101
|
Andrysiak K, Stępniewski J, Dulak J. Human-induced pluripotent stem cell-derived cardiomyocytes, 3D cardiac structures, and heart-on-a-chip as tools for drug research. Pflugers Arch 2021; 473:1061-1085. [PMID: 33629131 PMCID: PMC8245367 DOI: 10.1007/s00424-021-02536-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Development of new drugs is of high interest for the field of cardiac and cardiovascular diseases, which are a dominant cause of death worldwide. Before being allowed to be used and distributed, every new potentially therapeutic compound must be strictly validated during preclinical and clinical trials. The preclinical studies usually involve the in vitro and in vivo evaluation. Due to the increasing reporting of discrepancy in drug effects in animal and humans and the requirement to reduce the number of animals used in research, improvement of in vitro models based on human cells is indispensable. Primary cardiac cells are difficult to access and maintain in cell culture for extensive experiments; therefore, the human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) became an excellent alternative. This technology enables a production of high number of patient- and disease-specific cardiomyocytes and other cardiac cell types for a large-scale research. The drug effects can be extensively evaluated in the context of electrophysiological responses with a use of well-established tools, such as multielectrode array (MEA), patch clamp, or calcium ion oscillation measurements. Cardiotoxicity, which is a common reason for withdrawing drugs from marketing or rejection at final stages of clinical trials, can be easily verified with a use of hiPSC-CM model providing a prediction of human-specific responses and higher safety of clinical trials involving patient cohort. Abovementioned studies can be performed using two-dimensional cell culture providing a high-throughput and relatively lower costs. On the other hand, more complex structures, such as engineered heart tissue, organoids, or spheroids, frequently applied as co-culture systems, represent more physiological conditions and higher maturation rate of hiPSC-derived cells. Furthermore, heart-on-a-chip technology has recently become an increasingly popular tool, as it implements controllable culture conditions, application of various stimulations and continuous parameters read-out. This paper is an overview of possible use of cardiomyocytes and other cardiac cell types derived from hiPSC as in vitro models of heart in drug research area prepared on the basis of latest scientific reports and providing thorough discussion regarding their advantages and limitations.
Collapse
Affiliation(s)
- Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
102
|
Ahmed HMMAM, Moreira Teixeira LS. New Endeavors of (Micro)Tissue Engineering: Cells Tissues Organs on-Chip and Communication Thereof. Cells Tissues Organs 2021; 211:721-735. [PMID: 34198305 DOI: 10.1159/000516356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/30/2021] [Indexed: 01/25/2023] Open
Abstract
The development of new therapies is tremendously hampered by the insufficient availability of human model systems suitable for preclinical research on disease target identification, drug efficacy, and toxicity. Thus, drug failures in clinical trials are too common and too costly. Animal models or standard 2D in vitro tissue cultures, regardless of whether they are human based, are regularly not representative of specific human responses. Approaching near human tissues and organs test systems is the key goal of organs-on-chips (OoC) technology. This technology is currently showing its potential to reduce both drug development costs and time-to-market, while critically lessening animal testing. OoC are based on human (stem) cells, potentially derived from healthy or disease-affected patients, thereby amenable to personalized therapy development. It is noteworthy that the OoC market potential goes beyond pharma, with the possibility to test cosmetics, food additives, or environmental contaminants. This (micro)tissue engineering-based technology is highly multidisciplinary, combining fields such as (developmental) biology, (bio)materials, microfluidics, sensors, and imaging. The enormous potential of OoC is currently facing an exciting new challenge: emulating cross-communication between tissues and organs, to simulate more complex systemic responses, such as in cancer, or restricted to confined environments, as occurs in osteoarthritis. This review describes key examples of multiorgan/tissue-on-chip approaches, or linked organs/tissues-on-chip, focusing on challenges and promising new avenues of this advanced model system. Additionally, major emphasis is given to the translation of established tissue engineering approaches, bottom up and top down, towards the development of more complex, robust, and representative (multi)organ/tissue-on-chip approaches.
Collapse
Affiliation(s)
- Haysam M M A M Ahmed
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands,
| | - Liliana S Moreira Teixeira
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
103
|
Slaughter VL, Rumsey JW, Boone R, Malik D, Cai Y, Sriram NN, Long CJ, McAleer CW, Lambert S, Shuler ML, Hickman JJ. Validation of an adipose-liver human-on-a-chip model of NAFLD for preclinical therapeutic efficacy evaluation. Sci Rep 2021; 11:13159. [PMID: 34162924 PMCID: PMC8222323 DOI: 10.1038/s41598-021-92264-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and strongly correlates with the growing incidence of obesity and type II diabetes. We have developed a human-on-a-chip model composed of human hepatocytes and adipose tissue chambers capable of modeling the metabolic factors that contribute to liver disease development and progression, and evaluation of the therapeutic metformin. This model uses a serum-free, recirculating medium tailored to represent different human metabolic conditions over a 14-day period. The system validated the indirect influence of adipocyte physiology on hepatocytes that modeled important aspects of NAFLD progression, including insulin resistant biomarkers, differential adipokine signaling in different media and increased TNF-α-induced steatosis observed only in the two-tissue model. This model provides a simple but unique platform to evaluate aspects of an individual factor's contribution to NAFLD development and mechanisms as well as evaluate preclinical drug efficacy and reassess human dosing regimens.
Collapse
Affiliation(s)
- Victoria L Slaughter
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - John W Rumsey
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - Rachel Boone
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Duaa Malik
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Yunqing Cai
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | | | - Christopher J Long
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | | | - Stephen Lambert
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Michael L Shuler
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - J J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA.
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA.
| |
Collapse
|
104
|
Liu X, Fang J, Huang S, Wu X, Xie X, Wang J, Liu F, Zhang M, Peng Z, Hu N. Tumor-on-a-chip: from bioinspired design to biomedical application. MICROSYSTEMS & NANOENGINEERING 2021; 7:50. [PMID: 34567763 PMCID: PMC8433302 DOI: 10.1038/s41378-021-00277-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 05/08/2023]
Abstract
Cancer is one of the leading causes of human death, despite enormous efforts to explore cancer biology and develop anticancer therapies. The main challenges in cancer research are establishing an efficient tumor microenvironment in vitro and exploring efficient means for screening anticancer drugs to reveal the nature of cancer and develop treatments. The tumor microenvironment possesses human-specific biophysical and biochemical factors that are difficult to recapitulate in conventional in vitro planar cell models and in vivo animal models. Therefore, model limitations have hindered the translation of basic research findings to clinical applications. In this review, we introduce the recent progress in tumor-on-a-chip devices for cancer biology research, medicine assessment, and biomedical applications in detail. The emerging tumor-on-a-chip platforms integrating 3D cell culture, microfluidic technology, and tissue engineering have successfully mimicked the pivotal structural and functional characteristics of the in vivo tumor microenvironment. The recent advances in tumor-on-a-chip platforms for cancer biology studies and biomedical applications are detailed and analyzed in this review. This review should be valuable for further understanding the mechanisms of the tumor evolution process, screening anticancer drugs, and developing cancer therapies, and it addresses the challenges and potential opportunities in predicting drug screening and cancer treatment.
Collapse
Affiliation(s)
- Xingxing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Jiaru Fang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Shuang Huang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Xiaoxue Wu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Fanmao Liu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Meng Zhang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Zhenwei Peng
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Ning Hu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| |
Collapse
|
105
|
Hughes DL, Hughes A, Soonawalla Z, Mukherjee S, O’Neill E. Dynamic Physiological Culture of Ex Vivo Human Tissue: A Systematic Review. Cancers (Basel) 2021; 13:2870. [PMID: 34201273 PMCID: PMC8229413 DOI: 10.3390/cancers13122870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Conventional static culture fails to replicate the physiological conditions that exist in vivo. Recent advances in biomedical engineering have resulted in the creation of novel dynamic culturing systems that permit the recapitulation of normal physiological processes ex vivo. Whilst the physiological benefit for its use in the culture of two-dimensional cellular monolayer has been validated, its role in the context of primary human tissue culture has yet to be determined. This systematic review identified 22 articles that combined dynamic physiological culture techniques with primary human tissue culture. The most frequent method described (55%) utilised dynamic perfusion culture. A diverse range of primary human tissue was successfully cultured. The median duration of successful ex vivo culture of primary human tissue for all articles was eight days; however, a wide range was noted (5 h-60 days). Six articles (27%) reported successful culture of primary human tissue for greater than 20 days. This review illustrates the physiological benefit of combining dynamic culture with primary human tissue culture in both long-term culture success rates and preservation of native functionality of the tissue ex vivo. Further research efforts should focus on developing precise biochemical sensors that would allow for real-time monitoring and automated self-regulation of the culture system in order to maintain homeostasis. Combining these techniques allows the creation of an accurate system that can be used to gain a greater understanding of human physiology.
Collapse
Affiliation(s)
- Daniel Ll Hughes
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (D.L.H.); (S.M.)
| | - Aron Hughes
- Undergraduate Centre, Cardiff University Medical School, Cardiff CF14 4YS, UK;
| | - Zahir Soonawalla
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals NHS, Oxford OX3 7LE, UK;
| | - Somnath Mukherjee
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (D.L.H.); (S.M.)
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (D.L.H.); (S.M.)
| |
Collapse
|
106
|
LIANG Y, PAN J, FANG Q. [Research advances of high-throughput cell-based drug screening systems based on microfluidic technique]. Se Pu 2021; 39:567-577. [PMID: 34227317 PMCID: PMC9404090 DOI: 10.3724/sp.j.1123.2020.07014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/01/2022] Open
Abstract
Drug screening is the process of screening new drugs or leading compounds with biological activity from natural products or synthetic compounds, and it plays an essential role in drug discovery. The discovery of innovative drugs requires the screening of a large number of compounds with appropriate drug targets. With the development of genomics, proteomics, metabolomics, combinatorial chemistry, and other disciplines, the library of drug molecules has been largely expanded, and the number of drug targets is continuously increasing. High-throughput screening systems enable the parallel analysis of thousands of reactions through automated operation, thereby enhancing the experimental scale and efficiency of drug screening. Among them, cell-based high-throughput drug screening has become the main screening mode because it can provide a microenvironment similar to human physiological conditions. However, the current high-throughput screening systems are mainly built based on multiwell plates, which have several disadvantages such as simple cell culture conditions, laborious and time-consuming operation, and high reagent consumption. In addition, it is difficult to achieve complex drug combination screening. Therefore, there is an urgent need for rapid and low-cost drug screening methods to reduce the time and cost of drug development. Microfluidic techniques, which can manipulate and control microfluids in microscale channels, have the advantages of low consumption, high efficiency, high throughput, and automation. It can overcome the shortcomings of screening systems based on multi-well plates and provide an efficient and reliable technical solution for establishing high-throughput cell-based screening systems. Moreover, microfluidic systems can be flexibly changed in terms of cell culture materials, chip structure design, and fluid control methods to enable better control and simulation of cell growth microenvironment. Operations such as cell seeding, culture medium replacement or addition, drug addition and cleaning, and cell staining reagent addition are usually involved in cell-based microfluidic screening systems. These operations are all based on the manipulation of microfluids. This paper reviews the research advances in cell-based microfluidic screening systems using different microfluidic manipulation modes, namely perfusion flow mode, droplet mode, and microarray mode. In addition, the advantages and disadvantages of these systems are summarized. Moreover, the development prospects of high-throughput screening systems based on microfluidic techniques has been looked forward. Furthermore, the current problems in this field and the directions to overcome these problems are discussed.
Collapse
Affiliation(s)
- Yixiao LIANG
- 浙江大学化学系, 微分析系统研究所, 浙江 杭州 310058
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jianzhang PAN
- 浙江大学化学系, 微分析系统研究所, 浙江 杭州 310058
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qun FANG
- 浙江大学化学系, 微分析系统研究所, 浙江 杭州 310058
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
107
|
Rauti R, Ess A, Le Roi B, Kreinin Y, Epshtein M, Korin N, Maoz BM. Transforming a well into a chip: A modular 3D-printed microfluidic chip. APL Bioeng 2021; 5:026103. [PMID: 33948527 PMCID: PMC8084581 DOI: 10.1063/5.0039366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Organ-on-a-Chip platforms provide rich opportunities to observe interactions between different cell types under in vivo-like conditions, i.e., in the presence of flow. Yet, the costs and know-how required for the fabrication and implementation of these platforms restrict their accessibility. This study introduces and demonstrates a novel Insert-Chip: a microfluidic device that provides the functionality of an Organ-on-a-Chip platform, namely, the capacity to co-culture cells, expose them to flow, and observe their interactions-yet can easily be integrated into standard culture systems (e.g., well plates or multi-electrode arrays). The device is produced using stereolithograpy 3D printing and is user-friendly and reusable. Moreover, its design features overcome some of the measurement and imaging challenges characterizing standard Organ-on-a-Chip platforms. We have co-cultured endothelial and epithelial cells under flow conditions to demonstrate the functionality of the device. Overall, this novel microfluidic device is a promising platform for the investigation of biological functions, cell-cell interactions, and response to therapeutics.
Collapse
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Adi Ess
- Sagol School of Neuroscience, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Baptiste Le Roi
- Department of Biomedical Engineering, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Yevgeniy Kreinin
- Department of Biomedical Engineering, Technion Israel
Institute of Technology, Haifa 32000, Israel
| | - Mark Epshtein
- Department of Biomedical Engineering, Technion Israel
Institute of Technology, Haifa 32000, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion Israel
Institute of Technology, Haifa 32000, Israel
| | - Ben M. Maoz
- Author to whom correspondence should be addressed:
| |
Collapse
|
108
|
Nabi SU, Ali SI, Rather MA, Sheikh WM, Altaf M, Singh H, Mumtaz PT, Mishra NC, Nazir SU, Bashir SM. Organoids: A new approach in toxicity testing of nanotherapeutics. J Appl Toxicol 2021; 42:52-72. [PMID: 34060108 DOI: 10.1002/jat.4206] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
Nanotechnology has revolutionized diverse fields, which include agriculture, the consumer market, medicine, and other fields. Widespread use of nanotechnology-based products has led to increased prevalence of these novel formulations in the environment, which has raised concerns regarding their deleterious effects. The application of nanotechnology-based formulations into clinical use is hampered by the lack of the availability of effective in vitro systems, which could accurately assess their in vivo toxic effects. A plethora of studies has shown the hazardous effects of nanoparticle-based formulations in two-dimensional in vitro cell cultures and animal models. These have some associated disadvantages when used for the evaluation of nano-toxicity. Organoid technology fills the space between existing two-dimensional cell line culture and in vivo models. The uniqueness of organoids over other systems for evaluating toxicity caused by nano-drug formulation includes them being a co-culture of diverse cell types, dynamic flow within them that simulates the actual flow of nanoparticles within biological systems, extensive cell-cell, cell-matrix interactions, and a tissue-like morphology. Thus, it mimics the actual tissue microenvironment and, subsequently, provides an opportunity to study drug metabolism and toxico-dynamics of nanotechnology-based novel formulations. The use of organoids in the evaluation of nano-drug toxicity is in its infancy. A limited number of studies conducted so far have shown good predictive value and efficiently significant data correlation with the clinical trials. In this review, we attempt to introduce organoids of the liver, lungs, brain, kidney intestine, and potential applications to evaluate toxicity caused by nanoparticles.
Collapse
Affiliation(s)
- Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Mehvish Altaf
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Pulwama, Jammu and Kashmir, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Peerzada Tajamul Mumtaz
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sheikh Uzma Nazir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
109
|
Lee-Montiel FT, Laemmle A, Charwat V, Dumont L, Lee CS, Huebsch N, Okochi H, Hancock MJ, Siemons B, Boggess SC, Goswami I, Miller EW, Willenbring H, Healy KE. Integrated Isogenic Human Induced Pluripotent Stem Cell-Based Liver and Heart Microphysiological Systems Predict Unsafe Drug-Drug Interaction. Front Pharmacol 2021; 12:667010. [PMID: 34025426 PMCID: PMC8138446 DOI: 10.3389/fphar.2021.667010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) microphysiological systems (MPSs) mimicking human organ function in vitro are an emerging alternative to conventional monolayer cell culture and animal models for drug development. Human induced pluripotent stem cells (hiPSCs) have the potential to capture the diversity of human genetics and provide an unlimited supply of cells. Combining hiPSCs with microfluidics technology in MPSs offers new perspectives for drug development. Here, the integration of a newly developed liver MPS with a cardiac MPS—both created with the same hiPSC line—to study drug–drug interaction (DDI) is reported. As a prominent example of clinically relevant DDI, the interaction of the arrhythmogenic gastroprokinetic cisapride with the fungicide ketoconazole was investigated. As seen in patients, metabolic conversion of cisapride to non-arrhythmogenic norcisapride in the liver MPS by the cytochrome P450 enzyme CYP3A4 was inhibited by ketoconazole, leading to arrhythmia in the cardiac MPS. These results establish integration of hiPSC-based liver and cardiac MPSs to facilitate screening for DDI, and thus drug efficacy and toxicity, isogenic in the same genetic background.
Collapse
Affiliation(s)
- Felipe T Lee-Montiel
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Alexander Laemmle
- Department of Surgery, Division of Transplant Surgery, Liver Center and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States.,Institute of Clinical Chemistry and Department of Pediatrics, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Verena Charwat
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Laure Dumont
- Department of Surgery, Division of Transplant Surgery, Liver Center and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States
| | - Caleb S Lee
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Nathaniel Huebsch
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Hideaki Okochi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, United States
| | | | - Brian Siemons
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Steven C Boggess
- Department of Chemistry, University of California Berkeley, Berkeley, CA, United States
| | - Ishan Goswami
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Evan W Miller
- Departments of Chemistry and Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States
| | - Holger Willenbring
- Department of Surgery, Division of Transplant Surgery, Liver Center and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States
| | - Kevin E Healy
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
110
|
Del Favero G, Zeugswetter M, Kiss E, Marko D. Endoplasmic Reticulum Adaptation and Autophagic Competence Shape Response to Fluid Shear Stress in T24 Bladder Cancer Cells. Front Pharmacol 2021; 12:647350. [PMID: 34012396 PMCID: PMC8126838 DOI: 10.3389/fphar.2021.647350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 12/26/2022] Open
Abstract
Accumulation of xenobiotics and waste metabolites in the urinary bladder is constantly accompanied by shear stress originating from the movement of the luminal fluids. Hence, both chemical and physical cues constantly modulate the cellular response in health and disease. In line, bladder cells have to maintain elevated mechanosensory competence together with chemical stress response adaptation potential. However, much of the molecular mechanisms sustaining this plasticity is currently unknown. Taking this as a starting point, we investigated the response of T24 urinary bladder cancer cells to shear stress comparing morphology to functional performance. T24 cells responded to the shear stress protocol (flow speed of 0.03 ml/min, 3 h) by significantly increasing their surface area. When exposed to deoxynivalenol-3-sulfate (DON-3-Sulf), bladder cells increased this response in a concentration-dependent manner (0.1-1 µM). DON-3-Sulf is a urinary metabolite of a very common food contaminant mycotoxin (deoxynivalenol, DON) and was already described to enhance proliferation of cancer cells. Incubation with DON-3-Sulf also caused the enlargement of the endoplasmic reticulum (ER), decreased the lysosomal movement, and increased the formation of actin stress fibers. Similar remodeling of the endoplasmic reticulum and area spread after shear stress were observed upon incubation with the autophagy activator rapamycin (1-100 nM). Performance of experiments in the presence of chloroquine (chloroquine, 30 μM) further contributed to shed light on the mechanistic link between adaptation to the biomechanical stimulation and ER stress response. At the molecular level, we observed that ER reshaping was linked to actin organization, with the two components mutually regulating each other. Indeed, we identified in the ER stress-cytoskeletal rearrangement an important axis defining the physical/chemical response potential of bladder cells and created a workflow for further investigation of urinary metabolites, food constituents, and contaminants, as well as for pharmacological profiling.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael Zeugswetter
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
111
|
Modeling Precision Cardio-Oncology: Using Human-Induced Pluripotent Stem Cells for Risk Stratification and Prevention. Curr Oncol Rep 2021; 23:77. [PMID: 33937943 PMCID: PMC8088904 DOI: 10.1007/s11912-021-01066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 11/12/2022]
Abstract
Purpose of Review Cardiovascular toxicity is a leading cause of mortality among cancer survivors and has become increasingly prevalent due to improved cancer survival rates. In this review, we synthesize evidence illustrating how common cancer therapeutic agents, such as anthracyclines, human epidermal growth factors receptors (HER2) monoclonal antibodies, and tyrosine kinase inhibitors (TKIs), have been evaluated in cardiomyocytes (CMs) derived from human-induced pluripotent stem cells (hiPSCs) to understand the underlying mechanisms of cardiovascular toxicity. We place this in the context of precision cardio-oncology, an emerging concept for personalizing the prevention and management of cardiovascular toxicities from cancer therapies, accounting for each individual patient’s unique factors. We outline steps that will need to be addressed by multidisciplinary teams of cardiologists and oncologists in partnership with regulators to implement future applications of hiPSCs in precision cardio-oncology. Recent Findings Current prevention of cardiovascular toxicity involves routine screenings and management of modifiable risk factors for cancer patients, as well as the initiation of cardioprotective medications. Despite recent advancements in precision cardio-oncology, knowledge gaps remain and limit our ability to appropriately predict with precision which patients will develop cardiovascular toxicity. Investigations using patient-specific CMs facilitate pharmacological discovery, mechanistic toxicity studies, and the identification of cardioprotective pathways. Studies with hiPSCs demonstrate that patients with comorbidities have more frequent adverse responses, compared to their counterparts without cardiac disease. Further studies utilizing hiPSC modeling should be considered, to evaluate the impact and mitigation of known cardiovascular risk factors, including blood pressure, body mass index (BMI), smoking status, diabetes, and physical activity in their role in cardiovascular toxicity after cancer therapy. Future real-world applications will depend on understanding the current use of hiPSC modeling in order for oncologists and cardiologists together to inform their potential to improve our clinical collaborative practice in cardio-oncology. Summary When applying such in vitro characterization, it is hypothesized that a safety score can be assigned to each individual to determine who has a greater probability of developing cardiovascular toxicity. Using hiPSCs to create personalized models and ultimately evaluate the cardiovascular toxicity of individuals’ treatments may one day lead to more patient-specific treatment plans in precision cardio-oncology while reducing cardiovascular disease (CVD) morbidity and mortality.
Collapse
|
112
|
Design and fabrication of an integrated heart-on-a-chip platform for construction of cardiac tissue from human iPSC-derived cardiomyocytes and in situ evaluation of physiological function. Biosens Bioelectron 2021; 179:113080. [DOI: 10.1016/j.bios.2021.113080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 11/21/2022]
|
113
|
Aleman J, Kilic T, Mille LS, Shin SR, Zhang YS. Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat Protoc 2021; 16:2564-2593. [PMID: 33911259 DOI: 10.1038/s41596-021-00511-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/22/2021] [Indexed: 12/15/2022]
Abstract
Organs-on-chips have emerged as viable platforms for drug screening and personalized medicine. While a wide variety of human organ-on-a-chip models have been developed, rarely have there been reports on the inclusion of sensors, which are critical in continually measuring the microenvironmental parameters and the dynamic responses of the microtissues to pharmaceutical compounds over extended periods of time. In addition, automation capacity is strongly desired for chronological monitoring. To overcome this major hurdle, in this protocol we detail the fabrication of electrochemical affinity-based biosensors and their integration with microfluidic chips to achieve in-line microelectrode functionalization, biomarker detection and sensor regeneration, allowing continual, in situ and noninvasive quantification of soluble biomarkers on organ-on-a-chip platforms. This platform is almost universal and can be applied to in-line detection of a majority of biomarkers, can be connected with existing organ-on-a-chip devices and can be multiplexed for simultaneous measurement of multiple biomarkers. Specifically, this protocol begins with fabrication of the electrochemically competent microelectrodes and the associated microfluidic devices (~3 d). The integration of electrochemical biosensors with the chips and their further combination with the rest of the platform takes ~3 h. The functionalization and regeneration of the microelectrodes are subsequently described, which require ~7 h in total. One cycle of sampling and detection of up to three biomarkers accounts for ~1 h.
Collapse
Affiliation(s)
- Julio Aleman
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tugba Kilic
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, USA
| | - Luis S Mille
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
114
|
Rothbauer M, Bachmann BE, Eilenberger C, Kratz SR, Spitz S, Höll G, Ertl P. A Decade of Organs-on-a-Chip Emulating Human Physiology at the Microscale: A Critical Status Report on Progress in Toxicology and Pharmacology. MICROMACHINES 2021; 12:470. [PMID: 33919242 PMCID: PMC8143089 DOI: 10.3390/mi12050470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Organ-on-a-chip technology has the potential to accelerate pharmaceutical drug development, improve the clinical translation of basic research, and provide personalized intervention strategies. In the last decade, big pharma has engaged in many academic research cooperations to develop organ-on-a-chip systems for future drug discoveries. Although most organ-on-a-chip systems present proof-of-concept studies, miniaturized organ systems still need to demonstrate translational relevance and predictive power in clinical and pharmaceutical settings. This review explores whether microfluidic technology succeeded in paving the way for developing physiologically relevant human in vitro models for pharmacology and toxicology in biomedical research within the last decade. Individual organ-on-a-chip systems are discussed, focusing on relevant applications and highlighting their ability to tackle current challenges in pharmacological research.
Collapse
Affiliation(s)
- Mario Rothbauer
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-22, 1090 Vienna, Austria
| | - Barbara E.M. Bachmann
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Christoph Eilenberger
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Sebastian R.A. Kratz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Drug Delivery and 3R-Models Group, Buchmann Institute for Molecular Life Sciences & Institute for Pharmaceutical Technology, Goethe University Frankfurt Am Main, 60438 Frankfurt, Germany
| | - Sarah Spitz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gregor Höll
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
115
|
Keung W, Cheung YF. Human Pluripotent Stem Cells for Modeling of Anticancer Therapy-Induced Cardiotoxicity and Cardioprotective Drug Discovery. Front Pharmacol 2021; 12:650039. [PMID: 33953683 PMCID: PMC8090862 DOI: 10.3389/fphar.2021.650039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Anticancer chemotherapies have been shown to produce severe side effects, with cardiotoxicity from anthracycline being the most notable. Identifying risk factors for anticancer therapy-induced cardiotoxicity in cancer patients as well as understanding its underlying mechanism is essential to improving clinical outcomes of chemotherapy treatment regimens. Moreover, cardioprotective agents against anticancer therapy-induced cardiotoxicity are scarce. Human induced pluripotent stem cell technology offers an attractive platform for validation of potential single nucleotide polymorphism with increased risk for cardiotoxicity. Successful validation of risk factors and mechanism of cardiotoxicity would aid the development of such platform for novel drug discovery and facilitate the practice of personalized medicine.
Collapse
Affiliation(s)
- Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yiu-Fai Cheung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
116
|
Zhao X, Xu Z, Xiao L, Shi T, Xiao H, Wang Y, Li Y, Xue F, Zeng W. Review on the Vascularization of Organoids and Organoids-on-a- Chip. Front Bioeng Biotechnol 2021; 9:637048. [PMID: 33912545 PMCID: PMC8072266 DOI: 10.3389/fbioe.2021.637048] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
The use of human cells for the construction of 3D organ models in vitro based on cell self-assembly and engineering design has recently increased in popularity in the field of biological science. Although the organoids are able to simulate the structures and functions of organs in vitro, the 3D models have difficulty in forming a complex vascular network that can recreate the interaction between tissue and vascular systems. Therefore, organoids are unable to survive, due to the lack of oxygen and nutrients, as well as the accumulation of metabolic waste. Organoids-on-a-chip provides a more controllable and favorable design platform for co-culture of different cells and tissue types in organoid systems, overcoming some of the limitations present in organoid culture. However, the majority of them has vascular networks that are not adequately elaborate to simulate signal communications between bionic microenvironment (e.g., fluid shear force) and multiple organs. Here, we will review the technological progress of the vascularization in organoids and organoids-on-a-chip and the development of intravital 3D and 4D bioprinting as a new way for vascularization, which can aid in further study on tissue or organ development, disease research and regenerative medicine.
Collapse
Affiliation(s)
- Xingli Zhao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Zilu Xu
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Lang Xiao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Tuo Shi
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Haoran Xiao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Yeqin Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Yanzhao Li
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
117
|
Ruiz-Espigares J, Nieto D, Moroni L, Jiménez G, Marchal JA. Evolution of Metastasis Study Models toward Metastasis-On-A-Chip: The Ultimate Model? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006009. [PMID: 33705602 DOI: 10.1002/smll.202006009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/05/2020] [Indexed: 06/12/2023]
Abstract
For decades, several attempts have been made to obtain a mimetic model for the study of metastasis, the reason of most of deaths caused by cancer, in order to solve the unknown phenomena surrounding this disease. To better understand this cellular dissemination process, more realistic models are needed that are capable of faithfully recreating the entire and essential tumor microenvironment (TME). Thus, new tools known as tumor-on-a-chip and metastasis-on-a-chip have been recently proposed. These tools incorporate microfluidic systems and small culture chambers where TME can be faithfully modeled thanks to 3D bioprinting. In this work, a literature review has been developed about the different phases of metastasis, the remaining unknowns and the use of new models to study this disease. The aim is to provide a global vision of the current panorama and the great potential that these systems have for in vitro translational research on the molecular basis of the pathology. In addition, these models will allow progress toward a personalized medicine, generating chips from patient samples that mimic the original tumor and the metastatic process to perform a precise pharmacological screening by establishing the most appropriate treatment protocol.
Collapse
Affiliation(s)
- Jesús Ruiz-Espigares
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18016, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| | - Daniel Nieto
- Photonics4life Research Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, 15705, Spain
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18016, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18016, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| |
Collapse
|
118
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
119
|
Kohl Y, Biehl M, Spring S, Hesler M, Ogourtsov V, Todorovic M, Owen J, Elje E, Kopecka K, Moriones OH, Bastús NG, Simon P, Dubaj T, Rundén-Pran E, Puntes V, William N, von Briesen H, Wagner S, Kapur N, Mariussen E, Nelson A, Gabelova A, Dusinska M, Velten T, Knoll T. Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006012. [PMID: 33458959 DOI: 10.1002/smll.202006012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal-free risk assessment of new chemicals and drugs. Microfluidic cell-based devices allow high-throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal-free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo-like in vitro cell cultivation. It is equipped with a wafer-based silicon chip including integrated electrodes and a microcavity. A proof-of-concept using different relevant cell models shows its suitability for label-free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label-free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole-body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.
Collapse
Affiliation(s)
- Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Margit Biehl
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Sarah Spring
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Michelle Hesler
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Vladimir Ogourtsov
- Tyndall National Institute, University College Cork, Dyke Parade, Cork, T12 R5CP, Ireland
| | - Miomir Todorovic
- Tyndall National Institute, University College Cork, Dyke Parade, Cork, T12 R5CP, Ireland
| | - Joshua Owen
- Institute of Thermofluids, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Elisabeth Elje
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller, 2007, Norway
- Faculty of Medicine, Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo, 0372, Norway
| | - Kristina Kopecka
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 84505, Slovakia
| | - Oscar Hernando Moriones
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Neus G Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Peter Simon
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology SUT, Radlinskeho 9, Bratislava, 812 37, Slovakia
| | - Tibor Dubaj
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology SUT, Radlinskeho 9, Bratislava, 812 37, Slovakia
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller, 2007, Norway
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08193, Spain
| | - Nicola William
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Hagen von Briesen
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Sylvia Wagner
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Nikil Kapur
- Institute of Thermofluids, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Espen Mariussen
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller, 2007, Norway
| | - Andrew Nelson
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Alena Gabelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 84505, Slovakia
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller, 2007, Norway
| | - Thomas Velten
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Thorsten Knoll
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| |
Collapse
|
120
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
121
|
A well plate-based multiplexed platform for incorporation of organoids into an organ-on-a-chip system with a perfusable vasculature. Nat Protoc 2021; 16:2158-2189. [PMID: 33790475 DOI: 10.1038/s41596-020-00490-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023]
Abstract
Owing to their high spatiotemporal precision and adaptability to different host cells, organ-on-a-chip systems are showing great promise in drug discovery, developmental biology studies and disease modeling. However, many current micro-engineered biomimetic systems are limited in technological application because of culture media mixing that does not allow direct incorporation of techniques from stem cell biology, such as organoids. Here, we describe a detailed alternative method to cultivate millimeter-scale functional vascularized tissues on a biofabricated platform, termed 'integrated vasculature for assessing dynamic events', that enables facile incorporation of organoid technology. Utilizing the 3D stamping technique with a synthetic polymeric elastomer, a scaffold termed 'AngioTube' is generated with a central microchannel that has the mechanical stability to support a perfusable vascular system and the self-assembly of various parenchymal tissues. We demonstrate an increase in user familiarity and content analysis by situating the scaffold on a footprint of a 96-well plate. Uniquely, the platform can be used for facile connection of two or more tissue compartments in series through a common vasculature. Built-in micropores enable the studies of cell invasion involved in both angiogenesis and metastasis. We describe how this protocol can be applied to create both vascularized cardiac and hepatic tissues, metastatic breast cancer tissue and personalized pancreatic cancer tissue through incorporation of patient-derived organoids. Platform assembly to populating the scaffold with cells of interest into perfusable functional vascularized tissue will require 12-14 d and an additional 4 d if pre-polymer and master molds are needed.
Collapse
|
122
|
Sung JH. Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs. Expert Opin Drug Metab Toxicol 2021; 17:969-986. [PMID: 33764248 DOI: 10.1080/17425255.2021.1908996] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Accurate prediction of pharmacokinetic (PK) and toxicokinetics (TK) of drugs is imperative for successful development of new pharmaceutics. Although conventional in vitro methods for predicting the PK and TK of drugs are well established, limitations still exist and more advanced chip-based in vitro platforms combined with mathematical models can help researchers overcome the limitations. Areas covered: We will review recent progress in the development of multi-organ-on-a-chip platforms for predicting PK and TK of drugs, as well as mathematical approaches that can be combined with these platforms for experiment design, data analysis and in vitro-in vivo extrapolation (IVIVE) for application to humans. Expert opinion: Although there remain some challenges to be addressed, the remarkable progress in the area of multi-organ-on-a-chip in recent years indicate that we will see tangible outcomes that can be utilized in the pharmaceutical industry in near future.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, sejong, Republic of Korea
| |
Collapse
|
123
|
Inbody SC, Sinquefield BE, Lewis JP, Horton RE. Biomimetic microsystems for cardiovascular studies. Am J Physiol Cell Physiol 2021; 320:C850-C872. [PMID: 33760660 DOI: 10.1152/ajpcell.00026.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional tissue culture platforms have been around for several decades and have enabled key findings in the cardiovascular field. However, these platforms failed to recreate the mechanical and dynamic features found within the body. Organs-on-chips (OOCs) are cellularized microfluidic-based devices that can mimic the basic structure, function, and responses of organs. These systems have been successfully utilized in disease, development, and drug studies. OOCs are designed to recapitulate the mechanical, electrical, chemical, and structural features of the in vivo microenvironment. Here, we review cardiovascular-themed OOC studies, design considerations, and techniques used to generate these cellularized devices. Furthermore, we will highlight the advantages of OOC models over traditional cell culture vessels, discuss implementation challenges, and provide perspectives on the state of the field.
Collapse
Affiliation(s)
- Shelby C Inbody
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Bridgett E Sinquefield
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Joshua P Lewis
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Renita E Horton
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| |
Collapse
|
124
|
Abstract
Recreating human organ-level function in vitro is a rapidly evolving field that integrates tissue engineering, stem cell biology, and microfluidic technology to produce 3D organoids. A critical component of all organs is the vasculature. Herein, we discuss general strategies to create vascularized organoids, including common source materials, and survey previous work using vascularized organoids to recreate specific organ functions and simulate tumor progression. Vascularization is not only an essential component of individual organ function but also responsible for coupling the fate of all organs and their functions. While some success in coupling two or more organs together on a single platform has been demonstrated, we argue that the future of vascularized organoid technology lies in creating organoid systems complete with tissue-specific microvasculature and in coupling multiple organs through a dynamic vascular network to create systems that can respond to changing physiological conditions.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA;
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA;
| |
Collapse
|
125
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
126
|
Hwang SH, Lee S, Park JY, Jeon JS, Cho YJ, Kim S. Potential of Drug Efficacy Evaluation in Lung and Kidney Cancer Models Using Organ-on-a-Chip Technology. MICROMACHINES 2021; 12:215. [PMID: 33669950 PMCID: PMC7924856 DOI: 10.3390/mi12020215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Organ-on-a-chip (OoC) is an exponential technology with the potential to revolutionize disease, toxicology research, and drug discovery. Recent advances in OoC could be utilized for drug screening in disease models to evaluate the efficacy of new therapies and support new tools for the understanding of disease mechanisms. Rigorous validation of this technology is required to determine whether OoC models may represent human-relevant physiology and predict clinical outcomes in target disease models. Achievements in the OoC field could reveal exciting new avenues for drug development and discovery. This review attempts to highlight the benefits of OoC as per our understanding of the cellular and molecular pathways in lung and kidney cancer models, and discusses the challenges in evaluating drug efficacy.
Collapse
Affiliation(s)
- Seong-Hye Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (S.-H.H.); (Y.-J.C.)
| | - Sangchul Lee
- Department of Urology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Jee Yoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | | | - Young-Jae Cho
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (S.-H.H.); (Y.-J.C.)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (S.-H.H.); (Y.-J.C.)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
127
|
Thomas D, Shenoy S, Sayed N. Building Multi-Dimensional Induced Pluripotent Stem Cells-Based Model Platforms to Assess Cardiotoxicity in Cancer Therapies. Front Pharmacol 2021; 12:607364. [PMID: 33679396 PMCID: PMC7930625 DOI: 10.3389/fphar.2021.607364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) complications have contributed significantly toward poor survival of cancer patients worldwide. These complications that result in myocardial and vascular damage lead to long-term multisystemic disorders. In some patient cohorts, the progression from acute to symptomatic CVD state may be accelerated due to exacerbation of underlying comorbidities such as obesity, diabetes and hypertension. In such situations, cardio-oncologists are often left with a clinical predicament in finding the optimal therapeutic balance to minimize cardiovascular risks and maximize the benefits in treating cancer. Hence, prognostically there is an urgent need for cost-effective, rapid, sensitive and patient-specific screening platform to allow risk-adapted decision making to prevent cancer therapy related cardiotoxicity. In recent years, momentous progress has been made toward the successful derivation of human cardiovascular cells from induced pluripotent stem cells (iPSCs). This technology has not only provided deeper mechanistic insights into basic cardiovascular biology but has also seamlessly integrated within the drug screening and discovery programs for early efficacy and safety evaluation. In this review, we discuss how iPSC-derived cardiovascular cells have been utilized for testing oncotherapeutics to pre-determine patient predisposition to cardiovascular toxicity. Lastly, we highlight the convergence of tissue engineering technologies and precision medicine that can enable patient-specific cardiotoxicity prognosis and treatment on a multi-organ level.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, United States
| | - Sushma Shenoy
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, United States.,Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
128
|
Jalili-Firoozinezhad S, Miranda CC, Cabral JMS. Modeling the Human Body on Microfluidic Chips. Trends Biotechnol 2021; 39:838-852. [PMID: 33581889 DOI: 10.1016/j.tibtech.2021.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Animals often fail to faithfully mimic human diseases and drug toxicities, and most in vitro models are not complex enough to recapitulate human body function and pathophysiology. Organ-on-chip culture technology, however, offers a promising tool for the study of tissue development and homeostasis, which has brought us one step closer to performing human experimentation in vitro. To recapitulate the complex functionality of multiple organs at once, their respective on-chip models can be linked to create a functional human body-on-chip platform. Here, we highlight the advantages and translational potentials of body-on-chip platforms in disease modeling, therapeutic development, and personalized medicine. We provide the reader with current limitations of the body-on-chip approach and new ideas to address the pending issues moving forwards.
Collapse
Affiliation(s)
- Sasan Jalili-Firoozinezhad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cláudia C Miranda
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joaquim M S Cabral
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| |
Collapse
|
129
|
Konishi S, Hashimoto T, Nakabuchi T, Ozeki T, Kajita H. Cell and tissue system capable of automated culture, stimulation, and monitor with the aim of feedback control of organs-on-a-chip. Sci Rep 2021; 11:2999. [PMID: 33542247 PMCID: PMC7862322 DOI: 10.1038/s41598-020-80447-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022] Open
Abstract
This paper presents progress in the automation of cell and tissue systems and attempts toward the in situ feedback control of organs-on-a-chip. Our study aims to achieve feedback control of a cell and tissue system by a personal computer (PC), whereas most studies on organs-on-a-chip focus on the automation of status monitoring. The implemented system is composed of subsystems including automated culture, stimulation, and monitoring. The monitoring function provides imaging as well as sampling and dispensing in combination with an external analyzer. Individual subsystems can be combined accordingly. First, monitoring of skeletal muscle (SM) and adipose tissues using this system was demonstrated. The highlight of this paper is the application of the system to the feedback control of the lipid droplet (LD) size, where biochemical stimulation using insulin and adrenaline is controlled by a PC according to the obtained LD imaging data. In this study, the system demonstrated its function of maintaining the desired size of LDs. Our results expand the possibility of PC-controllable cell and tissue systems by addressing the challenge of feedback control of organs-on-a-chip. The PC-controllable cell and tissue systems will contribute to living systems-on-a-chip based on homeostasis phenomena involving interactions between organs or tissues.
Collapse
Affiliation(s)
- Satoshi Konishi
- Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, Kusatsu, 525-8577, Japan. .,Graduate Course of Science and Engineering, Ritsumeikan University, Kusatsu, 525-8577, Japan. .,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, 525-8577, Japan.
| | - Takeshi Hashimoto
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, 525-8577, Japan.,College of Sport and Health Science, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Tsubasa Nakabuchi
- Graduate Course of Science and Engineering, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Takatoshi Ozeki
- Graduate Course of Science and Engineering, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Hiroki Kajita
- Graduate Course of Science and Engineering, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
130
|
Picollet-D'hahan N, Zuchowska A, Lemeunier I, Le Gac S. Multiorgan-on-a-Chip: A Systemic Approach To Model and Decipher Inter-Organ Communication. Trends Biotechnol 2021; 39:788-810. [PMID: 33541718 DOI: 10.1016/j.tibtech.2020.11.014] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Multiorgan-on-a-chip (multi-OoC) platforms have great potential to redefine the way in which human health research is conducted. After briefly reviewing the need for comprehensive multiorgan models with a systemic dimension, we highlight scenarios in which multiorgan models are advantageous. We next overview existing multi-OoC platforms, including integrated body-on-a-chip devices and modular approaches involving interconnected organ-specific modules. We highlight how multi-OoC models can provide unique information that is not accessible using single-OoC models. Finally, we discuss remaining challenges for the realization of multi-OoC platforms and their worldwide adoption. We anticipate that multi-OoC technology will metamorphose research in biology and medicine by providing holistic and personalized models for understanding and treating multisystem diseases.
Collapse
Affiliation(s)
- Nathalie Picollet-D'hahan
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale (INSERM), Commissariat à l'Energie Atomique (CEA) Interdisciplinary Research Institute of Grenoble (IRIG) Biomicrotechnology and Functional Genomics (BIOMICS), Grenoble, France.
| | - Agnieszka Zuchowska
- Applied Microfluidics for Bioengineering Research (AMBER), MESA+ Institute for Nanotechnology, TechMed Center, University of Twente, 7500AE Enschede, The Netherlands
| | - Iris Lemeunier
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale (INSERM), Commissariat à l'Energie Atomique (CEA) Interdisciplinary Research Institute of Grenoble (IRIG) Biomicrotechnology and Functional Genomics (BIOMICS), Grenoble, France
| | - Séverine Le Gac
- Applied Microfluidics for Bioengineering Research (AMBER), MESA+ Institute for Nanotechnology, TechMed Center, University of Twente, 7500AE Enschede, The Netherlands.
| |
Collapse
|
131
|
Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B 2021; 9:5385-5413. [PMID: 34124724 DOI: 10.1039/d1tb00172h] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decade, 3D bioprinting technology has progressed tremendously in the field of tissue engineering in its ability to fabricate individualized biological constructs with precise geometric designability, which offers us the capability to bridge the divergence between engineered tissue constructs and natural tissues. In this work, we first review the current widely used 3D bioprinting approaches, cells, and materials. Next, the updated applications of this technique in tissue engineering, including bone tissue, cartilage tissue, vascular grafts, skin, neural tissue, heart tissue, liver tissue and lung tissue, are briefly introduced. Then, the prominent advantages of 3D bioprinting in tissue engineering are summarized in detail: rapidly prototyping the customized structure, delivering cell-laden materials with high precision in space, and engineering with a highly controllable microenvironment. The current technical deficiencies of 3D bioprinted constructs in terms of mechanical properties and cell behaviors are afterward illustrated, as well as corresponding improvements. Finally, we conclude with future perspectives about 3D bioprinting in tissue engineering.
Collapse
Affiliation(s)
- Baosen Tan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Shaolei Gan
- Jiangxi Borayer Biotech Co., Ltd, Nanchang 330052, China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wenyong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
132
|
LaValley DJ, Miller PG, Shuler ML. Pumpless, unidirectional microphysiological system for testing metabolism-dependent chemotherapeutic toxicity. Biotechnol Prog 2020; 37:e3105. [PMID: 33274840 DOI: 10.1002/btpr.3105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
Drug development is often hindered by the failure of preclinical models to accurately assess and predict the efficacy and safety of drug candidates. Body-on-a-chip (BOC) microfluidic devices, a subset of microphysiological systems (MPS), are being created to better predict human responses to drugs. Each BOC is designed with separate organ chambers interconnected with microfluidic channels mimicking blood recirculation. Here, we describe the design of the first pumpless, unidirectional, multiorgan system and apply this design concept for testing anticancer drug treatments. HCT-116 colon cancer spheroids, HepG2/C3A hepatocytes, and HL-60 promyeloblasts were embedded in collagen hydrogels and cultured within compartments representing "colon tumor", "liver," and "bone marrow" tissue, respectively. Operating on a pumpless platform, the microfluidic channel design provides unidirectional perfusion at physiologically realistic ratios to multiple channels simultaneously. The metabolism-dependent toxic effect of Tegafur, an oral prodrug of 5-fluorouracil, combined with uracil was examined in each cell type. Tegafur-uracil treatment induced substantial cell death in HCT-116 cells and this cytotoxic response was reduced for multicellular spheroids compared to single cells, likely due to diffusion-limited drug penetration. Additionally, off-target toxicity was detected by HL-60 cells, which demonstrate that such systems can provide useful information on dose-limiting side effects. Collectively, this microscale cell culture analog is a valuable physiologically-based pharmacokinetic drug screening platform that may be used to support cancer drug development.
Collapse
Affiliation(s)
- Danielle J LaValley
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Paula G Miller
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Michael L Shuler
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
133
|
Chramiec A, Teles D, Yeager K, Marturano-Kruik A, Pak J, Chen T, Hao L, Wang M, Lock R, Tavakol DN, Lee MB, Kim J, Ronaldson-Bouchard K, Vunjak-Novakovic G. Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. LAB ON A CHIP 2020; 20:4357-4372. [PMID: 32955072 PMCID: PMC8092329 DOI: 10.1039/d0lc00424c] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Traditional drug screening models are often unable to faithfully recapitulate human physiology in health and disease, motivating the development of microfluidic organs-on-a-chip (OOC) platforms that can mimic many aspects of human physiology and in the process alleviate many of the discrepancies between preclinical studies and clinical trials outcomes. Linsitinib, a novel anti-cancer drug, showed promising results in pre-clinical models of Ewing Sarcoma (ES), where it suppressed tumor growth. However, a Phase II clinical trial in several European centers with patients showed relapsed and/or refractory ES. We report an integrated, open setting, imaging and sampling accessible, polysulfone-based platform, featuring minimal hydrophobic compound binding. Two bioengineered human tissues - bone ES tumor and heart muscle - were cultured either in isolation or in the integrated platform and subjected to a clinically used linsitinib dosage. The measured anti-tumor efficacy and cardiotoxicity were compared with the results observed in the clinical trial. Only the engineered tumor tissues, and not monolayers, recapitulated the bone microenvironment pathways targeted by linsitinib, and the clinically-relevant differences in drug responses between non-metastatic and metastatic ES tumors. The responses of non-metastatic ES tumor tissues and heart muscle to linsitinib were much closer to those observed in the clinical trial for tissues cultured in an integrated setting than for tissues cultured in isolation. Drug treatment of isolated tissues resulted in significant decreases in tumor viability and cardiac function. Meanwhile, drug treatment in an integrated setting showed poor tumor response and less cardiotoxicity, which matched the results of the clinical trial. Overall, the integration of engineered human tumor and cardiac tissues in the integrated platform improved the predictive accuracy for both the direct and off-target effects of linsitinib. The proposed approach could be readily extended to other drugs and tissue systems.
Collapse
Affiliation(s)
- Alan Chramiec
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Diogo Teles
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarāes, Braga, Portugal
| | - Keith Yeager
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Alessandro Marturano-Kruik
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Chemistry, Materials and Chemical Engineering “G Natta”, Politecnico de Milano, Milano, Italy
| | - Joseph Pak
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Timothy Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Luke Hao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Miranda Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Marcus Busub Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jinho Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
134
|
Sarvestani SK, DeHaan RK, Miller PG, Bose S, Shen X, Shuler ML, Huang EH. A Tissue Engineering Approach to Metastatic Colon Cancer. iScience 2020; 23:101719. [PMID: 33205026 PMCID: PMC7653071 DOI: 10.1016/j.isci.2020.101719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colon cancer remains the third most common cause of cancer in the US, and the third most common cause of cancer death. Worldwide, colon cancer is the second most common cause of cancer and cancer deaths. At least 25% of patients still present with metastatic disease, and at least 25-30% will develop metastatic colon cancer in the course of their disease. While chemotherapy and surgery remain the mainstay of treatment, understanding the fundamental cellular niche and mechanical properties that result in metastases would facilitate both prevention and cure. Advances in biomaterials, novel 3D primary human cells, modelling using microfluidics and the ability to alter the physical environment, now offers a unique opportunity to develop and test impactful treatment.
Collapse
Affiliation(s)
- Samaneh Kamali Sarvestani
- Department of Cancer Biology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Reece K. DeHaan
- Department of Cancer Biology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Colon and Rectal Surgery, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Paula G. Miller
- Departments of Biomedical Engineering, Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Shree Bose
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Michael L. Shuler
- Departments of Biomedical Engineering, Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Emina H. Huang
- Department of Cancer Biology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Colon and Rectal Surgery, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
135
|
Gnecco JS, Brown AT, Kan EL, Baugh L, Ives C, Loring M, Griffith LG. Physiomimetic Models of Adenomyosis. Semin Reprod Med 2020; 38:179-196. [PMID: 33176387 PMCID: PMC7803459 DOI: 10.1055/s-0040-1719084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenomyosis remains an enigmatic disease in the clinical and research communities. The high prevalence, diversity of morphological and symptomatic presentations, array of potential etiological explanations, and variable response to existing interventions suggest that different subgroups of patients with distinguishable mechanistic drivers of disease may exist. These factors, combined with the weak links to genetic predisposition, make the entire spectrum of the human condition challenging to model in animals. Here, after an overview of current approaches, a vision for applying physiomimetic modeling to adenomyosis is presented. Physiomimetics combines a system's biology analysis of patient populations to generate hypotheses about mechanistic bases for stratification with in vitro patient avatars to test these hypotheses. A substantial foundation for three-dimensional (3D) tissue engineering of adenomyosis lesions exists in several disparate areas: epithelial organoid technology; synthetic biomaterials matrices for epithelial–stromal coculture; smooth muscle 3D tissue engineering; and microvascular tissue engineering. These approaches can potentially be combined with microfluidic platform technologies to model the lesion microenvironment and can potentially be coupled to other microorgan systems to examine systemic effects. In vitro patient-derived models are constructed to answer specific questions leading to target identification and validation in a manner that informs preclinical research and ultimately clinical trial design.
Collapse
Affiliation(s)
- Juan S Gnecco
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alex T Brown
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ellen L Kan
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lauren Baugh
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Clara Ives
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Megan Loring
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Endometriosis and Adenomyosis Care Collaborative, Center for Minimally Invasive Gynecologic Surgery, Newton Wellesley Hospital, Newton, Massachusetts
| | - Linda G Griffith
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
136
|
Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems. Arch Toxicol 2020; 95:673-691. [PMID: 33159585 PMCID: PMC7870616 DOI: 10.1007/s00204-020-02945-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023]
Abstract
Essential oils (EOs) have attracted increased interest for different applications such as food preservatives, feed additives and ingredients in cosmetics. Due to their reported variable composition of components, they might be acutely toxic to humans and animals in small amounts. Despite the necessity, rigorous toxicity testing in terms of safety evaluation has not been reported so far, especially using alternatives to animal models. Here, we provide a strategy by use of alternative in vitro (cell cultures) and in vivo (Caenorhabditis elegans, hen’s egg test) approaches for detailed investigation of the impact of commonly used rosemary, citrus and eucalyptus essential oil on acute, developmental and reproductive toxicity as well as on mucous membrane irritation. In general, all EOs under study exhibited a comparable impact on measured parameters, with a slightly increased toxic potential of rosemary oil. In vitro cell culture results indicated a concentration-dependent decrease of cell viability for all EOs, with mean IC50 values ranging from 0.08 to 0.17% [v/v]. Similar results were obtained for the C. elegans model when using a sensitized bus-5 mutant strain, with a mean LC50 value of 0.42% [v/v]. In wild-type nematodes, approximately tenfold higher LC50 values were detected. C. elegans development and reproduction was already significantly inhibited at concentrations of 0.5% (wild-type) and 0.1% (bus-5) [v/v] of EO, respectively. Gene expression analysis revealed a significant upregulation of xenobiotic and oxidative stress genes such as cyp-14a3, gst-4, gpx-6 and sod-3. Furthermore, all three EOs under study showed an increased short-time mucous membrane irritation potential, already at 0.5% [v/v] of EO. Finally, GC–MS analysis was performed to quantitate the relative concentration of the most prominent EO compounds. In conclusion, our results demonstrate that EOs can exhibit severe toxic properties, already at low concentrations. Therefore, a detailed toxicological assessment is highly recommended for each EO and single intended application.
Collapse
|
137
|
Ingber DE. Is it Time for Reviewer 3 to Request Human Organ Chip Experiments Instead of Animal Validation Studies? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002030. [PMID: 33240763 PMCID: PMC7675190 DOI: 10.1002/advs.202002030] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/22/2020] [Indexed: 05/08/2023]
Abstract
For the past century, experimental data obtained from animal studies have been required by reviewers of scientific articles and grant applications to validate the physiological relevance of in vitro results. At the same time, pharmaceutical researchers and regulatory agencies recognize that results from preclinical animal models frequently fail to predict drug responses in humans. This Progress Report reviews recent advances in human organ-on-a-chip (Organ Chip) microfluidic culture technology, both with single Organ Chips and fluidically coupled human "Body-on-Chips" platforms, which demonstrate their ability to recapitulate human physiology and disease states, as well as human patient responses to clinically relevant drug pharmacokinetic exposures, with higher fidelity than other in vitro models or animal studies. These findings raise the question of whether continuing to require results of animal testing for publication or grant funding still makes scientific or ethical sense, and if more physiologically relevant human Organ Chip models might better serve this purpose. This issue is addressed in this article in context of the history of the field, and advantages and disadvantages of Organ Chip approaches versus animal models are discussed that should be considered by the wider research community.
Collapse
Affiliation(s)
- Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMA02115USA
- Vascular Biology Program, Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesCambridgeMA02138USA
| |
Collapse
|
138
|
Oleaga C, Bridges LR, Persaud K, McAleer CW, Long CJ, Hickman JJ. A functional long-term 2D serum-free human hepatic in vitro system for drug evaluation. Biotechnol Prog 2020; 37:e3069. [PMID: 32829524 DOI: 10.1002/btpr.3069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023]
Abstract
Human in vitro hepatic models generate faster drug toxicity data with higher human predictability compared to animal models. However, for long-term studies, current models require the use of serum and 3D architecture, limiting their utility. Maintaining a functional long-term human in vitro hepatic culture that avoids complex structures and serum would improve the value of such systems for preclinical studies. This would also enable a more straightforward integration with current multi-organ devices to study human systemic toxicity to generate an alternative model to chronic animal evaluations. A human primary hepatocyte culture system was characterized for 28 days in 2D and serum-free defined conditions. Under the studied conditions, human primary hepatocytes maintained their characteristic morphology, hepatic markers and functions for 28 days. The acute and chronic administration of known drugs validated the sensitivity of the system for drug testing. This human 2D model represents a realistic system to evaluate hepatic function for long-term drug studies, without the need of animal serum, confounding variable in most models, and with less complexity and resultant cost compared to most 3D models. The defined culture conditions can easily be integrated into complex multi-organ in vitro models for studying systemic effects driven by the liver function for long-term evaluations.
Collapse
Affiliation(s)
- Carlota Oleaga
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - L Richard Bridges
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Keisha Persaud
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | | | - Christopher J Long
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
139
|
Dehne EM, Marx U. The universal physiological template—a system to advance medicines. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
140
|
Ashammakhi N, Nasiri R, Barros NRD, Tebon P, Thakor J, Goudie M, Shamloo A, Martin MG, Khademhosseini A. Gut-on-a-chip: Current progress and future opportunities. Biomaterials 2020; 255:120196. [PMID: 32623181 PMCID: PMC7396314 DOI: 10.1016/j.biomaterials.2020.120196] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/11/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Organ-on-a-chip technology tries to mimic the complexity of native tissues in vitro. Important progress has recently been made in using this technology to study the gut with and without microbiota. These in vitro models can serve as an alternative to animal models for studying physiology, pathology, and pharmacology. While these models have greater physiological relevance than two-dimensional (2D) cell systems in vitro, endocrine and immunological functions in gut-on-a-chip models are still poorly represented. Furthermore, the construction of complex models, in which different cell types and structures interact, remains a challenge. Generally, gut-on-a-chip models have the potential to advance our understanding of the basic interactions found within the gut and lay the foundation for future applications in understanding pathophysiology, developing drugs, and personalizing medical treatments.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA.
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA; Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Natan Roberto de Barros
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA.
| | - Peyton Tebon
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Jai Thakor
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Marcus Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Martin G Martin
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA; Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
141
|
Khalil AS, Jaenisch R, Mooney DJ. Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev 2020; 158:116-139. [PMID: 32987094 PMCID: PMC7518978 DOI: 10.1016/j.addr.2020.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Current preclinical studies in drug development utilize high-throughput in vitro screens to identify drug leads, followed by both in vitro and in vivo models to predict lead candidates' pharmacokinetic and pharmacodynamic properties. The goal of these studies is to reduce the number of lead drug candidates down to the most likely to succeed in later human clinical trials. However, only 1 in 10 drug candidates that emerge from preclinical studies will succeed and become an approved therapeutic. Lack of efficacy or undetected toxicity represents roughly 75% of the causes for these failures, despite these parameters being the primary exclusion criteria in preclinical studies. Recently, advances in both biology and engineering have created new tools for constructing new preclinical models. These models can complement those used in current preclinical studies by helping to create more realistic representations of human tissues in vitro and in vivo. In this review, we describe current preclinical models to identify their value and limitations and then discuss select areas of research where improvements in preclinical models are particularly needed to advance drug development. Following this, we discuss design considerations for constructing preclinical models and then highlight recent advances in these efforts. Taken together, we aim to review the advances as of 2020 surrounding the prospect of biological and engineering tools for adding enhanced biological relevance to preclinical studies to aid in the challenges of failed drug candidates and the burden this poses on the drug development enterprise and thus healthcare.
Collapse
Affiliation(s)
- Andrew S Khalil
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA.
| |
Collapse
|
142
|
Maschmeyer I, Kakava S. Organ-on-a-Chip. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:311-342. [PMID: 32948885 DOI: 10.1007/10_2020_135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Limitations of the current tools used in the drug development process, cell cultures, and animal models have highlighted the need for a new powerful tool that can emulate the human physiology in vitro. Advances in the field of microfluidics have made the realization of this tool closer than ever. Organ-on-a-chip platforms have been the first step forward, leading to the combination and integration of multiple organ models in the same platform with human-on-a-chip being the ultimate goal. Despite the current progress and technological developments, there are still several unmet engineering and biological challenges curtailing their development and widespread application in the biomedical field. The potentials, challenges, and current work on this unprecedented tool are being discussed in this chapter.
Collapse
|
143
|
Allwardt V, Ainscough AJ, Viswanathan P, Sherrod SD, McLean JA, Haddrick M, Pensabene V. Translational Roadmap for the Organs-on-a-Chip Industry toward Broad Adoption. Bioengineering (Basel) 2020; 7:E112. [PMID: 32947816 PMCID: PMC7552662 DOI: 10.3390/bioengineering7030112] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Organs-on-a-Chip (OOAC) is a disruptive technology with widely recognized potential to change the efficiency, effectiveness, and costs of the drug discovery process; to advance insights into human biology; to enable clinical research where human trials are not feasible. However, further development is needed for the successful adoption and acceptance of this technology. Areas for improvement include technological maturity, more robust validation of translational and predictive in vivo-like biology, and requirements of tighter quality standards for commercial viability. In this review, we reported on the consensus around existing challenges and necessary performance benchmarks that are required toward the broader adoption of OOACs in the next five years, and we defined a potential roadmap for future translational development of OOAC technology. We provided a clear snapshot of the current developmental stage of OOAC commercialization, including existing platforms, ancillary technologies, and tools required for the use of OOAC devices, and analyze their technology readiness levels. Using data gathered from OOAC developers and end-users, we identified prevalent challenges faced by the community, strategic trends and requirements driving OOAC technology development, and existing technological bottlenecks that could be outsourced or leveraged by active collaborations with academia.
Collapse
Affiliation(s)
- Vanessa Allwardt
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; (V.A.); (S.D.S.); (J.A.M.)
| | | | - Priyalakshmi Viswanathan
- Medicines Discovery Catapult, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK; (P.V.); (M.H.)
| | - Stacy D. Sherrod
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; (V.A.); (S.D.S.); (J.A.M.)
| | - John A. McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; (V.A.); (S.D.S.); (J.A.M.)
- Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK; (P.V.); (M.H.)
| | - Virginia Pensabene
- School of Electronic and Electrical Engineering, School of Medicine, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
144
|
Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. Nat Rev Drug Discov 2020; 20:345-361. [PMID: 32913334 DOI: 10.1038/s41573-020-0079-3] [Citation(s) in RCA: 420] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Organs-on-chips (OoCs), also known as microphysiological systems or 'tissue chips' (the terms are synonymous), have attracted substantial interest in recent years owing to their potential to be informative at multiple stages of the drug discovery and development process. These innovative devices could provide insights into normal human organ function and disease pathophysiology, as well as more accurately predict the safety and efficacy of investigational drugs in humans. Therefore, they are likely to become useful additions to traditional preclinical cell culture methods and in vivo animal studies in the near term, and in some cases replacements for them in the longer term. In the past decade, the OoC field has seen dramatic advances in the sophistication of biology and engineering, in the demonstration of physiological relevance and in the range of applications. These advances have also revealed new challenges and opportunities, and expertise from multiple biomedical and engineering fields will be needed to fully realize the promise of OoCs for fundamental and translational applications. This Review provides a snapshot of this fast-evolving technology, discusses current applications and caveats for their implementation, and offers suggestions for directions in the next decade.
Collapse
Affiliation(s)
- Lucie A Low
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| | - Christine Mummery
- Leiden University Medical Center, Leiden, Netherlands.,University of Twente, Enschede, Netherlands
| | - Brian R Berridge
- National Institute for Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Christopher P Austin
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
145
|
Campbell SB, Wu Q, Yazbeck J, Liu C, Okhovatian S, Radisic M. Beyond Polydimethylsiloxane: Alternative Materials for Fabrication of Organ-on-a-Chip Devices and Microphysiological Systems. ACS Biomater Sci Eng 2020; 7:2880-2899. [PMID: 34275293 DOI: 10.1021/acsbiomaterials.0c00640] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polydimethylsiloxane (PDMS) is the predominant material used for organ-on-a-chip devices and microphysiological systems (MPSs) due to its ease-of-use, elasticity, optical transparency, and inexpensive microfabrication. However, the absorption of small hydrophobic molecules by PDMS and the limited capacity for high-throughput manufacturing of PDMS-laden devices severely limit the application of these systems in personalized medicine, drug discovery, in vitro pharmacokinetic/pharmacodynamic (PK/PD) modeling, and the investigation of cellular responses to drugs. Consequently, the relatively young field of organ-on-a-chip devices and MPSs is gradually beginning to make the transition to alternative, nonabsorptive materials for these crucial applications. This review examines some of the first steps that have been made in the development of organ-on-a-chip devices and MPSs composed of such alternative materials, including elastomers, hydrogels, thermoplastic polymers, and inorganic materials. It also provides an outlook on where PDMS-alternative devices are trending and the obstacles that must be overcome in the development of versatile devices based on alternative materials to PDMS.
Collapse
Affiliation(s)
- Scott B Campbell
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Qinghua Wu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Joshua Yazbeck
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Chuan Liu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Sargol Okhovatian
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.,Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
146
|
Sasikumar S, Chameettachal S, Kingshott P, Cromer B, Pati F. 3D hepatic mimics - the need for a multicentric approach. ACTA ACUST UNITED AC 2020; 15:052002. [PMID: 32460259 DOI: 10.1088/1748-605x/ab971c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The liver is a center of metabolic activity, including the metabolism of drugs, and consequently is prone to drug-induced liver injury. Failure to detect hepatotoxicity of drugs during their development will lead to the withdrawal of the drugs during clinical trials. To avoid such clinical and economic consequences, in vitro liver models that can precisely predict the toxicity of a drug during the pre-clinical phase is necessary. This review describes the different technologies that are used to develop in vitro liver models and the different approaches aimed at mimicking different functional aspects of the liver at the fundamental level. This involves mimicking of the functional and structural units like the sinusoid, the bile canalicular system, and the acinus.
Collapse
Affiliation(s)
- Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India. Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | | | | | | | | |
Collapse
|
147
|
Correia Carreira S, Begum R, Perriman AW. 3D Bioprinting: The Emergence of Programmable Biodesign. Adv Healthc Mater 2020; 9:e1900554. [PMID: 31407502 DOI: 10.1002/adhm.201900554] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/04/2019] [Indexed: 11/10/2022]
Abstract
Until recently, bioprinting was largely limited to highly interdisciplinary research teams, as the process requires significant input from specialists in the fields of materials science, engineering, and cell biology. With the advent of commercially available high-performance bioprinters, the field has become accessible to a wider range of research groups, who can now buy the hardware off the shelf instead of having to build it from scratch. As a result, bioprinting has rapidly expanded to address a wide array of research foci, which include organotypic in vitro models, complex engineered tissues, and even bioprinted microbial systems. Moreover, in the early days, the range of suitable bioinks was limited. Now, there is a plethora of viable options to suit many cell phenotypes. This rapidly evolving dynamic environment creates endless opportunities for scientists to design and construct highly complex biological systems. However, this scientific diversity presents its own set of challenges, such as defining standardized protocols for characterizing bioprinted structures, which is essential for eventual organ replacement. In this progress report, the current state-of-the-art in the field of bioprinting is discussed, with a special emphasis on recent hardware developments, bioprinting for regenerative medicine, and late-breaking nontraditional topics.
Collapse
Affiliation(s)
- Sara Correia Carreira
- School of Cellular and Molecular MedicineUniversity of Bristol University Walk Bristol BS8 1TD UK
| | - Runa Begum
- School of Cellular and Molecular MedicineUniversity of Bristol University Walk Bristol BS8 1TD UK
| | - Adam W. Perriman
- School of Cellular and Molecular MedicineUniversity of Bristol University Walk Bristol BS8 1TD UK
| |
Collapse
|
148
|
Rothbauer M, Ertl P. Emerging Biosensor Trends in Organ-on-a-Chip. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:343-354. [PMID: 32712679 DOI: 10.1007/10_2020_129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Organ-on-a-chip technology is ideally suited to cultivate and analyze 2D/3D cell cultures, organoids, and other tissue analogues in vitro, because these microphysiological systems have been shown to generate architectures, structural organization, and functions that closely resemble their respective human tissues and organs. Although great efforts have been undertaken to demonstrate organotypic cell behavior, proper cell-to-cell communication, and tissue interactions in recent years, the integration of biosensing strategies into organ-on-a-chip platforms is still in its infancy. While a multitude of micro-, nano-, and biosensors are well established and could be easily adapted for organ-on-a-chip models, to date only a handful of analytical approaches (aside from microscopical techniques) have been combined with organ-on-a-chip technology. This chapter aims to summarize current efforts and survey the progress that has been made in integrating analytical techniques that are being implemented for organ-, multi-organ-, and body-on-a-chip systems based on electrochemical and optical sensors.
Collapse
Affiliation(s)
- Mario Rothbauer
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopedic Biology, Medical University of Vienna, Vienna, Austria
- Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Austria.
| |
Collapse
|
149
|
Ong LJY, Zhu L, Tan GJS, Toh YC. Quantitative Image-Based Cell Viability (QuantICV) Assay for Microfluidic 3D Tissue Culture Applications. MICROMACHINES 2020; 11:mi11070669. [PMID: 32660019 PMCID: PMC7407956 DOI: 10.3390/mi11070669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023]
Abstract
Microfluidic 3D tissue culture systems are attractive for in vitro drug testing applications due to the ability of these platforms to generate 3D tissue models and perform drug testing at a very small scale. However, the minute cell number and liquid volume impose significant technical challenges to perform quantitative cell viability measurements using conventional colorimetric or fluorometric assays, such as MTS or Alamar Blue. Similarly, live-dead staining approaches often utilize metabolic dyes that typically label the cytoplasm of live cells, which makes it difficult to segment and count individual cells in compact 3D tissue cultures. In this paper, we present a quantitative image-based cell viability (QuantICV) assay technique that circumvents current challenges of performing the quantitative cell viability assay in microfluidic 3D tissue cultures. A pair of cell-impermeant nuclear dyes (EthD-1 and DAPI) were used to sequentially label the nuclei of necrotic and total cell populations, respectively. Confocal microscopy and image processing algorithms were employed to visualize and quantify the cell nuclei in the 3D tissue volume. The QuantICV assay was validated and showed good concordance with the conventional bulk MTS assay in static 2D and 3D tumor cell cultures. Finally, the QuantICV assay was employed as an on-chip readout to determine the differential dose responses of parental and metastatic 3D oral squamous cell carcinoma (OSCC) to Gefitinib in a microfluidic 3D culture device. This proposed technique can be useful in microfluidic cell cultures as well as in a situation where conventional cell viability assays are not available.
Collapse
Affiliation(s)
- Louis Jun Ye Ong
- Department of Biomedical Engineering, National University of Singapore, 4, Engineering Drive 3, E4-04-10, Singapore 117583, Singapore; (L.J.Y.O.); (L.Z.); (G.J.S.T.)
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive, #14-01, Singapore 117599, Singapore
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Level 7, O Block, Gardens Point Campus, Brisbane City QLD 4000, Australia
| | - Liang Zhu
- Department of Biomedical Engineering, National University of Singapore, 4, Engineering Drive 3, E4-04-10, Singapore 117583, Singapore; (L.J.Y.O.); (L.Z.); (G.J.S.T.)
- Singapore Institute of Manufacturing Technology, 31 Biopolis Way, #04-10 Nanos, Singapore 138669, Singapore
- The N.1 Institute for Health, 28 Medical Drive, #05-corridor, Singapore 117456, Singapore
| | - Gabriel Jenn Sern Tan
- Department of Biomedical Engineering, National University of Singapore, 4, Engineering Drive 3, E4-04-10, Singapore 117583, Singapore; (L.J.Y.O.); (L.Z.); (G.J.S.T.)
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 4, Engineering Drive 3, E4-04-10, Singapore 117583, Singapore; (L.J.Y.O.); (L.Z.); (G.J.S.T.)
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive, #14-01, Singapore 117599, Singapore
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Level 7, O Block, Gardens Point Campus, Brisbane City QLD 4000, Australia
- The N.1 Institute for Health, 28 Medical Drive, #05-corridor, Singapore 117456, Singapore
- NUS Tissue Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Q Block-IHBI, 60 Musk Avenue, Kelvin Grove QLD 4059, Australia
- Correspondence:
| |
Collapse
|
150
|
Ehrlich A, Duche D, Ouedraogo G, Nahmias Y. Challenges and Opportunities in the Design of Liver-on-Chip Microdevices. Annu Rev Biomed Eng 2020; 21:219-239. [PMID: 31167098 DOI: 10.1146/annurev-bioeng-060418-052305] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is the central hub of xenobiotic metabolism and consequently the organ most prone to cosmetic- and drug-induced toxicity. Failure to detect liver toxicity or to assess compound clearance during product development is a major cause of postmarketing product withdrawal, with disastrous clinical and financial consequences. While small animals are still the preferred model in drug development, the recent ban on animal use in the European Union created a pressing need to develop precise and efficient tools to detect human liver toxicity during cosmetic development. This article includes a brief review of liver development, organization, and function and focuses on the state of the art of long-term cell culture, including hepatocyte cell sources, heterotypic cell-cell interactions, oxygen demands, and culture medium formulation. Finally, the article reviews emerging liver-on-chip devices and discusses the advantages and pitfalls of individual designs. The goal of this review is to provide a framework to design liver-on-chip devices and criteria with which to evaluate this emerging technology.
Collapse
Affiliation(s)
- Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Duche
- L'Oréal Research and Innovation, Aulnay-sous-Bois 93600, France
| | | | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel.,Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.,Tissue Dynamics Ltd., Jerusalem 91904, Israel
| |
Collapse
|