101
|
Nasibipour M, Safaei E, Moaddeli A, Masoumpour MS, Wojtczak A. Biradical o-iminobenzosemiquinonato(1-) complexes of nickel(ii): catalytic activity in three-component coupling of aldehydes, amines and alkynes. RSC Adv 2021; 11:12845-12859. [PMID: 35423810 PMCID: PMC8697240 DOI: 10.1039/d0ra10248b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
The six-coordinated bis-o-iminosemiquinone complex, NiL2 BIS, in which LBIS is the o-iminosemiquinone 1-electron oxidized form of the tridentate o-aminophenol benzoxazole-based ligand H2LBAP, was synthesized and characterized. The crystal structure of the complex reveals octahedral geometry with a NiN4O2 coordination sphere in which Ni(ii) has been surrounded by two tridentate LBIS ligands. This compound exhibits (S Ni = 1) with both spin and orbital contribution to the magnetic moment and antiferromagnetic coupling between two electrons on two LBIS ligands which results in a triplet spin ground state (S = 1). The electronic transitions and the electrochemical behavior of this open-shell molecule are presented here, based on experimental observations and theoretical calculations. The electrochemical behavior of NiL2 BIS was investigated by cyclic voltammetry and indicates ligand-centered redox processes. Three-component coupling of aldehydes, amines and alkynes (A3-coupling) was studied in the presence of the NiL2 BIS complex, and the previously reported four-coordinated bis-o-iminosemiquinone NiL2 NIS. Furthermore, among these two o-iminobenzosemiquinonato(1-) complexes of Ni(ii) (NiL2 NIS and NiL2 BIS), NiL2 NIS was found to be an efficient catalyst in A3-coupling at 85 °C under solvent-free conditions and can be recovered and reused for several cycles with a small decrease in activity.
Collapse
Affiliation(s)
- Mina Nasibipour
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Ali Moaddeli
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | | | - Andrzej Wojtczak
- Nicolaus Copernicus University, Faculty of Chemistry 87-100 Torun Poland
| |
Collapse
|
102
|
Huang L, Bismuto A, Rath SA, Trapp N, Morandi B. Ruthenium-Catalyzed Dehydrogenation Through an Intermolecular Hydrogen Atom Transfer Mechanism. Angew Chem Int Ed Engl 2021; 60:7290-7296. [PMID: 33403774 PMCID: PMC8048662 DOI: 10.1002/anie.202015837] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/17/2022]
Abstract
The direct dehydrogenation of alkanes is among the most efficient ways to access valuable alkene products. Although several catalysts have been designed to promote this transformation, they have unfortunately found limited applications in fine chemical synthesis. Here, we report a conceptually novel strategy for the catalytic, intermolecular dehydrogenation of alkanes using a ruthenium catalyst. The combination of a redox-active ligand and a sterically hindered aryl radical intermediate has unleashed this novel strategy. Importantly, mechanistic investigations have been performed to provide a conceptual framework for the further development of this new catalytic dehydrogenation system.
Collapse
Affiliation(s)
- Lin Huang
- Max-Planck-Institut für KohlenforschungKaiser-Wihelm-Platz 145470Mülheim an der RuhrGermany
- Laboratorium für Organische Chemie ETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| | - Alessandro Bismuto
- Laboratorium für Organische Chemie ETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| | - Simon A. Rath
- Laboratorium für Organische Chemie ETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie ETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| | - Bill Morandi
- Max-Planck-Institut für KohlenforschungKaiser-Wihelm-Platz 145470Mülheim an der RuhrGermany
- Laboratorium für Organische Chemie ETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| |
Collapse
|
103
|
Huang L, Bismuto A, Rath SA, Trapp N, Morandi B. Ruthenium‐Catalyzed Dehydrogenation Through an Intermolecular Hydrogen Atom Transfer Mechanism. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lin Huang
- Max-Planck-Institut für Kohlenforschung Kaiser-Wihelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Alessandro Bismuto
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Simon A. Rath
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Max-Planck-Institut für Kohlenforschung Kaiser-Wihelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
104
|
Zozulia O, Marshall LR, Kim I, Kohn EM, Korendovych IV. Self-Assembling Catalytic Peptide Nanomaterials Capable of Highly Efficient Peroxidase Activity. Chemistry 2021; 27:5388-5392. [PMID: 33460473 PMCID: PMC8208039 DOI: 10.1002/chem.202100182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 12/13/2022]
Abstract
The self-assembly of short peptides gives rise to versatile nanomaterials capable of promoting efficient catalysis. We have shown that short, seven-residue peptides bind hemin to produce functional catalytic materials which display highly efficient peroxidation activity, reaching a catalytic efficiency of 3×105 m-1 s-1 . Self-assembly is essential for catalysis as non-assembling controls show no activity. We have also observed peroxidase activity even in the absence of hemin, suggesting the potential to alter redox properties of substrates upon association with the assemblies. These results demonstrate the practical utility of self-assembled peptides in various catalytic applications and further support the evolutionary link between amyloids and modern-day enzymes.
Collapse
Affiliation(s)
- Oleksii Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Liam R. Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Inhye Kim
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Eric M. Kohn
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| |
Collapse
|
105
|
Bains AK, Ankit Y, Adhikari D. Pyrenedione-Catalyzed α-Olefination of Nitriles under Visible-Light Photoredox Conditions. Org Lett 2021; 23:2019-2023. [PMID: 33688742 DOI: 10.1021/acs.orglett.1c00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, we report a combination of pyrenedione (PD) and KOtBu to achieve facile alcohol dehydrogenation under visible-light excitation, where aerobic oxygen is utilized as the terminal oxidant. The resulting carbonyl compound can be easily converted to vinyl nitriles in a single-pot reaction, at 60 °C in 6-8 h. This environmentally benign, organocatalytic approach has distinct advantages over transition-metal-catalyzed α-olefination of nitriles, which often operate at a significantly higher temperature for an extended reaction time.
Collapse
|
106
|
Lohmeyer L, Schön F, Kaifer E, Himmel H. Stimulierung eines redoxinduzierten Elektronentransfers durch Interligand‐Wasserstoffbrücken in einem Cobaltkomplex mit redoxaktivem Guanidin‐Liganden. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lukas Lohmeyer
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Florian Schön
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Elisabeth Kaifer
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| |
Collapse
|
107
|
Lohmeyer L, Schön F, Kaifer E, Himmel HJ. Stimulation of Redox-Induced Electron Transfer by Interligand Hydrogen Bonding in a Cobalt Complex with Redox-Active Guanidine Ligand. Angew Chem Int Ed Engl 2021; 60:10415-10422. [PMID: 33616266 PMCID: PMC8252010 DOI: 10.1002/anie.202101423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 12/27/2022]
Abstract
Octahedrally coordinated cobalt(II) complexes with a redox‐active bisguanidine ligand and acac co‐ligands were synthesized and their redox chemistry analysed in detail. The N−H functions in a bisguanidine ligand with partially alkylated guanidino groups form N−H⋅⋅⋅O hydrogen bonds with the acac co‐ligands, thereby massively influencing the redox chemistry. For all complexes, the first one‐electron oxidation is metal‐centred, leading to CoIII complexes with neutral bisguanidine ligand units. Further one‐electron oxidation is ligand‐centred in the case of Co–bisguanidine complexes with fully alkylated guanidino groups, giving CoIII complexes with radical monocationic bisguanidine ligands. On the other hand, the hydrogen‐bond strengthening upon oxidation of the Co–bisguanidine complex with partially alkylated guanidino groups initiates metal reduction (CoIII→CoII) and two‐electron oxidation of the guanidine ligand, providing the first example for the stimulation of redox‐induced electron transfer by interligand hydrogen bonding.
Collapse
Affiliation(s)
- Lukas Lohmeyer
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Florian Schön
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hans-Jörg Himmel
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
108
|
Bamberger H, Albold U, Dubnická Midlíková J, Su CY, Deibel N, Hunger D, Hallmen PP, Neugebauer P, Beerhues J, Demeshko S, Meyer F, Sarkar B, van Slageren J. Iron(II), Cobalt(II), and Nickel(II) Complexes of Bis(sulfonamido)benzenes: Redox Properties, Large Zero-Field Splittings, and Single-Ion Magnets. Inorg Chem 2021; 60:2953-2963. [PMID: 33591172 DOI: 10.1021/acs.inorgchem.0c02949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal complexes of 1,2-diamidobenzenes have been long studied because of their intriguing redox properties and electronic structures. We present here a series of such complexes with 1,2-bis(sulfonamido)benzene ligands to probe the utility of these ligands for generating a large zero-field splitting (ZFS, D) in metal complexes that possibly act as single-ion magnets. To this end, we have synthesized a series of homoleptic ate complexes of the form (X)n[M{bis(sulfonamido)benzene}2] (n equals 4 minus the oxidation state of the metal), where M (Fe/Co/Ni), X [K+/(K-18-c-6)+/(HNEt3)+, with 18-c-6 = 18-crown ether 6], and the substituents (methyl and tolyl) on the ligand [bmsab = 1,2-bis(methanesulfonamido)benzene; btsab = 1,2-bis(toluenesulfonamido)benzene] were varied to analyze their effect on the ZFS, possible single-ion-magnet properties, and redox behavior of these metal complexes. A combination of X-ray crystallography, (spectro)electrochemistry, superconducting quantum interference device magnetometry, high-frequency electron paramagnetic resonance spectroscopy, and Mössbauer spectroscopy was used to investigate the electronic/geometric structures of these complexes and the aforementioned properties. These investigations show that the cobalt(II) complexes display very high negative D values in the range of -100 to -130 cm-1, and the nickel(II) complexes display very high positive D values of 76 and 58 cm-1. In addition, the cobalt(II) complexes shows barriers of 200-260 cm-1 and slow relaxation of the magnetization in the absence of an external magnetic field, underscoring the robustness of this class of complexes. The iron(II) complex exhibits a D value of -3.29 cm-1 and can be chemically oxidized to an iron(III) complex that has D = -1.96 cm-1. These findings clearly show that bis(sulfonamido)benzenes are ideally suited to stabilize ate complexes, to generate very high ZFSs at the metal centers with single-ion-magnet properties, and to induce exclusive oxidation at the metal center (for iron) despite the presence of ligands that are potentially noninnocent. Our results therefore substantially enhance the scope for this class of redox-active ligands.
Collapse
Affiliation(s)
- Heiko Bamberger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Uta Albold
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany
| | | | - Cheng-Yong Su
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Naina Deibel
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany
| | - David Hunger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Philipp P Hallmen
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Petr Neugebauer
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.,CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Julia Beerhues
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany.,Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany.,Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
109
|
Vlasenko VG, Guda AA, Starikov AG, Chegerev MG, Piskunov AV, Ershova IV, Trigub AL, Tereshchenko AA, Rusalev YV, Kubrin SP, Soldatov AV. Structural Changes in Five‐Coordinate Bromido‐bis(o‐iminobenzo‐semiquinonato)iron(III) Complex: Spin‐Crossover or Ligand‐Metal Antiferromagnetic Interactions? Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Valery G. Vlasenko
- Research Institute of Physics Southern Federal University 194 Stachki Ave. 344090 Rostov-on-Don Russia
| | - Alexander A. Guda
- The Smart Materials Research Institute Southern Federal University 178/24 A. Sladkova street 344090 Rostov-on-Don Russia
| | - Andrey G. Starikov
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki Ave. 344090 Rostov-on-Don Russia
| | - Maxim G. Chegerev
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki Ave. 344090 Rostov-on-Don Russia
| | - Alexander V. Piskunov
- G. A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences 49 Tropinina Str. 603950 Nizhny Novgorod Russia
| | - Irina V. Ershova
- G. A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences 49 Tropinina Str. 603950 Nizhny Novgorod Russia
| | - Alexander L. Trigub
- National Research Center “Kurchatov Institute” 1 pl. Academician Kurchatov 123182 Moscow Russia
| | - Andrei A. Tereshchenko
- The Smart Materials Research Institute Southern Federal University 178/24 A. Sladkova street 344090 Rostov-on-Don Russia
| | - Yurii V. Rusalev
- The Smart Materials Research Institute Southern Federal University 178/24 A. Sladkova street 344090 Rostov-on-Don Russia
| | - Stanislav P. Kubrin
- Research Institute of Physics Southern Federal University 194 Stachki Ave. 344090 Rostov-on-Don Russia
| | - Alexander V. Soldatov
- The Smart Materials Research Institute Southern Federal University 178/24 A. Sladkova street 344090 Rostov-on-Don Russia
| |
Collapse
|
110
|
Hay MA, Boskovic C. Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chemistry 2021; 27:3608-3637. [PMID: 32965741 DOI: 10.1002/chem.202003761] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/05/2022]
Abstract
The development of molecular materials with novel functionality offers promise for technological innovation. Switchable molecules that incorporate redox-active components are enticing candidate compounds due to their potential for electronic manipulation. Lanthanoid metals are most prevalent in their trivalent state and usually redox-activity in lanthanoid complexes is restricted to the ligand. The unique electronic and physical properties of lanthanoid ions have been exploited for various applications, including in magnetic and luminescent materials as well as in catalysis. Lanthanoid complexes are also promising for applications reliant on switchability, where the physical properties can be modulated by varying the oxidation state of a coordinated ligand. Lanthanoid-based redox activity is also possible, encompassing both divalent and tetravalent metal oxidation states. Thus, utilization of redox-active lanthanoid metals offers an attractive opportunity to further expand the capabilities of molecular materials. This review surveys both ligand and lanthanoid centered redox-activity in pre-existing molecular systems, including tuning of lanthanoid magnetic and photophysical properties by modulating the redox states of coordinated ligands. Ultimately the combination of redox-activity at both ligands and metal centers in the same molecule can afford novel electronic structures and physical properties, including multiconfigurational electronic states and valence tautomerism. Further targeted exploration of these features is clearly warranted, both to enhance understanding of the underlying fundamental chemistry, and for the generation of a potentially important new class of molecular material.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
111
|
Rask AE, Zimmerman PM. Toward Full Configuration Interaction for Transition-Metal Complexes. J Phys Chem A 2021; 125:1598-1609. [DOI: 10.1021/acs.jpca.0c07624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alan E. Rask
- Department of Chemistry, University of Michigan, 930N. University Avenue, Ann Arbor 48109, Michigan, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, 930N. University Avenue, Ann Arbor 48109, Michigan, United States
| |
Collapse
|
112
|
Chatterjee S, Banerjee S, Jana RD, Bhattacharya S, Chakraborty B, Jannuzzi SAV. Tuning the stereoelectronic factors of iron(II)-2-aminophenolate complexes for the reaction with dioxygen: oxygenolytic C-C bond cleavage vs. oxidation of complex. Dalton Trans 2021; 50:1901-1912. [PMID: 33475662 DOI: 10.1039/d0dt03316b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative C-C bond cleavage of 2-aminophenols mediated by transition metals and dioxygen is a topic of great interest. While the oxygenolytic C-C bond cleavage reaction relies on the inherent redox non-innocent property of 2-aminophenols, the metal complexes of 2-aminophenolates often undergo 1e-/2e- oxidation events (metal or ligand oxidation), instead of the direct addition of O2 for subsequent C-C bond cleavage. In this work, we report the isolation, characterization and dioxygen reactivity of a series of ternary iron(ii)-2-aminophenolate complexes [(TpPh,Me)FeII(X)], where X = 2-amino-4-tert-butylphenolate (4-tBu-HAP) (1); X = 2-amino-4,6-di-tert-butylphenolate (4,6-di-tBu-HAP) (2); X = 2-amino-4-nitrophenolate (4-NO2-HAP)(3); and X = 2-anilino-4,6-di-tert-butylphenolate (NH-Ph-4,6-di-tBu-HAP) (4) supported by a facial tridentate nitrogen donor ligand (TpPh,Me = hydrotris(3-phenyl-5-methylpyrazol-1-yl)borate). Another facial N3 ligand (TpPh2 = hydrotris(3,5-diphenyl-pyrazol-1-yl)borate) has been used to isolate an iron(ii)-2-anilino-4,6-di-tert-butylphenolate complex (5) for comparison. Both [(TpPh,Me)FeII(4-tBu-HAP)] (1) and [(TpPh,Me)FeII(4,6-di-tBu-HAP)] (2) undergo regioselective oxidative aromatic ring fission reaction of the coordinated 2-aminophenols to the corresponding 2-picolinic acids in the reaction with dioxygen. In contrast, complex [(TpPh,Me)FeII(4-NO2-HAP)] (3) displays metal based oxidation to form an iron(iii)-2-amidophenolate complex. Complexes [(TpPh,Me)FeII(NH-Ph-4,6-di-tBu-HAP)] (4) and [(TpPh2)FeII(NH-Ph-4,6-di-tBu-HAP)] (5) react with dioxygen to undergo 2e- oxidation with the formation of the corresponding iron(iii)-2-iminobenzosemiquinonato radical species implicating the importance of the -NH2 group in directing the C-C bond cleavage reactivity of 2-aminophenols. The systematic study presented in this work unravels the effect of the electronic and structural properties of the redox non-innocent 2-aminophenolate ring and the supporting ligand on the C-C bond cleavage reactivity vs. the metal/ligand oxidation of the complexes. The study further reveals that proper modulation of the stereoelectronic factors enables us to design a well synchronised proton transfer (PT) and dioxygen binding events for complexes 1 and 2 that mimic the structure and function of the nonheme enzyme 2-aminophenol-1,6-dioxygenase (APD).
Collapse
Affiliation(s)
- Sayanti Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Shrabanti Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Biswarup Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | |
Collapse
|
113
|
Sarkar P, Sarmah A, Mukherjee C. Synthesis, crystallographic and spectroscopic characterization, and theoretical elucidation of an elusive aminyl radical containing a Cu II-aminyl-iminosemiquinone complex. Chem Commun (Camb) 2021; 57:1352-1355. [PMID: 33432948 DOI: 10.1039/d0cc07378d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An elusive aminyl radical and an iminosemiquinone radical-coordinated square pyramidal Cu(ii) complex (1) have been isolated by the reaction between the noninnocent ligand H4LPy(AP) and Cu(ClO4)2·6H2O in the presence of Et3N and air as the sole oxidant. The geometry and electronic structure of the complex were concluded by X-ray crystallography, magnetic and EPR measurements, and density functional theory (DFT) calculations. This work reports the first crystallographic example of the two different types of radicals co-existing in a stable complex.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | | | | |
Collapse
|
114
|
Haaf S, Kaifer E, Wadepohl H, Himmel H. Use of Crown Ether Functions as Secondary Coordination Spheres for the Manipulation of Ligand-Metal Intramolecular Electron Transfer in Copper-Guanidine Complexes. Chemistry 2021; 27:959-970. [PMID: 32833269 PMCID: PMC7839521 DOI: 10.1002/chem.202003469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 01/16/2023]
Abstract
Intramolecular electron transfer (IET) between a redox-active organic ligand and a metal in a complex is of fundamental interest and used in a variety of applications. In this work it is demonstrated that secondary coordination sphere motifs can be applied to trigger a radical change in the electronic structure of copper complexes with a redox-active guanidine ligand through ligand-metal IET. Hence, crown ether functions attached to the ligand allow the manipulation of the degree of IET between the guanidine ligand and the copper atom through metal encapsulation.
Collapse
Affiliation(s)
- Sebastian Haaf
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hubert Wadepohl
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
115
|
Ranis LG, Gianino J, Hoffman JM, Brown SN. Nonclassical oxygen atom transfer reactions of an eight-coordinate dioxomolybdenum( vi) complex. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00308a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eight-coordinate MoO2(DOPOQ)2 can donate two oxygen atoms to substrates such as phosphines in a four-electron nonclassical oxygen atom transfer reaction.
Collapse
Affiliation(s)
- Leila G. Ranis
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Jacqueline Gianino
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Justin M. Hoffman
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Seth N. Brown
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| |
Collapse
|
116
|
Paul GC, Sarkar P, Sarmah A, Shaw P, Maity S, Mukherjee C. A combined experimental and theoretical study on a single, unsupported oxo-bridged Mn(III,III) dimer coordinated to two iminobenzosemiquinone π-radical anions. Dalton Trans 2021; 50:8768-8775. [PMID: 34085670 DOI: 10.1039/d1dt00489a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligand H2LAP comprises a non-innocent 2-aminophenol unit and an innocent bis(pyridin-2-ylmethyl)amine unit. The ligand, upon reaction with an equivalent amount of Mn(ClO4)2·6H2O in the presence of Et3N under air in MeOH, provided a mono(oxo)-bridged dinuclear Mn2 complex ({[(LISQ)MnIII-O-MnIII(LISQ)][(ClO4)]2}; 1). X-ray crystal structure analysis of complex 1 revealed that in the dicationic unit, the physical oxidation state of each Mn ion was +III and the 2-aminophenol unit of ligand H2LAP was in its one-electron oxidized iminobenzosemiquinone form. 1H-NMR measurement of complex 1 confirmed that the complex acquired a diamagnetic ground state (St = 0). Thus, antiferromagnetic couplings among the paramagnetic centers were realized. The UV-Vis-NIR spectrum of complex 1 was consisted of ligand-to-metal charge-transfer transitions in the visible region, while ligand-to-metal and metal-to-ligand charge-transfer transitions were noticed in the near-infrared region due to the presence of iminobenzosemiquinone radical units. The cyclic voltammogram of the complex showed three one-electron oxidation waves and two one-electron reduction waves. While the first two oxidation processes were metal-based, the two successive reductions were ligand-centered. DFT-based theoretical studies confirmed the assignment.
Collapse
Affiliation(s)
- Ganesh Chandra Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India. and Department of Chemistry, ICFAI Science School, ICFAI University Tripura, Agartala, 799210, Tripura(W), India
| | - Prasenjit Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Amrit Sarmah
- Department of Molecular Modelling, Institute of Organic Chemistry and Biochemistry ASCR, v.v.i. Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic and Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Prantick Shaw
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Suvendu Maity
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata, 700103, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
117
|
Starikova AA, Chegerev MG, Starikov AG. Computational insight into magnetic behaviour of cobalt tris(2-pyridylmethyl)amine complexes with dioxolenes incorporating stable radicals. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
118
|
Nakamura I, Nozawa S, Ishida Y, Muranushi I, Mayerweg A, Terada M. Copper-catalyzed [1,3]-alkoxy rearrangement for the selective synthesis of polycyclic ortho-aminoarenol derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo01189h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper-catalyzed [1,3]-alkoxy rearrangement reactions of polycyclic arenes and heteroarenes, such as naphthalenes, phenanthrenes, and indoles, afforded the corresponding ortho-aminoarenol derivatives in good yields and in a site-selective manner.
Collapse
Affiliation(s)
- Itaru Nakamura
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Satoru Nozawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Yasuhiro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Ichiro Muranushi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Alexandra Mayerweg
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
119
|
Chen X, Liu LL, Liu S, Grützmacher H, Li Z. A Room‐Temperature Stable Distonic Radical Cation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaodan Chen
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Shihua Liu
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 30071 China
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 30071 China
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 30071 China
| |
Collapse
|
120
|
Chen X, Liu LL, Liu S, Grützmacher H, Li Z. A Room-Temperature Stable Distonic Radical Cation. Angew Chem Int Ed Engl 2020; 59:23830-23835. [PMID: 32914528 DOI: 10.1002/anie.202011677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 12/28/2022]
Abstract
Distonic radical cations (DRCs) with spatially separated charge and radical sites have, so far, largely been observed by gas-phase mass spectrometry and/or matrix isolation spectroscopy work. Herein, we disclose the isolation of a crystalline dicarbondiphosphide-based β-distonic radical cation salt 3.+ (BARF) (BARF=[B(3,5-(CF3 )2 C6 H3 )4 )]- ) stable at room temperature and formed by a one-electron-oxidation-induced intramolecular skeletal rearrangement reaction. Such a species has been validated by electron paramagnetic resonance (EPR) spectroscopy, single-crystal X-ray diffraction, UV/Vis spectroscopy and density functional theory (DFT) calculations. Compound 3.+ (BARF) exhibits a large majority of spin density at a two-coordinate phosphorus atom (0.74 a.u.) and a cationic charge located predominantly at the four-coordinate phosphorus atom (1.53 a.u.), which are separated by one carbon atom. This species represents an isolable entity of a phosphorus radical cation that is the closest to a genuine phosphorus DRC to date.
Collapse
Affiliation(s)
- Xiaodan Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shihua Liu
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 30071, China
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 30071, China.,Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 30071, China
| |
Collapse
|
121
|
Chatterjee B, Chang W, Werlé C. Molecularly Controlled Catalysis – Targeting Synergies Between Local and Non‐local Environments. ChemCatChem 2020. [DOI: 10.1002/cctc.202001431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Wei‐Chieh Chang
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
122
|
Piskunov AV, Pashanova KI, Mart’yanov KA, Arsen’eva KV, Cherkasov AV. 3,6-Di-tert-Butyl-2-Hydroxy-4-Pyridinylphenolate and Tin(IV) Complexes it Forms: Synthesis and Structure Details and Solvatochromic Effect. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420120064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
123
|
Chegerev MG, Arsenyeva KV, Cherkasov AV, Piskunov AV. Specific Features of EPR Spectroscopy of Organotin Compounds with Paramagnetic Ligands of the o-Iminobenzosemiquinone Type. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420110019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
124
|
Petrov PA, Kadilenko EM, Sukhikh TS, Eltsov IV, Gushchin AL, Nadolinny VA, Sokolov MN, Gritsan NP. A Sterically Hindered Derivative of 2,1,3-Benzotelluradiazole: A Way to the First Structurally Characterised Monomeric Tellurium-Nitrogen Radical Anion. Chemistry 2020; 26:14688-14699. [PMID: 32776633 DOI: 10.1002/chem.202002799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Interaction of the tetradentate redox-active 6,6'-[1,2-phenylenebis(azanediyl)]bis(2,4-di-tert-butylphenol) (H4 L) with TeCl4 leads to neutral diamagnetic compound TeL (1) in high yield. The molecule of 1 has a nearly planar TeN2 O2 fragment, which suggests the formulation of 1 as TeII L2- , in agreement with the results of DFT calculations and QTAIM and NBO analyses. Reduction of 1 with one equivalent of [CoCp2 ] leads to quantitative formation of the paramagnetic salt [CoCp2 ]+ [1].- , which was characterised by single-crystal XRD. The solution EPR spectrum of [CoCp2 ]+ [1].- at room temperature features a quintet due to splitting on two equivalent 14 N nuclei. Below 150 K it turns into a broad singlet line with two weak satellites due to the splitting on the 125 Te nucleus. Two-component relativistic DFT calculations perfectly reproduce the a(14 N) HFI constants and A∥ (125 Te) value responsible for the low-temperature satellite splitting. Calculations predict that the additional electron in 1.- is localised mainly on L, while the spin density is delocalised over the whole molecule with significant localisation on the Te atom (≥30 %). All these data suggest that 1.- can be regarded as the first example of a structurally characterised monomeric tellurium-nitrogen radical anion.
Collapse
Affiliation(s)
- Pavel A Petrov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev Av. 3, 630090, Novosibirsk, Russia
| | - Evgeny M Kadilenko
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia.,Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya St. 3, 630090, Novosibirsk, Russia
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev Av. 3, 630090, Novosibirsk, Russia
| | - Ilia V Eltsov
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Artem L Gushchin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev Av. 3, 630090, Novosibirsk, Russia
| | - Vladimir A Nadolinny
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev Av. 3, 630090, Novosibirsk, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev Av. 3, 630090, Novosibirsk, Russia
| | - Nina P Gritsan
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia.,Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya St. 3, 630090, Novosibirsk, Russia
| |
Collapse
|
125
|
Chatterjee B, Chang WC, Jena S, Werlé C. Implementation of Cooperative Designs in Polarized Transition Metal Systems—Significance for Bond Activation and Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03794] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Wei-Chieh Chang
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Soumyashree Jena
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
126
|
Saha A, Rajput A, Gupta P, Mukherjee R. Probing the electronic structure of [Ru(L 1) 2] Z ( z = 0, 1+ and 2+) (H 2L 1: a tridentate 2-aminophenol derivative) complexes in three ligand redox levels. Dalton Trans 2020; 49:15355-15375. [PMID: 33135029 DOI: 10.1039/d0dt03074k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerobic reaction between [RuII(DMSO)4Cl2], a redox-active 2-aminophenol-based ligand (H2L1: 2-[2-(benzylthio)phenylamino]-4,6-di-tert-butylphenol) and Et3N in MeOH under refluxing conditions afforded a purple complex [Ru(L1)2] (S = 0). Structural analysis reveals that the tridentate ligand coordinates in a mer conformation providing a distorted octahedral RuN2O2S2 coordination. Cyclic voltammetry on 1 in CH2Cl2 reveals the accessability of the monocation, dication and monoanion forms. Reddish purple monocation [Ru(L1)2](PF6)·CH2Cl2 ([1OX1](PF6)·CH2Cl2; S = 1/2) and green dication [Ru(L1)2](BF4)2·H2O ([1OX2](BF4)2·H2O; S = 0) have been isolated through the chemical oxidation of 1 in CH2Cl2 by [FeIII(η5-C5H5)2](PF6) and AgBF4, respectively. A structural analysis of the single crystals of the monocation and the dication with the compositions [1OX1](PF6)·CH2Cl2·H2O (2) and [1OX2](BF4)2·1.7H2O (3), respectively, has been done. Metrical (metal-ligand and ligand backbone) parameters, values of metrical oxidation states of coordinated ligands, 1H NMR spectra of 1 and [1OX2](BF4)2·H2O, EPR spectra of [1OX1](PF6)·CH2Cl2, X-ray photoelectron and UV-VIS-NIR spectra of 1-3, spin population analysis from broken-symmetry (BS) density functional theory (DFT) calculations and quasi-restricted orbital (QRO) analysis have allowed us to assign the electronic structure of the complexes. The complexes exhibit highly covalent metal-ligand interactions. The electronic states of 1, [1OX1]1+ and [1OX2]2+ are best described as [RuII{(LISQ)˙-}2] ↔ [RuIII{(LAP)2-}{(LISQ)˙-}] (S = 0), [RuIII{(LISQ)˙-}2]1+ (S = 1/2) and [RuII{(LIBQ)0}2]2+ ↔ [RuIII{(LISQ)˙-}{(LIBQ)0}]2+ (S = 0), respectively. Notably, all redox processes are ligand-centred. Absorption spectral properties have been rationalized based on time-dependent (TD)-DFT calculations. For 1, the appearance of an IVCT band at 1100 nm supports its Class II-III (borderline) ligand-based mixed-valence character.
Collapse
Affiliation(s)
- Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. and Department of Chemistry, School of Basic and Applied Sciences, G. D. Goenka University, Sohna Road, Gurugram 122 103, Haryana, India
| | - Puneet Gupta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | | |
Collapse
|
127
|
Nasibipour M, Safaei E, Wojtczak A, Jagličić Z, Galindo A, Masoumpour MS. A biradical oxo-molybdenum complex containing semiquinone and o-aminophenol benzoxazole-based ligands. RSC Adv 2020; 10:40853-40866. [PMID: 35519205 PMCID: PMC9059147 DOI: 10.1039/d0ra06351g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
We report a new mononuclear molybdenum(iv) complex, MoOLBISLSQ, in which LSQ (2,4-di-tert-butyl o-semibenzoquinone ligand) has been prepared from the reaction of the o-iminosemibenzoquinone form of a tridentate non-innocent benzoxazole ligand, LBIS, and MoO2(acac)2. The complex was characterized by X-ray crystallography, elemental analysis, IR and UV-vis spectroscopy and magnetic susceptibility measurements. The crystal structure of MoOLBISLSQ revealed a distorted octahedral geometry around the metal centre, surrounded by one O and two N atoms of LBIS and two O atoms of LSQ. The effective magnetic moment (μ eff) of MoOLBISLSQ decreased from 2.36 to 0.2 μB in the temperature range of 290 to 2 K, indicating a singlet ground state caused by antiferromagnetic coupling between the metal and ligand centred unpaired electrons. Also, the latter led to the EPR silence of the complex. Cyclic voltammetry (CV) studies indicate both ligand and metal-centered redox processes. MoOLBISLSQ was applied as a catalyst for the oxidative cleavage of cyclohexene to adipic acid and selective oxidation of sulfides to sulfones with aqueous hydrogen peroxide.
Collapse
Affiliation(s)
- Mina Nasibipour
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Andrzej Wojtczak
- Nicolaus Copernicus University, Faculty of Chemistry 87-100 Torun Poland
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana Jadranska 19 Ljubljana Slovenia
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla Aptdo. 1203 41071 Sevilla Spain
| | | |
Collapse
|
128
|
Ovcharenko VI, Kuznetsova OV. New method for the synthesis of heterospin metal complexes with nitroxides. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
129
|
Ershova IV, Piskunov AV, Cherkasov VK. Complexes of diamagnetic cations with radical anion ligands. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4957] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
130
|
Das A, Hessin C, Ren Y, Desage-El Murr M. Biological concepts for catalysis and reactivity: empowering bioinspiration. Chem Soc Rev 2020; 49:8840-8867. [PMID: 33107878 DOI: 10.1039/d0cs00914h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological systems provide attractive reactivity blueprints for the design of challenging chemical transformations. Emulating the operating mode of natural systems may however not be so easy and direct translation of structural observations does not always afford the anticipated efficiency. Metalloenzymes rely on earth-abundant metals to perform an incredibly wide range of chemical transformations. To do so, enzymes in general have evolved tools and tricks to enable control of such reactivity. The underlying concepts related to these tools are usually well-known to enzymologists and bio(inorganic) chemists but may be a little less familiar to organometallic chemists. So far, the field of bioinspired catalysis has greatly focused on the coordination sphere and electronic effects for the design of functional enzyme models but might benefit from a paradigm shift related to recent findings in biological systems. The goal of this review is to bring these fields closer together as this could likely result in the development of a new generation of highly efficient bioinspired systems. This contribution covers the fields of redox-active ligands, entatic state reactivity, energy conservation through electron bifurcation, and quantum tunneling for C-H activation.
Collapse
Affiliation(s)
- Agnideep Das
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
131
|
Melle P, Thiede J, Hey DA, Albrecht M. Highly Efficient Transfer Hydrogenation Catalysis with Tailored Pyridylidene Amide Pincer Ruthenium Complexes. Chemistry 2020; 26:13226-13234. [PMID: 32452600 DOI: 10.1002/chem.202001145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/25/2020] [Indexed: 11/09/2022]
Abstract
The rational optimization of homogeneous catalysts requires ligand platforms that are easily tailored to improve catalytic performance. Here, it is demonstrated that pyridylidene amides (PYAs) provide such a platform to custom-shape transfer hydrogenation catalysts with exceptional activity. Specifically, a series of meta-PYA pincer ligands with differently substituted PYA units has been synthezised and coordinated to ruthenium(II) centres to form bench-stable tris-acetonitrile complexes [Ru(R-PYA-pincer)(MeCN)3 ](PF6 )2 (R=OMe, Me, H, Cl, CF3 ). Analytic studies including 1 H NMR spectroscopy, cyclic voltammetry, and X-ray crystallography reveal a direct influence of the substituents on the electronic properties of the ruthenium center. The complexes are active in the catalytic transfer hydrogenation of ketones, with activities directly encoded by the PYA substitution pattern. Their perfomance improves further upon exchange of an ancillary MeCN ligand with PPh3 . While complexes [Ru(R-PYA-pincer)(PPh3 )(MeCN)2 ](PF6 )2 were only isolated for R=H, Me, an in situ protocol was developed to generate these complexes in situ for R=OMe, Cl, CF3 by using a 1:2 ratio of the complexes and PPh3 . This in situ protocol together with a short catalyst pre-activation provided highly active catalytic systems. The most active pre-catalyst featured the methoxy-substituted PYA ligand and reached turnover frenquencies of 210 000 h-1 under an exceptionally low catalyst loading of 25 ppm for the benchmark substrate benzophenone, representing one of the most active transfer hydrogenation systems known to date.
Collapse
Affiliation(s)
- Philipp Melle
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Jan Thiede
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Daniela A Hey
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland.,Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Martin Albrecht
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
132
|
Kunert R, Philouze C, Berthiol F, Jarjayes O, Storr T, Thomas F. Distorted copper(ii) radicals with sterically hindered salens: electronic structure and aerobic oxidation of alcohols. Dalton Trans 2020; 49:12990-13002. [PMID: 32909589 DOI: 10.1039/d0dt02524k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sterically hindered salen ligands featuring biphenyl and tetramethyl putrescine linkers were synthesized and chelated to copper. The resulting complexes CuLbp,tBu, CuLbp,OMe, CuLpu,tBu and CuLpu,OMe were structurally characterized, showing a significanty tetrahedrally distorted metal center. The complexes show two reversible oxidation waves in the range 0.2 to 0.8 V vs. Fc+/Fc. A further reduction wave is detected in the range -1.4 to -1.7 V vs. Fc+/Fc. It is reversible for CuLbp,tBu and CuLbp,OMe and assigned to the CuII/CuI redox couple. One-electron oxidation of CuLbp,OMe, CuLpu,tBu and CuLpu,OMe was performed chemically and electrochemically. It is accompanied by a quenching of the EPR resonances. Phenoxyl radical formation was established by X-Ray diffraction on the cations [CuLbp,OMe]+ and [CuLpu,OMe]+, whereby the coordination sphere is elongated upon oxidation with quinoidal distributions of bond distances. The cations exhibit a NIR band of moderate intensity in their optical spectrum, supporting their classification as class II mixed-valent radical species according to the Robin Day classification. The proposed electronic structures are supported by DFT calculations. The cations [CuLbp,OMe]+, [CuLpu,tBu]+ and [CuLpu,OMe]+ were active towards aerobic oxidation of the unactivated alcohol 2-phenylethanol, with TON numbers up to 58 within 3 h.
Collapse
Affiliation(s)
- R Kunert
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France.
| | | | | | | | | | | |
Collapse
|
133
|
Mukherjee R. Assigning Ligand Redox Levels in Complexes of 2-Aminophenolates: Structural Signatures. Inorg Chem 2020; 59:12961-12977. [PMID: 32881491 DOI: 10.1021/acs.inorgchem.0c00240] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The purpose of this Viewpoint is to provide a broad-ranging update of advances in the coordination chemistry of redox-active (noninnocent) 2-aminophenolates, with emphasis on two ligand backbone structural parameters, the average of C-O and C-N (C-O/N) bond distances and Δa values, signifying the degree of bond-length alternation in the six-membered ring, in order to identify the redox level of the coordinated ligands. In the absence of magnetic, spectroscopic, and redox results, it has been established that it is possible to assign the electronic ground state of a coordination complex of 2-aminophenolates with consideration of charge, metal-ligand bond distances, and two very promising ligand backbone structural parameters. From a closer look at the sensitive ligand backbone metrical parameters of a diversified group of about 120 transition-metal complexes, a few very useful generalizations have been made.
Collapse
|
134
|
Yang XW, Li DH, Song AX, Liu FS. "Bulky-Yet-Flexible" α-Diimine Palladium-Catalyzed Reductive Heck Cross-Coupling: Highly Anti-Markovnikov-Selective Hydroarylation of Alkene in Air. J Org Chem 2020; 85:11750-11765. [PMID: 32808522 DOI: 10.1021/acs.joc.0c01509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To pursue a highly regioselective and efficient reductive Heck reaction, a series of moisture- and air-stable α-diimine palladium precatalysts were rationally designed, readily synthesized, and fully characterized. The relationship between the structures of the palladium complexes and the catalytic properties was investigated. It was revealed that the"bulky-yet-flexible"palladium complexes allowed highly anti-Markovnikov-selective hydroarylation of alkenes with (hetero)aryl bromides under aerobic conditions. Further synthetic application of the present protocol could provide rapid and straightforward access to functional and biologically active molecules.
Collapse
Affiliation(s)
- Xu-Wen Yang
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Dong-Hui Li
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - A-Xiang Song
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| |
Collapse
|
135
|
van
Leest NP, Stroek W, Siegler MA, van der Vlugt JI, Bruin BD. Ligand-Mediated Spin-State Changes in a Cobalt-Dipyrrin-Bisphenol Complex. Inorg Chem 2020; 59:12903-12912. [PMID: 32815718 PMCID: PMC7482399 DOI: 10.1021/acs.inorgchem.0c01979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Indexed: 12/20/2022]
Abstract
The influence of a redox-active ligand on spin-changing events induced by the coordination of exogenous donors is investigated within the cobalt complex [CoII(DPP·2-)], bearing a redox-active DPP2- ligand (DPP = dipyrrin-bis(o,p-di-tert-butylphenolato) with a pentafluorophenyl moiety on the meso-position. This square-planar complex was subjected to the coordination of tetrahydrofuran (THF), pyridine, tBuNH2, and AdNH2 (Ad = 1-adamantyl), and the resulting complexes were analyzed with a variety of experimental (X-ray diffraction, NMR, UV-visible, high-resolution mass spectrometry, superconducting quantum interference device, Evans' method) and computational (density functional theory, NEVPT2-CASSCF) techniques to elucidate the respective structures, spin states, and orbital compositions of the corresponding octahedral bis-donor adducts, relative to [CoII(DPP·2-)]. This starting species is best described as an open-shell singlet complex containing a DPP·2- ligand radical that is antiferromagnetically coupled to a low-spin (S = 1/2) cobalt(II) center. The redox-active DPPn- ligand plays a crucial role in stabilizing this complex and in its facile conversion to the triplet THF adduct [CoII(DPP·2-)(THF)2] and closed-shell singlet pyridine and amine adducts [CoIII(DPP3-)(L)2] (L = py, tBuNH2, or AdNH2). Coordination of the weak donor THF to [CoII(DPP·2-)] changes the orbital overlap between the DPP·2- ligand radical π-orbitals and the cobalt(II) metalloradical d-orbitals, which results in a spin-flip to the triplet ground state without changing the oxidation states of the metal or DPP·2- ligand. In contrast, coordination of the stronger donors pyridine, tBuNH2, or AdNH2 induces metal-to-ligand single-electron transfer, resulting in the formation of low-spin (S = 0) cobalt(III) complexes [CoIII(DPP3-)(L)2] containing a fully reduced DPP3- ligand, thus explaining their closed-shell singlet electronic ground states.
Collapse
Affiliation(s)
- Nicolaas P. van
Leest
- Homogeneous, Supramolecular
and Bio-Inspired Catalysis Group, van’t Hoff Institute for
Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Wowa Stroek
- Homogeneous, Supramolecular
and Bio-Inspired Catalysis Group, van’t Hoff Institute for
Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Maxime A. Siegler
- Department of Chemistry, John Hopkins University, Baltimore 21218, Maryland, United States
| | - Jarl Ivar van der Vlugt
- Homogeneous, Supramolecular
and Bio-Inspired Catalysis Group, van’t Hoff Institute for
Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular
and Bio-Inspired Catalysis Group, van’t Hoff Institute for
Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
136
|
Pour YS, Safaei E, Wojtczak A, Jagličić Z. Valence tautomerism in catecholato cobalt Bis(phenolate) diamine complexes as models for Enzyme–substrate adducts of catechol dioxygenases. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
137
|
Mahata G, Panja A. SYNTHESIS, CRYSTAL STRUCTURE, AND SUPRAMOLECULAR
INTERACTIONS IN A BIS(TETRACHLOROCATECHOLATE)
CHELATED MANGANESE(III) COMPLEX. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620090164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
138
|
Fomenko IS, Gushchin AL. Mono- and binuclear complexes of group 5 metals with diimine ligands: synthesis, reactivity and prospects for application. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
139
|
Matsumoto T, Yamamoto R, Wakizaka M, Nakada A, Chang HC. Molecular Insights into the Ligand-Based Six-Proton- and Six-Electron-Transfer Processes Between Tris-ortho-Phenylenediamines and Tris-ortho-Benzoquinodiimines. Chemistry 2020; 26:9609-9619. [PMID: 32483884 DOI: 10.1002/chem.202001873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 11/10/2022]
Abstract
The global demand for energy and the concerns over climate issues renders the development of alternative renewable energy sources such as hydrogen (H2 ) important. A high-spin (hs) FeII complex with o-phenylenediamine (opda) ligands, [FeII (opda)3 ]2+ (hs-[6R]2+ ), was reported showing photochemical H2 evolution. In addition, a low-spin (ls) [FeII (bqdi)3 ]2+ (bqdi: o-benzoquinodiimine) (ls-[0R]2+ ) formation by O2 oxidation of hs-[6R]2+ , accompanied by ligand-based six-proton and six-electron transfer, revealed the potential of the complex with redox-active ligands as a novel multiple-proton and -electron storage material, albeit that the mechanism has not yet been understood. This paper reports that the oxidized ls-[0R][PF6 ]2 can be reduced by hydrazine giving ls-[FeII (opda)(bqdi)2 ][PF6 ]2 (ls-[2R][PF6 ]2 ) and ls-[FeII (opda)2 (bqdi)][PF6 ]2 (ls-[4R][PF6 ]2 ) with localized ligand-based proton-coupled mixed-valence (LPMV) states. The first isolation and characterization of the key intermediates with LPMV states offer unprecedented molecular insights into the design of photoresponsive molecule-based hydrogen-storage materials.
Collapse
Affiliation(s)
- Takeshi Matsumoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Risa Yamamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masanori Wakizaka
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Akinobu Nakada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ho-Chol Chang
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
140
|
Fokin SV, Fursova EY, Letyagin GA, Bogomyakov AS, Morozov VA, Romanenko GV, Ovcharenko VI. Structure and Magnetic Properties of Mixed-Ligand Complexes of 3d Metal Hexafluoroacetylacetonates with 3,5- and 3,6-Di-Tert-Butyl-O-Benzoquinones. J STRUCT CHEM+ 2020. [DOI: 10.1134/s002247662004006x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
141
|
Vinum MG, Voigt L, Hansen SH, Bell C, Clark KM, Larsen RW, Pedersen KS. Ligand field-actuated redox-activity of acetylacetonate. Chem Sci 2020; 11:8267-8272. [PMID: 34094180 PMCID: PMC8163028 DOI: 10.1039/d0sc01836h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
The quest for simple ligands that enable multi-electron metal-ligand redox chemistry is driven by a desire to replace noble metals in catalysis and to discover novel chemical reactivity. The vast majority of simple ligand systems display electrochemical potentials impractical for catalytic cycles, illustrating the importance of creating new strategies towards energetically aligned ligand frontier and transition metal d orbitals. We herein demonstrate the ability to chemically control the redox-activity of the ubiquitous acetylacetonate (acac) ligand. By employing the ligand field of high-spin Cr(ii) as a switch, we were able to chemically tailor the occurrence of metal-ligand redox events via simple coordination or decoordination of the labile auxiliary ligands. The mechanism of ligand field actuation can be viewed as a destabilization of the d z 2 orbital relative to the π* LUMO of acac, which proffers a generalizable strategy to synthetically engineer redox-activity with seemingly redox-inactive ligands.
Collapse
Affiliation(s)
- Morten Gotthold Vinum
- Department of Chemistry, Technical University of Denmark Kemitorvet Kgs. Lyngby DK-2800 Denmark
| | - Laura Voigt
- Department of Chemistry, Technical University of Denmark Kemitorvet Kgs. Lyngby DK-2800 Denmark
| | - Steen H Hansen
- Department of Chemistry, Technical University of Denmark Kemitorvet Kgs. Lyngby DK-2800 Denmark
| | - Colby Bell
- Department of Chemistry, The University of Memphis Memphis TN USA
| | | | - René Wugt Larsen
- Department of Chemistry, Technical University of Denmark Kemitorvet Kgs. Lyngby DK-2800 Denmark
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark Kemitorvet Kgs. Lyngby DK-2800 Denmark
| |
Collapse
|
142
|
Greb L, Ebner F, Ginzburg Y, Sigmund LM. Element‐Ligand Cooperativity with p‐Block Elements. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000449] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lutz Greb
- Anorganisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 275 69120 Heidelberg Germany
| | - Fabian Ebner
- Anorganisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 275 69120 Heidelberg Germany
| | - Yael Ginzburg
- Anorganisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 275 69120 Heidelberg Germany
| | - Lukas M. Sigmund
- Anorganisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 275 69120 Heidelberg Germany
| |
Collapse
|
143
|
Sinha S, Das S, Mondal R, Mandal S, Paul ND. Cobalt complexes of redox noninnocent azo-aromatic pincers. Isolation, characterization, and application as catalysts for the synthesis of quinazolin-4(3H)-ones. Dalton Trans 2020; 49:8448-8459. [PMID: 32239054 DOI: 10.1039/d0dt00394h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the synthesis, characterization and catalytic application of three new cobalt(ii)-complexes of redox noninnocent arylazo ligands, 2-(phenylazo)-1,10-phenanthroline (L1a), 2-(4-chlorophenylazo)-1,10-phenanthroline (L1b) and 2,9-bis(phenyldiazo)-1,10-phenanthroline (L2) respectively. The reaction of L1a with CoIICl2·6H2O produced a μ-dichloro bridged binuclear cobalt(ii)-complex [Co(L1a)2Cl2] (1a) while the same reaction when carried out with 2-(4-chlorophenyl)azo-1,10-phenanthroline (L1b) and 2,9-bis(phenyldiazo)-1,10-phenanthroline (L2) ligands produced two new mononuclear five-coordinate cobalt(ii)-complexes 1b and 2 respectively. In complex 1a and 1b, the ligands L1a and L1b are coordinated to the cobalt(ii)-center in a tridentate mode utilizing all of its nitrogen donor sites while in complex 2 one of the azo-donor sites of the ligand L2 remain pendant. All these complexes were characterized using available spectroscopic techniques and DFT studies. We further explored the potential of these complexes as catalysts for the synthesis of pharmaceutically important organic compounds via the functionalization of alcohols. A variety of substituted quinazolin-4(3H)-ones were synthesized under aerobic conditions via the coupling of alcohols and 2-aminobenzamide using 1b as the catalyst. Mechanistic investigations revealed that both cobalt and the arylazo scaffold act synergistically during catalysis.
Collapse
Affiliation(s)
- Suman Sinha
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | | | | | | | | |
Collapse
|
144
|
Leconte N, Gentil S, Molton F, Philouze C, Le Goff A, Thomas F. Complexes of the Bis(di‐
tert
‐butyl‐aniline)amine Pincer Ligand: The Case of Copper. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Solène Gentil
- CEA, CNRS Univ. Grenoble Alpes 38000 Grenoble France
- CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux Univ. Grenoble Alpes 38000 Grenoble France
| | | | | | - Alan Le Goff
- CEA, CNRS Univ. Grenoble Alpes 38000 Grenoble France
| | | |
Collapse
|
145
|
Valence tautomerism and delocalization in transition metal complexes of o-amidophenolates and other redox-active ligands. Some recent results. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213240] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
146
|
Nasibipour M, Safaei E, Masoumpour MS, Wojtczak A. Ancillary ligand electro-activity effects towards phenyl acetylene homocoupling reaction by a nickel(ii) complex of a non-innocent O-amino phenol ligand: a mechanistic insight. RSC Adv 2020; 10:24176-24189. [PMID: 35516191 PMCID: PMC9055111 DOI: 10.1039/d0ra04362a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
A new Ni(ii) complex, was synthesized from the reaction of a non-innocent o-aminophenol ligand, and Ni(OAc)2. The crystal structure of NiIIL2 NIS (in which, IS stands for iminosemiquinone radical ligand with cyanide (shown by N in NIS) substituent on phenolate rings) exhibits the square planar environment of Ni(ii). The complex has been crystalized in the monoclinic system and Ni(ii) was surrounded by two oxygen and two nitrogen atoms of two ligands. Variable-temperature magnetic susceptibility measurement for crystalline samples of complex shows the effective magnetic moment per molecule (μ eff) of near zero and the diamagnetic nature of the complex (S = 0) which emphasize that strong antiferromagnetic coupling prevailed between the two unpaired electrons of LNIS ligands and Ni(ii) high spin electrons. The complex is EPR silent which confirms the diamagnetic character of the Ni(ii) complex. Electrochemical measurement (CV) indicates the redox-active character of ligand and metal. NiIIL2 NIS complex proved to be effective for free metal- or base counterpart homocoupling of phenyl acetylene at room temperature. To the best of our knowledge, this is the first example of using Ni(ii) complex without using any reducing agent due to the promotion ancillary effect of non-innocent o-aminophenol ligand which acts as an "electron reservoir" and can reversibly accept and donate electrons in the catalytic cycle. The theoretical calculation confirms the magnetostructure, electronic spectrum and confirmed the suggested mechanism of phenyl acetylene homocoupling with emphasis on the role of non-innocent ligand electro-activity and the effect of ligand substituent on the efficiency and stability of the complex.
Collapse
Affiliation(s)
- Mina Nasibipour
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | | | - Andrzej Wojtczak
- Nicolaus Copernicus University, Faculty of Chemistry 87-100 Torun Poland
| |
Collapse
|
147
|
Mouchel Dit Leguerrier D, Barré R, Bryden M, Imbert D, Philouze C, Jarjayes O, Luneau D, Molloy JK, Thomas F. Structural and spectroscopic investigations of nine-coordinate redox active lanthanide complexes with a pincer O,N,O ligand. Dalton Trans 2020; 49:8238-8246. [PMID: 32510087 DOI: 10.1039/d0dt01388a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The lanthanide complexes EuL3, GdL3, YbL3 and LuL3 of the N,N'-bis(2-hydroxy-di-3,5-tert-butylphenyl)amine were prepared. The X-Ray crystal structures of GdL3 and LuL3 demonstrated a nine-coordinate sphere with three ligand molecules under their anionic diamagnetic form (Cat-N-BQ)-. The complexes showed three oxidation events (Eox11/2 = 0.15-0.16 V, E1/22 = 0.51-55 V, and E1/23 = 0.75-0.78 V vs. Fc+/Fc) via cyclic voltammetry, corresponding to the successive oxidation of the aminophenolate moeities to iminosemiquinone species. The complexes GdL3 and YbL3 were characterized by EPR spectroscopy, allowing for the determination of the zero field splitting (ZFS) parameters in the first case. The monocations (LnL3)+ and monoanions (LnL3)- were electrochemically generated (Ln = Eu, Gd, Yb, Lu), as well as the dications YbL32+ and LuL32+. The spins are antiferromagnetically exchange coupled in the diradical species LuL32+ (|D| = 260 MHz, E = 0). All the complexes (incl. neutral) possess a strong absorption band in the NIR region (730-840 nm, ε > 19 mM-1 cm-1) corresponding to ligand-based transitions.
Collapse
|
148
|
Ding N, Li Z. When Anthracene and Quinone Avoid Cycloaddition: Acid-Catalyzed Redox Neutral Functionalization of Anthracene to Aryl Ethers. Org Lett 2020; 22:4276-4282. [PMID: 32396008 DOI: 10.1021/acs.orglett.0c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benzoquinone and 9-phenylanthracene barely undergo anticipated cycloaddition under acid catalysis. Instead, 9-anthracenyl aryl ethers are obtained as unexpected products. Mechanistic studies indicate that the reaction likely undergoes an ionic mechanism between protonated anthracene species and nucleophilic oxygen of 1,4-benzoquinone or 1,4-hydroquinone. A variety of 9-anthracenyl aryl ethers are constructed with this method. Produced anthracenyl aryl ethers are potential scaffolds for new fluorescent molecules.
Collapse
Affiliation(s)
- Nan Ding
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Zhi Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
149
|
Singh B, Indra A. Role of redox active and redox non-innocent ligands in water splitting. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
150
|
Khatua M, Goswami B, Samanta S. Dehydrogenation of amines in aryl-amine functionalized pincer-like nitrogen-donor redox non-innocent ligands via ligand reduction on a Ni(ii) template. Dalton Trans 2020; 49:6816-6831. [PMID: 32374795 DOI: 10.1039/d0dt00466a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have synthesized a series of new redox non-innocent azo aromatic pincer-like ligands: 2-(phenylazo)-6-(arylaminomethyl)pyridine (HLa-c: HLa = 2-(phenylazo)-6-(2,6-diisopropylphenylaminomethyl)pyridine, HLb = 2-(phenylazo)-6-(2,6-dimethylphenylaminomethyl)pyridine, and HLc = 2-(phenylazo)-6-(phenylaminomethyl)pyridine), in which one side arm is an arylaminomethyl moiety and the other arm is a 2-phenylazo moiety. Nickel(ii) complexes, 1-3, of these ligands HLa-c were synthesized in good yield (approximately 70%) by the reaction of ligands : (NiCl2·6H2O) in a 1 : 1 molar ratio in methanol. The amine donor in each of the ligands HLa-c binds to the Ni(ii) centre without deprotonation. In the solid state, complex 3 is a dimer; in solution it exists as monomer 3a. The reduction of acetonitrile solutions of each of the complexes 1, 2 and 3a, separately, with cobaltocene (1 equivalent), followed by exposure of the solution to air, resulted in the formation of new complexes 7, 8 and 9, respectively. Novel free ligands Lx and Ly have also been isolated, in addition to complexes 7 and 8, from the reaction of complexes 1 and 2, respectively. Complexes 7-9 and free ligands Lx and Ly have been formed via a dehydrogenation reaction of the arylaminomethyl side arm. The mechanism of the reaction was thoroughly investigated using a series of studies, including cyclic voltammetry, EPR, and UV-Vis spectral studies and density functional theory (DFT) calculations. The results of these studies suggest a mechanism initiated by ligand reduction followed by dioxygen activation. A Cl-/I- scrambling experiment revealed that the dissociation of the chloride ligand(s) was associated with the one-electron reduction of the ligand (azo moiety) in each of the complexes 1, 2 and 3a. The dissociated chloride ligand(s) were reassociated with the metal following the dehydrogenation reaction to yield the final products. All of the newly synthesized compounds were fully characterized using a variety of physicochemical techniques. Single-crystal X-ray structures of the representative compounds were determined to confirm the identities of the synthesized molecules.
Collapse
Affiliation(s)
- Manas Khatua
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| | - Bappaditya Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India.
| |
Collapse
|