101
|
Sappia LD, Tuninetti JS, Ceolín M, Knoll W, Rafti M, Azzaroni O. MOF@PEDOT Composite Films for Impedimetric Pesticide Sensors. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:1900076. [PMID: 32042446 PMCID: PMC7001120 DOI: 10.1002/gch2.201900076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/29/2019] [Indexed: 05/05/2023]
Abstract
Due to its deleterious effects on health, development of new methods for detection and removal of pesticide residues in primary and derived agricultural products is a research topic of great importance. Among them, imazalil (IMZ) is a widely used post-harvest fungicide with good performances in general, and is particularly applied to prevent green mold in citrus fruits. In this work, a composite film for the impedimetric sensing of IMZ built from metal-organic framework nanocrystallites homogeneously distributed on a conductive poly(3,4-ethylene dioxythiophene) (PEDOT) layer is presented. The as-synthetized thin films are produced via spin-coating over poly(ethylene terephtalate (PET) substrate following a straightforward, cost-effective, single-step procedure. By means of impedance spectroscopy, electric transport properties of the films are studied, and high sensitivity towards IMZ concentration in the range of 15 ppb to 1 ppm is demonstrated (featuring 1.6 and 4.2 ppb limit of detection, when using signal modulus and phase, respectively). The sensing platform hereby presented could be used for the construction of portable, miniaturized, and ultrasensitive devices, suitable for pesticide detection in food, wastewater effluents, or the assessment of drinking-water quality.
Collapse
Affiliation(s)
- Luciano D. Sappia
- Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasDepartamento de QuímicaFacultad de Ciencias ExactasUniversidad Nacional de La PlataCONICET, CC 16 Suc. 4La PlataB1904DPIArgentina
| | - Jimena S. Tuninetti
- Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasDepartamento de QuímicaFacultad de Ciencias ExactasUniversidad Nacional de La PlataCONICET, CC 16 Suc. 4La PlataB1904DPIArgentina
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasDepartamento de QuímicaFacultad de Ciencias ExactasUniversidad Nacional de La PlataCONICET, CC 16 Suc. 4La PlataB1904DPIArgentina
| | - Wolfgang Knoll
- CEST – Competence Center for Electrochemical Surface TechnologiesKonrad Lorenz Strasse 243430TullnAustria
- Austrian Institute of TechnologyDonau‐City‐Strasse 11220ViennaAustria
| | - Matías Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasDepartamento de QuímicaFacultad de Ciencias ExactasUniversidad Nacional de La PlataCONICET, CC 16 Suc. 4La PlataB1904DPIArgentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasDepartamento de QuímicaFacultad de Ciencias ExactasUniversidad Nacional de La PlataCONICET, CC 16 Suc. 4La PlataB1904DPIArgentina
- CEST‐UNLP Partner Lab for BioelectronicsDiagonal 64 y 113La Plata1900Argentina
| |
Collapse
|
102
|
Afreen S, He Z, Xiao Y, Zhu JJ. Nanoscale metal-organic frameworks in detecting cancer biomarkers. J Mater Chem B 2020; 8:1338-1349. [PMID: 31999289 DOI: 10.1039/c9tb02579k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Following the efficient performance of metal-organic frameworks (MOFs) as recognition elements in gas sensors, biosensors based on MOFs are now being investigated to capture and quantify potential cancer biomarkers, such as circulating tumor cells (CTCs), nucleic acids and proteins. The current status of MOF-based biosensors in the detection of early stages of cancer is in its infancy, although it has significantly emerged since the beginning of this decade. That said, salient research has been conducted in the past five years to utilize the distinctive porous crystalline structure of MOFs for highly sensitive and selective detection of cancer biomarkers. In this pursual, MOFs designed with bimetallic assembly, doped with magnetic nanoparticles, coated with polymers, and even conjugated with peptides or oligonucleotides have shown promising outcomes in detecting CTCs, nucleic acids and proteins. In particular, aptamer-conjugated MOFs are able to perform at a lower limit of detection down to the femtomolar, implying their efficacy for the point of care testing in clinical trials. In this way, aptasensors based on aptamer-conjugated MOFs present a newer sub-branch, to be coined as a MOFTA sensor in the current review. Considering the emerging progress and promising outcomes of MOFTA sensors as well as a variety of MOF-based techniques of detecting cancer biomarkers, this review will highlight their significant advances and related aspects in the recent five years on the context of detecting CTCs, nucleic acids and proteins for the early-stage detection of cancer.
Collapse
Affiliation(s)
- Sadia Afreen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | |
Collapse
|
103
|
Nanozymes: created by learning from nature. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1183-1200. [DOI: 10.1007/s11427-019-1570-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
|
104
|
Hu Y, Yue C, Wang J, Zhang Y, Fang W, Dang J, Wu Y, Zhao H, Li Z. Fe–Ni metal–organic frameworks with prominent peroxidase-like activity for the colorimetric detection of Sn2+ ions. Analyst 2020; 145:6349-6356. [DOI: 10.1039/d0an00801j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The synthesized Fe–Ni-MOF could oxidize TMB to produce oxTMB with blue color. The presence of Sn2+ ions could make the oxTMB color lighter, hence colorimetric detection of Sn2+ ions is realized.
Collapse
Affiliation(s)
- Ye Hu
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
| | - Chaochao Yue
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
| | - Jing Wang
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
| | - Yuhua Zhang
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
| | - Wenhui Fang
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
| | - Jiaqi Dang
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
| | - Ying Wu
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
| | - Hong Zhao
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
| | - Zengxi Li
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
| |
Collapse
|
105
|
Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y. Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chem Commun (Camb) 2020; 56:11338-11353. [DOI: 10.1039/d0cc04890a] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metal–organic frameworks with enzyme-like catalytic features (MOF nanozymes) exhibit great promise in detecting various analytes with amplified signal outputs.
Collapse
Affiliation(s)
- Xiangheng Niu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
- Institute of Green Chemistry and Chemical Technology
| | - Xin Li
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
- Institute of Green Chemistry and Chemical Technology
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Xiaofan Ruan
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Dan Du
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| |
Collapse
|
106
|
Yuan A, Lu Y, Zhang X, Chen Q, Huang Y. Two-dimensional iron MOF nanosheet as a highly efficient nanozyme for glucose biosensing. J Mater Chem B 2020; 8:9295-9303. [DOI: 10.1039/d0tb01598a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A 2D Fe-BTC nanosheet was preparedviaa cation exchange route. Its peroxidase-like activity is 2.2 times that of 3D MIL-100(Fe) due to highly accessible surface active sites. This is helpful for substrate contact with the catalyst during the catalytic reaction.
Collapse
Affiliation(s)
- Ai Yuan
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| | - Yuwan Lu
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| | - Xiaodan Zhang
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| | - Qiumeng Chen
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| | - Yuming Huang
- College of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- China
| |
Collapse
|
107
|
Abstract
Natural enzymes, such as biocatalysts, are widely used in biosensors, medicine and health, the environmental field, and other fields. However, it is easy for natural enzymes to lose catalytic activity due to their intrinsic shortcomings including a high purification cost, insufficient stability, and difficulties of recycling, which limit their practical applications. The unexpected discovery of the Fe3O4 nanozyme in 2007 has given rise to tremendous efforts for developing natural enzyme substitutes. Nanozymes, which are nanomaterials with enzyme-mimetic catalytic activity, can serve as ideal candidates for artificial mimic enzymes. Nanozymes possess superiorities due to their low cost, high stability, and easy preparation. Although great progress has been made in the development of nanozymes, the catalytic efficiency of existing nanozymes is relatively low compared with natural enzymes. It is still a challenging task to develop nanozymes with a precise regulation of catalytic activity. This review summarizes the classification and various strategies for modulating the activity as well as research progress in the different application fields of nanozymes. Typical examples of the recent research process of nanozymes will be presented and critically discussed.
Collapse
|
108
|
Wang J, Hu Y, Zhou Q, Hu L, Fu W, Wang Y. Peroxidase-like Activity of Metal-Organic Framework [Cu(PDA)(DMF)] and Its Application for Colorimetric Detection of Dopamine. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44466-44473. [PMID: 31691561 DOI: 10.1021/acsami.9b17488] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A metal-organic framework (MOF) [Cu(PDA)(DMF)] was synthesized under mild mixed solvothermal conditions. It is constructed by 1,10-phenanthroline-2,9-dicarboxylic acid (H2PDA) and Cu2+ ions. The complex exhibits high peroxidase-like activity and can catalytically oxidize the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product in the presence of H2O2. However, the peroxidase-like activity of [Cu(PDA)(DMF)] can be potently inhibited in the presence of dopamine. Based on this phenomenon, the colorimetric detection of dopamine was demonstrated with good selectivity and high sensitivity. [Cu(PDA)(DMF)] showed good stability and robust catalytic activity, which has been employed in the detection of dopamine in human urine and pharmaceutical samples.
Collapse
Affiliation(s)
- Jun Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Yuyan Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Qi Zhou
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Yi Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| |
Collapse
|
109
|
Raza W, Kukkar D, Saulat H, Raza N, Azam M, Mehmood A, Kim KH. Metal-organic frameworks as an emerging tool for sensing various targets in aqueous and biological media. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115654] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
110
|
Copper-based two-dimensional metal-organic framework nanosheets as horseradish peroxidase mimics for glucose fluorescence sensing. Anal Chim Acta 2019; 1079:164-170. [DOI: 10.1016/j.aca.2019.06.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 01/08/2023]
|
111
|
Ruan X, Liu D, Niu X, Wang Y, Simpson CD, Cheng N, Du D, Lin Y. 2D Graphene Oxide/Fe-MOF Nanozyme Nest with Superior Peroxidase-Like Activity and Its Application for Detection of Woodsmoke Exposure Biomarker. Anal Chem 2019; 91:13847-13854. [DOI: 10.1021/acs.analchem.9b03321] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaofan Ruan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dong Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Xiangheng Niu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yijia Wang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Christopher D. Simpson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Nan Cheng
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
112
|
Li T, Hu P, Li J, Huang P, Tong W, Gao C. Enhanced peroxidase-like activity of Fe@PCN-224 nanoparticles and their applications for detection of H2O2and glucose. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
113
|
Zhang Y, Zeng X, Jiang X, Chen H, Long Z. Ce-based UiO-66 metal-organic frameworks as a new redox catalyst for atomic spectrometric determination of Se(VI) and colorimetric sensing of Hg(II). Microchem J 2019. [DOI: 10.1016/j.microc.2019.103967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
114
|
Ren Z, Luo J, Wan Y. Enzyme-Like Metal-Organic Frameworks in Polymeric Membranes for Efficient Removal of Aflatoxin B 1. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30542-30550. [PMID: 31362494 DOI: 10.1021/acsami.9b08011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biodegradation is a mild and efficient way to protect humans and animals from mycotoxins. However, microbes and enzymes are susceptible to environmental change, lack of stability, and reusability. In this work, three peroxidase-like metal-organic frameworks (MOFs), as artificial substitutes of natural peroxidase, are used for aflatoxin B1 (AFB1) removal, demonstrating the strong removal ability for AFB1 and anti-interference ability toward other substances. There are distinct adsorption and catalytic properties among these MOFs that are mainly because of the differences in structure and Fe ion active sites. Then, we immobilized these MOFs into ultrafiltration membranes to form a multifunctional membrane (i.e., filtration, adsorption, and catalysis) for AFB1 removal with good reusability that can be operated in simultaneous adsorption/catalysis or adsorption followed by catalysis/regeneration modes. Physicochemical analysis and animal experiments showed that the degradation products are probably several low-carbon substances whose toxic groups are cleaved.
Collapse
Affiliation(s)
- Zhongyuan Ren
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , PR China
- School of Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , PR China
- School of Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , PR China
- School of Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , PR China
| |
Collapse
|
115
|
Zhao Q, Zhang L, Wang X, Jia X, Xu P, Zhao M, Dai R. Simultaneous efficient adsorption and photocatalytic degradation of methylene blue over iron(III)-based metal–organic frameworks: a comparative study. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00349-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
116
|
Hu M, Wang Y, Yang J, Sun Y, Xing G, Deng R, Hu X, Zhang G. Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH 2/AuPt. Biosens Bioelectron 2019; 142:111554. [PMID: 31382098 DOI: 10.1016/j.bios.2019.111554] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Maduramicin (MD) is a type of monoglycoside polyether ionophore antibiotic that can effectively treat coccidiosis and facilitate animal growth. However, its extensive and excessive use brings potential risk to human health. Herein, an electrochemical immunosensor based on indirect competitive format was fabricated for analysis of MD residue in eggs by a multiple signal amplification system. Initially, Au nanoparticles were deposited onto glassy carbon electrode surface to load the coating antigen MD-BSA and to improve conductivity. Then the signal amplification platform was constructed by encapsulating hemin into Fe-MIL-88 NH2 metal-organic frameworks (hemin@MOFs), and then the obtained composites were decorated with AuPt nanoparticles. The synthesized hemin@MOFs/AuPt was not only used as a signal amplification mediator, but also utilized as a carrier for immobilization of horseradish peroxidase-conjugated affinipure goat anti-mouse antibody (Ab2-HRP) and horseradish peroxidase (HRP). The constructed hemin@MOFs/AuPt-Ab2-HRP bioconjugates could effectively amplify the current signal since hemin@MOFs, AuPt and HRP all exhibited high catalytic activity towards the hydrogen peroxide. Moreover, the established immunosensor showed high sensitivity and stability during the detection procedure. With the synergistic catalytic effect of hemin@MOFs, AuPt and HRP, a wide detection range of 0.1-50 ng mL-1 and a low detection limit of 0.045 ng mL-1 were achieved (S/N = 3), respectively. Ultimately, the developed method displayed excellent performance in practical applications, providing a promising probability to detect other veterinary drug residues to guarantee food safety.
Collapse
Affiliation(s)
- Mei Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jifei Yang
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Guangxu Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Ruiguang Deng
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China.
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China; Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
117
|
Zhang X, Li G, Wu D, Li X, Hu N, Chen J, Chen G, Wu Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron 2019; 137:178-198. [DOI: 10.1016/j.bios.2019.04.061] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
118
|
Xu W, Jiao L, Yan H, Wu Y, Chen L, Gu W, Du D, Lin Y, Zhu C. Glucose Oxidase-Integrated Metal-Organic Framework Hybrids as Biomimetic Cascade Nanozymes for Ultrasensitive Glucose Biosensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22096-22101. [PMID: 31134797 DOI: 10.1021/acsami.9b03004] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanozyme/natural enzyme hybrid plays a vital role in biosensing, therapy, and catalysis owing to the integrated advantages in the selectivity of natural enzymes and controllable catalytic activity of nanozymes. Herein, Fe-MIL-88B-NH2 [(Fe-metal-organic framework (MOF)] with remarkable peroxidase-like activity, ultrahigh stability, and high biocompatibility was utilized for immobilization of glucose oxidase (GOx) via an amidation coupling reaction. On the basis of the excellent selectivity and catalytic activity of Fe-MOF-GOx, a cascade catalysis was performed for the colorimetric detection of glucose. The integrated Fe-MOF-GOx not only exhibited higher stability and reusability than their mixtures including Fe-MOF and free GOx system but also possessed a wide linear range (1-500 μM), with a low detection limit of 0.487 μM for glucose detection.
Collapse
Affiliation(s)
- Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Lijuan Chen
- The Department of Radiology , Henan Key Laboratory of Neurological Imaging Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University , Zhengzhou , Henan 450003 , China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Dan Du
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| |
Collapse
|
119
|
Wang Y, Xu L, Xie W. Rapid and sensitive colorimetric sensor for H2O2 and Hg2+ detection based on homogeneous iodide with high peroxidase-mimicking activity. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
120
|
Cheon HJ, Adhikari MD, Chung M, Tran TD, Kim J, Kim MI. Magnetic Nanoparticles-Embedded Enzyme-Inorganic Hybrid Nanoflowers with Enhanced Peroxidase-Like Activity and Substrate Channeling for Glucose Biosensing. Adv Healthc Mater 2019; 8:e1801507. [PMID: 30848070 DOI: 10.1002/adhm.201801507] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/05/2019] [Indexed: 01/05/2023]
Abstract
It is reported that glucose oxidase (GOx)-copper hybrid nanoflowers embedded with Fe3 O4 magnetic nanoparticles (MNPs) exhibit superior peroxidase-mimicking activity as well as substrate channeling for glucose detection. This is due to the synergistic integration of GOx, crystalline copper phosphates and MNPs being in close proximity within the nanoflowers. The preparation of MNP-embedded GOx-copper hybrid nanoflowers (MNPs-GOx NFs) begins with the facile conjugation of amine-functionalized MNPs with GOx molecules via electrostatic attraction, followed by the addition of copper sulfate that leads to full blooming of the hybrid nanoflowers. In the presence of glucose, the catalytic action of GOx entrapped in the nanoflowers generates H2 O2 , which is subsequently used by peroxidase-mimicking MNPs and copper phosphate crystals, located close to GOx molecules, to convert Amplex UltraRed substrate into a highly fluorescent product. Using this strategy, the target glucose is successfully determined with excellent selectivity, stability, and magnetic reusability. This biosensor based on hybrid nanoflowers also exhibits a high degree of precision and reproducibility when applied to real human blood samples. Such novel MNP-embedded enzyme-inorganic hybrid nanoflowers have a great potential to be expanded to any oxidases, which will be highly beneficial for the detection of various other clinically important target molecules.
Collapse
Affiliation(s)
- Hong Jae Cheon
- Department of BioNano TechnologyGachon University Gyeonggi 13120 South Korea
| | - Manab Deb Adhikari
- Department of Chemical and Biological EngineeringKorea University Seoul 02841 South Korea
| | - Minsoo Chung
- Department of BioNano TechnologyGachon University Gyeonggi 13120 South Korea
| | - Tai Duc Tran
- Department of BioNano TechnologyGachon University Gyeonggi 13120 South Korea
| | - Jungbae Kim
- Department of Chemical and Biological EngineeringKorea University Seoul 02841 South Korea
| | - Moon Il Kim
- Department of BioNano TechnologyGachon University Gyeonggi 13120 South Korea
| |
Collapse
|
121
|
A bifunctional metal organic framework of type Fe(III)-BTC for cascade (enzymatic and enzyme-mimicking) colorimetric determination of glucose. Mikrochim Acta 2019; 186:295. [PMID: 31016397 DOI: 10.1007/s00604-019-3416-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/05/2019] [Indexed: 10/27/2022]
Abstract
A metal organic framework (MOF) of type Fe(III)-BTC (where BTC is 1,3,5-benzenetricarboxylic acid) was utilized to construct an integrated system for cascade colorimetric determination of glucose. The MOF performs a dual function in acting (a) as a peroxidase (POx) mimic, and (b) as a solid support for immobilization of glucose oxidase (GOx). The MOF was prepared by a one-pot method. Glucose is consumed while H2O2 is produced during the enzymatic oxidation by GOx. In the presence of H2O2, the POx mimic catalytically oxidizes 3,3',5,5'-tetramethylbenzidine (TMB) to form a blue-green product. The absorbance of oxidized TMB (measured at 652 nm) increases linearly in the 5.0-100 μM glucose concentration range, and the detection limit is 2.4 μM. The GOx@Fe-BTC MOF was successfully applied to the determination of glucose in serum. Graphical abstract Schematic presentation of a bifunctional metal organic framework of type Fe-BTC for cascade (enzymatic and enzyme-mimicking) colorimetric determination of glucose. The Fe-BTC performs a dual function in acting as both a peroxidase mimic and support for immobilizing glucose oxidase. Using the integrated enzyme, a colorimetric method was successfully applied to one-step detection of glucose in human serum.
Collapse
|
122
|
Baa E, Watkins GM, Krause RW, Tantoh DN. Current Trend in Synthesis, Post‐Synthetic Modifications and Biological Applications of Nanometal‐Organic Frameworks (NMOFs). CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ebenezer Baa
- Department of ChemistryRhodes University PO Box 94 Grahamstown, 6140 South Africa
| | - Gary M. Watkins
- Department of ChemistryRhodes University PO Box 94 Grahamstown, 6140 South Africa
| | - Rui W. Krause
- Department of ChemistryRhodes University PO Box 94 Grahamstown, 6140 South Africa
| | - Derek N. Tantoh
- Department of Applied ChemistryUniversity of Johannesburg PO Box 524 Auckland Park, 2006 South Africa
| |
Collapse
|
123
|
Huang Y, Ren J, Qu X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem Rev 2019; 119:4357-4412. [PMID: 30801188 DOI: 10.1021/acs.chemrev.8b00672] [Citation(s) in RCA: 1561] [Impact Index Per Article: 312.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.
Collapse
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.,College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| |
Collapse
|
124
|
Song W, Yin W, Zhang Z, He P, Yang X, Zhang X. A DNA functionalized porphyrinic metal-organic framework as a peroxidase mimicking catalyst for amperometric determination of the activity of T4 polynucleotide kinase. Mikrochim Acta 2019; 186:149. [PMID: 30712077 DOI: 10.1007/s00604-019-3269-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/18/2019] [Indexed: 11/27/2022]
Abstract
An electrochemical method is described for the sensitive detection of the activity of the enzyme T4 polynucleotide kinase (PNK) by using a DNA functionalized porphyrinic metal-organic framework (L/(Fe-P)n-MOF). In the presence of PNK, the hairpin oligonucleotide (HP1) becomes phosphorylated, and the trigger is released by lambda exonuclease (λ exo). The trigger DNA hybridizes with hairpin probe (immobilized on the gold electrode) to form a nicking endonuclease cleavage site. Thus, a single-strand capture probe is employed to hybridize with L/(Fe-P)n-MOF. The (Fe-P)n-MOF is a peroxidase mimicking material with high catalytic efficiency. By using this amplification strategy, an electrochemical signal is procured that allows for the determination of T4 PNK in the 1.0 mU·mL-1 to 1.0 U·mL-1 with a detection limit of 0.62 mU·mL-1. The method is selective and can be used to screen for enzyme inhibitors. Conceivably, the (Fe-P)n-MOF can also be used to detect other analytes via its peroxidase-mimicking activity. Graphical abstract Schematic presentation of T4 polynucleotide kinase (PNK) detection. Two hairpin DNAs (HP) and a porphyrinic metal-organic framework with peroxidase-mimicking activity are used. The detection limit is 0.62 mU mL-1 with enzyme assisted signal amplification. This method is selective and can be used to screen for enzyme inhibitors.
Collapse
Affiliation(s)
- Weiling Song
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Wenshuo Yin
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Zhonghui Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Peng He
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoyan Yang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoru Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
125
|
Nowroozi-Nejad Z, Bahramian B, Hosseinkhani S. Efficient immobilization of firefly luciferase in a metal organic framework: Fe-MIL-88(NH2) as a mighty support for this purpose. Enzyme Microb Technol 2019; 121:59-67. [DOI: 10.1016/j.enzmictec.2018.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/13/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023]
|
126
|
A fast and efficient stabilization of firefly luciferase on MIL-53(Al) via surface adsorption mechanism. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03748-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
127
|
Ilacas GC, Basa A, Nelms KJ, Sosa JD, Liu Y, Gomez FA. Paper-based microfluidic devices for glucose assays employing a metal-organic framework (MOF). Anal Chim Acta 2019; 1055:74-80. [PMID: 30782373 DOI: 10.1016/j.aca.2019.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/22/2018] [Accepted: 01/03/2019] [Indexed: 01/04/2023]
Abstract
This paper describes the development of two microfluidic paper-based analytical devices (μPADs), one well-based and the other based on a lateral flow assay (LFA) configuration, to detect glucose via a colorimetric assay using the solid metal-organic framework (MOF) Zr-PCN-222(Fe), to encapsulate glucose oxidase (GOx). The well-based platform consisted of laminate sheets and multiple layers of wax-printed chromatography paper. Solutions of KI and glucose placed into the well flowed through the device and reacted with the GOx@MOF species sandwiched between the paper layers realizing a yellow-brown color. The LFA platform consisted of chromatography paper between parafilm and polyvinyl acetate (PVA) layers. GOx@MOFs spotted on the paper subjected to solutions of KI and glucose yielded a brown color. The devices were then dried, scanned, and analyzed yielding a correlation between average inverse yellow intensity and glucose concentrations. The development of these devices employing MOFs as biomimetic catalysts should further expand the applications of microfluidic technologies for sensors a variety of analytes.
Collapse
Affiliation(s)
- Grenalynn C Ilacas
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032-8202, USA
| | - Alexis Basa
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032-8202, USA
| | - Katherine J Nelms
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032-8202, USA
| | - Joshua D Sosa
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032-8202, USA
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032-8202, USA.
| | - Frank A Gomez
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032-8202, USA.
| |
Collapse
|
128
|
Chen K, Wu CD. Designed fabrication of biomimetic metal–organic frameworks for catalytic applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.01.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
129
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 325.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
130
|
Song W, Zhao B, Wang C, Ozaki Y, Lu X. Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J Mater Chem B 2019; 7:850-875. [DOI: 10.1039/c8tb02878h] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We highlight the recent developments in functional nanomaterials with unique enzyme-like characteristics for sensing applications.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yukihiro Ozaki
- School of Science and Technology
- Kwansei Gakuin Universty
- Hyogo 660-1337
- Japan
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
131
|
Nanozyme Enhanced Colorimetric Immunoassay for Naked-Eye Detection of Salmonella Enteritidis. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0079-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
132
|
N-(aminobutyl)-N-(ethylisoluminol) functionalized Fe-based metal-organic frameworks with intrinsic mimic peroxidase activity for sensitive electrochemiluminescence mucin1 determination. Biosens Bioelectron 2018; 121:250-256. [DOI: 10.1016/j.bios.2018.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022]
|
133
|
Colorimetric determination of mercury(II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Mikrochim Acta 2018; 185:475. [PMID: 30242558 DOI: 10.1007/s00604-018-3011-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
This work demonstrates the inhibition effects of single-stranded (ssDNA) on the oxidase-like activity of a mixed-valence state cerium-based metal-organic framework, denoted as MVC-MOF. The MVC-MOF was synthesized by partial oxidation of cerium(III) which leads to the presence of both Ce(III) and Ce(IV) ions. The latter endows the MVC-MOF with a typical oxidase-like activity. However, on addition of ssDNA, the catalytic activity of the MVC-MOF is inhibited because it binds the MVC-MOF and thereby shield its active sites. This prevents the access of substrates. The inhibition by ssDNA depends on its length but not its sequence. By contrast, negligible changes in the oxidase-mimicking activity are observed if double-stranded DNA (dsDNA) is added. By employing a thymine-rich ssDNA (T-ssDNA) as a model DNA, a colorimetric assay was developed for the determination of Hg(II). This ion binds to T-ssDNA and causes the formation of T-dsDNA. Hence, the oxidase-mimicking activity is compromised. By using the oxidase substrate 3,3',5,5'-tetramethylbenzidine that gives a colored product in the presence of oxygen, the assay has a linear response that covers 0.05 to 6 μM Hg(II) with a detection limit of 10.5 nM, and exhibits high selectivity over other metal ions. The assay was successfully applied to the determination of Hg(II) in environmental water samples. Graphical abstract Schematic of the inhibition effect of ssDNA on the oxidase-like activity of MVC-MOF that converts colorless TMB to oxTMB with blue color in the presence of oxygen, and its application in the construction of a colorimetric assay for Hg(II) determination.
Collapse
|
134
|
Memon AH, Ding R, Yuan Q, Liang H, Wei Y. Coordination of GMP ligand with Cu to enhance the multiple enzymes stability and substrate specificity by co-immobilization process. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
135
|
Enhancing the peroxidase-like activity of ficin via heme binding and colorimetric detection for uric acid. Talanta 2018; 185:433-438. [DOI: 10.1016/j.talanta.2018.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 12/19/2022]
|
136
|
Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
137
|
Menon SS, Chandran SV, Koyappayil A, Berchmans S. Copper- Based Metal-Organic Frameworks as Peroxidase Mimics Leading to Sensitive H2
O2
and Glucose Detection. ChemistrySelect 2018. [DOI: 10.1002/slct.201800667] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Swetha S. Menon
- EEC -Biosensors Divison; CSIR-Central Electrochemical Research Centre; Karaikudi-630003, Tamil Nadu India
- Centre for Nanotechnology Research; VIT University; Vellore-632014, Tamil Nadu India
| | - Soorya Valliparambil Chandran
- EEC -Biosensors Divison; CSIR-Central Electrochemical Research Centre; Karaikudi-630003, Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Aneesh Koyappayil
- EEC -Biosensors Divison; CSIR-Central Electrochemical Research Centre; Karaikudi-630003, Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Sheela Berchmans
- EEC -Biosensors Divison; CSIR-Central Electrochemical Research Centre; Karaikudi-630003, Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
138
|
Chen H, Qiu Q, Sharif S, Ying S, Wang Y, Ying Y. Solution-Phase Synthesis of Platinum Nanoparticle-Decorated Metal-Organic Framework Hybrid Nanomaterials as Biomimetic Nanoenzymes for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24108-24115. [PMID: 29956534 DOI: 10.1021/acsami.8b04737] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The synthesis of nanomaterials with specific properties and functions as biomimetic nanoenzymes has attracted extensive attention in the past decades due to their great potential to substitute natural enzymes. Herein, a facile and simple method for the preparation of platinum nanoparticle (PtNP)-decorated two-dimensional metal-organic framework (MOF) nanocomposites was developed. A ligand with heme-like structure, Fe(III) tetra(4-carboxyphenyl)porphine chloride (TCPP(Fe)), was applied to synthesize MOF nanosheets (denoted as Cu-TCPP(Fe) nanosheets) in high yield. Ultrathin Cu-TCPP(Fe) nanosheets with thickness less than 10 nm were used as a novel template for the growth of ultrasmall and uniform PtNPs. Significantly, the obtained hybrid nanomaterials (PtNPs/Cu-TCPP(Fe) hybrid nanosheets) exhibit enhanced peroxidase-like activity compared to PtNPs, Cu-TCPP(Fe) nanosheets, and the physical mixture of both due to the synergistic effect. On account of the excellent peroxidase-like activity of PtNPs/Cu-TCPP(Fe) hybrid nanosheets, we established a colorimetric method for sensitive and rapid detection of hydrogen peroxide. Furthermore, by combining with glucose oxidase, a cascade colorimetric method was established to further detect glucose with excellent sensitivity and selectivity.
Collapse
Affiliation(s)
- Huayun Chen
- School of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Qiming Qiu
- School of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Sumaira Sharif
- School of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Shengna Ying
- School of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Yixian Wang
- School of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Yibin Ying
- School of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , P. R. China
- Zhejiang A&F University , Hangzhou 311300 , P. R. China
| |
Collapse
|
139
|
Zheng HQ, Liu CY, Zeng XY, Chen J, Lü J, Lin RG, Cao R, Lin ZJ, Su JW. MOF-808: A Metal–Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity at Neutral pH for Colorimetric Biosensing. Inorg Chem 2018; 57:9096-9104. [DOI: 10.1021/acs.inorgchem.8b01097] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- He-Qi Zheng
- Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People’s Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Chun-Yan Liu
- Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People’s Republic of China
| | - Xue-Yu Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Jin Chen
- Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People’s Republic of China
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Rong-Guang Lin
- Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People’s Republic of China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Zu-Jin Lin
- Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People’s Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Jin-Wei Su
- Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People’s Republic of China
| |
Collapse
|
140
|
Yang X, Wang Y, Qi W, Zhang J, Zhang L, Huang R, Su R, He Z. Photo-Induced Polymerization and Reconfigurable Assembly of Multifunctional Ferrocene-Tyrosine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800772. [PMID: 29761626 DOI: 10.1002/smll.201800772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/10/2018] [Indexed: 06/08/2023]
Abstract
The photo-induced reconfigurable assembly of nanostructures via the simultaneous noncovalent and covalent polymerization of a functional ferrocene-tyrosine (Fc-Y) molecule is reported. The Fc-Y monomers can directly self-assemble into nanospheres with a smooth surface driven by noncovalent interactions. By covalent photo-crosslinking of the Fc-Y monomers, the nanospheres transform spontaneously into hollow vesicles composed of hierarchically ordered lamellar structures. It is worth noting that the formed nanostructures exhibit both reducing property for in situ mineralization of gold nanoparticles with tunable biocatalytic behavior, and the redox activity for superior energy storage capacity. The measured energy storage capacity is 31 mAh g-1 for the nanospheres, which is the highest value reported so far for peptide assemblages as supercapacitor. The results offer insights into the dynamic self-assembly of highly ordered multifunctional materials with promising applications in catalysis, sensing, energy and biomedical fields.
Collapse
Affiliation(s)
- Xuejiao Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Liwei Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Renliang Huang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
141
|
Lin T, Qin Y, Huang Y, Yang R, Hou L, Ye F, Zhao S. A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53(Fe) nanozyme. Chem Commun (Camb) 2018; 54:1762-1765. [PMID: 29380827 DOI: 10.1039/c7cc09819g] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A label-free nanozyme MIL-53(Fe) with the dual-function of catalyzing and emitting fluorescence was utilized for turn-on fluorescence detection of hydrogen peroxide and glucose. The proposed strategy provides a cost-effective, safe and sensitive method for the design and development of multiple enzyme cascade assays for various biomolecules.
Collapse
Affiliation(s)
- Tianran Lin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
142
|
Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal Chim Acta 2018; 1004:74-81. [DOI: 10.1016/j.aca.2017.11.078] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/17/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022]
|
143
|
He J, Zhang Y, Zhang X, Huang Y. Highly efficient Fenton and enzyme-mimetic activities of NH 2-MIL-88B(Fe) metal organic framework for methylene blue degradation. Sci Rep 2018; 8:5159. [PMID: 29581533 PMCID: PMC5980107 DOI: 10.1038/s41598-018-23557-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/15/2018] [Indexed: 11/09/2022] Open
Abstract
Here, we show that NH2-MIL-88B(Fe) can be used as a peroxidase-like catalyst for Fenton-like degradation of methylene blue (MB) in water. The iron-based NH2-MIL-88B(Fe) metal organic framework (MOF) was synthesized by a facile and rapid microwave heating method. It was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, powder X-ray diffraction, and the Brunauer-Emmett-Teller method. The NH2-MIL-88B(Fe) MOF possesses intrinsic oxidase-like and peroxidase-like activities. The reaction parameters that affect MB degradation were investigated, including the solution pH, NH2-MIL-88B(Fe) MOF and H2O2 concentrations, and temperature. The results show that the NH2-MIL-88B(Fe) MOF exhibits a wide working pH range (pH 3.0-11.0), temperature tolerance, and good recyclability for MB removal. Under the optimal conditions, complete removal of MB was achieved within 45 min. In addition, removal of MB was above 80% after five cycles, showing the good recyclability of NH2-MIL-88B(Fe). The NH2-MIL-88B(Fe) MOF has the features of easy preparation, high efficiency, and good recyclability for MB removal in a wide pH range. Electron spin resonance and fluorescence probe results suggest the involvement of hydroxyl radicals in MB degradation. These findings provide new insight into the application of high-efficient MOF-based Fenton-like catalysts for water purification.
Collapse
Affiliation(s)
- Jianchuan He
- The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Yao Zhang
- The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xiaodan Zhang
- The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuming Huang
- The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
144
|
Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine. Biosens Bioelectron 2018; 110:8-15. [PMID: 29574249 DOI: 10.1016/j.bios.2018.03.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 11/23/2022]
Abstract
Enzyme-mimicking catalytic nanoparticles, more commonly known as NanoZymes, have been at the forefront for the development of new sensing platforms for the detection of a range of molecules. Although solution-based NanoZymes have shown promise in glucose detection, the ability to immobilize NanoZymes on highly absorbent surfaces, particularly on free-standing substrates that can be feasibly exposed and removed from the reaction medium, can offer significant benefits for a range of biosensing and catalysis applications. This work, for the first time, shows the ability of Ag nanoparticles embedded within the 3D matrix of a cotton fabric to act as a free-standing peroxidase-mimic NanoZyme for the rapid detection of glucose in complex biological fluids such as urine. The use of cotton fabric as a template not only allows high number of catalytically active sites to participate in the enzyme-mimic catalytic reaction, the absorbent property of the cotton fibres also helps in rapid absorption of biological molecules such as glucose during the sensing event. This, in turn, brings the target molecule of interest in close proximity of the NanoZyme catalyst enabling accurate detection of glucose in urine. Additionally, the ability to extract the free-standing cotton fabric-supported NanoZyme following the reaction overcomes the issue of potential interference from colloidal nanoparticles during the assay. Based on these unique characteristics, nanostructured silver fabrics offer remarkable promise for the detection of glucose and other biomolecules in complex biological and environmental fluids.
Collapse
|
145
|
Target triggered cleavage effect of DNAzyme: Relying on Pd-Pt alloys functionalized Fe-MOFs for amplified detection of Pb2+. Biosens Bioelectron 2018; 101:297-303. [DOI: 10.1016/j.bios.2017.10.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
|
146
|
Wang JP, Wang Y, Guo X, Wang P, Zhao T, Wang J. Matrix assisted laser desorption/ionization time-of-flight mass spectrometric determination of benzo[a]pyrene using a MIL-101(Fe) matrix. Mikrochim Acta 2018; 185:175. [DOI: 10.1007/s00604-017-2627-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
|
147
|
Valekar AH, Batule BS, Kim MI, Cho KH, Hong DY, Lee UH, Chang JS, Park HG, Hwang YK. Novel amine-functionalized iron trimesates with enhanced peroxidase-like activity and their applications for the fluorescent assay of choline and acetylcholine. Biosens Bioelectron 2018; 100:161-168. [DOI: 10.1016/j.bios.2017.08.056] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 10/19/2022]
|
148
|
He Y, Li X, Xu X, Pan J, Niu X. A cobalt-based polyoxometalate nanozyme with high peroxidase-mimicking activity at neutral pH for one-pot colorimetric analysis of glucose. J Mater Chem B 2018; 6:5750-5755. [DOI: 10.1039/c8tb01853g] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A polyoxometalate (CoPW11O39) with high peroxidase-mimicking activity at physiological pH enables one-pot colorimetric analysis of glucose when coupled with GOx.
Collapse
Affiliation(s)
- Yanfang He
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xin Li
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xuechao Xu
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
149
|
Tan B, Zhao H, Wu W, Liu X, Zhang Y, Quan X. Fe 3O 4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity. NANOSCALE 2017; 9:18699-18710. [PMID: 29165491 DOI: 10.1039/c7nr05541b] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional (2D) metal-organic framework (MOF) nanosheets emerging as a new member of the 2D family have received significant research interest in recent years. Herein, we have successfully synthesized 2D copper-based MOF nanosheets with bimetallic anchorage using a facile two-step process at room temperature and ambient pressure, denoted as Cu(HBTC)-1/Fe3O4-AuNPs nanosheets. The as-synthesized 2D bimetallic MOF nanosheets displayed enhanced peroxidase-like activity with relatively high catalytic velocity and affinity for substrates compared with previously reported peroxidase mimics. Furthermore, their intrinsic peroxidase-like catalytic activity could be flexibly regulated by single-stranded DNA (ssDNA), exhibiting the enhancement of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation or inhibition of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS) oxidation due to the adsorption of ssDNA via π-π stacking. Accordingly, on the basis of their peroxidase-like activity, our prepared 2D bimetallic immobilized MOF nanosheets achieved ultra-sensitive detection of H2O2 with a linear range of 2.86 to 71.43 nM, and comparable detection performance for glucose with a linear range of 12.86 to 257.14 μM. By means of their controllable peroxidase-like activity, a versatile colorimetric sensing platform was developed which realized the detection of sulfadimethoxine (SDM) with a linear range of 3.57 to 357.14 μg L-1 and the limit of detection (LOD) of 1.70 μg L-1. With the multiplexed performance for detecting various targets, our as-synthesized bimetallic MOF nanosheets hold great promise for applications in environmental monitoring, as well as bioassays by virtue of their good biocompatibility.
Collapse
Affiliation(s)
- Bing Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, P. R. China.
| | | | | | | | | | | |
Collapse
|
150
|
Sun B, Liang Z, Xie BP, Li RT, Li LZ, Jiang ZH, Bai LP, Chen JX. Fluorescence sensing platform based on ruthenium(II) complexes as high 3S (sensitivity, specificity, speed) and "on-off-on" sensors for the miR-185 detection. Talanta 2017; 179:658-667. [PMID: 29310291 DOI: 10.1016/j.talanta.2017.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Inspired by the enormous importance attributed to the biological function of miRNA, we pour our attention into the design and synthesis of four ruthenium(II) complexes and evaluate their applications as miR-185 detection agents by spectroscopic measurements. It was found that all complexes can form sensing platform for the detection of the complementary target miR-185 through the introduction of carboxyfluorescein (FAM) labeled single stranded DNA (P-DNA), giving the detection limits of 0.42nM for Ru 1, 0.28nM for Ru 2, 0.32nM for Ru 3, 0.85nM for Ru 4, all with instantaneous detection time in 1min. The results of the binding constant, fluorescence anisotropy (FA) and polyacrylamide gel electrophoresis experiments (PAGE) revealed that the ruthenium(II) complexes prefer to bind P-DNA other than hybrid duplexes DNA@RNA upon recognition, resulting in the detection of miR-185. These results provide useful suggestions in the new type of metal-based miRNA detection agents.
Collapse
Affiliation(s)
- Bin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zhen Liang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Bao-Ping Xie
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Rong-Tian Li
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Lin-Ze Li
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|