101
|
Wang Q, Zhang K, Lin RL, Sun WQ, Ye MF, Xiao X, Liu JX. A light-responsive molecular switch based on cucurbit[7]uril and 1,1'-bis(benzyl)-4-[2-(4-pyridyl)-vinyl]-pyridinium dibromide displaying white light emission. Org Biomol Chem 2022; 20:1253-1259. [PMID: 35060585 DOI: 10.1039/d1ob02420e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By using 1H NMR, ESI-MS and UV spectra, a novel light-responsive molecular switch constructed using 1,1'-bis(benzyl)-4-[2-(4-pyridyl)-vinyl]-pyridinium (12+) and cucurbit[7]uril (Q[7]) is demonstrated. The E- to Z-isomerization of the double bond in 12+ results in the transition of the switching states from the 1 : 2 complex E-12+@Q[7]2 to the stable 1 : 1 complex Z-12+@Q[7]. In particular, both the 1 : 2 complex and the 1 : 1 complex can emit cold white fluorescence under UV light.
Collapse
Affiliation(s)
- Qin Wang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Wen-Qi Sun
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Ming-Fu Ye
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| |
Collapse
|
102
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
103
|
Li Z, Yang YW. Macrocycle-Based Porous Organic Polymers for Separation, Sensing, and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107401. [PMID: 34676932 DOI: 10.1002/adma.202107401] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of materials science, porous organic polymers (POPs) have received remarkable attentions because of their unique properties such as the exceptionally high surface area and flexible molecular design. The ability to incorporate specific functions in a precise manner makes POPs promising platforms for a myriad of applications in molecular adsorption, separation, and catalysis. Therefore, many different types of POPs have been rationally designed and synthesized to expand the scope of advanced materials, endowing them with distinct structures and properties. Recently, supramolecular macrocycles with excellent host-guest complexation abilities are emerging as powerful crosslinkers for developing novel POPs with hierarchical structures and improved performance, which can be well-organized at different spatial scales. Macrocycle-based POPs could have unusual porous, adsorptive, and optical properties when compared to their nonmacrocycle-incorporated counterparts. This cooperation provides valuable insights for the molecular-level understanding of skeletal complexity and diversity. Here, the research advances of macrocycle-based POPs are aptly summarized by showing their syntheses, properties, and applications in terms of separation, sensing, and catalysis. Finally, the current challenging issues in this exciting research field are delineated and a comprehensive outlook is offered for their future directions.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
104
|
Doll M, Berthault P, Léonce E, Boutin C, Jeanneau E, Brotin T, De Rycke N. Study of syn and anti Xenon-Cryptophanes Complexes Decorated with Aromatic Amine Groups: Chemical Platforms for Accessing New Cryptophanes. J Org Chem 2022; 87:2912-2920. [PMID: 35080182 DOI: 10.1021/acs.joc.1c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the synthesis of C3-symmetric cryptophanes decorated with three aromatic amine groups on the same CTB cap and their interaction with xenon. The relative stereochemistry of these two stereoisomers syn and anti was assessed thanks to the determination of the X-ray structure of an intermediate compound. As previously observed with the tris-aza-cryptophanes analogs anti-1 and syn-2 (J. Org. Chem. 2021, 86, 11, 7648-7658), both compounds anti-5 and syn-6 show a slow in-out exchange dynamics of xenon at 11.7 T. Our work supports the idea that the presence of nitrogen atoms grafted directly onto the cryptophane backbone has a strong impact on the in-out exchange dynamics of xenon whatever their stereochemistry. This result contrasts with the case of other cryptophanes decorated solely with methoxy substituents. Finally, we demonstrate that these new derivatives can be used to design new anti/syn cryptophanes bearing suitable ligands in order to constitute potent 129Xe NMR-based sensors. An example is reported here with the synthesis of the tris-iodo derivatives anti-13 and syn-14 from compounds anti-5 and syn-6.
Collapse
Affiliation(s)
- Martin Doll
- Laboratoire de Chimie, Université de Lyon, ENS de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Patrick Berthault
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Estelle Léonce
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Céline Boutin
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Université de Lyon 1, 5 rue la Doua, 69100 Villeurbanne, France
| | - Thierry Brotin
- Laboratoire de Chimie, Université de Lyon, ENS de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Nicolas De Rycke
- Laboratoire de Chimie, Université de Lyon, ENS de Lyon, CNRS UMR 5182, F69342 Lyon, France
| |
Collapse
|
105
|
Dergham M, Lin S, Geng J. Supramolecular Self‐assembly in Living Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohamed Dergham
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Biomedicine and Biotechnology CHINA
| | - Shanmeng Lin
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Biomedicine and Biotechnology CHINA
| | - Jin Geng
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Institute of Biomedicine and Biotechnology Xuyuan Road 518055 Shenzhen CHINA
| |
Collapse
|
106
|
Zhang M, Zhang H, Jin L, Li H, Liu S, Chang S, Liang F. Evidenced cucurbit[ n]uril-based host-guest interactions using single-molecule force spectroscopy. Chem Commun (Camb) 2022; 58:1736-1739. [PMID: 35029268 DOI: 10.1039/d1cc06791e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, enhanced guest-pair interactions in the cavity of cucurbit[8]uril (CB[8]) are quantitatively determined using single-molecule force spectroscopy (SMFS). Significantly, the light-driven dynamic conformational change of guest pairs leads to a rupture force switching between the connected and broken CB[8]-mediated heteroternary complexation with viologen and bis(azobenzene) derivatives. SMFS is further utilized to detect methyl viologen based on the competitive host-guest interaction toward the guest in CB[8] or CB[7]. These findings highlight the extraordinary power of SMFS in supramolecular chemistry and will contribute to the fundamental understanding of the mechanochemical behavior of host-guest interactions.
Collapse
Affiliation(s)
- Mingyang Zhang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Hao Zhang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Lunqiang Jin
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Hao Li
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
107
|
Zhao Y, Song S, Ren X, Zhang J, Lin Q, Zhao Y. Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chem Rev 2022; 122:5604-5640. [PMID: 35023737 DOI: 10.1021/acs.chemrev.1c00815] [Citation(s) in RCA: 188] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering is a promising and revolutionary strategy to treat patients who suffer the loss or failure of an organ or tissue, with the aim to restore the dysfunctional tissues and enhance life expectancy. Supramolecular adhesive hydrogels are emerging as appealing materials for tissue engineering applications owing to their favorable attributes such as tailorable structure, inherent flexibility, excellent biocompatibility, near-physiological environment, dynamic mechanical strength, and particularly attractive self-adhesiveness. In this review, the key design principles and various supramolecular strategies to construct adhesive hydrogels are comprehensively summarized. Thereafter, the recent research progress regarding their tissue engineering applications, including primarily dermal tissue repair, muscle tissue repair, bone tissue repair, neural tissue repair, vascular tissue repair, oral tissue repair, corneal tissue repair, cardiac tissue repair, fetal membrane repair, hepatic tissue repair, and gastric tissue repair, is systematically highlighted. Finally, the scientific challenges and the remaining opportunities are underlined to show a full picture of the supramolecular adhesive hydrogels. This review is expected to offer comparative views and critical insights to inspire more advanced studies on supramolecular adhesive hydrogels and pave the way for different fields even beyond tissue engineering applications.
Collapse
Affiliation(s)
- Yue Zhao
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.,State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shanliang Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangzhong Ren
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junmin Zhang
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Quan Lin
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
108
|
Huang K, Fang Q, Sun W, He S, Yao Q, Xie J, Chen W, Deng H. Cucurbit[ n]uril Supramolecular Assemblies-Regulated Charge Transfer for Luminescence Switching of Gold Nanoclusters. J Phys Chem Lett 2022; 13:419-426. [PMID: 34989578 DOI: 10.1021/acs.jpclett.1c03917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Host-guest molecular assemblies are highly desirable for precisely controlling the luminescence properties of nanomaterials. Unfortunately, the design of high-quality luminescent nanoswitches is still very challenging due to the low affinity of traditional macrocyclic molecules (e.g., cyclodextrin) and inherently sophisticated electronic structures of nanoemitters. The current work represents the first to fabricate a luminescent nanoswitch using cucurbit[n]uril supramolecular assemblies-regulated luminescence of gold nanoclusters (AuNCs). It is found that, similar to a small-molecule fluorophore-based system, the luminescence of fabricated AuNC-cationic quencher nanohybrids can be reversibly manipulated by cucurbit[7]uril through altering the key parameters of the charge transfer process including the reorganization energy and electronic coupling between charge-transfer reactants. This study demonstrates the crucial role of cucurbit[n]uril host-guest assemblies in modulating the luminescence of AuNCs and their application in luminescence switching, thus offering new avenues for the fabrication and development of optical devices and smart materials.
Collapse
Affiliation(s)
- Kaiyuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Quanhui Fang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Weiming Sun
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Shaobin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
109
|
Song L, Zhou L, Li B, Zhang H. Fullerene-containing pillar[ n]arene hybrid composites. Org Biomol Chem 2022; 20:8176-8186. [DOI: 10.1039/d2ob01664h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The construction and application of fullerene-containing pillar[n]arene organic–inorganic hybrid composites/systems has been discussed and summarized.
Collapse
Affiliation(s)
- Leqian Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bing Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
110
|
Liu C, Zhou L, Cao S, Zhang H, Han J, Liu Z. Supramolecular systems prepared using terpyridine-containing pillararene. Polym Chem 2022. [DOI: 10.1039/d1py01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progresses about the preparation of terpyridine-containing pillararene, as well as the utilization of those building blocks for making external stimulud-responsive supramolecular systems were summarized in this review.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China
| |
Collapse
|
111
|
Prabodh A, Sinn S, Biedermann F. Analyte sensing with unselectively binding synthetic receptors: virtues of time-resolved supramolecular assays. Chem Commun (Camb) 2022; 58:13947-13950. [DOI: 10.1039/d2cc04831k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Time-resolved supramolecular assays probe analyte-characteristic complexation and decomplexation rates. Consequently, even unselectively binding synthetic receptors can be used for analyte identification and quantification.
Collapse
Affiliation(s)
- Amrutha Prabodh
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Stephan Sinn
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
112
|
Chen J, Chen L, Zhang Y, Zhao L, Dong M, Meng Z, Meng Q, Li C. Effective taste masking of alkaloids by a water-soluble terphen[3]arene. Chem Commun (Camb) 2022; 58:3370-3373. [DOI: 10.1039/d2cc00040g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of first water-soluble 2,2’’,4,4’’-terphen[3]arene bearing sulphonatopropoxy moieties (STP3), and its effective alleviation of aversive response to alkaloids in vitro and in vivo by forming supramolecular complexes has been...
Collapse
|
113
|
Xu J, Wang X, Ruan H, Zhang X, Zhang Y, Yang Z, Wang Q, Wang T. Recent Advances in High-strength and High-toughness Polyurethanes Based on Supramolecular Interactions. Polym Chem 2022. [DOI: 10.1039/d2py00269h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent developments in supramolecular chemistry have generated increasing interest in supramolecular polymers and opened a window for the exploitation of various supramolecular polymeric materials and their multifunctional composites. High-performance polyurethanes,...
Collapse
|
114
|
Chen K, Hua ZY, Zhao JL, Redshaw C, Tao Z. Construction of cucurbit[n]uril-based supramolecular frameworks via host-guest inclusion and functional properties thereof. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00513a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Frameworks utilizing cucurbit[n]uril-based chemistry build on the rapid developments in the fields of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and supramolecular organic frameworks (SOFs), and as porous materials have found...
Collapse
|
115
|
Zheng J, Meng Y, Zhang L, Yang X, Ma P. Metal-induced different structures of four cyclopentanocucurbit[5]uril-based complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
116
|
Buczkowski A. Thermodynamic study of pH and sodium chloride impact on gemcitabine binding to cucurbit[7]uril in aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
117
|
Quaglio D, Polli F, Del Plato C, Cianfoni G, Tortora C, Mazzei F, Botta B, Calcaterra A, Ghirga F. Calixarene: a versatile scaffold for the development of highly sensitive biosensors. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.2011283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Francesca Polli
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Cristina Del Plato
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Gabriele Cianfoni
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Carola Tortora
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Franco Mazzei
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| |
Collapse
|
118
|
Grys DB, de Nijs B, Huang J, Scherman OA, Baumberg JJ. SERSbot: Revealing the Details of SERS Multianalyte Sensing Using Full Automation. ACS Sens 2021; 6:4507-4514. [PMID: 34882398 PMCID: PMC8715530 DOI: 10.1021/acssensors.1c02116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Surface-enhanced
Raman spectroscopy (SERS) is considered an attractive
candidate for quantitative and multiplexed molecular sensing of analytes
whose chemical composition is not fully known. In principle, molecules
can be identified through their fingerprint spectrum when binding
inside plasmonic hotspots. However, competitive binding experiments
between methyl viologen (MV2+) and its deuterated isomer
(d8-MV2+) here show that determining
individual concentrations by extracting peak intensities from spectra
is not possible. This is because analytes bind to different binding
sites inside and outside of hotspots with different affinities. Only
by knowing all binding constants and geometry-related factors, can
a model revealing accurate concentrations be constructed. To collect
sufficiently reproducible data for such a sensitive experiment, we
fully automate measurements using a high-throughput SERS optical system
integrated with a liquid handling robot (the SERSbot). This now allows
us to accurately deconvolute analyte mixtures through independent
component analysis (ICA) and to quantitatively map out the competitive
binding of analytes in nanogaps. Its success demonstrates the feasibility
of automated SERS in a wide variety of experiments and applications.
Collapse
Affiliation(s)
- David-Benjamin Grys
- Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Bart de Nijs
- Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Junyang Huang
- Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jeremy J. Baumberg
- Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
119
|
Yi F, Tao M, Zhang S, Han X, Min X. Pillararene‐Based Nanochannels for Para‐Xylene Separation from Xylene Isomers. ChemistrySelect 2021. [DOI: 10.1002/slct.202103809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fan Yi
- Hubei Key Laboratory of Catalysis and Materials Science College of Chemistry and Material Sciences South-Central University for Nationalities Wuhan 430074 People's Republic of China
| | - Mingjie Tao
- Hubei Key Laboratory of Catalysis and Materials Science College of Chemistry and Material Sciences South-Central University for Nationalities Wuhan 430074 People's Republic of China
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 People's Republic of China
| | - Xiao‐Le Han
- Hubei Key Laboratory of Catalysis and Materials Science College of Chemistry and Material Sciences South-Central University for Nationalities Wuhan 430074 People's Republic of China
| | - Xuehong Min
- Hubei Key Laboratory of Catalysis and Materials Science College of Chemistry and Material Sciences South-Central University for Nationalities Wuhan 430074 People's Republic of China
| |
Collapse
|
120
|
Dharmarwardana M, Dempsey JM, Padilla-Coley S, Jarvis TS, Shi K, Atkinson KM, Smith BD. Supramolecular capture of highly polar amidosquaraine dye in water with nanomolar affinity and large turn-on fluorescence. Chem Commun (Camb) 2021; 57:13518-13521. [PMID: 34846389 PMCID: PMC8689413 DOI: 10.1039/d1cc05039g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A supramolecular dye-capture system comprising anionic amidosquaraine guest and macrocyclic tetralactam host exhibits nanomolar affinity and "turn on" visible fluorescence. Utility is demonstrated with a new fluorescent assay for liposome leakage induced by the biomedically important enzyme phospholipase A2.
Collapse
|
121
|
Cameron JM, Guillemot G, Galambos T, Amin SS, Hampson E, Mall Haidaraly K, Newton GN, Izzet G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: from functional building blocks to hierarchical nanomaterials. Chem Soc Rev 2021; 51:293-328. [PMID: 34889926 DOI: 10.1039/d1cs00832c] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of recent advances in the supramolecular organisation and hierarchical self-assembly of organo-functionalised hybrid polyoxometalates (hereafter referred to as hybrid POMs), and their emerging role as multi-functional building blocks in the construction of new nanomaterials. Polyoxometalates have long been studied as a fascinating outgrowth of traditional metal-oxide chemistry, where the unusual position they occupy between individual metal oxoanions and solid-state bulk oxides imbues them with a range of attractive properties (e.g. solubility, high structural modularity and tuneable properties/reactivity). Specifically, the capacity for POMs to be covalently coupled to an effectively limitless range of organic moieties has opened exciting new avenues in their rational design, while the combination of distinct organic and inorganic components facilitates the formation of complex molecular architectures and the emergence of new, unique functionalities. Here, we present a detailed discussion of the design opportunities afforded by hybrid POMs, where fine control over their size, topology and their covalent and non-covalent interactions with a range of other species and/or substrates makes them ideal building blocks in the assembly of a broad range of supramolecular hybrid nanomaterials. We review both direct self-assembly approaches (encompassing both solution and solid-state approaches) and the non-covalent interactions of hybrid POMs with a range of suitable substrates (including cavitands, carbon nanotubes and biological systems), while giving key consideration to the underlying driving forces in each case. Ultimately, this review aims to demonstrate the enormous potential that the rational assembly of hybrid POM clusters shows for the development of next-generation nanomaterials with applications in areas as diverse as catalysis, energy-storage and molecular biology, while providing our perspective on where the next major developments in the field may emerge.
Collapse
Affiliation(s)
- Jamie M Cameron
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Geoffroy Guillemot
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Theodor Galambos
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Sharad S Amin
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Elizabeth Hampson
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Kevin Mall Haidaraly
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Graham N Newton
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Guillaume Izzet
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
122
|
Brockett AT, Deng C, Shuster M, Perera S, DiMaggio D, Cheng M, Murkli S, Briken V, Roesch MR, Isaacs L. In Vitro and In Vivo Sequestration of Methamphetamine by a Sulfated Acyclic CB[n]-Type Receptor. Chemistry 2021; 27:17476-17486. [PMID: 34613641 PMCID: PMC8665056 DOI: 10.1002/chem.202102919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/26/2023]
Abstract
We report the synthesis of two new acyclic sulfated acyclic CB[n]-type receptors (TriM0 and Me4 TetM0) and investigations of their binding properties toward a panel of drugs of abuse (1-13) by a combination of 1 H NMR spectroscopy and isothermal titration calorimetry. TetM0 is the most potent receptor with Ka ≥106 M-1 toward methamphetamine, fentanyl, MDMA and mephedrone. TetM0 is not cytotoxic toward HepG2 and HEK 293 cells below 100 μM according to MTS metabolic and adenylate kinase release assays and is well tolerated in vivo when dosed at 46 mg kg-1 . TetM0 does not inhibit the hERG ion channel and is not mutagenic based on the Ames fluctuation test. Finally, in vivo efficacy studies show that the hyperlocomotion of mice treated with methamphetamine can be greatly reduced by treatment with TetM0 up to 5 minutes later. TetM0 has potential as a broad spectrum in vivo sequestrant for drugs of abuse.
Collapse
Affiliation(s)
- Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Chunlin Deng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| |
Collapse
|
123
|
Sojka M, Chyba J, Paul SS, Wawrocka K, Hönigová K, Cuyacot BJR, Castro AC, Vaculovič T, Marek J, Repisky M, Masařík M, Novotný J, Marek R. Supramolecular Coronation of Platinum(II) Complexes by Macrocycles: Structure, Relativistic DFT Calculations, and Biological Effects. Inorg Chem 2021; 60:17911-17925. [PMID: 34738800 DOI: 10.1021/acs.inorgchem.1c02467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platinum-based anticancer drugs are actively developed utilizing lipophilic ligands or drug carriers for the efficient penetration of biomembranes, reduction of side effects, and tumor targeting. We report the development of a supramolecular host-guest system built on cationic platinum(II) compounds bearing ligands anchored in the cavity of the macrocyclic host. The host-guest binding and hydrolysis process on the platinum core were investigated in detail by using NMR, MS, X-ray diffraction, and relativistic DFT calculations. The encapsulation process in cucurbit[7]uril unequivocally promotes the stability of hydrolyzed dicationic cis-[PtII(NH3)2(H2O)(NH2-R)]2+ compared to its trans isomer. Biological screening on the ovarian cancer lines A2780 and A2780/CP shows time-dependent toxicity. Notably, the reported complex and its β-cyclodextrin (β-CD) assembly achieve the same cellular uptake as cisplatin and cisplatin@β-CD, respectively, while maintaining a significantly lower toxicity profile.
Collapse
Affiliation(s)
- Martin Sojka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Chyba
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Shib Shankar Paul
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Karolina Wawrocka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Kateřina Hönigová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Ben Joseph R Cuyacot
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Abril C Castro
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jaromír Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| |
Collapse
|
124
|
Shi C, Li H, Shi X, Zhao L, Qiu H. Chiral pillar[n]arenes: Conformation inversion, material preparation and applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
125
|
Zhou H, Pang XY, Wang X, Yao H, Yang LP, Jiang W. Biomimetic Recognition of Quinones in Water by an Endo-Functionalized Cavity with Anthracene Sidewalls. Angew Chem Int Ed Engl 2021; 60:25981-25987. [PMID: 34569134 DOI: 10.1002/anie.202112267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 12/27/2022]
Abstract
Selective molecular recognition in water is the foundation of numerous biological functions but is a challenge for most synthetic hosts. We employ the concept of endo-functionalized cavity and the strategy of simultaneous construction to address this issue. The concept and the strategy were demonstrated in the construction of a biomimetic host for selectively recognizing quinones in water. The host was synthesized by joining two pieces of bent anthracene dimer through amide bond formation, affording a deep hydrophobic cavity and inward-directing hydrogen bonding sites. The host can recognize quinones over their close analogues in water, and its association affinity to p-benzoquinone is the highest among all the known hosts and is even comparable to that of the bioreceptor. The binding with an anthraquinone reaches nanomolar affinity. Shielded hydrogen bonding, C-H⋅⋅⋅π, and charge transfer interactions, and the hydrophobic effect are responsible for the high binding affinity and selectivity.
Collapse
Affiliation(s)
- Hang Zhou
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Xiaoping Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Liu-Pan Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| |
Collapse
|
126
|
Park KM. Self-sorted Compartmentalization by Simultaneous Use of Natural and Synthetic Amphiphiles. Chem Asian J 2021; 16:3645-3648. [PMID: 34612016 DOI: 10.1002/asia.202100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Indexed: 11/07/2022]
Abstract
Exploiting the orthogonal molecular interactions of natural (phospholipids) and synthetic (mono-allyloxylated cucurbit[7]uril) amphiphiles to form their own vesicles, the formation of two different types of compartments in a self-sorted manner mimicking cellular compartments is demonstrated. Even after simultaneous extrusion of both vesicles through small pore membranes, which transformed them into smaller vesicles, both vesicles were not fused but still appeared as independent compartments in sucrose solution. The simultaneous use of natural and synthetic amphiphiles, forming independent compartments, holds great potential for in-depth investigation of self-sorted multi-compartments and their structures as prototype cells.
Collapse
Affiliation(s)
- Kyeng Min Park
- Department of Biochemistry, Daegu Catholic University School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472, Republic of Korea
| |
Collapse
|
127
|
Zhou H, Pang X, Wang X, Yao H, Yang L, Jiang W. Biomimetic Recognition of Quinones in Water by an
Endo
‐Functionalized Cavity with Anthracene Sidewalls. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hang Zhou
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Xin‐Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Xiaoping Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Liu‐Pan Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|
128
|
Horin I, Shalev O, Cohen Y. Aggregation Mode, Host-Guest Chemistry in Water, and Extraction Capability of an Uncharged, Water-Soluble, Liquid Pillar[5]arene Derivative. ChemistryOpen 2021; 10:1111-1115. [PMID: 34730286 PMCID: PMC8564886 DOI: 10.1002/open.202100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Indexed: 11/05/2022] Open
Abstract
An uncharged, water-soluble per-ethylene-glycol pillar[5]arene derivative (1) was synthesized and its aggregation mode, host-guest chemistry in water and extraction ability was explored. Compound 1 is a liquid at room temperature; in water, limited self-aggregation occurred at high concentrations as deduced from diffusion NMR and dynamic light scattering. Compound 1 forms pseudo-rotaxane-like 1 : 1 host-guest complexes with 1,ω-di-substituted alkanes with association constants on the order of 103 -104 m-1 . Interestingly, NMR experiments showed that the guest location relative to the host ring system differs among the different complexes. In proof-of-concept experiments, compound 1 was shown to extract structurally related organic compounds from benzene into water with significant selectivity. Compound 1, which is a liquid at room temperature and has only limited interactions with its side arms, can, in principle, be regarded as a complement to or as a kind of type I porous liquid.
Collapse
Affiliation(s)
- Inbar Horin
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Ori Shalev
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| |
Collapse
|
129
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
130
|
Chen Y, Sun B, Wang R, Shi C, Cheng M, Jiang J, Lin C, Wang L. Redox-Driven Chiral Inversion of Water-Soluble Pillar[5]arene with l-Cystine Derivative in the Aqueous Medium. Org Lett 2021; 23:7423-7427. [PMID: 34523339 DOI: 10.1021/acs.orglett.1c02620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the aqueous solution, l-CySS-OMe induced pS-WP5 from racemic WP5. Upon the addition of dithiothreitol as a reducing reagent to the above system, pS-WP5 was then converted to pR-WP5 for the reason that l-CySS-OMe was reduced to l-Cys-OMe. Followed by the addition of H2O2 as an oxidation reagent, pR-WP5 was converted back to pS-WP5. The chiral conformational transferring process between pR-WP5 and pS-WP5 can be easily and visually observed by reading the CD signal.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Baobao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ranran Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Conghao Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Juli Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Lin
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Leyong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
131
|
Paul B, Mukherjee A, Bhuyan D, Guha S. Construction of unsymmetrical b
is‐urea
macrocyclic host for neutral molecule and chloride‐ion binding. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Biprajit Paul
- Department of Chemistry, Organic Chemistry Section Jadavpur University Kolkata India
| | - Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section Jadavpur University Kolkata India
| | - Deepak Bhuyan
- Department of Chemistry, Organic Chemistry Section Jadavpur University Kolkata India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section Jadavpur University Kolkata India
| |
Collapse
|
132
|
Abstract
Biopolymers are natural polymers sourced from plants and animals, which include a variety of polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is of great interest because of their inherent biochemical and biophysical properties, such as cellular adhesion, degradation, and viscoelasticity. The objective of this Review is to provide a detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymer chemical modifications and cross-linking methods. First, the fundamentals of biopolymers and chemical conjugation methods to introduce cross-linking groups are described. Cross-linking methods to form biopolymer networks are then discussed in detail, including (i) covalent cross-linking (e.g., free radical chain polymerization, click cross-linking, cross-linking due to oxidation of phenolic groups), (ii) dynamic covalent cross-linking (e.g., Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and (iii) physical cross-linking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted biopolymers). Finally, recent advances in the use of chemically modified biopolymer hydrogels for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well as the formation of interpenetrating network biopolymer hydrogels, are highlighted.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
133
|
Lin HY, Zhou LY, Xu L. Photocatalysis in Supramolecular Fluorescent Metallacycles and Metallacages. Chem Asian J 2021; 16:3805-3816. [PMID: 34529337 DOI: 10.1002/asia.202100942] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Indexed: 11/08/2022]
Abstract
The utilization of photocatalytic techniques for achieving light-to-fuel conversion is a promising way to ease the shortage of energy and degradation of the ecological environment. Fluorescent metallacycles and metallacages have drawn considerable attention and have been used in widespread fields due to easy preparation and their abundant functionality including photocatalysis. This review covers recent advances in photocatalysis in discrete supramolecular fluorescent metallacycles and metallacages. The developments in the utilization of the metallacycles skeletons and the effect of fluorescence-resonance energy transfer for photocatalysis are discussed. Furthermore, the use of the ligands decorated by organic chromophores or redox metal sites in metallacages as photocatalysts and their ability to encapsulate appropriate catalytic cofactors for photocatalysis are summarized. For the sake of brevity, macrocycles and cages with inorganic coordination complexes such as ruthenium complexes and iridium complexes are not included in this minireview.
Collapse
Affiliation(s)
- Hong-Yu Lin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Le-Yong Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
134
|
Hayashida O, Tomita T, Miyazaki T. Self-aggregation, Temperature-responsive Agglutination, and pH-induced Disaggregation of Amphiphilic Cyclophane Dimer Having a PEG Linkage. CHEM LETT 2021. [DOI: 10.1246/cl.210348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Osamu Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Tensho Tomita
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Takaaki Miyazaki
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| |
Collapse
|
135
|
Guo H, Yang S, Cao L, Chen L, Gao R, Huang Y, Xue B, Tao Z. Multiple Stimuli-Responsive Supramolecular Hydrogels Constructed by Decamethylcucurbit[5]uril-para-phenylenediamine Exclusion Complex. Macromol Rapid Commun 2021; 42:e2100431. [PMID: 34480770 DOI: 10.1002/marc.202100431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/01/2021] [Indexed: 11/12/2022]
Abstract
The hydrogels composed of decamethylcucurbit[5]uril (Me10 Q[5]) and para-phenylenediamine (p-PDA) are first reported herein. They are the first Q[5]-based supramolecular hydrogels, the formation of which is driven by portal exclusion between Me10 Q[5] and p-PDA. The composition, structure, and properties of the Me10 Q[5]/p-PDA-based hydrogels are investigated by various techniques. Since the 1D supramolecular chain forms via portal exclusion between Me10 Q[5] and p-PDA is the key to the formation of the hydrogels, any competitive species, such as metal ions, organic molecules, and amino acids, which can affect the portal exclusion, can change the behavior of the Me10 Q[5]/p-PDA-based hydrogels. Hence, the hydrogels can be used for various applications. Importantly, the results may provide a new research direction for the preparation of Q[n]-based hydrogels via portal exclusion of Q[n]s with guests.
Collapse
Affiliation(s)
- Hanling Guo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Shengdu Yang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Long Cao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Lixia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Ruihan Gao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Bai Xue
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
136
|
Paul R, Paul S. Translocation of Endo-Functionalized Molecular Tubes across Different Lipid Bilayers: Atomistic Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10376-10387. [PMID: 34415773 DOI: 10.1021/acs.langmuir.1c01594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Various artificial receptors, such as calixarenes, cyclodextrins, cucurbit[n]urils, and their acyclic compounds, pliiar[n]arenes, deep cavitands, and molecular tweezers, can permeate the lipid membranes and they are used as drug carriers to improve the drug solubility, stability, and bioavailability. Inspired by these, we have employed atomistic molecular dynamics simulation to examine the effects of endo-functionalized molecular tubes or naphthotubes (host-1a and host-1b) on seven different types of model lipid bilayers and the permeation properties of these receptors through these model lipid bilayers. Lipid types include six model lipid bilayers (POPC, POPE, DOPC, POPG, DPPE, POPE/POPG) and one realistic membrane (Yeast). We observe that these receptors are spontaneously translocated toward these model lipid bilayer head regions and do not proceed further into these lipid bilayer tail regions (reside at the interface between lipid head and lipid tail region), except for the DPPE-containing systems. In the DPPE model lipid bilayer-containing systems (1a-dppe and 1b-dppe), receptor molecules are only adsorbed on the bilayer surface and reside at the interface between lipid head and water. This finding is also supported by the biased free-energy profiles of these translocation processes. Passive transport of these receptors may be possible through these model lipid bilayers (due to low barrier height), except for DPPE bilayer-containing systems (that have a very high energy barrier at the center). The results from these simulations provide insight into the biocompatibility of host-1a or host-1b in microscopic detail. Based on this work, more research is needed to fully comprehend the role of these synthesized receptors as a prospective drug carrier.
Collapse
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
137
|
Robinson-Duggon J, McTiernan CD, Muñoz M, Guerra D, Escobar Álvarez E, Andrade-Villalobos F, Fierro A, Edwards AM, Alarcon EI, Fuentealba D. Biosupramolecular complexes of amphiphilic photosensitizers with human serum albumin and cucurbit[7]uril as carriers for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112284. [PMID: 34450362 DOI: 10.1016/j.jphotobiol.2021.112284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 01/17/2023]
Abstract
In the present work, we evaluated the supramolecular interactions between three photosensitizers, namely toluidine blue O (TBO, positively charged) and two fatty acid conjugates of 6 and 14 carbon atoms chain lengths (TBOC6 and TBOC14), with human serum albumin (HSA) and the macrocycle cucurbit[7]uril (CB[7]), alone or in combination within a biosupramolecular system as potential carriers of photosensitizers for Photodynamic therapy (PDT). Binding studies were carried out using photophysical and calorimetric techniques and accompanied with molecular docking simulations. Amphiphilic photosensitizers, particularly TBOC14, showed stronger binding to HSA and (CB[7]). Comparing the different delivery systems, (CB[7]) had a marginal effect on cell uptake and phototoxicity in HeLa cells, while HSA showed enhanced cell uptake with phototoxicities that depended on the photosensitizer. Despite low cell uptake, the combination of both (CB[7]) and HSA was the most phototoxic, which illustrates the potential of combining these systems for PDT applications.
Collapse
Affiliation(s)
- José Robinson-Duggon
- Laboratorio de Química Biosupramolecular, Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile; Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 0824, Panamá.
| | - Christopher D McTiernan
- BEaTS Research Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada
| | - Marcelo Muñoz
- BEaTS Research Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada
| | - Daniel Guerra
- Laboratorio de Química Biosupramolecular, Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Elizabeth Escobar Álvarez
- Laboratorio de Química Biosupramolecular, Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Felipe Andrade-Villalobos
- Laboratorio de Química Biosupramolecular, Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile; Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Angélica Fierro
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Ana María Edwards
- Laboratorio de Química Biosupramolecular, Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Emilio I Alarcon
- BEaTS Research Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Denis Fuentealba
- Laboratorio de Química Biosupramolecular, Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
138
|
Mao D, Li W, Zhang F, Yang S, Isak AN, Song Y, Guo Y, Cao S, Zhang R, Feng C, Zhu X, Li G. Nanocomposite of Peroxidase-Like Cucurbit[6]uril with Enzyme-Encapsulated ZIF-8 and Application for Colorimetric Biosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39719-39729. [PMID: 34392680 DOI: 10.1021/acsami.1c09340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, cucurbiturils (CBs), a class of macrocyclic supramolecules, were observed to have an interesting peroxidase-like activity, which is metal-free, substrate-specific, thermophilic, acidophilic, and insensitive to ionic strength. By coating CBs on enzyme-encapsulated zeolitic imidazolate framework-8 (ZIF-8), a composite nanozyme was constructed, which retains the catalytic ability of CBs and enzymes and makes them cascade. On addition of the substrate, i.e., the detection target, a highly efficient cascade catalysis can be launched in all the spatial directions to generate sensitive and visible signals. Convenient detection of glucose and cholesterol as models is thereby achieved. More importantly, we have also successfully constructed a composite nanozyme-based sensor array (6 × 8 wells) and thereby achieved simultaneous colorimetric analysis of multiple samples. The concept and successful practice of the construction of the unique core-shell supramolecule/biomolecule@nanomaterial architecture provide the possibility to fabricate next-generation multifunctional materials and create new applications by integrating their unique functions.
Collapse
Affiliation(s)
- Dongsheng Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenxing Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shiqi Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Albertina N Isak
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuchen Song
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yi Guo
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Runchi Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
139
|
Nguyen BN, Thoburn JD, Grommet AB, Howe DJ, Ronson TK, Ryan HP, Bolliger JL, Nitschke JR. Coordination Cages Selectively Transport Molecular Cargoes Across Liquid Membranes. J Am Chem Soc 2021; 143:12175-12180. [PMID: 34337947 PMCID: PMC8397303 DOI: 10.1021/jacs.1c04799] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/27/2022]
Abstract
Chemical purifications are critical processes across many industries, requiring 10-15% of humanity's global energy budget. Coordination cages are able to catch and release guest molecules based upon their size and shape, providing a new technological basis for achieving chemical separation. Here, we show that aqueous solutions of FeII4L6 and CoII4L4 cages can be used as liquid membranes. Selective transport of complex hydrocarbons across these membranes enabled the separation of target compounds from mixtures under ambient conditions. The kinetics of cage-mediated cargo transport are governed by guest binding affinity. Using sequential transport across two consecutive membranes, target compounds were isolated from a mixture in a size-selective fashion. The selectivities of both cages thus enabled a two-stage separation process to isolate a single compound from a mixture of physicochemically similar molecules.
Collapse
Affiliation(s)
| | - John D. Thoburn
- Randolph-Macon
College, Department of Chemistry, Ashland, Virginia 23005, United States
| | - Angela B. Grommet
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | - Duncan J. Howe
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | - Tanya K. Ronson
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | - Hugh P. Ryan
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | - Jeanne L. Bolliger
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | | |
Collapse
|
140
|
Zhu Y, Tang M, Zhang H, Rahman FU, Ballester P, Rebek J, Hunter CA, Yu Y. Water and the Cation-π Interaction. J Am Chem Soc 2021; 143:12397-12403. [PMID: 34328320 DOI: 10.1021/jacs.1c06510] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cation-π interaction and the hydrophobic effect are important intermolecular forces in chemistry and play major roles in controlling recognition in biological systems. We compared their relative contributions to the binding of molecular "dumbbell" guests in synthetic container hosts in water. The guests offered direct, intramolecular competition between trimethylammonium groups, -N+(CH3)3, and tert-butyl groups, -C(CH3)3, for the internal surfaces (aromatic panels) of the containers. In contrast with previous studies, the container molecules consistently preferred binding to the uncharged tert-butyl groups, regardless of the presence of anionic, cationic, or zwitterionic groups on the container peripheries. This preference is determined by solvation of the polar trimethylammonium group in water, which outcompetes the attraction between the positive charge and the π-surfaces in the container. The synthetic container complexes provide a direct measure of the relative strengths of cation-π interactions and desolvation in water. Interactions with the uncharged tert-butyl group are more than 12 kJ mol-1 more favorable than the cation-π interactions with the trimethylammonium group in these cavitand complexes.
Collapse
Affiliation(s)
- Yujie Zhu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Minmin Tang
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Huibin Zhang
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Faiz-Ur Rahman
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), Avenida Països Catalans 16, 43007 Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Julius Rebek
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Christopher A Hunter
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| |
Collapse
|
141
|
Pandey SP, Awasthi AA, Singh PK. Supramolecular tuning of thioflavin-T aggregation hosted by polystyrene sulfonate. Phys Chem Chem Phys 2021; 23:14716-14724. [PMID: 34190258 DOI: 10.1039/d1cp02030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tunable and controllable emission is an extremely desirable feature for advanced functional materials that finds usage in optoelectronic utilization, fluorescence probing/sensing, drug-delivery monitoring, etc. In the present contribution, we have employed a macrocyclic host molecule, sulfobutyl ether-β-cyclodextrin (SBE-β-CD), as a tuning agent for an intensely emissive aggregate assembly of a molecular rotor dye, thioflavin-T (ThT), in the presence of an anionic polyelectrolyte, polystyrene sulfonate (PSS). The macrocyclic host breaks the PSS templated ThT aggregates and leads to encapsulation of released ThT molecules, tailoring the emission response of the system in terms of intensity and wavelength. Utilizing the established selectivity of the cyclodextrin-adamantane system, reverse control of this tunable emission has been further achieved. The controllable fluorescence system has been extensively investigated using ground-state absorption, steady-state and time-resolved emission spectroscopy. This kind of supramolecular tailoring of self-assembled aggregate emission has enormous potential in the field of fluorescence sensors and probes, and imaging and tracking in biological systems.
Collapse
Affiliation(s)
- Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, 410206, India and Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Ankur A Awasthi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. and Homi Bhabha National Institute, Anushaktinagar, Mumbai-400085, India
| |
Collapse
|
142
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo‐responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Stefano Crespi
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
143
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo-responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021; 60:16129-16138. [PMID: 33955650 PMCID: PMC8361693 DOI: 10.1002/anie.202104285] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Designing photo-responsive host-guest systems can provide versatile supramolecular tools for constructing smart systems and materials. We designed photo-responsive macrocyclic hosts, modulated by light-driven molecular rotary motors enabling switchable chiral guest recognition. The intramolecular cyclization of the two arms of a first-generation molecular motor with flexible oligoethylene glycol chains of different lengths resulted in crown-ether-like macrocycles with intrinsic motor function. The octaethylene glycol linkage enables the successful unidirectional rotation of molecular motors, simultaneously allowing the 1:1 host-guest interaction with ammonium salt guests. The binding affinity and stereoselectivity of the motorized macrocycle can be reversibly modulated, owing to the multi-state light-driven switching of geometry and helicity of the molecular motors. This approach provides an attractive strategy to construct stimuli-responsive host-guest systems and dynamic materials.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Stefano Crespi
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
144
|
Liang J, Gvilava V, Jansen C, Öztürk S, Spieß A, Lin J, Xing S, Sun Y, Wang H, Janiak C. Cucurbituril‐verkapselnde metallorganische Gerüstverbindung über Mechanochemie: Adsorbentien mit verbesserter Leistung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jun Liang
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Vasily Gvilava
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Christian Jansen
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Secil Öztürk
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Alex Spieß
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Jingxiang Lin
- The School of Ocean Science and Biochemistry Engineering Fuqing Branch of Fujian Normal University Fuqing 350300 China
| | - Shanghua Xing
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Yangyang Sun
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Hao Wang
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
| | - Christoph Janiak
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| |
Collapse
|
145
|
Liang J, Gvilava V, Jansen C, Öztürk S, Spieß A, Lin J, Xing S, Sun Y, Wang H, Janiak C. Cucurbituril-Encapsulating Metal-Organic Framework via Mechanochemistry: Adsorbents with Enhanced Performance. Angew Chem Int Ed Engl 2021; 60:15365-15370. [PMID: 33974329 PMCID: PMC8362037 DOI: 10.1002/anie.202100675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Indexed: 12/25/2022]
Abstract
The first examples of monolithic crystalline host-guest hybrid materials are described. The reaction of 1,3,5-benzenetricarboxylic acid (H3 BTC) and Fe(NO3 )3 ⋅9 H2 O in the presence of decamethylcucurbit[5]uril ammonium chloride (MC5⋅2 NH4 Cl⋅4 H2 O) directly affords MC5@MIL-100(Fe) hybrid monoliths featuring hierarchical micro-, meso- and macropores. Particularly, this "bottle-around-ship" synthesis and one-pot shaping are facilitated by a newly discovered Fe-MC5 flowing gel formed by mechanochemistry. The designed MC5@MIL-100(Fe) hybrid material with MC5 as active domains shows enhanced CH4 and lead(II) uptake performance, and selective capture of lead(II) cations at low concentrations. This shows that host-guest hybrid materials can exhibit synergic properties that out-perform materials based on individual components.
Collapse
Affiliation(s)
- Jun Liang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Vasily Gvilava
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Christian Jansen
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Secil Öztürk
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Alex Spieß
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Jingxiang Lin
- The School of Ocean Science and Biochemistry EngineeringFuqing Branch of Fujian Normal UniversityFuqing350300China
| | - Shanghua Xing
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Yangyang Sun
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Hao Wang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
| | - Christoph Janiak
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| |
Collapse
|
146
|
Pashkina EA, Grishina LV, Aktanova AA, Kozlov VA. Antitumor activity of supramolecular complexes of cucurbituril with platinum(II) compounds. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
147
|
Higginbotham HF, Maniam S, Hsia T, Isaacs L, Langford SJ, Bell TDM. Self-assembled, optically-active {naphthalene diimide}U{cucurbit[8]uril} ensembles in an aqueous environment. Phys Chem Chem Phys 2021; 23:13434-13439. [PMID: 34105550 DOI: 10.1039/d1cp00659b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naphthalene diimides (NDIs) are shown to arrange spontaneously co-facially with cucurbit[8]uril (CB[8]) in an aqueous environment through purely non-covalent interactions. The resultant 2 : 2 supramolecular complex of NDI and CB[8] is highly fluorescent (>30 times more than the constituent NDIs) due to the formation of NDI-NDI excimers within the supramolecular complex.
Collapse
Affiliation(s)
| | - Subashani Maniam
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Tina Hsia
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Steven J Langford
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Victoria 3122, Australia.
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
148
|
Wan Y, Rahman F, Rebek J, Yu Y. Shape Selectivity of a Metallo Cavitand Host Allows Separation of
n
‐Alkanes
from Isooctane. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yun‐Hui Wan
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University 99 Shang‐Da Road Shanghai 200444 China
| | - Faiz‐Ur Rahman
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University 99 Shang‐Da Road Shanghai 200444 China
| | - Julius Rebek
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University 99 Shang‐Da Road Shanghai 200444 China
| |
Collapse
|
149
|
Shang J, Gong H, Zhang Q, Cui Z, Li S, Lv P, Pan T, Ge Y, Qi Z. The dynamic covalent reaction based on diselenide-containing crown ether irradiated by visible light. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
150
|
Immobilization of molecular catalysts on electrode surfaces using host-guest interactions. Nat Chem 2021; 13:523-529. [PMID: 33767362 DOI: 10.1038/s41557-021-00652-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
Anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. Molecular catalysts, however, are far less stable than traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here we applied a non-covalent 'click' chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces through host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and enables the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and the readsorption of fresh guest.
Collapse
|