101
|
Structure-activity relationship studies of novel glycosphingolipids that stimulate natural killer T-cells. Biosci Biotechnol Biochem 2012; 76:1055-67. [PMID: 22790924 DOI: 10.1271/bbb.120072] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
KRN7000, an anticancer drug candidate developed by Kirin Brewery Co. in 1995, is an α-galactosyl ceramide. It is a ligand making a complex with CD1d protein, and it stimulates invariant natural killer T (NKT) cells, which are one of the lineages of immunocytes. NKT cells activated by recognition of the CD1d/KRN7000 complex with its invariant T-cell receptor (TCR) can induce both protective and regulatory immune responses. To determine the recognition and activation mechanisms of NKT cells and to develop drug candidates more effective than KRN7000, a large number of analogs of KRN7000 have been synthesized. Some of them show potent bioactivities and have the potential of being utilized as therapeutic agents. In this review, structure-activity relationship studies of novel glycolipids which stimulate NKT cells efficiently are summarized.
Collapse
|
102
|
Dangerfield EM, Cheng JMH, Knight DA, Weinkove R, Dunbar PR, Hermans IF, Timmer MSM, Stocker BL. Species-specific activity of glycolipid ligands for invariant NKT cells. Chembiochem 2012; 13:1349-56. [PMID: 22639457 DOI: 10.1002/cbic.201200095] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 11/07/2022]
Abstract
The immunomodulatory glycolipid α-galactosylceramide (α-GalCer) binds to CD1d and exhibits potent activity as a ligand for invariant CD1d-restricted natural killer-like T cells (iNKT cells). Structural analogues of α-GalCer have been synthesised to determine which components are required for CD1d presentation and iNKT cell activation, however, to date the importance of the phytosphingosine 4-hydroxyl for iNKT cell activation has been disputed. To clarify this, we synthesised two 4-deoxy α-GalCer analogues (sphinganine and sphingosine) and investigated their ability to activate murine and human iNKT cells. Analysis revealed that the analogues possessed comparable activity to α-GalCer in stimulating murine iNKT cells, but were severely compromised in their ability to stimulate human iNKT cells. Here we determined that species-specific glycolipid activity was due to a lack of recognition of the analogues by the T-cell receptors on human iNKT cells rather than insufficient presentation of the analogues on human CD1d molecules. From these results we suggest that glycolipids developed for potent iNKT cell activity in humans should contain a phytosphingosine base.
Collapse
Affiliation(s)
- Emma M Dangerfield
- Malaghan Institute of Medical Research, P. O. Box 7060, Wellington 6242, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Wojno J, Jukes JP, Ghadbane H, Shepherd D, Besra GS, Cerundolo V, Cox LR. Amide analogues of CD1d agonists modulate iNKT-cell-mediated cytokine production. ACS Chem Biol 2012; 7:847-55. [PMID: 22324848 PMCID: PMC3409616 DOI: 10.1021/cb2005017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Invariant natural killer T (iNKT) cells
are restricted
by the non-polymorphic MHC class I-like protein, CD1d, and activated
following presentation of lipid antigens bound to CD1d molecules.
The prototypical iNKT cell agonist is α-galactosyl
ceramide (α-GalCer). CD1d-mediated activation of iNKT cells by this molecule results in the rapid secretion of a range
of pro-inflammatory (Th1) and regulatory (Th2) cytokines. Polarization
of the cytokine response can be achieved by modifying the structure
of the glycolipid, which opens up the possibility of using CD1d agonists
as therapeutic agents for a range of diseases. Analysis of crystal
structures of the T-cell receptor−α-GalCer–CD1d
complex led us to postulate that amide isosteres of known CD1d agonists
should modulate the cytokine response profile upon iNKT-cell activation. To this end, we describe the synthesis and biological
activity of amide analogues of α-GalCer and its non-glycosidic
analogue threitol ceramide (ThrCer). All of the analogues were found
to stimulate murine and human iNKT cells by CD1d-mediated
presentation to varying degrees; however, the thioamide and carbamate
analogues of ThrCer were of particular interest in that they elicited
a strongly polarized cytokine response (more interferon-gamma (IFN-γ),
no interleukin-4 (IL-4)) in mice. While the ThrCer-carbamate analogue
was shown to transactivate natural killer (NK) cells, a mechanism
that has been used to account for the preferential production of IFN-γ
by other CD1d agonists, this pathway does not account for the polarized
cytokine response observed for the thioamide analogue.
Collapse
Affiliation(s)
| | - John-Paul Jukes
- Medical Research Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Hemza Ghadbane
- Medical Research Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Dawn Shepherd
- Medical Research Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | | | - Vincenzo Cerundolo
- Medical Research Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | | |
Collapse
|
104
|
Novel glycolipid TLR2 ligands of the type Pam2Cys-α-Gal: Synthesis and biological properties. Eur J Med Chem 2012; 51:174-83. [DOI: 10.1016/j.ejmech.2012.02.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/03/2012] [Accepted: 02/18/2012] [Indexed: 01/29/2023]
|
105
|
|
106
|
Kim Y, Kim J, Oh K, Lee DS, Park SB. Heteroaromatic Moieties in the Sphingosine Backbone of α-Galactosylceramides for Noncovalent Interactions with CD1d. ACS Med Chem Lett 2012; 3:151-4. [PMID: 24900444 DOI: 10.1021/ml200278u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 01/10/2012] [Indexed: 12/30/2022] Open
Abstract
A series of α-GalCer analogues containing heterocyclic and aromatic moieties in the sphingosine backbone were synthesized to improve the selectivity in the Th1/Th2 cytokine profile via noncovalent interaction with three aromatic residues at the binding pocket of CD1d. In vitro and in vivo biological evaluations revealed the treatment of α-GalCer analogue (6) induced the selective stimulation of natural killer T cells to facilitate the secretion of Th2 cytokines.
Collapse
Affiliation(s)
- Yongju Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jonghoon Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Keunhee Oh
- Department
of Biomedical Sciences, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Sup Lee
- Department
of Biomedical Sciences, Seoul National University College of Medicine, Seoul,
Korea
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Department of Biophysics and
Chemical Biology/Bio-MAX Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
107
|
Liu Z, Bittman R. Synthesis of C-glycoside analogues of α-galactosylceramide via linear allylic C-H oxidation and allyl cyanate to isocyanate rearrangement. Org Lett 2012; 14:620-3. [PMID: 22233351 DOI: 10.1021/ol2032448] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-Glycoside analogues of α-galactosylceramide were synthesized in which several significant modifications known to promote Th-1 cytokine production were included. The key transformations include C-H oxidation, Sharpless asymmetric epoxidation, olefin cross metathesis, and an allyl cyanate to isocyanate rearrangement.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, New York 11367-1597, USA
| | | |
Collapse
|
108
|
Abstract
A synthetic C-glycoside, α-C-galactosylceramide, is an active immunostimulant in mice. It displays better activity than α-O-galactosylceramide in several disease models. Syntheses of several α-C-galactosylceramides are described. Experiments that probe its immunostimulant activity are outlined. Possible explanations for its superior activity are discussed.
Collapse
Affiliation(s)
- Richard W Franck
- Department of Chemistry, Hunter College of CUNY 695 Park Ave., New York, NY 10021 Ph 212-772-5340 Fax 212-772-5332
| |
Collapse
|
109
|
Compostella F, Panza L, Ronchetti F. The mammalian sulfated glycolipid sulfatide: Synthesis and biological implications. CR CHIM 2012. [DOI: 10.1016/j.crci.2011.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
110
|
An efficient synthesis of d-ribo-C18-phytosphingosine and l-arabino-C18-phytosphingosine from d-fructose. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
111
|
Liu Z, Byun HS, Bittman R. Total synthesis of α-1C-galactosylceramide, an immunostimulatory C-glycosphingolipid, and confirmation of the stereochemistry in the first-generation synthesis. J Org Chem 2011; 76:8588-98. [PMID: 21958232 PMCID: PMC3204185 DOI: 10.1021/jo201450s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nonisosteric α-C-glycoside analogue of KRN7000 (α-1C-GalCer, 1) was reported to induce a selective type of cytokine release in human invariant natural killer cells in vitro. We report here a very concise synthetic route to 1 and its analogue 1'. The key steps include olefin cross-metathesis, Sharpless asymmetric epoxidation, and epoxide opening by NaN(3)/NH(4)Cl. Inversion of configuration at the amide-bearing carbon in the phytosphingosine backbone constructed by epoxide opening in our previous synthesis of 1 was verified, indicating that remote group participation is not involved during the epoxide-opening reaction.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, New York 11367-1597, United States
| | - Hoe-Sup Byun
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, New York 11367-1597, United States
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, New York 11367-1597, United States
| |
Collapse
|
112
|
Pauwels N, Aspeslagh S, Vanhoenacker G, Sandra K, Yu ED, Zajonc DM, Elewaut D, Linclau B, Van Calenbergh S. Divergent synthetic approach to 6''-modified α-GalCer analogues. Org Biomol Chem 2011; 9:8413-21. [PMID: 22042483 DOI: 10.1039/c1ob06235b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic approach is presented for the synthesis of galacturonic acid and D-fucosyl modified KRN7000. The approach allows for late-stage functionalisation of both the sugar 6''-OH and the sphingosine amino groups, which enables convenient synthesis of promising 6''-modified KRN7000 analogues.
Collapse
Affiliation(s)
- Nora Pauwels
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, UGent, Harelbekestraat 72, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Patel O, Cameron G, Pellicci DG, Liu Z, Byun HS, Beddoe T, McCluskey J, Franck RW, Castaño AR, Harrak Y, Llebaria A, Bittman R, Porcelli SA, Godfrey DI, Rossjohn J. NKT TCR recognition of CD1d-α-C-galactosylceramide. THE JOURNAL OF IMMUNOLOGY 2011; 187:4705-13. [PMID: 21964029 DOI: 10.4049/jimmunol.1100794] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells respond to a variety of CD1d-restricted glycolipid Ags that are structurally related to the prototypic Ag α-galactosylceramide (α-GalCer). A modified analog of α-GalCer with a carbon-based glycosidic linkage (α-C-GalCer) has generated great interest because of its apparent ability to promote prolonged, Th1-biased immune responses. In this study, we report the activation of spleen NKT cells to α-C-GalCer, and related C-glycoside ligands, is weaker than that of α-GalCer. Furthermore, the Vβ8.2 and Vβ7 NKT TCR affinity for CD1d-α-C-GalCer, and some related analogs, is ∼10-fold lower than that for the NKT TCR-CD1d-α-GalCer interaction. Nevertheless, the crystal structure of the Vβ8.2 NKT TCR-CD1d-α-C-GalCer complex is similar to that of the corresponding NKT TCR-CD1d-α-GalCer complex, although subtle differences at the interface provide a basis for understanding the lower affinity of the NKT TCR-CD1d-α-C-GalCer interaction. Our findings support the concept that for CD1d-restricted NKT cells, altered glycolipid ligands can promote markedly different responses while adopting similar TCR-docking topologies.
Collapse
Affiliation(s)
- Onisha Patel
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Baek DJ, Seo JH, Lim C, Kim JH, Chung DH, Cho WJ, Kang CY, Kim S. The 3-Deoxy Analogue of α-GalCer: Disclosing the Role of the 4-Hydroxyl Group for CD1d-Mediated NKT Cell Activation. ACS Med Chem Lett 2011; 2:544-8. [PMID: 24900347 DOI: 10.1021/ml2000802] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/11/2011] [Indexed: 11/29/2022] Open
Abstract
KRN7000, or α-GalCer, is a potent agonist for natural killer T (NKT) cells. The 3-hydroxyl group of its phytosphingosine moiety is important for activating NKT cells, whereas its 4-hydroxyl group is perceived to be less crucial. To experimentally determine the role of the 4-hydroxyl group, we synthesized the 3-deoxy analogue of α-GalCer. It was found that 3-deoxy-α-GalCer induced potent cytokine responses from NKT cells, comparable to those of both α-GalCer and 4-deoxy-α-GalCer. This result and our docking studies suggest that the effects of an absence of the 3-hydroxyl group are compensated by the presence of a hydroxyl group at the C-4 position. Thus, we conclude that the 4-hydroxyl group of α-GalCer is as important to the mechanism of action as the 3-hydroxyl group and that the two hydroxyl groups could play individual and cooperative roles in orienting the glycolipid into the proper position in CD1d to be recognized by the T cell receptor of NKT cells.
Collapse
Affiliation(s)
- Dong Jae Baek
- College of Pharmacy, Seoul National University, San 56-1, Shilim, Kwanak, Seoul 151-742, Korea
| | - Jeong-Hwan Seo
- College of Pharmacy, Seoul National University, San 56-1, Shilim, Kwanak, Seoul 151-742, Korea
| | - Chaemin Lim
- College of Pharmacy, Seoul National University, San 56-1, Shilim, Kwanak, Seoul 151-742, Korea
| | - Jae Hyun Kim
- College of Pharmacy, Seoul National University, San 56-1, Shilim, Kwanak, Seoul 151-742, Korea
| | - Doo Hyun Chung
- College of Medicine, Seoul National University, 28 Yongon, Chongno, Seoul 110-799, Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Yongbong, Buk, Kwangju 500-757, Korea
| | - Chang-Yuil Kang
- College of Pharmacy, Seoul National University, San 56-1, Shilim, Kwanak, Seoul 151-742, Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, San 56-1, Shilim, Kwanak, Seoul 151-742, Korea
| |
Collapse
|
115
|
Use of the NEO strategy (Nucleophilic addition/Epoxide Opening) for the synthesis of a new C-galactoside ester analogue of KRN 7000. Bioorg Med Chem Lett 2011; 21:2510-4. [DOI: 10.1016/j.bmcl.2011.02.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 11/23/2022]
|