101
|
Wang K, Peng H, Thurecht KJ, Puttick S, Whittaker AK. Multifunctional hyperbranched polymers for CT/19F MRI bimodal molecular imaging. Polym Chem 2016. [DOI: 10.1039/c5py01707f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional hyperbranched polymers containing iodine and fluorine were synthesised by reversible addition–fragmentation chain transfer (RAFT) polymerisation, and evaluated as novel contrast agents for CT/19F MRI bimodal molecular imaging.
Collapse
Affiliation(s)
- Kewei Wang
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Simon Puttick
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| |
Collapse
|
102
|
Zhang M, Liu L, Chang W, Li J. Controllable and Reversible Dimple-Shaped Aggregates Induced by Macrocyclic Recognition Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13581-13589. [PMID: 26609556 DOI: 10.1021/acs.langmuir.5b03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel dimethyl acrylate 18-membered macrocycle (DMECE), acting as both bifunctional monomer and cross-linker, was designed and synthesized, and thus employed to construct a series of macrocycle-containing amphiphilic hyperbranched polymers (HBPs). The macrocyclic recognition effect between the HBPs and alkali metal ions showed that Na(+) was introduced in 1:1 interactive mode, whereas K(+) and Rb(+) were in 2:1 ratio. Through the formation of the DMECE/K(+) = 2:1 rigid "sandwich" complex of amphiphilic hyperbranched polymers, dimple-shaped aggregates were observed by TEM, SEM and AFM. Moreover, the initial concentration, the nature of solvent, the mode and affinity of the macrocyclic recognition effect as well as the amount of K(+), were essential control factors for the formation of dimple-shaped aggregates. Most importantly, the macrocyclic recognition effect endows the reversibility of the dimple-shaped aggregates and the size controllability of its circular opening, which provides a new strategy for design novel macrocycle-containing HBPs and great potential application in the field of capture and release.
Collapse
Affiliation(s)
- Ming Zhang
- The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 94#, Nankai District, Tianjin, P. R. China
| | - Lingyan Liu
- The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 94#, Nankai District, Tianjin, P. R. China
| | - Weixing Chang
- The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 94#, Nankai District, Tianjin, P. R. China
| | - Jing Li
- The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 94#, Nankai District, Tianjin, P. R. China
| |
Collapse
|
103
|
Abstract
Dendritic molecules are an exciting research topic because of their highly branched architecture, multiple functional groups on the periphery, and very pertinent features for various applications. Self-assembling dendritic amphiphiles have produced different nanostructures with unique morphologies and properties. Since their self-assembly in water is greatly relevant for biomedical applications, researchers have been looking for a way to rationally design dendritic amphiphiles for the last few decades. We review here some recent developments from investigations on the self-assembly of dendritic amphiphiles into various nanostructures in water on the molecular level. The main content of the review is divided into sections according to the different nanostructure morphologies resulting from the dendritic amphiphiles' self-assembly. Finally, we conclude with some remarks that highlight the self-assembling features of these dendritic amphiphiles.
Collapse
Affiliation(s)
- Bala N S Thota
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| | - Leonhard H Urner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| |
Collapse
|
104
|
Qiu F, Huang Y, Zhu X. Fluorescent Unimolecular Conjugated Polymeric Micelles for Biological Applications. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Qiu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P. R. China
| | - Yu Huang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
105
|
Gong N, Chen S, Jin S, Zhang J, Wang PC, Liang XJ. Effects of the physicochemical properties of gold nanostructures on cellular internalization. Regen Biomater 2015; 2:273-80. [PMID: 26813673 PMCID: PMC4676326 DOI: 10.1093/rb/rbv024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 11/13/2022] Open
Abstract
Unique physicochemical properties of Au nanomaterials make them potential star materials in biomedical applications. However, we still know a little about the basic problem of what really matters in fabrication of Au nanomaterials which can get into biological systems, especially cells, with high efficiency. An understanding of how the physicochemical properties of Au nanomaterials affect their cell internalization is of significant interest. Studies devoted to clarify the functions of various properties of Au nanostructures such as size, shape and kinds of surface characteristics in cell internalization are under way. These fundamental investigations will give us a foundation for constructing Au nanomaterial-based biomedical devices in the future. In this review, we present the current advances and rationales in study of the relationship between the physicochemical properties of Au nanomaterials and cell uptake. We also provide a perspective on the Au nanomaterial-cell interaction research.
Collapse
Affiliation(s)
- Ningqiang Gong
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Shizhu Chen
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China and
| | - Shubin Jin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China and
| | - Paul C. Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
106
|
Tan H, Wang W, Yu C, Zhou Y, Lu Z, Yan D. Dissipative particle dynamics simulation study on self-assembly of amphiphilic hyperbranched multiarm copolymers with different degrees of branching. SOFT MATTER 2015; 11:8460-8470. [PMID: 26364696 DOI: 10.1039/c5sm01495f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hyperbranched multiarm copolymers (HMCs) have shown great potential to be excellent precursors in self-assembly to form various supramolecular structures in all scales and dimensions in solution. However, theoretical studies on the self-assembly of HMCs, especially the self-assembly dynamics and mechanisms, have been greatly lagging behind the experimental progress. Herein, we investigate the effect of degree of branching (DB) on the self-assembly structures of HMCs by dissipative particle dynamics (DPD) simulation. Our simulation results demonstrate that the self-assembly morphologies of HMCs can be changed from spherical micelles, wormlike micelles, to vesicles with the increase of DBs, which are qualitatively consistent with the experimental observations. In addition, both the self-assembly mechanisms and the dynamic processes for the formation of these three aggregates have been systematically disclosed through the simulations. These self-assembly details are difficult to be shown by experiments and are very useful to fully understand the self-assembly behaviors of HMCs.
Collapse
Affiliation(s)
- Haina Tan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Wei Wang
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, P. R. China.
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Zhongyuan Lu
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, P. R. China.
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| |
Collapse
|
107
|
Effects of dendritic core-shell glycoarchitectures on primary mesenchymal stem cells and osteoblasts obtained from different human donors. J Nanobiotechnology 2015; 13:65. [PMID: 26449656 PMCID: PMC4597403 DOI: 10.1186/s12951-015-0128-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/24/2015] [Indexed: 11/10/2022] Open
Abstract
The biological impact of novel nano-scaled drug delivery vehicles in highly topical therapies of bone diseases have to be investigated in vitro before starting in vivo trials. Highly desired features for these materials are a good cellular uptake, large transport capacity for drugs and a good bio-compatibility. Essentially the latter has to be addressed as first point on the agenda. We present a study on the biological interaction of maltose-modified poly(ethyleneimine) (PEI-Mal) on primary human mesenchymal stem cell, harvested from reaming debris (rdMSC) and osteoblasts obtained from four different male donors. PEI-Mal-nanoparticles with two different molecular weights of the PEI core (5000 g/mol for PEI-5k-Mal-B and 25,000 g/mol for PEI-25k-Mal-B) have been administered to both cell lines. As well dose as incubation-time dependent effects and interactions have been researched for concentrations between 1 μg/ml to 1 mg/ml and periods of 24 h up to 28 days. Studies conducted by different methods of microscopy as light microscopy, fluorescence microscopy, transmission-electron-microscopy and quantitative assays (LDH and DC-protein) indicate as well a good cellular uptake of the nanoparticles as a particle- and concentration-dependent impact on the cellular macro- and micro-structure of the rdMSC samples. In all experiments PEI-5k-Mal-B exhibits a superior biocompatibility compared to PEI-25k-Mal-B. At higher concentrations PEI-25k-Mal-B is toxic and induces a directly observable mitochondrial damage. The alkaline phosphatase assay (ALP), has been conducted to check on the possible influence of nanoparticles on the differentiation capabilities of rdMSC to osteoblasts. In addition the production of mineralized matrix has been shown by von-Kossa stained samples. No influence of the nanoparticles on the ALP per cell has been detected. Additionally, for all experiments, results are strongly influenced by a large donor-to-donor variability of the four different rdMSC samples. To summarize, while featuring a good cellular uptake, PEI-5k-Mal-B induces only minimal adverse effects and features clearly superior biocompatibility compared to the larger PEI-25k-Mal-B.
Collapse
|
108
|
Sun M, Zhang HY, Zhao Q, Hu XY, Wang LH, Liu BW, Liu Y. A supramolecular brush polymer via the self-assembly of bridged tris(β-cyclodextrin) with a porphyrin derivative and its magnetic resonance imaging. J Mater Chem B 2015; 3:8170-8179. [PMID: 32262874 DOI: 10.1039/c5tb01537e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate imaging of soft tissues is one of the ultimate goals in biomedical imaging. Different imaging modalities can improve their disadvantages, and promote the imaging ability. However, once an imaging agent has been prepared, it is usually hard to adjust it according to the actual needs. Herein, we developed a supramolecular brush polymer (SBP) as a versatile imaging agent platform. The SBP platform (SBPP) is constructed by the intermolecular inclusion complexation of bridged tris(β-cyclodextrin) (1) with Mn(iii)-porphyrin-bearing poly(ethylene glycol) (PEG) side chains (Mn(iii)-TPP), and can further bind other functional groups by host-guest interactions of cyclodextrin and adamantine. The SBPP is characterized by UV/vis absorption spectroscopy, NMR, dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). We demonstrated that this SBPP not only has no cellular toxicity against NIH 3T3 cells in in vitro cell experiments, but it also shows an efficient enhanced T1 relaxivity in in vitro MR imaging experiments. When used as multifunctional imaging agents, different imaging probes and/or targeting agents can be introduced to this SBPP as needed through simple host-guest interactions. In in vitro imaging experiments, it shows accurate imaging of different kinds of cancer cells by choosing on-demand targeting agents. These results suggest a promising strategy for engineering multifunctional imaging agents with SBPs.
Collapse
Affiliation(s)
- Mo Sun
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
109
|
Xue B, Kozlovskaya V, Liu F, Chen J, Williams JF, Campos-Gomez J, Saeed M, Kharlampieva E. Intracellular Degradable Hydrogel Cubes and Spheres for Anti-Cancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13633-13644. [PMID: 26028158 DOI: 10.1021/acsami.5b03360] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Shape and responsiveness of nanoengineered delivery carriers are crucial characteristics for rapid and efficient delivery of therapeutics. We report on a novel type of micrometer-sized hydrogel particles of controlled shape with dual pH- and redox-sensitivity for intracellular delivery of anticancer drugs. The cubical and spherical poly(methacrylic acid) (PMAA) networks with disulfide links are obtained by cross-linking PMAA with cystamine within hydrogen-bonded multilayers of PMAA/poly(vinylpyrrolidone) (PMAA/PVPON) on sacrificial mesoporous templates. The pH-triggered hydrogel swelling/shrinkage not only affords effective doxorubicin entrapment but also efficient endosomal/lysosomal escape, and redox-triggered degradation provides drug release into the cytosolic space. The hydrogels degrade rapidly to low molecular weight chains in the presence of the typical intracellular concentration of glutathione, which should ensure a rapid renal clearance in vivo. Particle shape is found to affect internalization at the initial step of cell-particle interactions. Drug-loaded spherical particles are found to be 12% more cytotoxic than the corresponding cubes within the first 10 h of cell incubation suggesting more rapid internalization of spheres. Both doxorubicin-loaded hydrogel cubes and spheres demonstrate 50% and 90% cytotoxicity when incubated with HeLa cancer cells for 24 and 48 h, respectively. The presented approach integrates the advantages of pH-sensitivity, enzymatic degradation, and shape-regulated internalization for novel types of "intelligent" three-dimensional networks with programmable behavior for use in controlled delivery of therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Javier Campos-Gomez
- ‡Department of Biochemistry and Molecular Biology, Southern Research Institute, Drug Discovery Division, Birmingham, Alabama 35205, United States
| | - Mohammad Saeed
- ‡Department of Biochemistry and Molecular Biology, Southern Research Institute, Drug Discovery Division, Birmingham, Alabama 35205, United States
| | | |
Collapse
|
110
|
Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review. Anal Chim Acta 2015; 877:19-32. [DOI: 10.1016/j.aca.2015.01.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 11/23/2022]
|
111
|
Chen H, Jia J, Duan X, Yang Z, Kong J. Reduction-cleavable hyperbranched polymers with limited intramolecular cyclization via click chemistry. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27694] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Heng Chen
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Jiqiong Jia
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Xiao Duan
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Zhen Yang
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| |
Collapse
|
112
|
Striegler C, Schumacher M, Effenberg C, Müller M, Seckinger A, Schnettler R, Voit B, Hose D, Gelinsky M, Appelhans D. Dendritic Glycopolymer as Drug Delivery System for Proteasome Inhibitor Bortezomib in a Calcium Phosphate Bone Cement: First Steps Toward a Local Therapy of Osteolytic Bone Lesions. Macromol Biosci 2015; 15:1283-95. [PMID: 26018141 DOI: 10.1002/mabi.201500085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/23/2015] [Indexed: 12/29/2022]
Abstract
Establishment of drug delivery system (DDS) in bone substitute materials for local treatment of bone defects still requires ambitious solutions for a retarded drug release. We present two novel DDS, a weakly cationic dendritic glycopolymer and a cationic polyelectrolyte complex, composed of dendritic glycopolymer and cellulose sulfate, for the proteasome inhibitor bortezomib. Both DDS are able to induce short-term retarded release of bortezomib from calcium phosphate bone cement in comparison to a burst-release of the drug from bone cement alone. Different release parameters have been evaluated to get a first insight into the release mechanism from bone cements. In addition, biocompatibility of the calcium phosphate cement, modified with the new DDS was investigated using human mesenchymal stromal cells.
Collapse
Affiliation(s)
- Christin Striegler
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Matthias Schumacher
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Christiane Effenberg
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Martin Müller
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Anja Seckinger
- Department of Internal Medicine V, Section Multiple Myeloma, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Reinhard Schnettler
- Laboratory for Experimental Trauma Surgery, Justus-Liebig-University Gießen, Schubertstr. 81, 35392 Giessen, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Dirk Hose
- Department of Internal Medicine V, Section Multiple Myeloma, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
| |
Collapse
|
113
|
Schill J, Schenning APHJ, Brunsveld L. Self-Assembled Fluorescent Nanoparticles from π-Conjugated Small Molecules: En Route to Biological Applications. Macromol Rapid Commun 2015; 36:1306-21. [DOI: 10.1002/marc.201500117] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/26/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Jurgen Schill
- Laboratory of Chemical Biology; Department of Biomedical Engineering, and Institute of Complex Molecular Systems; Eindhoven University of Technology; P.O Box 513 5600 MB Eindhoven The Netherlands
| | - Albertus P. H. J. Schenning
- Functional Organic Materials and Devicesand Institute of Complex Molecular Systems; Eindhoven University of Technology; P.O Box 513 5600 MB Eindhoven The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology; Department of Biomedical Engineering, and Institute of Complex Molecular Systems; Eindhoven University of Technology; P.O Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
114
|
Liu H, Jiang X, Bian R, Tong M, Tang D, Zhou X, Zhao Y. Facile synthesis of A2mB2n-type starlike copolymers with two types of V-shaped arms by combination of RAFT, ATRP and ROP processes. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.01.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
115
|
Liu S, Dicker KT, Jia X. Modular and orthogonal synthesis of hybrid polymers and networks. Chem Commun (Camb) 2015; 51:5218-37. [PMID: 25572255 PMCID: PMC4359094 DOI: 10.1039/c4cc09568e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA.
| | | | | |
Collapse
|
116
|
Yan Y, Sun Y, Yu H, Xu H, Lu JR. Self-assembly and nanoaggregation of a pH responsive DNA hybrid amphiphile. SOFT MATTER 2015; 11:1748-1754. [PMID: 25603356 DOI: 10.1039/c4sm02499k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This work describes the design and preparation of a simple but novel hybrid amphiphile containing a pH-responsive DNA sequence. The formation of a bimolecular i-motif structure allows the control of reversible switching of the hybrid amphiphile between the dimer and unimer by pH. Thus, spherical aggregates with distinct self-assembly pathways, sizes and structures are obtained at pH 4.5 and pH 9.0, and the structures can be switched by the change of pH and thermal annealing. This work reports different self-assembled nanostructures and their transitions that give this amphiphile potential for the design of controllable drug delivery systems.
Collapse
Affiliation(s)
- Yongfeng Yan
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | | | | | | | | |
Collapse
|
117
|
Kim Y, Lee M. Supramolecular Capsules from Bilayer Membrane Scission Driven by Corannulene. Chemistry 2015; 21:5736-40. [DOI: 10.1002/chem.201500101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Indexed: 01/07/2023]
|
118
|
Zhou Z, Hao T, Yan D. Kinetic Model of the Amphiphilic Copolymers with Hyperbranched Core Formed by AB 2Monomer and B fInitiator. MACROMOL THEOR SIMUL 2015. [DOI: 10.1002/mats.201400102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zhiping Zhou
- School of Materials Science and Engineering; Jiangsu University; 301 Xuefu Road Zhenjiang 212013 China
| | - Tongfan Hao
- School of Materials Science and Engineering; Jiangsu University; 301 Xuefu Road Zhenjiang 212013 China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
119
|
Liu H, Yang P, Wan D. The accessibility of a unimolecular micelle's core to environmental ions: Exploration with a xanthene dye. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Honghai Liu
- Institute of Functional Polymers; School of Materials Science and Engineering; Tongji University; 4800 Cao-an Road Shanghai 201804 China
| | - Pengfei Yang
- Institute of Functional Polymers; School of Materials Science and Engineering; Tongji University; 4800 Cao-an Road Shanghai 201804 China
| | - Decheng Wan
- Institute of Functional Polymers; School of Materials Science and Engineering; Tongji University; 4800 Cao-an Road Shanghai 201804 China
| |
Collapse
|
120
|
Dong R, Zhou Y, Huang X, Zhu X, Lu Y, Shen J. Functional supramolecular polymers for biomedical applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:498-526. [PMID: 25393728 DOI: 10.1002/adma.201402975] [Citation(s) in RCA: 343] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/17/2014] [Indexed: 05/08/2023]
Abstract
As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology.
Collapse
Affiliation(s)
- Ruijiao Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | | | | | | | | | | |
Collapse
|
121
|
Zhou J, Yu G, Shao L, Hua B, Huang F. A water-soluble biphen[3]arene: synthesis, host–guest complexation, and application in controllable self-assembly and controlled release. Chem Commun (Camb) 2015; 51:4188-91. [DOI: 10.1039/c5cc00225g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The first water-soluble biphen[3]arene was synthesized. Its pH-responsive host–guest complexation with secondary ammonium salts in water was investigated. This novel recognition motif was further used in controllable self-assembly and controlled release.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Guocan Yu
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Li Shao
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Bin Hua
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
122
|
Mo B, Liu H, Zhou X, Zhao Y. Facile synthesis of photolabile dendritic-unit-bridged hyperbranched graft copolymers for stimuli-triggered topological transition and controlled release of Nile red. Polym Chem 2015. [DOI: 10.1039/c5py00132c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Successive RAFT SCVP and ROP were used to generate novel hyperbranched graft copolymers with the ability for the photo-triggered degradation and accelerative release of hydrophobic dye.
Collapse
Affiliation(s)
- Bin Mo
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiangdong Zhou
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
123
|
Aluri R, Jayakannan M. One-pot two polymers: ABB′ melt polycondensation for linear polyesters and hyperbranched poly(ester-urethane)s based on natural l-amino acids. Polym Chem 2015. [DOI: 10.1039/c5py00602c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot two polymers: a novel one-pot temperature selective polymerization reaction was developed for ABB′ type multifunctional l-amino acid monomers to produce spherical hyperbranched poly(ester-urethane)s and helical linear polyesters.
Collapse
Affiliation(s)
- Rajendra Aluri
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune 411008
- India
| | - Manickam Jayakannan
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune 411008
- India
| |
Collapse
|
124
|
Li D, Niu Y, Yang Y, Wang X, Yang F, Shen H, Wu D. Synthesis and self-assembly behavior of POSS-embedded hyperbranched polymers. Chem Commun (Camb) 2015; 51:8296-9. [DOI: 10.1039/c5cc01338k] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We demonstrate a simple approach to prepare POSS-embedded hyperbranched amphiphiles, presenting morphological transition from micelle to vesicle in aqueous solution.
Collapse
Affiliation(s)
- Dawei Li
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yuguang Niu
- ENT Department
- Affiliated Hospital of Academy of Military Medical Sciences
- Beijing 100071
- China
| | - Yanyu Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Hong Shen
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
125
|
Mai B, Liu R, Li Z, Feng S, Wu Q, Gao H, Liang G, Zhu F. Synthesis and self-assembly in aqueous solution of amphiphilic diblock copolymers containing hyperbranched polyethylene. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
126
|
Jiang W, Zhou Y, Yan D. Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications. Chem Soc Rev 2015; 44:3874-89. [DOI: 10.1039/c4cs00274a] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This tutorial review summarizes the first 10 years of work on hyperbranched polymer vesicles from syntheses, self-assembly, and properties to applications.
Collapse
Affiliation(s)
- Wenfeng Jiang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
127
|
Zhang X, Gao Y, Lin Y, Hu J, Ju Y. Photo-induced conversion from supramolecular to covalently linked polymers based on anthracene-appended amphiphiles. Polym Chem 2015. [DOI: 10.1039/c5py00476d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A photo-induced conversion from supramolecular to covalent polymers was achieved based on anthracene-appended amphiphiles.
Collapse
Affiliation(s)
- Xun Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
- Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Yuxia Gao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
- Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Yuan Lin
- State Key Lab of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Jun Hu
- State Key Lab of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yong Ju
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
- Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| |
Collapse
|
128
|
Gao L, Zheng B, Chen W, Schalley CA. Enzyme-responsive pillar[5]arene-based polymer-substituted amphiphiles: synthesis, self-assembly in water, and application in controlled drug release. Chem Commun (Camb) 2015; 51:14901-4. [DOI: 10.1039/c5cc06207a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pillar[5]arene-based PEG-substituted amphiphiles form enzyme-responsive micelles in water useful for drug-delivery.
Collapse
Affiliation(s)
- Lingyan Gao
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
- Institute of Chemistry and Biochemistry
| | - Bo Zheng
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Wei Chen
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | | |
Collapse
|
129
|
Abstract
The recent research progress in biological and biomedical applications of hyperbranched polymers has been summarized in this review.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
130
|
Zheng Y, Li S, Weng Z, Gao C. Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 2015; 44:4091-130. [DOI: 10.1039/c4cs00528g] [Citation(s) in RCA: 498] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the advances in hyperbranched polymers from the viewpoint of structure, click synthesis and functionalization towards their applications in the last decade.
Collapse
Affiliation(s)
- Yaochen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Sipei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Zhulin Weng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
131
|
Sun F, Luo X, Kang L, Peng X, Lu C. Synthesis of hyperbranched polymers and their applications in analytical chemistry. Polym Chem 2015. [DOI: 10.1039/c4py01462f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review focuses primarily on the recent developments in the synthesis of hyperbranched polymers and their application in analytical chemistry.
Collapse
Affiliation(s)
- Fengxia Sun
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| | - Xiaoling Luo
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| | - Lichao Kang
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| | - Xiayu Peng
- Key Laboratories of Sheep Breeding and Reproduce
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
| | - Chunxia Lu
- Analysis and Testing Center
- Xinjiang Academy of Agriculture and Reclamation Science
- Shihezi
- P.R. China
- Supervision and Testing Center Food Quality
| |
Collapse
|
132
|
Hartlieb M, Kempe K, Schubert US. Covalently cross-linked poly(2-oxazoline) materials for biomedical applications – from hydrogels to self-assembled and templated structures. J Mater Chem B 2015; 3:526-538. [DOI: 10.1039/c4tb01660b] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss covalently cross-linked poly(2-oxazoline)s including gels, nanogels and capsules on the basis of their synthetic origin in a biomedical context.
Collapse
Affiliation(s)
- Matthias Hartlieb
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Kristian Kempe
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
133
|
Fu S, Sun H, Li J, Bai Y, Luo Q, Dong Z, Xu J, Liu J. Light-controlled switching of the self-assembly of ill-defined amphiphilic SP-PAMAM. RSC Adv 2015. [DOI: 10.1039/c5ra17264k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spiropyrans-decorated polyamidoamine (SP-P3) with ill-defined structures was successfully prepared for the construction of photocontrolled supramolecular macrorods.
Collapse
Affiliation(s)
- Shuang Fu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Hongcheng Sun
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Jiaxi Li
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yushi Bai
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
134
|
Huang Y, Wang D, Zhu X, Yan D, Chen R. Synthesis and therapeutic applications of biocompatible or biodegradable hyperbranched polymers. Polym Chem 2015. [DOI: 10.1039/c5py00144g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent progress in the synthesis, modifications and therapeutic applications of biocompatible or biodegradable hyperbranched polymers has been reviewed.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| |
Collapse
|
135
|
Hu X, Liu G, Li Y, Wang X, Liu S. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J Am Chem Soc 2014; 137:362-8. [PMID: 25495130 DOI: 10.1021/ja5105848] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rational design of theranostic nanoparticles exhibiting synergistic turn-on of therapeutic potency and enhanced diagnostic imaging in response to tumor milieu is critical for efficient personalized cancer chemotherapy. We herein fabricate self-reporting theranostic drug nanocarriers based on hyperbranched polyprodrug amphiphiles (hPAs) consisting of hyperbranched cores conjugated with reduction-activatable camptothecin prodrugs and magnetic resonance (MR) imaging contrast agent (Gd complex), and hydrophilic coronas functionalized with guanidine residues. Upon cellular internalization, reductive milieu-actuated release of anticancer drug in the active form, activation of therapeutic efficacy (>70-fold enhancement in cytotoxicity), and turn-on of MR imaging (∼9.6-fold increase in T1 relaxivity) were simultaneously achieved in the simulated cytosol milieu. In addition, guanidine-decorated hPAs exhibited extended blood circulation with a half-life up to ∼9.8 h and excellent tumor cell penetration potency. The hyperbranched chain topology thus provides a novel theranostic polyprodrug platform for synergistic imaging/chemotherapy and enhanced tumor uptake.
Collapse
Affiliation(s)
- Xianglong Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | | | | | | | | |
Collapse
|
136
|
Wang Y, He J, Liu C, Chong WH, Chen H. Thermodynamik und Kinetik in der Nanosynthese. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402986] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
137
|
Wang Y, He J, Liu C, Chong WH, Chen H. Thermodynamics versus Kinetics in Nanosynthesis. Angew Chem Int Ed Engl 2014; 54:2022-51. [DOI: 10.1002/anie.201402986] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Indexed: 12/29/2022]
|
138
|
Affiliation(s)
- Shane M. Hickey
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Shani K. Tripcony
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Rui Li
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Richard J. Williams
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne 3001, Australia
| | - Frederick M. Pfeffer
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
139
|
Wang J, Wang X, Yang F, Shen H, You Y, Wu D. Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13014-13020. [PMID: 25310380 DOI: 10.1021/la503295z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A star polymer, β-cyclodextrin-poly(l-lactide) (β-CD-PLLA), and a linear polymer, azobenzene-poly(ethylene glycol) (Azo-PEG), could self-assemble into a supramolecular amphiphilic copolymer (β-CD-PLLA@Azo-PEG) based on the host-guest interaction between β-CD and azobenzene moieties. This linear-star supramolecular amphiphilic copolymer further self-assembled into a variety of morphologies, including sphere-like micelle, carambola-like micelle, naan-like micelle, shuttle-like lamellae, tube-like fiber, and random curled-up lamellae, by tuning the length of hydrophilic or hydrophobic chains. The variation of morphology was closely related to the topological structure and block ratio of the supramolecular amphiphiles. These self-assembly structures could disassemble upon an ultraviolet (UV) light irradiation.
Collapse
Affiliation(s)
- Juan Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
140
|
Self-assembly of amphiphilic hyperbranched poly (aryl ether ketone)- block-poly (ethylene glycol) copolymer into microspheres with excellent thermal property. HIGH PERFORM POLYM 2014. [DOI: 10.1177/0954008314526908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An amphiphilic hyperbranched rod-coil copolymer was synthesized by grafting linear poly (ethylene glycol) (PEG) onto hydroxyl-terminated hyperbranched poly (aryl ether ketone) (OH-HPAEK). The molecular structure, the number-average molecular weight and the thermal properties of HPAEK- block-PEG were confirmed and characterized using proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis, respectively. The microspheres of HPAEK- block-PEG were fabricated by the method of self-assembly, and the morphology and diameter of the obtained microspheres were characterized using transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. The heat-treated experimental results demonstrated that the polymer microspheres possessed excellent thermal property that could stably exist even if heated at 130°C for 10 h. In addition, the diameter of the microspheres can be easily controlled by just adjusting the concentration of the copolymer.
Collapse
|
141
|
Zhang D, Xu Z, Li J, Chen S, Cheng J, Zhang A, Chen S, Miao M. Self-assembly of amido-ended hyperbranched polyester films with a highly ordered dendritic structure. ACS APPLIED MATERIALS & INTERFACES 2014; 6:16375-16383. [PMID: 25148598 DOI: 10.1021/am504705c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Self-assemblies fabricated from dendrimers and amphiphilic polymers have demonstrated remarkable performances and a wide range of applications. Direct self-assembly of hyperbranched polymers into highly ordered macrostructures with heat-resistance remains a big challenge due to the weak amphiphilicity of the polymers. Here, we report the self-assembly of amphiphilic amido-ended hyperbranched polyester (HTDA-2) into millimeter-size dendritic films using combined hydrogen bond interaction and solvent induction. The self-assembly process and mechanism have been studied. Hydrogen bond interaction between amido-ended groups assists the aggregation of inner and outer chains of the HTDA-2, resulting in phase separation and micelle formation. Some micelles attach to and grow on the glass substrate like seedlings. Other micelles move to the seedlings and connect with their branches via solvent induction and hydrogen bond interaction, leading to the fabrication of highly ordered crystalline dendritic films that show high heat-resistance. HTDA-2 can further self-assemble into sheet crystals on the dendritic films.
Collapse
Affiliation(s)
- Daohong Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-central University for Nationalities , Wuhan, Hubei 430074, China
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Chatterjee S, Ramakrishnan S. Understanding Self-Segregation of Immiscible Peripheral Segments in Pseudodendritic Hyperbranched Polydithioacetals: Formation of Improved Janus Structures. ACS Macro Lett 2014; 3:953-957. [PMID: 35596367 DOI: 10.1021/mz500424t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peripherally heterofunctionalized hyperbranched polymers (HBPs) undergo immiscibility-driven self-segregation of the outer segments to form Janus molecular entities (Macromolecules 2012, 45, 2348). In HBPs prepared via AB2 type self-condensation, single-step peripheral heterofunctionalization would lead to random distribution of the two types of terminal units, namely, homofunctionalized (homo-T) and heterofunctionalized (hetero-T) termini. Here, we examine the role of such hetero-T units on the self-segregation of heterofunctionalized pseudodendritic hyperbranched polydithioacetals. Three different heterofunctionalized HB dithioacetals bearing roughly 50 mol % each of docsyl (C-22) and MPEG-350 chains at the periphery were prepared: one of them carried a statistical distribution of homo-T and hetero-T units, and the other carried only two types of homo-T (-TR1R1 and -TR2R2) termini, whereas the third carried largely hetero-T (-TR1R2) termini. Careful examination of DSC and SAXS data reveals that the self-segregation is most effective in HBPs devoid of hetero-T units; interestingly, however, it also showed that randomly heterofunctionalized HBPs self-segregated nearly as effectively.
Collapse
Affiliation(s)
- Saptarshi Chatterjee
- Department
of Inorganic and
Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - S. Ramakrishnan
- Department
of Inorganic and
Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
143
|
Pocoví-Martínez S, Kemmer-Jonas U, Pérez-Prieto J, Frey H, Stiriba SE. Supramolecular Antioxidant Assemblies of Hyperbranched Polyglycerols and Phenols. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Salvador Pocoví-Martínez
- Instituto de Ciencia Molecular (ICMOL); Universidad de Valencia; Catedrático José Beltrán, 2 46980 Paterna Valencia Spain
| | - Ulrike Kemmer-Jonas
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg, 10-14 55099 Mainz Germany
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMOL); Universidad de Valencia; Catedrático José Beltrán, 2 46980 Paterna Valencia Spain
| | - Holger Frey
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg, 10-14 55099 Mainz Germany
| | - Salah-Eddine Stiriba
- Instituto de Ciencia Molecular (ICMOL); Universidad de Valencia; Catedrático José Beltrán, 2 46980 Paterna Valencia Spain
| |
Collapse
|
144
|
Xu Z, Zhang D, Li J, Chen S, Li T, Zhang J, Zhang A, Chen S. Effects of the carboxyl-ended hyperbranched polyester/platinum complex molecular weight on hydrosilylation activity and self-assembled morphology. J Appl Polym Sci 2014. [DOI: 10.1002/app.41416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhicai Xu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| | - Daohong Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| | - Junna Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| | - Sufang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education; Wuhan Institute of Technology; Wuhan Hubei 430073 China
| | - Tingcheng Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| | - Junheng Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| | - Aiqing Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| | - Shenghui Chen
- College of Chemistry and Materials Science; South-Central University for Nationalities; Wuhan Hubei Province 430074 China
| |
Collapse
|
145
|
Jin Q, Wang Y, Cai T, Wang H, Ji J. Bioinspired photo-degradable amphiphilic hyperbranched poly(amino ester)s: Facile synthesis and intracellular drug delivery. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.07.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
146
|
Kurochkin SA, Silant’ev MA, Perepelitsyna EO, Grachev VP. Synthesis of branched polymers via radical copolymerization under oxygen inflow. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
147
|
Gadwal I, Binder S, Stuparu MC, Khan A. Dual-Reactive Hyperbranched Polymer Synthesis through Proton Transfer Polymerization of Thiol and Epoxide Groups. Macromolecules 2014. [DOI: 10.1021/ma500920z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ikhlas Gadwal
- Department
of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
| | - Selmar Binder
- Department
of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
| | | | - Anzar Khan
- Department
of Materials, ETH-Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
148
|
Li W, Qu J, Du J, Ren K, Wang Y, Sun J, Hu Q. Photoluminescent supramolecular hyperbranched polymer without conventional chromophores based on inclusion complexation. Chem Commun (Camb) 2014; 50:9584-7. [DOI: 10.1039/c4cc02880e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
149
|
Li ZQ, Zhang YM, Chen Y, Liu Y. A Supramolecular Tubular Nanoreactor. Chemistry 2014; 20:8566-70. [DOI: 10.1002/chem.201402612] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Indexed: 11/05/2022]
|
150
|
Li LL, Xu JH, Qi GB, Zhao X, Yu F, Wang H. Core-shell supramolecular gelatin nanoparticles for adaptive and "on-demand" antibiotic delivery. ACS NANO 2014; 8:4975-83. [PMID: 24716550 DOI: 10.1021/nn501040h] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The treatment of bacterial infection is one of the most challenging tasks in the biomedical field. Antibiotics were developed over 70 years and are regarded as the most efficient type of drug to treat bacterial infection. However, there is a concern that the overuse of antibiotics can lead to a growing number of multidrug-resistant bacteria. The development of antibiotic delivery systems to improve the biodistribution and bioavailability of antibiotics is a practical strategy for reducing the generation of antibiotic resistance and increasing the lifespan of newly developed antibiotics. Here we present an antibiotic delivery system (Van⊂SGNPs@RBC) based on core-shell supramolecular gelatin nanoparticles (SGNPs) for adaptive and "on-demand" antibiotic delivery. The core composed of cross-linked SGNPs allows for bacterial infection-microenvironment responsive release of antibiotics. The shell coated with uniform red blood cell membranes executes the function of disguise for reducing the clearance by the immune system during the antibiotic delivery, as well as absorbs the bacterial exotoxin to relieve symptoms caused by bacterial infection. This approach demonstrates an innovative and biomimetic antibiotic delivery system for the treatment of bacterial infection with a minimum dose of antibiotics.
Collapse
Affiliation(s)
- Li-Li Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | | | | | | | | | | |
Collapse
|