101
|
Christ EM, Hobernik D, Bros M, Wagner M, Frey H. Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups. Biomacromolecules 2015; 16:3297-307. [DOI: 10.1021/acs.biomac.5b00951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eva-Maria Christ
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School
Materials Science in Mainz (MAINZ), Staudingerweg 9, D-55128 Mainz, Germany
| | - Dominika Hobernik
- Department
of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School
Materials Science in Mainz (MAINZ), Staudingerweg 9, D-55128 Mainz, Germany
| |
Collapse
|
102
|
Raffa P, Wever DAZ, Picchioni F, Broekhuis AA. Polymeric Surfactants: Synthesis, Properties, and Links to Applications. Chem Rev 2015; 115:8504-63. [PMID: 26182291 DOI: 10.1021/cr500129h] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Patrizio Raffa
- Department of Chemical Engineering-Product Technology, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Dutch Polymer Institute DPI , P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Diego Armando Zakarias Wever
- Department of Chemical Engineering-Product Technology, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Dutch Polymer Institute DPI , P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Francesco Picchioni
- Department of Chemical Engineering-Product Technology, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Antonius A Broekhuis
- Department of Chemical Engineering-Product Technology, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
103
|
|
104
|
Qiu L, Hong CY, Pan CY. Doxorubicin-loaded aromatic imine-contained amphiphilic branched star polymer micelles: synthesis, self-assembly, and drug delivery. Int J Nanomedicine 2015; 10:3623-40. [PMID: 26056444 PMCID: PMC4445873 DOI: 10.2147/ijn.s78355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Redox-and pH-sensitive branched star polymers (BSPs), BP(DMAEMA-co-MAEBA-co-DTDMA)(PMAIGP)ns, have been successively prepared by two steps of reversible addition–fragmentation chain transfer (RAFT) polymerization. The first step is RAFT polymerization of 2-(N,N-dimethylaminoethyl)methacrylate (DMAEMA) and p-(methacryloxyethoxy) benzaldehyde (MAEBA) in the presence of divinyl monomer, 2,2′-dithiodiethoxyl dimethacrylate (DTDMA). The resultant branched polymers were used as a macro-RAFT agent in the subsequent RAFT polymerization. After hydrolysis of the BSPs to form BP(DMAEMA-co-MAEBA-co-DTDMA)(PMAGP)ns (BSP-H), the anticancer drug doxorubicin (DOX) was covalently linked to branched polymer chains by reaction of primary amine of DOX and aldehyde groups in the polymer chains. Their compositions, structures, molecular weights, and molecular weight distributions were respectively characterized by nuclear magnetic resonance spectra and gel permeation chromatography measurements. The DOX-loaded micelles were fabricated by self-assembly of DOX-containing BSPs in water, which were characterized by transmission electron microscopy and dynamic light scattering. Aromatic imine linkage is stable in neutral water, but is acid-labile; controlled release of DOX from the BSP-H-DOX micelles was realized at pH values of 5 and 6, and at higher acidic solution, fast release of DOX was observed. In vitro cytotoxicity experiment results revealed low cytotoxicity of the BSPs and release of DOX from micelles in HepG2 and HeLa cells. Confocal laser fluorescence microscopy observations showed that DOX-loaded micelles have specific interaction with HepG2 cells. Thus, this type of BSP micelle is an efficient drug delivery system.
Collapse
Affiliation(s)
- Liang Qiu
- Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Chun-Yan Hong
- Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Cai-Yuan Pan
- Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
105
|
Yu J, Lin F, Becker ML. Branched Amino Acid Based Poly(ester urea)s with Tunable Thermal and Water Uptake Properties. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jiayi Yu
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Fei Lin
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department
of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
106
|
|
107
|
Panja S, Maji S, Maiti T, Chattopadhyay S. A branched polymer as a pH responsive nanocarrier: Synthesis, characterization and targeted delivery. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.01.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
108
|
Fan Y, Zhang D, Wang J, Jin H, Zhou Y, Yan D. Preparation of anion-exchangeable polymer vesicles through the self-assembly of hyperbranched polymeric ionic liquids. Chem Commun (Camb) 2015; 51:7234-7. [DOI: 10.1039/c5cc01802a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anion-exchangeable polymer vesicles including pH-indicative and protein-coated vesicles were prepared through the self-assembly of a hyperbranched polymeric ionic liquid.
Collapse
Affiliation(s)
- Yujiao Fan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Dapeng Zhang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jie Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Haibao Jin
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
109
|
Aluri R, Jayakannan M. One-pot two polymers: ABB′ melt polycondensation for linear polyesters and hyperbranched poly(ester-urethane)s based on natural l-amino acids. Polym Chem 2015. [DOI: 10.1039/c5py00602c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot two polymers: a novel one-pot temperature selective polymerization reaction was developed for ABB′ type multifunctional l-amino acid monomers to produce spherical hyperbranched poly(ester-urethane)s and helical linear polyesters.
Collapse
Affiliation(s)
- Rajendra Aluri
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune 411008
- India
| | - Manickam Jayakannan
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune 411008
- India
| |
Collapse
|
110
|
Yang H, Bai T, Xue X, Huang W, Chen J, Qian X, Zhang G, Jiang B. A versatile strategy for synthesis of hyperbranched polymers with commercially available methacrylate inimer. RSC Adv 2015. [DOI: 10.1039/c5ra09851c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This work reported a facile strategy to synthesize hyperbranched polymers by simply using a commercially available hydroxyl-substituted methacrylate, which can be applied to not only the SCVP of vinyl monomers, but also to the SCROP of cyclic esters.
Collapse
Affiliation(s)
- Hongjun Yang
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Tao Bai
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Wenyan Huang
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Jianhai Chen
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Xiaolei Qian
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China 510640
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Materials Surface Science and Technology
- School of Materials Science and Engineering
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
| |
Collapse
|
111
|
Mai B, Liu R, Li Z, Feng S, Wu Q, Gao H, Liang G, Zhu F. Synthesis and self-assembly in aqueous solution of amphiphilic diblock copolymers containing hyperbranched polyethylene. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
112
|
Jiang W, Zhou Y, Yan D. Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications. Chem Soc Rev 2015; 44:3874-89. [DOI: 10.1039/c4cs00274a] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This tutorial review summarizes the first 10 years of work on hyperbranched polymer vesicles from syntheses, self-assembly, and properties to applications.
Collapse
Affiliation(s)
- Wenfeng Jiang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
113
|
Abstract
The recent research progress in biological and biomedical applications of hyperbranched polymers has been summarized in this review.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
114
|
Zheng Y, Li S, Weng Z, Gao C. Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 2015; 44:4091-130. [DOI: 10.1039/c4cs00528g] [Citation(s) in RCA: 498] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the advances in hyperbranched polymers from the viewpoint of structure, click synthesis and functionalization towards their applications in the last decade.
Collapse
Affiliation(s)
- Yaochen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Sipei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Zhulin Weng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
115
|
Sun F, Luo X, Kang L, Peng X, Lu C. Synthesis of hyperbranched polymers and their applications in analytical chemistry. Polym Chem 2015. [DOI: 10.1039/c4py01462f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review focuses primarily on the recent developments in the synthesis of hyperbranched polymers and their application in analytical chemistry.
Collapse
Affiliation(s)
- Fengxia Sun
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| | - Xiaoling Luo
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| | - Lichao Kang
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| | - Xiayu Peng
- Key Laboratories of Sheep Breeding and Reproduce
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
| | - Chunxia Lu
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| |
Collapse
|
116
|
Abstract
This review describes the self-assembly of polymers with a cyclic topology and highlights how cyclization affects the resulting assemblies.
Collapse
|
117
|
Huang Y, Wang D, Zhu X, Yan D, Chen R. Synthesis and therapeutic applications of biocompatible or biodegradable hyperbranched polymers. Polym Chem 2015. [DOI: 10.1039/c5py00144g] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent progress in the synthesis, modifications and therapeutic applications of biocompatible or biodegradable hyperbranched polymers has been reviewed.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| |
Collapse
|
118
|
Duro-Castano A, Movellan J, Vicent MJ. Smart branched polymer drug conjugates as nano-sized drug delivery systems. Biomater Sci 2015; 3:1321-34. [DOI: 10.1039/c5bm00166h] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Branched polymers own special properties derived from their intrinsic characteristics. These properties make them ideal candidates to be used as carriers for an improved generation of polymer-drug conjugates.
Collapse
Affiliation(s)
- A. Duro-Castano
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| | - J. Movellan
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| | - M. J. Vicent
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| |
Collapse
|
119
|
Wang Y, He J, Liu C, Chong WH, Chen H. Thermodynamik und Kinetik in der Nanosynthese. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402986] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
120
|
Wang Y, He J, Liu C, Chong WH, Chen H. Thermodynamics versus Kinetics in Nanosynthesis. Angew Chem Int Ed Engl 2014; 54:2022-51. [DOI: 10.1002/anie.201402986] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Indexed: 12/29/2022]
|
121
|
Wang J, Wang X, Yang F, Shen H, You Y, Wu D. Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13014-13020. [PMID: 25310380 DOI: 10.1021/la503295z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A star polymer, β-cyclodextrin-poly(l-lactide) (β-CD-PLLA), and a linear polymer, azobenzene-poly(ethylene glycol) (Azo-PEG), could self-assemble into a supramolecular amphiphilic copolymer (β-CD-PLLA@Azo-PEG) based on the host-guest interaction between β-CD and azobenzene moieties. This linear-star supramolecular amphiphilic copolymer further self-assembled into a variety of morphologies, including sphere-like micelle, carambola-like micelle, naan-like micelle, shuttle-like lamellae, tube-like fiber, and random curled-up lamellae, by tuning the length of hydrophilic or hydrophobic chains. The variation of morphology was closely related to the topological structure and block ratio of the supramolecular amphiphiles. These self-assembly structures could disassemble upon an ultraviolet (UV) light irradiation.
Collapse
Affiliation(s)
- Juan Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
122
|
Self-assembly of amphiphilic hyperbranched poly (aryl ether ketone)- block-poly (ethylene glycol) copolymer into microspheres with excellent thermal property. HIGH PERFORM POLYM 2014. [DOI: 10.1177/0954008314526908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An amphiphilic hyperbranched rod-coil copolymer was synthesized by grafting linear poly (ethylene glycol) (PEG) onto hydroxyl-terminated hyperbranched poly (aryl ether ketone) (OH-HPAEK). The molecular structure, the number-average molecular weight and the thermal properties of HPAEK- block-PEG were confirmed and characterized using proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis, respectively. The microspheres of HPAEK- block-PEG were fabricated by the method of self-assembly, and the morphology and diameter of the obtained microspheres were characterized using transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. The heat-treated experimental results demonstrated that the polymer microspheres possessed excellent thermal property that could stably exist even if heated at 130°C for 10 h. In addition, the diameter of the microspheres can be easily controlled by just adjusting the concentration of the copolymer.
Collapse
|
123
|
Panja S, Nayak S, Ghosh SK, Selvakumar M, Chattopadhyay S. Self-assembly of a biodegradable branched PE-PCL-b-PEC amphiphilic polymer: synthesis, characterization and targeted delivery of doxorubicin to cancer cells. RSC Adv 2014. [DOI: 10.1039/c4ra08351b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
124
|
Zhang D, Xu Z, Li J, Chen S, Cheng J, Zhang A, Chen S, Miao M. Self-assembly of amido-ended hyperbranched polyester films with a highly ordered dendritic structure. ACS APPLIED MATERIALS & INTERFACES 2014; 6:16375-16383. [PMID: 25148598 DOI: 10.1021/am504705c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Self-assemblies fabricated from dendrimers and amphiphilic polymers have demonstrated remarkable performances and a wide range of applications. Direct self-assembly of hyperbranched polymers into highly ordered macrostructures with heat-resistance remains a big challenge due to the weak amphiphilicity of the polymers. Here, we report the self-assembly of amphiphilic amido-ended hyperbranched polyester (HTDA-2) into millimeter-size dendritic films using combined hydrogen bond interaction and solvent induction. The self-assembly process and mechanism have been studied. Hydrogen bond interaction between amido-ended groups assists the aggregation of inner and outer chains of the HTDA-2, resulting in phase separation and micelle formation. Some micelles attach to and grow on the glass substrate like seedlings. Other micelles move to the seedlings and connect with their branches via solvent induction and hydrogen bond interaction, leading to the fabrication of highly ordered crystalline dendritic films that show high heat-resistance. HTDA-2 can further self-assemble into sheet crystals on the dendritic films.
Collapse
Affiliation(s)
- Daohong Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-central University for Nationalities , Wuhan, Hubei 430074, China
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Sun K, Xiao C, Liu C, Fu W, Wang Z, Li Z. Thermally sensitive self-assembly of glucose-functionalized tetrachloro-perylene bisimides: from twisted ribbons to microplates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11040-11045. [PMID: 25166855 DOI: 10.1021/la502532g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chiral supramolecular structures are becoming increasingly attractive for their specific molecular arrangements, exceptional properties, and promising applications in chiral sensing and separation. However, constructing responsive chiral supramolecular structures remains a great challenge. Here, glucose-functionalized tetrachloro-perylene bisimides (GTPBIs) with thermally sensitive self-assembly behaviors are designed and synthesized. In a methanol/water mixture, GTPBIs self-assembled into twisted ribbons and microplates at 4 and 25 °C, respectively. Furthermore, the ribbon structure was metastable and could transform into microplates when the temperature was increased from 4 to 25 °C. Transmission electron microscopy (TEM) was used to track the evolution of morphology and study the assembly mechanisms of correponding nanostructures at different time intervals. The supramolecular structures were characterized with various techniques, including circular dichroism, TEM, scanning electron microscopy, atomic force microscopy, ultraviolet-visible absorption, and fluorescence spectra. This study provides insight into controlling molecular parameters and assembly conditions to construct chiral supramolecular structures.
Collapse
Affiliation(s)
- Kai Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | | | | | | | | | | |
Collapse
|
126
|
Chatterjee S, Ramakrishnan S. Understanding Self-Segregation of Immiscible Peripheral Segments in Pseudodendritic Hyperbranched Polydithioacetals: Formation of Improved Janus Structures. ACS Macro Lett 2014; 3:953-957. [PMID: 35596367 DOI: 10.1021/mz500424t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peripherally heterofunctionalized hyperbranched polymers (HBPs) undergo immiscibility-driven self-segregation of the outer segments to form Janus molecular entities (Macromolecules 2012, 45, 2348). In HBPs prepared via AB2 type self-condensation, single-step peripheral heterofunctionalization would lead to random distribution of the two types of terminal units, namely, homofunctionalized (homo-T) and heterofunctionalized (hetero-T) termini. Here, we examine the role of such hetero-T units on the self-segregation of heterofunctionalized pseudodendritic hyperbranched polydithioacetals. Three different heterofunctionalized HB dithioacetals bearing roughly 50 mol % each of docsyl (C-22) and MPEG-350 chains at the periphery were prepared: one of them carried a statistical distribution of homo-T and hetero-T units, and the other carried only two types of homo-T (-TR1R1 and -TR2R2) termini, whereas the third carried largely hetero-T (-TR1R2) termini. Careful examination of DSC and SAXS data reveals that the self-segregation is most effective in HBPs devoid of hetero-T units; interestingly, however, it also showed that randomly heterofunctionalized HBPs self-segregated nearly as effectively.
Collapse
Affiliation(s)
- Saptarshi Chatterjee
- Department
of Inorganic and
Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - S. Ramakrishnan
- Department
of Inorganic and
Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
127
|
Xu Z, Zhang D, Li J, Chen S, Li T, Zhang J, Zhang A, Chen S. Effects of the carboxyl-ended hyperbranched polyester/platinum complex molecular weight on hydrosilylation activity and self-assembled morphology. J Appl Polym Sci 2014. [DOI: 10.1002/app.41416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhicai Xu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| | - Daohong Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| | - Junna Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| | - Sufang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education; Wuhan Institute of Technology; Wuhan Hubei 430073 China
| | - Tingcheng Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| | - Junheng Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| | - Aiqing Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| | - Shenghui Chen
- College of Chemistry and Materials Science; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| |
Collapse
|
128
|
Li X, Tang YH, Liang H, Karniadakis GE. Large-scale dissipative particle dynamics simulations of self-assembled amphiphilic systems. Chem Commun (Camb) 2014; 50:8306-8. [PMID: 24938634 PMCID: PMC4118211 DOI: 10.1039/c4cc03096f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We present large-scale simulation results on the self-assembly of amphiphilic systems in bulk solution and under soft confinement. Self-assembled unilamellar and multilamellar vesicles are formed from amphiphilic molecules in bulk solution. The system is simulated by placing amphiphilic molecules inside large unilamellar vesicles (LUVs) and the dynamic soft confinement-induced self-assembled vesicles are investigated. Moreover, the self-assembly of sickle hemoglobin (HbS) is simulated in a crowded and fluctuating intracellular space and our results demonstrate that the HbS self-assembles into polymer fibers causing the LUV shape to be distorted.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A
| | - Yu-Hang Tang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | | |
Collapse
|
129
|
Christ EM, Müller SS, Berger-Nicoletti E, Frey H. Hydroxyfunctional oxetane-inimers with varied polarity for the synthesis of hyperbranched polyether polyols via cationic ROP. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Eva-Maria Christ
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
- Graduate School Materials Science in Mainz (MAINZ); Staudingerweg 9 D-55128 Mainz Germany
| | - Sophie S. Müller
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
- Graduate School Materials Science in Mainz (MAINZ); Staudingerweg 9 D-55128 Mainz Germany
| | - Elena Berger-Nicoletti
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
| |
Collapse
|
130
|
Ghosh Roy S, De P. Facile RAFT synthesis of side-chain amino acids containing pH-responsive hyperbranched and star architectures. Polym Chem 2014. [DOI: 10.1039/c4py00766b] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
131
|
Li W, Qu J, Du J, Ren K, Wang Y, Sun J, Hu Q. Photoluminescent supramolecular hyperbranched polymer without conventional chromophores based on inclusion complexation. Chem Commun (Camb) 2014; 50:9584-7. [DOI: 10.1039/c4cc02880e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
132
|
Wang Y, Li B, Jin H, Zhou Y, Lu Z, Yan D. Dissipative Particle Dynamics Simulation Study on Vesicles Self-Assembled from Amphiphilic Hyperbranched Multiarm Copolymers. Chem Asian J 2014; 9:2281-8. [DOI: 10.1002/asia.201402146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/27/2014] [Indexed: 11/06/2022]
|
133
|
Yu S, Dong R, Chen J, Chen F, Jiang W, Zhou Y, Zhu X, Yan D. Synthesis and self-assembly of amphiphilic aptamer-functionalized hyperbranched multiarm copolymers for targeted cancer imaging. Biomacromolecules 2014; 15:1828-36. [PMID: 24750012 DOI: 10.1021/bm5002203] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel targeting cancer imaging platform based on aptamer-functionalized amphiphilic hyperbranched copolymer conjugates, which can self-assemble into nanoscopic micelles with a core-shell structure and a narrow size distribution, has been designed and synthesized. The size, morphology, fluorescence performance, and cytotoxicity of micelles were studied by dynamic light scattering, transmission electron microscopy, fluorescence spectroscopy, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. The results indicate that these micelles have low cytotoxicity against MCF-7 cells and can be easily internalized by MCF-7 cells. In addition, they also exhibit enhanced cell uptake, excellent fluorescence properties, and smart targeting capability in vitro, indicating great potential to be promising carriers for bioimaging and cancer specific delivery.
Collapse
Affiliation(s)
- Songrui Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Juang TY, Kan SJ, Chen YY, Tsai YL, Lin MG, Lin LL. Surface-functionalized hyperbranched poly(amido acid) magnetic nanocarriers for covalent immobilization of a bacterial γ-glutamyltranspeptidase. Molecules 2014; 19:4997-5012. [PMID: 24759067 PMCID: PMC6271278 DOI: 10.3390/molecules19044997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/21/2022] Open
Abstract
In this study, we synthesized water-soluble hyperbranched poly(amido acid)s (HBPAAs) featuring multiple terminal CO2H units and internal tertiary amino and amido moieties and then used them in conjunction with an in situ Fe2+/Fe3+ co-precipitation process to prepare organic/magnetic nanocarriers comprising uniformly small magnetic iron oxide nanoparticles (NP) incorporated within the globular HBPAAs. Transmission electron microscopy revealed that the HBPAA-γ-Fe2O3 NPs had dimensions of 6–11 nm, significantly smaller than those of the pristine γ-Fe2O3 (20–30 nm). Subsequently, we covalently immobilized a bacterial γ-glutamyltranspeptidase (BlGGT) upon the HBPAA-γ-Fe2O3 nanocarriers through the formation of amide linkages in the presence of a coupling agent. Magnetization curves of the HBPAA-γ-Fe2O3/BlGGT composites measured at 300 K suggested superparamagnetic characteristics, with a saturation magnetization of 52 emu g−1. The loading capacity of BlGGT on the HBPAA-γ-Fe2O3 nanocarriers was 16 mg g−1 support; this sample provided a 48% recovery of the initial activity. The immobilized enzyme could be recycled 10 times with 32% retention of the initial activity; it had stability comparable with that of the free enzyme during a storage period of 63 days. The covalent immobilization and stability of the enzyme and the magnetization provided by the HBPAA-γ-Fe2O3 NPs suggests that this approach could be an economical means of depositing bioactive enzymes upon nanocarriers for BlGGT-mediated bio-catalysis.
Collapse
Affiliation(s)
- Tzong-Yuan Juang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.
| | - Shao-Ju Kan
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Yi-Yu Chen
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Yi-Lin Tsai
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Long-Liu Lin
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.
| |
Collapse
|
135
|
Qiu F, Wang D, Zhu Q, Zhu L, Tong G, Lu Y, Yan D, Zhu X. Real-time monitoring of anticancer drug release with highly fluorescent star-conjugated copolymer as a drug carrier. Biomacromolecules 2014; 15:1355-64. [PMID: 24606561 DOI: 10.1021/bm401891c] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemotherapy is one of the major systemic treatments for cancer, in which the drug release kinetics is a key factor for drug delivery. In the present work, a versatile fluorescence-based real-time monitoring system for intracellular drug release has been developed. First, two kinds of star-conjugated copolymers with different connections (e.g., pH-responsive acylhydrazone and stable ether) between a hyperbranched conjugated polymer (HCP) core and many linear poly(ethylene glycol) (PEG) arms were synthesized. Owing to the amphiphilic three-dimensional architecture, the star-conjugated copolymers could self-assemble into multimicelle aggregates from unimolecular micelles with excellent emission performance in the aqueous medium. When doxorubicin (DOX) as a model drug was encapsulated into copolymer micelles, the emission of star-conjugated copolymer and DOX was quenched. In vitro biological studies revealed that fluorescent intensities of both star-conjugated copolymer and DOX were activated when the drug was released from copolymeric micelles, resulting in the enhanced cellular proliferation inhibition against cancer cells. Importantly, pH-responsive feature of the star-conjugated copolymer with acylhydrazone linkage exhibited accelerated DOX release at a mildly acidic environment, because of the fast breakage of acylhydrazone in endosome or lysosome of tumor cells. Such fluorescent star-conjugated copolymers may open up new perspectives to real-time study of drug release kinetics of polymeric drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Feng Qiu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, ‡Department of Electronic Engineering, and §Instrumental Analysis Center, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Yue L, Cao Y, Huang T, Huang L, Bai Y, Zhou Y. Synthesis of Aromatic Hyperbranched Polyester (HBPE) and its Use as a Nonmigrating Plasticiser. Aust J Chem 2014. [DOI: 10.1071/ch13195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of aromatic hyperbranched polyesters (HBPEs) were synthesised through one-pot reaction of benzene-1,2,4-tricarboxylic anhydride, diethylene glycol, and methanol. The molecular structure of HBPEs was characterised by 1H-NMR, Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry (DSC), and thermogravimetric analysis. HBPE was used as plasticiser for poly(vinyl chloride) (PVC), and compared with traditional plasticiser bis(2-ethylhexyl) phthalate (DOP). When the plasticiser concentration in PVC was below 40 wt-%, HBPE showed better plasticisation efficiency than DOP, with enhanced impact strength and ultimate elongation. Volatility and extractability tests for PVC films indicated that there was no migration if HBPE was used as plasticiser, even under very harsh conditions, while the migration in PVC films plasticised by DOP was much greater, indicating that HBPE could be used as a substitution for DOP to lower the potential health risk from migrating phthalates during the use of PVC products.
Collapse
|
137
|
Wang D, Tong G, Dong R, Zhou Y, Shen J, Zhu X. Self-assembly of supramolecularly engineered polymers and their biomedical applications. Chem Commun (Camb) 2014; 50:11994-2017. [DOI: 10.1039/c4cc03155e] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly behavior of supramolecularly engineered polymers and their biomedical applications have been summarized.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai, P. R. China
| | - Gangsheng Tong
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai, P. R. China
- Instrumental Analysis Center
| | - Ruijiao Dong
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai, P. R. China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- 210046 Nanjing, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai, P. R. China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
| |
Collapse
|
138
|
Chen JY, Smet M, Zhang JC, Shao WK, Li X, Zhang K, Fu Y, Jiao YH, Sun T, Dehaen W, Liu FC, Han EH. Fully branched hyperbranched polymers with a focal point: analogous to dendrimers. Polym Chem 2014. [DOI: 10.1039/c3py01401k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
139
|
Huang T, Huang X, Sun X, Zhou Y, Bai Y, Yan D. Synthesis of monodisperse nanocolloidal microspheres with controlled size by vesicle bilayer templating. Chem Commun (Camb) 2014; 50:7363-6. [DOI: 10.1039/c4cc02520b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Uniform PS colloidal particles with controllable size ranging from 60 to 150 nm were prepared on a mass scale by using the bilayers of hyperbranched polymer vesicles as templates.
Collapse
Affiliation(s)
- Tong Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240, China
| | - Xiaohua Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240, China
| | - Xiaoyi Sun
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, P.R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240, China
| | - Yongping Bai
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- Harbin 150001, PR China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240, China
| |
Collapse
|
140
|
Miao K, Liu H, Zhao Y. Thermo, pH and reduction responsive coaggregates comprising AB2C2 star terpolymers for multi-triggered release of doxorubicin. Polym Chem 2014. [DOI: 10.1039/c3py01767b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel disulfide-linked PEG(PCL)2(PNIPAM)2 and PEG(PCL)2(PAA)2 star terpolymers were synthesized and coassembled into mixed micelles or vesicles for multi-triggered drug release.
Collapse
Affiliation(s)
- Ke Miao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Huanhuan Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
141
|
Xue X, Li F, Huang W, Yang H, Jiang B, Zheng Y, Zhang D, Fang J, Kong L, Zhai G, Chen J. Quadrangular Prism: A Unique Self-Assembly from Amphiphilic Hyperbranched PMA-b
-PAA. Macromol Rapid Commun 2013; 35:330-6. [DOI: 10.1002/marc.201300743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/06/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaoqiang Xue
- Key Laboratory of Polymeric Materials of Changzhou City; School of Material Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 People's Republic of China
| | - Fang Li
- Key Laboratory of Polymeric Materials of Changzhou City; School of Material Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 People's Republic of China
| | - Wenyan Huang
- Key Laboratory of Polymeric Materials of Changzhou City; School of Material Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 People's Republic of China
| | - Hongjun Yang
- Key Laboratory of Polymeric Materials of Changzhou City; School of Material Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 People's Republic of China
| | - Bibiao Jiang
- Key Laboratory of Polymeric Materials of Changzhou City; School of Material Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 People's Republic of China
| | - Yiliang Zheng
- Key Laboratory of Polymeric Materials of Changzhou City; School of Material Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 People's Republic of China
| | - Dongliang Zhang
- Key Laboratory of Polymeric Materials of Changzhou City; School of Material Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 People's Republic of China
| | - Jianbo Fang
- Key Laboratory of Polymeric Materials of Changzhou City; School of Material Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 People's Republic of China
| | - Lizhi Kong
- Key Laboratory of Polymeric Materials of Changzhou City; School of Material Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 People's Republic of China
| | - Guangqun Zhai
- Key Laboratory of Polymeric Materials of Changzhou City; School of Material Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 People's Republic of China
| | - Jianhai Chen
- Key Laboratory of Polymeric Materials of Changzhou City; School of Material Science and Engineering; Changzhou University; Changzhou Jiangsu 213164 People's Republic of China
| |
Collapse
|
142
|
Wang X, Deng H, Li J, Zheng K, Jia X, Li C. A Neutral Supramolecular Hyperbranched Polymer Fabricated from an AB2
-Type Copillar[5]arene. Macromol Rapid Commun 2013; 34:1856-62. [DOI: 10.1002/marc.201300731] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/30/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Xiaoyang Wang
- Department of Chemistry; Shanghai University; Shanghai 200444 P. R. China
| | - Hongmei Deng
- Laboratory for Microstructures; Shanghai University; Shanghai 200444 P. R. China
| | - Jian Li
- Department of Chemistry; Shanghai University; Shanghai 200444 P. R. China
| | - Kai Zheng
- Department of Chemistry; Shanghai University; Shanghai 200444 P. R. China
| | - Xueshun Jia
- Department of Chemistry; Shanghai University; Shanghai 200444 P. R. China
| | - Chunju Li
- Department of Chemistry; Shanghai University; Shanghai 200444 P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS); Beijing 100190 P. R. China
| |
Collapse
|
143
|
Chen L, Chen T, Fang W, Wen Y, Lin S, Lin J, Cai C. Synthesis and pH-Responsive “Schizophrenic” Aggregation of a Linear-Dendron-Like Polyampholyte Based on Oppositely Charged Polypeptides. Biomacromolecules 2013; 14:4320-30. [DOI: 10.1021/bm401215w] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lili Chen
- Shanghai Key Laboratory of
Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Tao Chen
- Shanghai Key Laboratory of
Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Wenxiang Fang
- Shanghai Key Laboratory of
Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Ying Wen
- Shanghai Key Laboratory of
Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Shaoliang Lin
- Shanghai Key Laboratory of
Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jiaping Lin
- Shanghai Key Laboratory of
Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Chunhua Cai
- Shanghai Key Laboratory of
Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
144
|
Liu Y, Wang GJ, Wu YJ. Amphiphilicity and self-assembly of multi-walled carbon nanotubes grafted with polystyrene in different molecular weight. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
145
|
Xu H, Chen D, Wang S, Zhou Y, Sun J, Zhang W, Zhang X. Macromolecular self-assembly and nanotechnology in China. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120305. [PMID: 24000357 DOI: 10.1098/rsta.2012.0305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Macromolecular self-assembly refers to the assembly of synthetic polymers, biomacromolecules and supra-molecular polymers. Through macromolecular self-assembly, the fabrication of ordered structures at different scales, the control of the dynamic assembly process and the integrations of advanced functions can be realized. Macromolecular self-assembly and nanotechnology research in China has developed rapidly, from the early periods of follow-up at low to high level and progress into a stage of innovation and creation. This review selects some representative progresses achieved recently, aiming to reflect the current status of macromolecular self-assembly and nanotechnology research in China.
Collapse
Affiliation(s)
- Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
146
|
Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Progressive macromolecular self-assembly: from biomimetic chemistry to bio-inspired materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5215-5256. [PMID: 24022921 DOI: 10.1002/adma.201302215] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/08/2013] [Indexed: 06/02/2023]
Abstract
Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
147
|
Liu Y, Wang GJ, Wu YJ. Amphiphilicity and self-assembly behaviors of polystyrene-grafted multi-walled carbon nanotubes in selective solvents. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3066-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
148
|
Tomé M, López C, González A, Ozay B, Quirante J, Font-Bardía M, Calvet T, Calvis C, Messeguer R, Baldomá L, Badía J. Trans- and cis-2-phenylindole platinum(II) complexes as cytotoxic agents against human breast adenocarcinoma cell lines. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.04.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
149
|
Yan X, Li S, Cook TR, Ji X, Yao Y, Pollock JB, Shi Y, Yu G, Li J, Huang F, Stang PJ. Hierarchical self-assembly: well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum(II) metallacycles. J Am Chem Soc 2013; 135:14036-9. [PMID: 23927740 DOI: 10.1021/ja406877b] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallacyclic cores provide a scaffold upon which pendant functionalities can be organized to direct the formation of dimensionally controllable nanostructures. Because of the modularity of coordination-driven self-assembly, the properties of a given supramolecular core can be readily tuned, which has a significant effect on the resulting nanostructured material. Herein we report the efficient preparation of two amphiphilic rhomboids that can subsequently order into 0D micelles, 1D nanofibers, or 2D nanoribbons. This structural diversity is enforced by three parameters: the nature of the hydrophilic moieties decorating the parent rhomboids, the concentration of precursors during self-assembly, and the reaction duration. These nanoscopic constructs further interact to generate metallohydrogels at high concentrations, driven by intermolecular hydrophobic and π-π interactions, demonstrating the utility of coordination-driven self-assembly as a first-order structural element for the hierarchical design of functional soft materials.
Collapse
Affiliation(s)
- Xuzhou Yan
- Center for Chemistry of High-Performance and Novel Materials, Department of Chemistry, Zhejiang University , Hangzhou, Zhejiang 310027, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Chen J, Lai Y, Wan D, Jin M, Pu H. Cooperative Entrapment of Xanthene Dyes by a Core-Engineered Unimolecular Micelle. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201300221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|