute of Computer Science, University of Tartu, Estonia
| | - Priit Palta
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Mariann Koel
- Competence Centre on Health Technologies; Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Fred Kirss
- Tartu University Hospital, Women's Clinic, Tartu, Estonia
| | - Helle Karro
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu; Tartu, Estonia.,Tartu University Hospital, Women's Clinic, Tartu, Estonia
| | - Deniss Sõritsa
- Competence Centre on Health Technologies; Tartu, Estonia.,Elite Clinic, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies; Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu; Tartu, Estonia.,Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies; Tartu, Estonia.,Research Program of Molecular Neurology, Research Programs Unit, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Maire Peters
- Competence Centre on Health Technologies; Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu; Tartu, Estonia
| |
Collapse
|
130
|
Vergaro P, Tiscornia G, Zambelli F, Rodríguez A, Santaló J, Vassena R. Trophoblast attachment to the endometrial epithelium elicits compartment-specific transcriptional waves in an in-vitro model. Reprod Biomed Online 2020; 42:26-38. [PMID: 33051136 DOI: 10.1016/j.rbmo.2020.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 01/02/2023]
Abstract
RESEARCH QUESTION Which are the early compartment-specific transcriptional responses of the trophoblast and the endometrial epithelium throughout early attachment during implantation? DESIGN An endometrial epithelium proxy (cell line Ishikawa) was co-cultured with spheroids of a green fluorescent protein (GFP) expressing trophoblast cell line (JEG-3). After 0, 8 and 24 h of co-culture, the compartments were sorted by fluorescence-activated cell sorting; GFP+ (trophoblast), GFP- (epithelium) and non-co-cultured control populations were analysed (in triplicate) by RNA-seq and gene set enrichment analysis (GSEA). RESULTS Trophoblast challenge induced a wave of transcriptional changes in the epithelium that resulted in 295 differentially regulated genes involving epithelial to mesenchymal transition (EMT), cell movement, apoptosis, hypoxia, inflammation, allograft rejection, myogenesis and cell signalling at 8 h. Interestingly, many of the enriched pathways were subsequently de-enriched by 24 h (i.e. EMT, cell movement, allograft rejection, myogenesis and cell signalling). In the trophoblast, the co-culture induced more transcriptional changes and regulation of a variety of pathways. A total of 1247 and 481 genes were differentially expressed after 8 h and from 8 to 24 h, respectively. Angiogenesis and hypoxia were over-represented at both stages, while EMT and cell signalling only were at 8 h; from 8 to 24 h, inflammation and oestrogen response were enriched, while proliferation was under-represented. CONCLUSIONS Successful attachment produced a series of dynamic changes in gene expression, characterized by an overall early and transient transcriptional up-regulation in the receptive epithelium, in contrast to a more dynamic transcriptional response in the trophoblast.
Collapse
Affiliation(s)
- Paula Vergaro
- Clínica EUGIN Barcelona, Spain; Facultat de Biociències, Unitat de Biologia Cel•lular, Universitat Autònoma de Barcelona, Spain
| | - Gustavo Tiscornia
- Clínica EUGIN Barcelona, Spain; Centro de Investigação em Biomedicina (CBMR), Universidade do Algarve, Portugal
| | | | | | - Josep Santaló
- Facultat de Biociències, Unitat de Biologia Cel•lular, Universitat Autònoma de Barcelona, Spain
| | | |
Collapse
|
131
|
Baron C, Haouzi D, Gala A, Ferrieres-Hoa A, Vintejoux E, Brouillet S, Hamamah S. [Endometrial receptivity in assisted reproductive techniques: An aspect to investigate in embryo implantation failure]. ACTA ACUST UNITED AC 2020; 49:128-136. [PMID: 32721539 DOI: 10.1016/j.gofs.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 10/23/2022]
Abstract
Infertility affects between 8 and 12% of reproductive-age couples worldwide. Despite improvements in assisted reproductive techniques (ART), live birth rates are still limited. In clinical practice, imaging and microscopy are currently widely used, but their diagnostic effectiveness remains limited. In research, the emergence of innovative techniques named OMICS would improve the identification of the implantation window, while progressing in the understanding of the pathophysiological mechanisms involved in embryo implantation failures. To date, transcriptomic analysis seems to be the most promising approach in clinical research. The objective of this review is to present the results obtained with the different approaches available in clinical practice and in research to assess endometrial receptivity in patients undergoing ART.
Collapse
Affiliation(s)
- C Baron
- Inserm U1203, développement embryonnaire précoce humain et pluripotence, université Montpellier, Montpellier, France
| | - D Haouzi
- Inserm U1203, développement embryonnaire précoce humain et pluripotence, université Montpellier, Montpellier, France
| | - A Gala
- Département de biologie de la reproduction, biologie de la reproduction et diagnostic pre-implantatoire, université Montpellier, CHU Montpellier, Montpellier, France
| | - A Ferrieres-Hoa
- Département de biologie de la reproduction, biologie de la reproduction et diagnostic pre-implantatoire, université Montpellier, CHU Montpellier, Montpellier, France
| | - E Vintejoux
- Département de médecine de la reproduction, CHU de Montpellier, 34000 Montpellier, France
| | - S Brouillet
- Inserm U1203, développement embryonnaire précoce humain et pluripotence, université Montpellier, Montpellier, France; Département de biologie de la reproduction, biologie de la reproduction et diagnostic pre-implantatoire, université Montpellier, CHU Montpellier, Montpellier, France; Inserm 1036, laboratoire biologie du cancer et de l'infection (BCI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), institut de biosciences et biotechnologies de Grenoble (BIG), université Grenoble-Alpes, 38000 Grenoble, France; Centre clinique et biologique d'assistance médicale à la procréation - centre d'étude et de conservation des œufs et du sperme humains (CECOS), hôpital Couple-Enfant, centre hospitalier universitaire de Grenoble, La Tronche, France.
| | - S Hamamah
- Inserm U1203, développement embryonnaire précoce humain et pluripotence, université Montpellier, Montpellier, France; Département de biologie de la reproduction, biologie de la reproduction et diagnostic pre-implantatoire, université Montpellier, CHU Montpellier, Montpellier, France.
| |
Collapse
|
132
|
O'Neil EV, Burns GW, Spencer TE. Extracellular vesicles: Novel regulators of conceptus-uterine interactions? Theriogenology 2020; 150:106-112. [PMID: 32164992 PMCID: PMC8559595 DOI: 10.1016/j.theriogenology.2020.01.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
This review focuses on extracellular vesicles (EV) in the uterus and their potential biological roles as mediators of conceptus-uterine interactions essential for implantation and pregnancy establishment. Growing evidence supports the idea that EV are produced by both the endometrium and conceptus during pregnancy. Exosomes and microvesicles, collectively termed EV, mediate cell-cell communication in other tissues and organs. EV have distinct cargo, including lipids, proteins, RNAs, and DNA, that vary depending on the cell of origin and regulate processes including angiogenesis, adhesion, proliferation, cell survival, inflammation, and immune response in recipient cells. Molecular crosstalk between the endometrial epithelium and the blastocyst/conceptus, particularly the trophectoderm, regulates early pregnancy events and is a prerequisite for successful implantation. Trafficking of EV between the conceptus and endometrium may represent a key form of communication important for pregnancy establishment. Increased understanding of EV in the uterine environment and their physiological roles in endometrial-conceptus interactions is expected to provide opportunities to improve pregnancy success.
Collapse
Affiliation(s)
- Eleanore V O'Neil
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65203, USA
| | - Gregory W Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65203, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65203, USA.
| |
Collapse
|
133
|
Deng W, Yuan J, Cha J, Sun X, Bartos A, Yagita H, Hirota Y, Dey SK. Endothelial Cells in the Decidual Bed Are Potential Therapeutic Targets for Preterm Birth Prevention. Cell Rep 2020; 27:1755-1768.e4. [PMID: 31067461 DOI: 10.1016/j.celrep.2019.04.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/18/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
Preterm birth (PTB) is a syndrome with many origins. Among them, infection or inflammation are major risk factors for PTB; however, local defense mechanisms to mount anti-inflammatory responses against inflammation-induced PTB are poorly understood. Here, we show that endothelial TLR4 in the decidual bed is critical for sensing inflammation during pregnancy because mice with endothelial Tlr4 deletion are resistant to lipopolysaccharide (LPS)-induced PTB. Under inflammatory conditions, IL-6 is readily expressed in decidual endothelial cells with signal transducer and activator of transcription 3 (Stat3) phosphorylation in perivascular stromal cells, which then regulates expression of anti-inflammatory IL-10. Our observation that administration of an IL-10 neutralizing antibody predisposing mice to PTB shows IL-10's anti-inflammatory role to prevent PTB. We show that the integration of endothelial and perivascular stromal signaling can determine pregnancy outcomes. These findings highlight a role for endothelial TLR4 in inflammation-induced PTB and may offer a potential therapeutic target to prevent PTB.
Collapse
Affiliation(s)
- Wenbo Deng
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45299, USA; College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jia Yuan
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45299, USA; College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jeeyeon Cha
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45299, USA; College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Amanda Bartos
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45299, USA; College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, University of Tokyo, Japan
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45299, USA; College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
134
|
Critchley HOD, Maybin JA, Armstrong GM, Williams ARW. Physiology of the Endometrium and Regulation of Menstruation. Physiol Rev 2020; 100:1149-1179. [DOI: 10.1152/physrev.00031.2019] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The physiological functions of the uterine endometrium (uterine lining) are preparation for implantation, maintenance of pregnancy if implantation occurs, and menstruation in the absence of pregnancy. The endometrium thus plays a pivotal role in reproduction and continuation of our species. Menstruation is a steroid-regulated event, and there are alternatives for a progesterone-primed endometrium, i.e., pregnancy or menstruation. Progesterone withdrawal is the trigger for menstruation. The menstruating endometrium is a physiological example of an injured or “wounded” surface that is required to rapidly repair each month. The physiological events of menstruation and endometrial repair provide an accessible in vivo human model of inflammation and tissue repair. Progress in our understanding of endometrial pathophysiology has been facilitated by modern cellular and molecular discovery tools, along with animal models of simulated menses. Abnormal uterine bleeding (AUB), including heavy menstrual bleeding (HMB), imposes a massive burden on society, affecting one in four women of reproductive age. Understanding structural and nonstructural causes underpinning AUB is essential to optimize and provide precision in patient management. This is facilitated by careful classification of causes of bleeding. We highlight the crucial need for understanding mechanisms underpinning menstruation and its aberrations. The endometrium is a prime target tissue for selective progesterone receptor modulators (SPRMs). This class of compounds has therapeutic potential for the clinical unmet need of HMB. SPRMs reduce menstrual bleeding by mechanisms still largely unknown. Human menstruation remains a taboo topic, and many questions concerning endometrial physiology that pertain to menstrual bleeding are yet to be answered.
Collapse
Affiliation(s)
- Hilary O. D. Critchley
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Jacqueline A. Maybin
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Gregory M. Armstrong
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Alistair R. W. Williams
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
135
|
SARS-CoV-2 infection risk assessment in the endometrium: viral infection-related gene expression across the menstrual cycle. Fertil Steril 2020; 114:223-232. [PMID: 32641214 PMCID: PMC7298504 DOI: 10.1016/j.fertnstert.2020.06.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023]
Abstract
Objective To determine the susceptibility of the endometrium to infection by—and thereby potential damage from—SARS-CoV-2. Design Analysis of SARS-Cov-2 infection-related gene expression from endometrial transcriptomic data sets. Setting Infertility research department affiliated with a public hospital. Patient(s) Gene expression data from five studies in 112 patients with normal endometrium collected throughout the menstrual cycle. Intervention(s) None. Main Outcome Measure(s) Gene expression and correlation between viral infectivity genes and age throughout the menstrual cycle. Result(s) Gene expression was high for TMPRSS4, CTSL, CTSB, FURIN, MX1, and BSG; medium for TMPRSS2; and low for ACE2. ACE2, TMPRSS4, CTSB, CTSL, and MX1 expression increased toward the window of implantation. TMPRSS4 expression was positively correlated with ACE2, CTSB, CTSL, MX1, and FURIN during several cycle phases; TMPRSS2 was not statistically significantly altered across the cycle. ACE2, TMPRSS4, CTSB, CTSL, BSG, and MX1 expression increased with age, especially in early phases of the cycle. Conclusion(s) Endometrial tissue is likely safe from SARS-CoV-2 cell entry based on ACE2 and TMPRSS2 expression, but susceptibility increases with age. Further, TMPRSS4, along with BSG-mediated viral entry into cells, could imply a susceptible environment for SARS-CoV-2 entry via different mechanisms. Additional studies are warranted to determine the true risk of endometrial infection by SARS-CoV-2 and implications for fertility treatments.
Collapse
|
136
|
Yu L, Fernandez S, Brock G. Power analysis for RNA-Seq differential expression studies using generalized linear mixed effects models. BMC Bioinformatics 2020; 21:198. [PMID: 32429934 PMCID: PMC7236949 DOI: 10.1186/s12859-020-3541-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/07/2020] [Indexed: 11/10/2022] Open
Abstract
Background Power analysis becomes an inevitable step in experimental design of current biomedical research. Complex designs allowing diverse correlation structures are commonly used in RNA-Seq experiments. However, the field currently lacks statistical methods to calculate sample size and estimate power for RNA-Seq differential expression studies using such designs. To fill the gap, simulation based methods have a great advantage by providing numerical solutions, since theoretical distributions of test statistics are typically unavailable for such designs. Results In this paper, we propose a novel simulation based procedure for power estimation of differential expression with the employment of generalized linear mixed effects models for correlated expression data. We also propose a new procedure for power estimation of differential expression with the use of a bivariate negative binomial distribution for paired designs. We compare the performance of both the likelihood ratio test and Wald test under a variety of simulation scenarios with the proposed procedures. The simulated distribution was used to estimate the null distribution of test statistics in order to achieve the desired false positive control and was compared to the asymptotic Chi-square distribution. In addition, we applied the procedure for paired designs to the TCGA breast cancer data set. Conclusions In summary, we provide a framework for power estimation of RNA-Seq differential expression under complex experimental designs. Simulation results demonstrate that both the proposed procedures properly control the false positive rate at the nominal level.
Collapse
Affiliation(s)
- Lianbo Yu
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, 1800 Cannon Dr., Columbus, 43210, OH, USA.
| | - Soledad Fernandez
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, 1800 Cannon Dr., Columbus, 43210, OH, USA
| | - Guy Brock
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, 1800 Cannon Dr., Columbus, 43210, OH, USA
| |
Collapse
|
137
|
Moharrami T, Ai J, Ebrahimi-Barough S, Nouri M, Ziadi M, Pashaiefar H, Yazarlou F, Ahmadvand M, Najafi S, Modarressi MH. Influence of Follicular Fluid and Seminal Plasma on The Expression of Endometrial Receptivity Genes in Endometrial Cells. CELL JOURNAL 2020; 22:457-466. [PMID: 32347039 PMCID: PMC7211287 DOI: 10.22074/cellj.2021.6851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/24/2019] [Indexed: 11/04/2022]
Abstract
Objective Endometrial receptivity plays a key role in pregnancy success in assisted reproduction cycles. Recent evidence suggests that seminal plasma (SP) and follicular fluid (FF) influence the uterine endometrium to improve implantation of the embryo and the establishment of pregnancy. In this study, we attempt to assess the influence of FF and SP on the expression levels of main endometrial receptivity genes (HOXA10, HOXA11, ITGAV, ITGB3 and LIF) in endometrial stromal cells. Materials and Methods In this experimental study, SP and FF were collected from 15 healthy fertile men and 15 healthy fertile women, respectively. Tissue specimens of the endometrium were obtained from 12 women undergoing hysterectomy for benign conditions. After endometrial stromal cell isolation and culture, dose- and time-dependent cytotoxic effects of pooled FF and SP on 3D-cultured endometrial cells were evaluated. A second independent set of 12 endometrium samples was treated under determined optimum conditions and evaluated for gene expression analysis using quantitative real-time polymerase chain reaction (qRT-PCR). Results The results of this study indicated that exposure of endometrial stromal cells to FF resulted in the elevated expression of HOXA10 (fold change=2.6, P=0.02), HOXA11 (fold change=3.3, P=0.002), LIF (fold change=4.6, P=0.0003), ITGB3 (fold change=3.5, P=0.012), and ITGAV (fold change=2.8, P=0.001) compared to untreated cells. In addition, we found that SP-treated endometrial cells showed increased mRNA levels of only the LIF gene (fold change=2.5, P=0.008) compared to untreated cells. Conclusion Human SP and FF may modulate the endometrial receptivity and improve the implantation rate in assisted reproduction cycles through the up-regulation of endometrial receptivity genes.
Collapse
Affiliation(s)
- Tamouchin Moharrami
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ziadi
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Pashaiefar
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yazarlou
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Najafi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
138
|
Sacchi S, Sena P, Addabbo C, Cuttone E, La Marca A. Gonadotrophins modulate cell death-related genes expression in human endometrium. Horm Mol Biol Clin Investig 2020; 41:hmbci-2019-0074. [PMID: 32304301 DOI: 10.1515/hmbci-2019-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/18/2020] [Indexed: 11/15/2022]
Abstract
Background Gonadotrophins exert their functions by binding follicle-stimulating hormone receptor (FSHR) or luteinizing hormone and human chorionic gonadotropin receptor (LHCGR) present on endometrium. Within ovaries, FSH induces autophagy and apoptosis of granulosa cells leading to atresia of non-growing follicles, whereas hCG and LH have anti-apoptotic functions. Endometrial cells express functioning gonadotrophin receptors. The objective of this study was to analyze the effect of gonadotrophins on physiology and endometrial cells survival. Materials and methods Collected endometria were incubated for 48 or 72 h with 100 ng/mL of recombinant human FSH (rhFSH), recombinant human LH (rhLH) or highly purified hCG (HPhCG) alone or combined. Controls omitted gonadotrophins. The effect of gonadotrophins on cytochrome P450 family 11 subfamily A polypeptide 1 (CYP11A1), hypoxia inducible factor 1α (HIF1A), and cell-death-related genes expression was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Immunohistochemistry for microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) and apoptotic protease activating factor 1 (APAF-1) was performed. Results Gonadotrophins are able to modulate the endometrial cells survival. FSH induced autophagy and apoptosis by increasing the relative expression of MAP1LC3B and FAS receptor. In FSH-treated samples, expression of apoptosis marker APAF-1 was detected and co-localized on autophagic cells. hCG and LH does not modulate the expression of cell-death-related genes while the up-regulation of pro-proliferative epiregulin gene was observed. When combined with FSH, hCG and LH prevent autophagy and apoptosis FSH-induced. Conclusions Different gonadotrophins specifically affect endometrial cells viability differently: FSH promotes autophagy and apoptosis while LH and hCG alone or combined with rhFSH does not.
Collapse
Affiliation(s)
- Sandro Sacchi
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Paola Sena
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Addabbo
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Erika Cuttone
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Antonio La Marca
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University of Modena and Reggio Emilia and Clinica Eugin Modena, Via del Pozzo 71, 41100 Modena, Italy, Phone: +390594224671
| |
Collapse
|
139
|
Berkhout RP, Lambalk CB, Repping S, Hamer G, Mastenbroek S. Premature expression of the decidualization marker prolactin is associated with repeated implantation failure. Gynecol Endocrinol 2020; 36:360-364. [PMID: 31389284 DOI: 10.1080/09513590.2019.1650344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Repeated implantation failure (RIF) is a poorly understood reproductive pathology defined by the inability to achieve a clinical pregnancy in at least three consecutive IVF cycles. In this study, we investigated whether the onset of decidualization, marked by prolactin (PRL) expression, is associated with RIF. We performed a retrospective cohort study using endometrial biopsies from women with idiopathic subfertility, that conceived naturally during the same cycle in which the biopsy was taken (group 1; n = 15) conceived naturally within three months after the biopsy was taken (group 2; n = 20), or unsuccessfully underwent six IUI cycles and three IVF cycles with transfer of at least one high-quality embryo (group 3, RIF; n = 20). Our results demonstrated that immunohistochemical PRL-staining was present in 8/15 women from group 1 (53.3%), in 1/20 women from group 2 (5.0%), and in 11/20 women from group 3 (55.0%). Increased proliferation, analyzed by Ki67 expression, was seen in women that were pregnant during the biopsy, compared to all women combined that were not pregnant (p≤.01). In conclusion, our study demonstrates that premature expression of the decidualization marker PRL during the luteal phase is associated with RIF.
Collapse
Affiliation(s)
- Robbert P Berkhout
- Amsterdam Reproduction & Development, Center for Reproductive Medicine, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Center for Reproductive Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Cornelis B Lambalk
- Amsterdam Reproduction & Development, Center for Reproductive Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sjoerd Repping
- Amsterdam Reproduction & Development, Center for Reproductive Medicine, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Geert Hamer
- Amsterdam Reproduction & Development, Center for Reproductive Medicine, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sebastiaan Mastenbroek
- Amsterdam Reproduction & Development, Center for Reproductive Medicine, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
140
|
Jiao Y, Xue N, Shui X, Yu C, Hu C. Application of ultrasound multimodal score in the assessment of endometrial receptivity in patients with artificial abortion. Insights Imaging 2020; 11:29. [PMID: 32115671 PMCID: PMC7049539 DOI: 10.1186/s13244-020-0840-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the value and feasibility of ultrasound multimodal score in the evaluation of endometrial receptivity in patients with artificial abortion (AA). METHODS Sixty-eight patients with AA (AA group) and 70 women of the childbearing age without any history of abortion (control group) were recruited between January 2018 and December 2018. All subjects received the examination of endometrium in the middle luteum phase (7-9 days after ovulation) with two-dimensional gray-scale ultrasound, two-dimensional color Doppler ultrasound, and three-dimensional ultrasound, and the quantitative scores were obtained and compared between two groups. RESULTS The quantitative score of endometrial receptivity was 10.46 ± 2.99 in the AA group and 13.49 ± 2.21 in the control group showing significant difference (p < 0.05). CONCLUSIONS Ultrasound multimodal quantitative scores can be used to evaluate the endometrial receptivity of patients with AA.
Collapse
Affiliation(s)
- Yan Jiao
- Department of Radiology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, China.,Obstetrics and Gynecology Ultrasonic Department, Wenzhou Peoples' Hospital, Wenzhou, 325000, China
| | - Nianyu Xue
- Department of Diagnostic Ultrasonography, Ningbo First Hospital, Ningbo, 315010, China
| | - Xujuan Shui
- Obstetrics and Gynecology Ultrasonic Department, Wenzhou Peoples' Hospital, Wenzhou, 325000, China
| | - Caicha Yu
- Obstetrics and Gynecology Ultrasonic Department, Wenzhou Peoples' Hospital, Wenzhou, 325000, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
141
|
Grasso A, Navarro R, Balaguer N, Moreno I, Alama P, Jimenez J, Simón C, Vilella F. Endometrial Liquid Biopsy Provides a miRNA Roadmap of the Secretory Phase of the Human Endometrium. J Clin Endocrinol Metab 2020; 105:5609155. [PMID: 31665361 DOI: 10.1210/clinem/dgz146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023]
Abstract
CONTEXT Endometrial liquid biopsy (ELB) is a minimally invasive alternative for research and diagnosis in endometrial biology. OBJECTIVE We sought to establish an endometrial micro ribonucleic acid (miRNA) roadmap based on ELB during the secretory phase of the menstrual cycle in both natural and hormonal replacement therapy (HRT) cycles. DESIGN Human ELB samples (n = 58) were obtained from healthy ovum donors undergoing a natural and an HRT cycle consecutively. miRNA profiles were identified using next-generation sequencing (NGS). For functional analysis, messenger ribonucleic acid targets were chosen among those reported in the endometrial receptivity analysis. RESULTS The human endometrial secretory phase is characterized by a dynamic miRNA secretion pattern that varies from the prereceptive to the receptive stages. No differences in miRNA profiles were found among natural versus HRT cycles in the same women, reinforcing the similarities in functional and clinical outcomes in natural versus medicated cycles. Bioinformatic analysis revealed 62 validated interactions and 81 predicted interactions of miRNAs differentially expressed in the HRT cycle. Annotation of these genes linked them to 51 different pathways involved in endometrial receptivity. CONCLUSION This NGS-based study describes the miRNA signature in human ELB during the secretory phase of natural and HRT cycles. A consistent endometrial miRNA signature was observed in the acquisition of endometrial receptivity. Interestingly, no significant differences in miRNA expression were found in natural versus HRT cycles reinforcing the functional clinical similarities between both approaches.
Collapse
Affiliation(s)
- Alessia Grasso
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Roser Navarro
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Nuria Balaguer
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Inmaculada Moreno
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | | | - Jorge Jimenez
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - C Simón
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
- IVI Valencia, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | - F Vilella
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| |
Collapse
|
142
|
Ye X. Uterine Luminal Epithelium as the Transient Gateway for Embryo Implantation. Trends Endocrinol Metab 2020; 31:165-180. [PMID: 31866217 PMCID: PMC6983336 DOI: 10.1016/j.tem.2019.11.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
The uterine luminal epithelium (LE) is the first maternal contact for an implanting embryo. Intrauterine fluid resorption, cessation of LE proliferation and apoptosis, and LE structural changes are prerequisites for establishing transient uterine receptivity for embryo implantation. Vesicle trafficking in the LE and receptor-mediated paracrine and autocrine mechanisms are crucial both for LE preparation and LE communications with the embryo and stroma during the initiation of embryo implantation. This review mainly covers recent in vivo studies in LE of mouse models from 0.5 days post-coitus (D0.5) to ∼D4 20 h when the trophoblasts pass through the LE layer for embryo implantation. The review is organized into three interconnected sections: preimplantation LE preparation for embryo attachment, embryo-LE communications, and LE-stroma communications.
Collapse
Affiliation(s)
- Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
143
|
Lucas ES, Vrljicak P, Muter J, Diniz-da-Costa MM, Brighton PJ, Kong CS, Lipecki J, Fishwick KJ, Odendaal J, Ewington LJ, Quenby S, Ott S, Brosens JJ. Recurrent pregnancy loss is associated with a pro-senescent decidual response during the peri-implantation window. Commun Biol 2020; 3:37. [PMID: 31965050 PMCID: PMC6972755 DOI: 10.1038/s42003-020-0763-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/02/2020] [Indexed: 01/10/2023] Open
Abstract
During the implantation window, the endometrium becomes poised to transition to a pregnant state, a process driven by differentiation of stromal cells into decidual cells (DC). Perturbations in this process, termed decidualization, leads to breakdown of the feto-maternal interface and miscarriage, but the underlying mechanisms are poorly understood. Here, we reconstructed the decidual pathway at single-cell level in vitro and demonstrate that stromal cells first mount an acute stress response before emerging as DC or senescent DC (snDC). In the absence of immune cell-mediated clearance of snDC, secondary senescence transforms DC into progesterone-resistant cells that abundantly express extracellular matrix remodelling factors. Additional single-cell analysis of midluteal endometrium identified DIO2 and SCARA5 as marker genes of a diverging decidual response in vivo. Finally, we report a conspicuous link between a pro-senescent decidual response in peri-implantation endometrium and recurrent pregnancy loss, suggesting that pre-pregnancy screening and intervention may reduce the burden of miscarriage.
Collapse
Affiliation(s)
- Emma S Lucas
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, UK
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Pavle Vrljicak
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, UK
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Joanne Muter
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, UK
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Maria M Diniz-da-Costa
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, UK
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Paul J Brighton
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Chow-Seng Kong
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Julia Lipecki
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Katherine J Fishwick
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Joshua Odendaal
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Lauren J Ewington
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Siobhan Quenby
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, UK
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Sascha Ott
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, UK
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Jan J Brosens
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, UK.
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.
| |
Collapse
|
144
|
Kakar‐Bhanot R, Brahmbhatt K, Kumar V, Suryawanshi AR, Srivastava S, Chaudhari U, Sachdeva G. Plasma membrane proteome of adhesion‐competent endometrial epithelial cells and its modulation by Rab11a. Mol Reprod Dev 2019; 87:17-29. [DOI: 10.1002/mrd.23292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Ruchi Kakar‐Bhanot
- Primate Biology LaboratoryIndian Council of Medical Research‐National Institute for Research in Reproductive Health (ICMR‐NIRRH)Mumbai India
| | - Krupanshi Brahmbhatt
- Primate Biology LaboratoryIndian Council of Medical Research‐National Institute for Research in Reproductive Health (ICMR‐NIRRH)Mumbai India
| | - Vipin Kumar
- Proteomics Laboratory, Department of Bioscience and BioengineeringIndian Institute of TechnologyMumbai India
| | | | - Sanjeeva Srivastava
- Proteomics Laboratory, Department of Bioscience and BioengineeringIndian Institute of TechnologyMumbai India
| | - Uddhav Chaudhari
- Primate Biology LaboratoryIndian Council of Medical Research‐National Institute for Research in Reproductive Health (ICMR‐NIRRH)Mumbai India
| | - Geetanjali Sachdeva
- Primate Biology LaboratoryIndian Council of Medical Research‐National Institute for Research in Reproductive Health (ICMR‐NIRRH)Mumbai India
| |
Collapse
|
145
|
Pathare ADS, Hinduja I. Aberrant DNA methylation profiling affecting the endometrial receptivity in recurrent implantation failure patients undergoing in vitro fertilization. Am J Reprod Immunol 2019; 83:e13196. [PMID: 31595580 DOI: 10.1111/aji.13196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 02/03/2023] Open
Abstract
PROBLEM DNA methylation profile in mid-secretory phase of endometrium is reported to be varied from other phases in natural menstrual cycle. Therefore, we intended to study the impairment in endometrial receptivity by performing whole-genome methylation and gene expression profiling in endometrium of recurrent implantation failure patients (RIF) during IVF under controlled ovarian stimulation (COS). METHOD OF STUDY Endometrial biopsies were collected from IVF-RIF patients (cases, n = 6) and healthy fertile oocyte donors (controls, n = 6) undergoing COS after 6/7th day of human chorionic gonadotropin administration. The whole-genome methylation and gene expression microarray were performed and analysed by GenomeStudio software (P < .05 by Illumina Custom Model), whereas the enrichment analysis was performed using "Database for Annotation, Visualization and Integrated Discovery" (DAVID, V6.8). Significant differentially methylated genes were correlated with dys-regulated genes using Pearson's correlation. RESULTS Differential methylation in RIF patients revealed 448 CpG sites. The enrichment analysis showed aberrant methylation in genes involved in immunological response and G protein activity. Methylation in NLRP2 gene in inflammatory pathway had significant negative correlation with gene expression (P = .008), whereas SERPINA5 gene that is already known to be involved in endometrial receptivity was observed to be hypomethylated in promoter region with highest delta beta value and up-regulated in gene expression analysis. CONCLUSION The aberrant methylation of genes involved in immunological functions and G protein activation was found to be prevalent which might suggest a role in endometrial receptivity. However, the findings need to be further validated on a larger cohort of IVF-RIF patients.
Collapse
Affiliation(s)
- Amruta D S Pathare
- Department of IVF and Research, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Indira Hinduja
- Department of IVF and Research, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| |
Collapse
|
146
|
Stepanjuk A, Koel M, Pook M, Saare M, Jääger K, Peters M, Krjutškov K, Ingerpuu S, Salumets A. MUC20 expression marks the receptive phase of the human endometrium. Reprod Biomed Online 2019; 39:725-736. [PMID: 31519421 DOI: 10.1016/j.rbmo.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/19/2022]
Abstract
RESEARCH QUESTION How does mucin MUC20 expression change during the menstrual cycle in different cell types of human endometrium? DESIGN Study involved examination of MUC20 expression in two previously published RNA-seq datasets in whole endometrial tissue (n = 10), sorted endometrial epithelial (n = 44) or stromal (n = 42) cell samples. RNA-Seq results were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) in whole tissue (n = 10), sorted epithelial (n = 17) and stromal (n = 17) cell samples. MUC20 protein localization and expression were analysed in human endometrium by immunohistochemical analysis of intact endometrial tissue (n = 6) and also Western blot of cultured stromal and epithelial cells (n = 2). RESULTS MUC20 is differentially expressed in the endometrium between the pre-receptive and receptive phases. We show that MUC20 is predominantly expressed by epithelial cells of the receptive endometrium, both at the mRNA (RNA-Seq, P = 0.005; qRT-PCR, P = 0.039) and protein levels (Western blot; immunohistochemistry, P = 0.029). CONCLUSION Our results indicate MUC20 as a novel marker of mid-secretory endometrial biology. We propose a model of MUC20 function in the hepatocyte growth factor (HGF)-activated mesenchymal-epithelial transition (MET) receptor signalling specifically in the receptive phase. Further investigations should reveal the precise function of MUC20 in human endometrium and the possible connection between MUC20 and HGF-activated MET receptor signalling. MUC20 could potentially be included in the list of endometrial receptivity markers after further clinical validation.
Collapse
Affiliation(s)
- Artjom Stepanjuk
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Mariann Koel
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia; Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia
| | - Martin Pook
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Merli Saare
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu 50406, Estonia
| | - Kersti Jääger
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu 50406, Estonia
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia; Research Program of Molecular Neurology, Research Programs Unit, University of Helsinki, and Folkhälsan Institute of Genetics, Haartmaninkatu 8, Helsinki 00290, Finland
| | - Sulev Ingerpuu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu 50406, Estonia; Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu 50411, Estonia; Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, Helsinki 00014, Finland.
| |
Collapse
|
147
|
Messaoudi S, El Kasmi I, Bourdiec A, Crespo K, Bissonnette L, Le Saint C, Bissonnette F, Kadoch IJ. 15 years of transcriptomic analysis on endometrial receptivity: what have we learnt? FERTILITY RESEARCH AND PRACTICE 2019; 5:9. [PMID: 31396393 PMCID: PMC6681490 DOI: 10.1186/s40738-019-0059-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/05/2019] [Indexed: 01/25/2023]
Affiliation(s)
| | | | | | | | | | | | - François Bissonnette
- Ovo r&d, Montreal, Quebec Canada.,2Department of Obstetrics and Gynecology, University of Montreal Hospital Centre, Montreal, Quebec Canada
| | - Isaac-Jacques Kadoch
- Ovo r&d, Montreal, Quebec Canada.,2Department of Obstetrics and Gynecology, University of Montreal Hospital Centre, Montreal, Quebec Canada
| |
Collapse
|
148
|
Wang X, Yu Q. An update on the progress of transcriptomic profiles of human endometrial receptivity. Biol Reprod 2019; 98:440-448. [PMID: 29365037 DOI: 10.1093/biolre/ioy018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
Despite advances in our understanding of fertility, implantation failure remains a significant problem for both spontaneous and assisted pregnancies. Most research efforts concerning the process of implantation are embryo-centric, with a dearth of studies on endometrial factors. Currently, there are no practical and effective diagnostic tools available to precisely predict endometrial receptivity. Transcriptomics, a field based on microarray technology, has a number of procedures for clinical applications, although the functional relevance of most identified genes remains unclear. Importantly, RNA sequencing will further improve the precision and broaden the clinical use of the transcriptome by detecting previously undiscovered genes, which could be used to further our understanding of endometrial receptivity. In this review, potential biomarkers based on endometrium gene expression profiles of human endometrial receptivity were described and compared in natural and stimulated cycles toward discovering future prospects for personalized medical approaches. The intent of this synthesis is to provide researchers, doctors, and clinicians in the field with a better understanding of endometrium receptivity, promote further study in the transcriptome in embryo implantation, and ultimately, improve pregnancy outcome.
Collapse
Affiliation(s)
- Xi Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
149
|
Pisarska MD, Chan JL, Lawrenson K, Gonzalez TL, Wang ET. Genetics and Epigenetics of Infertility and Treatments on Outcomes. J Clin Endocrinol Metab 2019; 104:1871-1886. [PMID: 30561694 PMCID: PMC6463256 DOI: 10.1210/jc.2018-01869] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/12/2018] [Indexed: 02/08/2023]
Abstract
CONTEXT Infertility affects 10% of the reproductive-age population. Even the most successful treatments such as assisted reproductive technologies still result in failed implantation. In addition, adverse pregnancy outcomes associated with infertility have been attributed to these fertility treatments owing to the presumed epigenetic modifications of in vitro fertilization and in vitro embryo development. However, the diagnosis of infertility has been associated with adverse outcomes, and the etiologies leading to infertility have been associated with adverse pregnancy and long-term outcomes. EVIDENCE ACQUISITION We have comprehensively summarized the data available through observational, experimental, cohort, and randomized studies to better define the effect of the underlying infertility diagnosis vs the epigenetics of infertility treatments on treatment success and overall outcomes. EVIDENCE SYNTHESIS Most female infertility results from polycystic ovary syndrome, endometriosis, and unexplained infertility, with some cases resulting from a polycystic ovary syndrome phenotype or underlying endometriosis. In addition to failed implantation, defective implantation can lead to problems with placentation that leads to adverse pregnancy outcomes, affecting both mother and fetus. CONCLUSION Current research, although limited, has suggested that genetics and epigenetics of infertility diagnosis affects disease and overall outcomes. In addition, other fertility treatments, which also lead to adverse outcomes, are aiding in the identification of factors, including the supraphysiologic hormonal environment, that might affect the overall success and healthy outcomes for mother and child. Further studies, including genome-wide association studies, epigenomics studies, and experimental studies, are needed to better identify the factors leading to these outcomes.
Collapse
Affiliation(s)
- Margareta D Pisarska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jessica L Chan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kate Lawrenson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tania L Gonzalez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erica T Wang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
- David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
150
|
Park HS, Kim ES, Ahn EH, Kim JO, An HJ, Kim JH, Lee Y, Lee WS, Kim YR, Kim NK. The microRNApolymorphisms inmiR-150 and miR-1179 are associated with risk of idiopathic recurrent pregnancy loss. Reprod Biomed Online 2019; 39:187-195. [PMID: 31182356 DOI: 10.1016/j.rbmo.2019.03.207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/22/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
RESEARCH QUESTION Are single nucleotide polymorphisms of microRNAs (miRNAs) and risk of idiopathic recurrent pregnancy loss (RPL) associated? DESIGN A total 375 patients with idiopathic RPL (age, mean ± standard deviation [SD] 33.02 ± 4.24 years; body mass index [BMI], mean ± SD, 21.57 ± 3.70 kg/m2) and 276 control participants (age, mean ± SD, 33.01 ± 5.27 years; BMI, mean ± SD, 21.58 ± 3.20) were recruited. Pregnancy loss was diagnosed using human chorionic gonadotrophin concentrations, ultrasonography and/or physical examination prior to 20 weeks of gestation. The genotype of the participants was determined by polymerase chain reaction restriction fragment length polymorphism analysis. Statistical analysis was performed to investigate the differences in frequencies between the control and RPL genotypes RESULTS: The miR-150G>A heterozygous genotype was significantly associated with increased risk of RPL (adjusted odds ratio 2.502, 95% confidence interval 1.555-4.025; P = 0.0002). The miR-1179A>T heterozygous genotype was significantly associated with decreased risk of RPL (adjusted odds ratio 0.633, 95% confidence interval 0.454-0.884; P = 0.007). Some allele combinations that included miR-150A or miRNA-1179T resulted in an increase or decrease in risk of RPL, respectively. CONCLUSIONS The miR-150G>A and miR-1179A>T polymorphisms were more frequently associated with RPL compared with controls.
Collapse
Affiliation(s)
- Han Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Eun Sun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Yubin Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University Seoul, Republic of Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University Seoul, Republic of Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|