101
|
Abstract
Drawing inspiration from nature today remains a time-honored means of discovering the therapies of tomorrow. Porphyrins, the so-called "pigments of life" have played a key role in this effort due to their diverse and unique properties. They have seen use in a number of medically relevant applications, including the development of so-called drug conjugates wherein functionalization with other entities is used to improve efficacy while minimizing dose limiting side effects. In this Perspective, we highlight opportunities associated with newer, completely synthetic analogs of porphyrins, commonly referred to as porphyrinoids, as the basis for preparing drug conjugates. Many of the resulting systems show improved medicinal or site-localizing properties. As befits a Perspective of this type, our efforts to develop cancer-targeting, platinum-containing conjugates based on texaphyrins (a class of so-called "expanded porphyrins") will receive particular emphasis; however, the promise inherent in this readily generalizable approach will also be illustrated briefly using two other common porphyrin analogs, namely the corroles (a "contracted porphyrin") and porphycene (an "isomeric porphyrin").
Collapse
|
102
|
Galstyan A, Maurya YK, Zhylitskaya H, Bae YJ, Wu YL, Wasielewski MR, Lis T, Dobrindt U, Stępień M. π-Extended Donor-Acceptor Porphyrins and Metalloporphyrins for Antimicrobial Photodynamic Inactivation. Chemistry 2020; 26:8262-8266. [PMID: 31968144 PMCID: PMC7384002 DOI: 10.1002/chem.201905372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 12/26/2022]
Abstract
Free base, zinc and palladium π‐extended porphyrins containing fused naphthalenediamide units were employed as photosensitizers in antimicrobial photodynamic therapy (aPDT). Their efficacy, assessed by photophysical and in vitro photobiological studies on Gram‐positive bacteria, was found to depend on metal coordination, showing a dramatic enhancement of photosensitizing activity for the palladium complex.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Yogesh Kumar Maurya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Halina Zhylitskaya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Youn Jue Bae
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, USA
| | - Yi-Lin Wu
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, USA.,Current address: School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, USA
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Ulrich Dobrindt
- Institute of Hygiene, Westfälische Wilhelms-Universität Münster, Mendelstraße 7, 48149, Münster, Germany
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| |
Collapse
|
103
|
Labella J, Durán-Sampedro G, Martínez-Díaz MV, Torres T. Annulative π-extension of BODIPYs made easy via gold(i)-catalyzed cycloisomerization. Chem Sci 2020; 11:10778-10785. [PMID: 34094331 PMCID: PMC8162369 DOI: 10.1039/d0sc01054e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Here we report gold(i)-catalyzed cycloisomerization as a new powerful synthetic tool for the preparation of π-extended BODIPY derivatives. The catalytic system PPhF 3AuCl/AgSbF6 enables the synthesis of [b]-[2,1]naphtho-fused-BODIPYs (2a-2c) under mild conditions, in excellent yields and short reaction times. The reaction is totally regioselective to the 6-endo-dig product and for the α-position of the BODIPY, which is both the kinetically and thermodynamically favored pathway, as supported by the free energy profile calculated by means of Density Functional Theory (DFT). Moreover, this methodology also allows the synthesis of two new families of [b]-aryl-fused-BODIPYs, namely, [3,4]phenanthro- (2e and 2f) and [1,2]naphtho-fused (2g) BODIPYs. Their molecular and electronic structures were established by NMR and UV-vis spectroscopies as well as single-crystal X-ray diffraction analysis. As can be noted from the X-ray structures, 2a, 2e and 2g present interesting structural differences at both the molecular and packing level. Interestingly, despite being isomers, the UV/vis spectra of 2a and 2g revealed significant differences in their electronic structures. The origin of this finding was studied by Time-Dependent DFT calculations. Calculated DFT Nuclear Independent Chemical Shift (NICS(0)) values also supported the different electronic structures of 2a and 2g.
Collapse
Affiliation(s)
- Jorge Labella
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain
| | | | - M Victoria Martínez-Díaz
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
- IMDEA-Nanociencia, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
104
|
Liu B, Ma R, Zhao J, Zhao Y, Li L. A smart DNA nanodevice for ATP-activatable bioimaging and photodynamic therapy. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9764-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
105
|
Pagano R, Ottolini M, Marzo F, Lovergine N, Bettini S, Giancane G, Valli L. Visible light promoted porphyrin-based metal-organic adduct. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Supramolecular adducts formed by a commercial porphyrin derivative and silver nanoparticles have been obtained using exclusively light as an external trigger that is able to promote the formation of the plasmonic nanostructures. In particular, a water-soluble porphyrin, i.e. tetrakis(4-carboxyphenyl)porphyrin, has been used. It has been thoroughly characterized by means of UV-vis and fluorescence spectroscopy in order to explain its peculiar behavior when illumined with visible photons. Herein we demonstrate that, by means of light illumination, it is possible to tune the porphyrin aggregation state. Furthermore, when the monomeric form of the organic macrocycle is induced and a controlled amount of AgNO[Formula: see text] is simultaneously dissolved, it is possible to promote the formation of silver nanostructures using visible light. The proposed approach allowed porphyrin derivatives/Ag nanoparticles hybrid nanostructures to be obtained without using a chemical reducing agent: the porphyrin derivative simultaneously acts as reducing agent when irradiated by visible light and as a capping agent for the silver nanostructures. The organic/inorganic adduct was characterized by means of steady-state fluorescence that highlights a strong energetic or electronic communication between the two species. XRD and SEM investigations evidence that silver nanoparticles are formed without using any reducing agent.
Collapse
Affiliation(s)
- Rosanna Pagano
- Department of Innovation Engineering, University Campus Ecotekne, University of Salento, Via per Monteroni, I-73100 Lecce, Italy
| | - Michela Ottolini
- Department of Biological and Environmental Sciences and Technology (DiSTeBA), University Campus Ecotekne, University of Salento, Via per Monteroni, I-73100 Lecce, Italy
| | - Fabio Marzo
- Department of Innovation Engineering, University Campus Ecotekne, University of Salento, Via per Monteroni, I-73100 Lecce, Italy
| | - Nicola Lovergine
- Department of Innovation Engineering, University Campus Ecotekne, University of Salento, Via per Monteroni, I-73100 Lecce, Italy
| | - Simona Bettini
- Department of Innovation Engineering, University Campus Ecotekne, University of Salento, Via per Monteroni, I-73100 Lecce, Italy
| | - Gabriele Giancane
- Department of Cultural Heritage, University of Salento, Via D. Birago 84, I-73100 Lecce, Italy
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and Technology (DiSTeBA), University Campus Ecotekne, University of Salento, Via per Monteroni, I-73100 Lecce, Italy
| |
Collapse
|
106
|
Lu S, Lei X, Ren H, Zheng S, Qiang J, Zhang Z, Chen Y, Wei T, Wang F, Chen X. PEGylated Dimeric BODIPY Photosensitizers as Nanocarriers for Combined Chemotherapy and Cathepsin B-Activated Photodynamic Therapy in 3D Tumor Spheroids. ACS APPLIED BIO MATERIALS 2020; 3:3835-3845. [DOI: 10.1021/acsabm.0c00394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiang Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 210009, China
| | - Shiyue Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jian Qiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Zhijie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yahui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Tingwen Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
107
|
Araújo ARL, Tomé AC, Santos CIM, Faustino MAF, Neves MGPMS, Simões MMQ, Moura NMM, Abu-Orabi ST, Cavaleiro JAS. Azides and Porphyrinoids: Synthetic Approaches and Applications. Part 2-Azides, Phthalocyanines, Subphthalocyanines and Porphyrazines. Molecules 2020; 25:molecules25071745. [PMID: 32290240 PMCID: PMC7180445 DOI: 10.3390/molecules25071745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
The reaction between organic azides and alkyne derivatives via the Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) is an efficient strategy to combine phthalocyanines and analogues with different materials. As examples of such materials, it can be considered the following ones: graphene oxide, carbon nanotubes, silica nanoparticles, gold nanoparticles, and quantum dots. This approach is also being relevant to conjugate phthalocyanines with carbohydrates and to obtain new sophisticated molecules; in such way, new systems with significant potential applications become available. This review highlights recent developments on the synthesis of phthalocyanine, subphthalocyanine, and porphyrazine derivatives where CuAAC reactions are the key synthetic step.
Collapse
Affiliation(s)
- Ana R. L. Araújo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Augusto C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Carla I. M. Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
- CQE, Centro de Química Estrutural and IN—Institute of Nanoscience and Nanotechnology of Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Maria G. P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Mário M. Q. Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
- Correspondence: (N.M.M.M.); (J.A.S.C.); Tel.: +351-234-370-717 (J.A.S.C.)
| | | | - José A. S. Cavaleiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
- Correspondence: (N.M.M.M.); (J.A.S.C.); Tel.: +351-234-370-717 (J.A.S.C.)
| |
Collapse
|
108
|
Yoon J, Shin M, Lim J, Kim DY, Lee T, Choi J. Nanobiohybrid Material‐Based Bioelectronic Devices. Biotechnol J 2020; 15:e1900347. [DOI: 10.1002/biot.201900347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/19/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Minkyu Shin
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Joungpyo Lim
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Dong Yeon Kim
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Taek Lee
- Department of Chemical EngineeringKwangwoon University Wolgye‐dong Nowon‐gu Seoul 01899 Republic of Korea
| | - Jeong‐Woo Choi
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| |
Collapse
|
109
|
Gorduk S. Octa-substituted metallophthalocyanines bearing (2,3-dihydrobenzo-1,4-benzodioxin-2-yl)methoxy and chloro groups: Synthesis, characterization and photophysicochemical studies. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, the synthesis and characterization of novel 4-chloro-5-((2,3-dihydrobenzo-1,4-benzodioxin-2-yl)methoxy)phthalonitrile (1) and its peripherally octa-substituted Zn(II) (Pc-Zn), In(III) (PcInCI) and Mg(II) (Pc-Mg) phthalocyanine (Pc) derivatives are reported for the first time. FT-IR, elemental analysis, UV-vis, NMR and MS techniques were used for characterization studies of the compounds. Aggregation properties of the compounds were evaluated in DMF, DMSO and THF solvents in different concentrations, and the compounds did not tend to aggregate in these solvents. In addition, photophysicochemical properties such as fluorescence, photodegradation and singlet oxygen quantum yield of the compounds were examined in DMSO, DMF and THF solvents to show the potential use of these novel compounds as photosensitizers for photodynamic therapy (PDT). The effects of zinc, indium and magnesium metals, octa substitutions in peripheral positions and different types of solvents on photophysicochemical properties were investigated. The singlet oxygen quantum yield values of compounds ranged from 0.27 to 0.77 in different solvents. As a result of the photophysicochemical properties, these compounds can be considered as potential candidates for PDT, applications.
Collapse
Affiliation(s)
- Semih Gorduk
- Yildiz Technical University, Faculty of Arts and Science, Department of Chemistry, 34210 Istanbul, Turkey
| |
Collapse
|
110
|
Maldonado-Carmona N, Ouk TS, Calvete MJF, Pereira MM, Villandier N, Leroy-Lhez S. Conjugating biomaterials with photosensitizers: advances and perspectives for photodynamic antimicrobial chemotherapy. Photochem Photobiol Sci 2020; 19:445-461. [PMID: 32104827 DOI: 10.1039/c9pp00398c] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance is threatening to overshadow last century's medical advances. Previously eradicated infectious diseases are now resurgent as multi-drug resistant strains, leading to expensive, toxic and, in some cases, ineffective antimicrobial treatments. Given this outlook, researchers are willing to investigate novel antimicrobial treatments that may be able to deal with antimicrobial resistance, namely photodynamic therapy (PDT). PDT relies on the generation of toxic reactive oxygen species (ROS) in the presence of light and a photosensitizer (PS) molecule. PDT has been known for almost a century, but most of its applications have been directed towards the treatment of cancer and topical diseases. Unlike classical antimicrobial chemotherapy treatments, photodynamic antimicrobial chemotherapy (PACT) has a non-target specific mechanism of action, based on the generation of ROS, working against cellular membranes, walls, proteins, lipids and nucleic acids. This non-specific mechanism diminishes the chances of bacteria developing resistance. However, PSs usually are large molecules, prone to aggregation, diminishing their efficiency. This review will report the development of materials obtained from natural sources, as delivery systems for photosensitizing molecules against microorganisms. The present work emphasizes on the biological results rather than on the synthesis routes to prepare the conjugates. Also, it discusses the current state of the art, providing our perspective on the field.
Collapse
|
111
|
Almodôvar VAS, Tomé AC. Porphyrin–diketopyrrolopyrrole conjugates and related structures: Synthesis, properties and applications. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619300271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A large diversity of porphyrin–diketopyrrolopyrrole conjugates and related structures formed by diketopyrrolopyrrole units and pyrrole-based moieties such as phthalocyanine, porphycene, calix[4]pyrrole or BODIPY have been reported since 2010. The new compounds, whether small molecules or polymeric materials, exhibit very interesting photophysical properties and have been tested in a range of technical or biological applications. This review summarizes the advances in the synthesis of such compounds. Their photophysical properties and potential applications are also briefly discussed.
Collapse
Affiliation(s)
- Vítor A. S. Almodôvar
- LAQV–REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Augusto C. Tomé
- LAQV–REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
112
|
Prigorchenko E, Ustrnul L, Borovkov V, Aav R. Heterocomponent ternary supramolecular complexes of porphyrins: A review. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s108842461930026x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Porphyrins are prominent host molecules which are widely used due to their structural characteristics and directional interaction sites. This review summarizes non-covalently bound ternary complexes of porphyrins, constructed from at least three non-identical species. Progress in supramolecular chemistry allows the creation of complex molecular machinery tools, such as rotors, motors and switches from relatively simple structures in a single self-assembly step. In the current review, we highlight the collection of sophisticated molecular ensembles including sandwich-type complexes, cages, capsules, tweezers, rotaxanes, and supramolecular architectures mediating oxygen-binding and oxidation reactions. These diverse structures have high potential to be applied in sensing, production of new smart materials as well as in medical science.
Collapse
Affiliation(s)
- Elena Prigorchenko
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Lukas Ustrnul
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Victor Borovkov
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
- College of Chemistry and Materials Science, South-Central University for Nationalities, 182 Minzu Road, Hongshan, Wuhan 430074, China
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
113
|
Cheng Q, Wang Z, Li HW, Shan CY, Zheng PF, Shuai L, Li YL, Chen YC, Ouyang Q. 2,3-Dicyano-5,6-dichlorobenzoquinone-Mediated and Selective C-O and C-C Cross-Couplings of Phenols and Porphyrins. Org Lett 2020; 22:300-304. [PMID: 31841342 DOI: 10.1021/acs.orglett.9b04330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A selective C-O cross-coupling reaction between porphyrins and phenols has been developed through 2,3-dicyano-5,6-dichlorobenzoquinone (DDQ)/Sc(OTf)3 oxidation, efficiently delivering meso-etherified porphyrins in good yields (≤93%). The radical complex process was proposed and calculated as the rationalized mechanism to block the homocoupling process. In addition, the switchable selective C-C cross-coupling reaction was achieved by using bulky electron-rich phenols and naphthols under DDQ oxidation conditions.
Collapse
Affiliation(s)
- Qi Cheng
- College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Zheng Wang
- College of Chemistry and Environmental Engineering , Sichuan University of Science and Engineering , Zigong , Sichuan 643000 , China
| | - Hong-Wei Li
- College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Chang-Yu Shan
- College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Peng-Fei Zheng
- College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Li Shuai
- College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering , Sichuan University of Science and Engineering , Zigong , Sichuan 643000 , China
| | - Ying-Chun Chen
- College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| | - Qin Ouyang
- College of Pharmacy , Third Military Medical University , Chongqing 400038 , China
| |
Collapse
|
114
|
Zhang Y, Ma J, Wang D, Xu C, Sheng S, Cheng J, Bao C, Li Y, Tian H. Fe-TCPP@CS nanoparticles as photodynamic and photothermal agents for efficient antimicrobial therapy. Biomater Sci 2020; 8:6526-6532. [DOI: 10.1039/d0bm01427c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photodynamic and photothermal agents for efficient antimicrobial therapy.
Collapse
Affiliation(s)
- Yufeng Zhang
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
- Key Laboratory of Polymer Ecomaterials
| | - Jing Ma
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
- Key Laboratory of Polymer Ecomaterials
| | - Dianwei Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Caina Xu
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Shu Sheng
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Jianfeng Cheng
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Changjiang Bao
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Yanhui Li
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
115
|
Mao W, Liao Y, Ma D. A supramolecular assembly mediated by host–guest interactions for improved chemo–photodynamic combination therapy. Chem Commun (Camb) 2020; 56:4192-4195. [PMID: 32167514 DOI: 10.1039/d0cc01096k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A supramolecular nanomedicine for improved chemo–photodynamic therapy.
Collapse
Affiliation(s)
- Weipeng Mao
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Yujun Liao
- Department of Neurosurgery
- Huashan Hospital of Fudan University
- Shanghai 200032
- China
| | - Da Ma
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
116
|
Zhou Y, Wong RCH, Dai G, Ng DKP. A bioorthogonally activatable photosensitiser for site-specific photodynamic therapy. Chem Commun (Camb) 2020; 56:1078-1081. [DOI: 10.1039/c9cc07938f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inverse-electron-demand Diels–Alder reaction of a 1,2,4,5-tetrazine-substituted boron dipyrromethene with a biotin-conjugated trans-cyclooctene results in site-specific activation of the photoactivity of the former photosensitiser.
Collapse
Affiliation(s)
- Yimin Zhou
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin, N. T
- P. R. China
- Guangdong Key Laboratory of Nanomedicine
| | - Roy C. H. Wong
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin, N. T
- P. R. China
| | - Gaole Dai
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin, N. T
- P. R. China
| | - Dennis K. P. Ng
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin, N. T
- P. R. China
| |
Collapse
|
117
|
Hou Y, Zhang E, Gao J, Zhang S, Liu P, Wang JC, Zhang Y, Cui CX, Jiang J. Metal-free azo-bridged porphyrin porous organic polymers for visible-light-driven CO 2 reduction to CO with high selectivity. Dalton Trans 2020; 49:7592-7597. [PMID: 32459270 DOI: 10.1039/d0dt01436b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two nitrogen-rich azo-bridged porphyrin porous organic polymers (Azo-Por-Bpy-POP and Azo-Por-Dadp-POP) with high surface areas were prepared by coupling 5,10,15,20-tetra(p-nitrophenyl)-porphyrin with the aromatic amines of 2,2'-bipyridine-5,5'-diamine (Bpy) and diaminodiphenyl (Dadp). Azo-Por-Bpy-POP and Azo-Por-Dadp-POP display high photocatalytic reduction activity for CO2 to CO under visible-light irradiation without a sacrificial reagent or metal co-catalyst. Azo-Por-Bpy-POP exhibits the highest photoreduction for CO2 with CO as the only carbonaceous reduction product with a production rate of 38.75 μmol g-1 h-1. Theoretical investigations indicate a stronger electrostatic interaction between CO2 and Azo-Por-Bpy-POP than Azo-Por-Dadp-POP, which favors CO2 photoreduction.
Collapse
Affiliation(s)
- Yuxia Hou
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Enhui Zhang
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Jiayin Gao
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Shuaiqi Zhang
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Ping Liu
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Ji-Chao Wang
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Yuping Zhang
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Cheng-Xing Cui
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
118
|
Revuelta-Maza MÁ, González-Jiménez P, Hally C, Agut M, Nonell S, de la Torre G, Torres T. Fluorine-substituted tetracationic ABAB-phthalocyanines for efficient photodynamic inactivation of Gram-positive and Gram-negative bacteria. Eur J Med Chem 2019; 187:111957. [PMID: 31864170 DOI: 10.1016/j.ejmech.2019.111957] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/22/2019] [Accepted: 12/08/2019] [Indexed: 02/04/2023]
Abstract
Herein, we report the synthesis and characterization of new amphiphilic phthalocyanines (Pcs), the study of their singlet oxygen generation capabilities, and biological assays to determine their potential as photosensitizers for photodynamic inactivation of bacteria. In particular, Pcs with an ABAB geometry (where A and B refer to differently substituted isoindole constituents) have been synthesized. These molecules are endowed with bulky bis(trifluoromethylphenyl) groups in two facing isoindoles, which hinder aggregation and favour singlet oxygen generation, and pyridinium or alkylammonium moieties in the other two isoindoles. In particular, two water-soluble Pc derivatives (PS-1 and PS-2) have proved to be efficient in the photoinactivation of S. aureus and E. coli, selected as models of Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | - Cormac Hally
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017, Barcelona, Spain.
| | - Gema de la Torre
- Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Tomás Torres
- Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain; Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia, C/ Faraday 9, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
119
|
Setaro F, Wennink JWH, Mäkinen PI, Holappa L, Trohopoulos PN, Ylä-Herttuala S, van Nostrum CF, de la Escosura A, Torres T. Amphiphilic phthalocyanines in polymeric micelles: a supramolecular approach toward efficient third-generation photosensitizers. J Mater Chem B 2019; 8:282-289. [PMID: 31803886 DOI: 10.1039/c9tb02014d] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper we describe a straightforward supramolecular strategy to encapsulate silicon phthalocyanine (SiPc) photosensitizers (PS) in polymeric micelles made of poly(ε-caprolactone)-b-methoxypoly(ethylene glycol) (PCL-PEG) block copolymers. While PCL-PEG micelles are promising nanocarriers based on their biocompatibility and biodegradability, the design of our new PS favors their encapsulation. In particular, they combine two axial benzoyl substituents, each of them carrying either three hydrophilic methoxy(triethylenoxy) chains (1), three hydrophobic dodecyloxy chains (3), or both kinds of chains (2). The SiPc derivatives 1 and 2 are therefore amphiphilic, with the SiPc unit contributing to the hydrophobic core, while lipophilicity increases along the series, making it possible to correlate the loading efficacy in PCL-PEG micelles with the hydrophobic/hydrophilic balance of the PS structure. This has led to a new kind of third-generation nano-PS that efficiently photogenerates 1O2, while preliminary in vitro experiments demonstrate an excellent cellular uptake and a promising PDT activity.
Collapse
Affiliation(s)
- Francesca Setaro
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| | - Jos W H Wennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands.
| | - Petri I Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Lari Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | | | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands.
| | - Andres de la Escosura
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain. and Institute for Advanced Research in Chemical Sciences (IAdChem), 28049 Cantoblanco, Madrid, Spain
| | - Tomas Torres
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain. and Institute for Advanced Research in Chemical Sciences (IAdChem), 28049 Cantoblanco, Madrid, Spain and IMDEA Nanosience, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
120
|
Zhang C, Wu J, Liu W, Zheng X, Wang P. Natural-Origin Hypocrellin-HSA Assembly for Highly Efficient NIR Light-Responsive Phototheranostics against Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44989-44998. [PMID: 31755268 DOI: 10.1021/acsami.9b18345] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tumor hypoxia severely limits the therapeutic efficacy of solid tumors in photodynamic therapy. One strategy is to develop photosensitizers with simultaneously high efficiency in photodynamic (PDT) and photothermal therapies (PTT) in a single natural-origin phototheranostic agent to overcome this problem. However, less attention has been paid to the natural-origin phototheranostic agent with high PDT and PTT efficiencies even though they have negligible side effects and are environmentally sustainable in comparison with many reported phototheranostic agents. In addition, almost all clinical applied photosensitizers are of natural origin so far. Herein, we synthesized a natural product-based hypocrellin derivative (AETHB), with a high singlet oxygen quantum yield of 0.64 as an efficient photosensitizer different from commercially available porphyrin-based photosensitizers. AETHB is further assembled with human serum albumin to construct nanoparticles (HSA-AETHB NPs) with a high photothermal conversion efficiency (more than 50%). As-prepared HSA-AETHB NPs have shown good water solubility and biocompatibility, pH and light stability, wide absorption (400-750 nm), and NIR emission centered at 710 nm. More importantly, HSA-AETHB NPs can be applied for fluorescent/photoacoustic dual-mode imaging and simultaneously highly efficient PDT/PTT in hypoxic solid tumors. Therefore, this natural-origin multifunctional phototheranostic agent is showing very promising for effective, precise, and safe cancer therapy in clinical applications.
Collapse
Affiliation(s)
- Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
121
|
Ferreira JT, Pina J, Ribeiro CAF, Fernandes R, Tomé JPC, Rodríguez-Morgade MS, Torres T. Highly Efficient Singlet Oxygen Generators Based on Ruthenium Phthalocyanines: Synthesis, Characterization and in vitro Evaluation for Photodynamic Therapy. Chemistry 2019; 26:1789-1799. [PMID: 31605633 DOI: 10.1002/chem.201903546] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/10/2019] [Indexed: 12/24/2022]
Abstract
The synthesis of ruthenium(II) phthalocyanines (RuPcs) endowed with one carbohydrate unit-that is, glucose, galactose and mannose-and a dimethylsulfoxide (DMSO) ligand at the two axial coordination sites, respectively, is described. Two series of compounds, one unsubstituted at the periphery, and the other one bearing eight PEG chains at the isoindole meta-positions, have been prepared. The presence of the axial DMSO unit significantly increases the phthalocyanine singlet oxygen quantum yields, related to other comparable RuPcs. The compounds have been evaluated for PDT treatment in bladder cancer cells. In vitro studies have revealed high phototoxicity for RuPcs unsubstituted at their periphery. The phototoxicity of PEG-substituted RuPcs has been considerably improved by repeated light irradiation. The choice of the axial carbohydrate introduced little differences in the cellular uptake for both series of photosensitizers, but the phototoxic effects were considerably higher for compounds bearing mannose units.
Collapse
Affiliation(s)
- Joana T Ferreira
- Departamento de Química Orgánica, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.,Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - João Pina
- CQC, Department of Chemistry, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Carlos A F Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.iCBR Consortium, University of Coimbra, 3004-548, Coimbra, Portugal
| | - João P C Tomé
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.,CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - M Salomé Rodríguez-Morgade
- Departamento de Química Orgánica, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.,Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia, C/ Faraday, 9, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
122
|
Laroui N, Coste M, Lichon L, Bessin Y, Gary-Bobo M, Pratviel G, Bonduelle C, Bettache N, Ulrich S. Combination of photodynamic therapy and gene silencing achieved through the hierarchical self-assembly of porphyrin-siRNA complexes. Int J Pharm 2019; 569:118585. [DOI: 10.1016/j.ijpharm.2019.118585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022]
|
123
|
Revuelta-Maza MÁ, Torres T, Torre GDL. Synthesis and Aggregation Studies of Functional Binaphthyl-Bridged Chiral Phthalocyanines. Org Lett 2019; 21:8183-8186. [DOI: 10.1021/acs.orglett.9b02718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Tomás Torres
- Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia, c/Faraday 9, Cantoblanco, 28049 Madrid, Spain
| | - Gema de la Torre
- Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
124
|
Zhao Y, Wang YJ, Wang N, Zheng P, Fu HR, Han ML, Ma LF, Wang LY. Tetraphenylethylene-Decorated Metal–Organic Frameworks as Energy-Transfer Platform for the Detection of Nitro-Antibiotics and White-Light Emission. Inorg Chem 2019; 58:12700-12706. [DOI: 10.1021/acs.inorgchem.9b01588] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ying Zhao
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yan-Jiang Wang
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Peng Zheng
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Min-Le Han
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Li-Ya Wang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, P. R. China
| |
Collapse
|
125
|
Saegusa T, Sakai H, Nagashima H, Kobori Y, Tkachenko NV, Hasobe T. Controlled Orientations of Neighboring Tetracene Units by Mixed Self-Assembled Monolayers on Gold Nanoclusters for High-Yield and Long-Lived Triplet Excited States through Singlet Fission. J Am Chem Soc 2019; 141:14720-14727. [DOI: 10.1021/jacs.9b06567] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Toshiyuki Saegusa
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hiroki Nagashima
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Nikolai V. Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, FI33720 Tampere, Finland
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
126
|
Anaya-Plaza E, Aljarilla A, Beaune G, Timonen JVI, de la Escosura A, Torres T, Kostiainen MA. Phthalocyanine-Virus Nanofibers as Heterogeneous Catalysts for Continuous-Flow Photo-Oxidation Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902582. [PMID: 31392780 DOI: 10.1002/adma.201902582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Indexed: 06/10/2023]
Abstract
The generation of highly reactive oxygen species (ROS) at room temperature for application in organic synthesis and wastewater treatment represents a great challenge of the current chemical industry. In fact, the development of biodegradable scaffolds to support ROS-generating active sites is an important prerequisite for the production of environmentally benign catalysts. Herein, the electrostatic cocrystallization of a cationic phthalocyanine (Pc) and negatively charged tobacco mosaic virus (TMV) is described, together with the capacity of the resulting crystals to photogenerate ROS. To this end, a novel peripherally crowded zinc Pc (1) is synthesized. With 16 positive charges, this photosensitizer shows no aqueous aggregation, and is able to act as a molecular glue in the unidimensional assembly of TMV. A step-wise decrease of ionic strength in mixtures of both components results in exceptionally long fibers, constituted by hexagonally bundled viruses thoroughly characterized by electron and confocal microscopy. The fibers are able to produce ROS in a proof-of-concept microfluidic device, where they are immobilized and irradiated in several cycles, showing a resilient performance. The bottom-up approach also enables the light-triggered disassembly of fibers after use. This work represents an important example of a biohybrid material with projected application in light-mediated heterogeneous catalysis.
Collapse
Affiliation(s)
- Eduardo Anaya-Plaza
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Ana Aljarilla
- Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Grégory Beaune
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, Campus de Cantoblanco, 28049, Madrid, Spain
- IMDEA-Nanociencia, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| |
Collapse
|
127
|
Aggarwal A, Samaroo D, Jovanovic IR, Singh S, Tuz MP, Mackiewicz MR. Porphyrinoid-based photosensitizers for diagnostic and therapeutic applications: An update. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porphyrin-based molecules are actively studied as dual function theranostics: fluorescence-based imaging for diagnostics and fluorescence-guided therapeutic treatment of cancers. The intrinsic fluorescent and photodynamic properties of the bimodal molecules allows for these theranostic approaches. Several porphyrinoids bearing both hydrophilic and/or hydrophobic units at their periphery have been developed for the aforementioned applications, but better tumor selectivity and high efficacy to destroy tumor cells is always a key setback for their use. Another issue related to their effective clinical use is that, most of these chromophores form aggregates under physiological conditions. Nanomaterials that are known to possess incredible properties that cannot be achieved from their bulk systems can serve as carriers for these chromophores. Porphyrinoids, when conjugated with nanomaterials, can be enabled to perform as multifunctional nanomedicine devices. The integrated properties of these porphyrinoid-nanomaterial conjugated systems make them useful for selective drug delivery, theranostic capabilities, and multimodal bioimaging. This review highlights the use of porphyrins, chlorins, bacteriochlorins, phthalocyanines and naphthalocyanines as well as their multifunctional nanodevices in various biomedical theranostic platforms.
Collapse
Affiliation(s)
- Amit Aggarwal
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Diana Samaroo
- New York City College of Technology, Department of Chemistry, 285 Jay Street, Brooklyn, NY 11201, USA
- Graduate Center, 365 5th Ave, New York, NY 10016, USA
| | | | - Sunaina Singh
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Michelle Paola Tuz
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | | |
Collapse
|
128
|
Inglut CT, Baglo Y, Liang BJ, Cheema Y, Stabile J, Woodworth GF, Huang HC. Systematic Evaluation of Light-Activatable Biohybrids for Anti-Glioma Photodynamic Therapy. J Clin Med 2019; 8:E1269. [PMID: 31438568 PMCID: PMC6780262 DOI: 10.3390/jcm8091269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
Photosensitizing biomolecules (PSBM) represent a new generation of light-absorbing compounds with improved optical and physicochemical properties for biomedical applications. Despite numerous advances in lipid-, polymer-, and protein-based PSBMs, their effective use requires a fundamental understanding of how macromolecular structure influences the physicochemical and biological properties of the photosensitizer. Here, we prepared and characterized three well-defined PSBMs based on a clinically used photosensitizer, benzoporphyrin derivative (BPD). The PSBMs include 16:0 lysophosphocholine-BPD (16:0 Lyso PC-BPD), distearoyl-phosphoethanolamine-polyethylene-glycol-BPD (DSPE-PEG-BPD), and anti-EGFR cetuximab-BPD (Cet-BPD). In two glioma cell lines, DSPE-PEG-BPD exhibited the highest singlet oxygen yield but was the least phototoxic due to low cellular uptake. The 16:0 Lyso PC-BPD was most efficient in promoting cellular uptake but redirected BPD's subcellular localization from mitochondria to lysosomes. At 24 h after incubation, proteolyzed Cet-BPD was localized to mitochondria and effectively disrupted the mitochondrial membrane potential upon light activation. Our results revealed the variable trafficking and end effects of PSBMs, providing valuable insights into methods of PSBM evaluation, as well as strategies to select PSBMs based on subcellular targets and cytotoxic mechanisms. We demonstrated that biologically informed combinations of PSBMs to target lysosomes and mitochondria, concurrently, may lead to enhanced therapeutic effects against gliomas.
Collapse
Affiliation(s)
- Collin T Inglut
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Yan Baglo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Barry J Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Yahya Cheema
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jillian Stabile
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
129
|
Cheng HB, Cui Y, Wang R, Kwon N, Yoon J. The development of light-responsive, organic dye based, supramolecular nanosystems for enhanced anticancer therapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
130
|
Jia Q, Song Q, Li P, Huang W. Rejuvenated Photodynamic Therapy for Bacterial Infections. Adv Healthc Mater 2019; 8:e1900608. [PMID: 31240867 DOI: 10.1002/adhm.201900608] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/13/2019] [Indexed: 12/31/2022]
Abstract
The emergence of multidrug resistant bacterial strains has hastened the exploration of advanced microbicides and antibacterial techniques. Photodynamic antibacterial therapy (PDAT), an old-fashioned technique, has been rejuvenated to combat "superbugs" and biofilm-associated infections owing to its excellent characteristics of noninvasiveness and broad antibacterial spectrum. More importantly, bacteria are less likely to produce drug resistance to PDAT because it does not require specific targeting interaction between photosensitizers (PSs) and bacteria. This review mainly focuses on recent developments and future prospects of PDAT. The mechanisms of PDAT against bacteria and biofilms are briefly introduced. In addition to classical macrocyclic PSs, several innovative PSs, including non-self-quenching PSs, conjugated polymer-based PSs, and nano-PSs, are summarized in detail. Numerous multifunctional PDAT systems such as in situ light-activated PDAT, stimuli-responsive PDAT, oxygen self-enriching enhanced PDAT, and PDAT-based multimodal therapy are highlighted to overcome the inherent defects of PDAT in vivo (e.g., limited penetration depth of light and hypoxic environment of infectious sites).
Collapse
Affiliation(s)
- Qingyan Jia
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Qing Song
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Peng Li
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Wei Huang
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
131
|
Xue EY, Wong RCH, Wong CTT, Fong WP, Ng DKP. Synthesis and biological evaluation of an epidermal growth factor receptor-targeted peptide-conjugated phthalocyanine-based photosensitiser. RSC Adv 2019; 9:20652-20662. [PMID: 35515550 PMCID: PMC9065697 DOI: 10.1039/c9ra03911b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
A peptide-conjugated zinc(ii) phthalocyanine containing the epidermal growth factor receptor-targeted heptapeptide QRHKPRE has been prepared. The conjugate labelled as ZnPc-QRH* can selectively bind to the cell membrane of HT29 human colorectal adenocarcinoma cells in 10 min followed by internalisation upon prolonged incubation via receptor-mediated endocytosis, leading to localisation in lysosomes eventually. By manipulating the incubation time, the subcellular localisation of the conjugate can be varied and the cell-death pathways induced upon irradiation can also be altered. It has been found that photosensitisation initiated at the cell membrane and in the lysosomes would trigger cell death mainly through necrosis and apoptosis respectively. Intravenous administration of the conjugate into HT29 tumour-bearing nude mice resulted in higher accumulation in the tumour than in most major organs. The selective binding of this conjugate to tumour has also been demonstrated by comparing the results with those of the analogue with a scrambled peptide sequence (EPRQRHK). The overall results indicate that ZnPc-QRH* is a promising EGFR-targeted photosensitiser for photodynamic therapy.
Collapse
Affiliation(s)
- Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| | - Roy C H Wong
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| | - Clarence T T Wong
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T. Hong Kong China
| |
Collapse
|
132
|
An integrin-targeting glutathione-activated zinc(II) phthalocyanine for dual targeted photodynamic therapy. Eur J Med Chem 2019; 174:56-65. [DOI: 10.1016/j.ejmech.2019.04.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
|
133
|
Xue Y, Tian J, Liu Z, Chen J, Wu M, Shen Y, Zhang W. A Redox Stimulation-Activated Amphiphile for Enhanced Photodynamic Therapy. Biomacromolecules 2019; 20:2796-2808. [DOI: 10.1021/acs.biomac.9b00581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhiyong Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jianbo Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Mengsi Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yongjia Shen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
134
|
Wang S, Chen W, Jiang C, Lu L. Nanoscaled porphyrinic metal–organic framework for photodynamic/photothermal therapy of tumor. Electrophoresis 2019; 40:2204-2210. [DOI: 10.1002/elps.201900005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Shengyan Wang
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Sciences Changchun Institute of Applied Chemistry Changchun P. R. China
| | - Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Sciences Changchun Institute of Applied Chemistry Changchun P. R. China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Sciences Changchun Institute of Applied Chemistry Changchun P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Sciences Changchun Institute of Applied Chemistry Changchun P. R. China
| |
Collapse
|
135
|
Cationic Albumin Encapsulated DNA Origami for Enhanced Cellular Transfection and Stability. MATERIALS 2019; 12:ma12060949. [PMID: 30901888 PMCID: PMC6470866 DOI: 10.3390/ma12060949] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/25/2022]
Abstract
DNA nanostructures, owing to their controllable and adaptable nature, have been considered as highly attractive nanoplatforms for biomedical applications in recent years. However, their use in the biological environment has been restricted by low cellular transfection efficiency in mammalian cells, weak stability under physiological conditions, and endonuclease degradation. Herein, we demonstrate an effective approach to facilitate fast transfection of DNA nanostructures and enhance their stability by encapsulating DNA origami with a biocompatible cationic protein (cHSA) via electrostatic interaction. The coated DNA origami is found to be stable under physiological conditions. Moreover, the cHSA coating could significantly improve the cellular transfection efficiency of DNA origami, which is essential for biological applications.
Collapse
|
136
|
Kakı E, Gögsu N, Altındal A, Salih B, Bekaroğlu Ö. Synthesis, characterization and VOCs adsorption kinetics of diethylstilbestrol-substituted metallophthalocyanines. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Compound (4,4[Formula: see text] -hex-3-ene-3,4-diyl)bis(4,1-phenylene)bis(oxy)diphthalonitrile 3 was synthesized by the reaction of 4-nitrophthalonitrile 1 and diethylstilbestrol 2 in dry DMF in presence of dry K2CO3. New mononuclear phthalocyanines 4-6 were obtained from compound 3 by addition of the corresponding metal salts [Co(OAc)2 ⋅ 4H2O, Zn(OAc)2 ⋅ 2H2O and Cu(OAc)2]. The novel compounds were characterized by elemental analysis and FT-IR, UV-vis, 1H-NMR and MALDI-TOF mass spectroscopy techniques. The effects of four main groups of organic vapors on these novel compounds were studied and discussed. The adsorption kinetics of alkanes ([Formula: see text]-hexane and [Formula: see text]-octane), alcohols (methanol and 2-proponal), chlorinated hydrocarbons (dichloromethane and trichloromethane) and amines (diethylamine and triethylamine) on 4-6 were examined using three adsorption kinetic models: the Elovich equation, the pseudo-first-order equations and Ritchie’s equation. Results show that the linear regression analysis with respect to the pseudo-second-order rate equations generates a straight line that best fits the data of adsorption of alcohols and chlorinated hydrocarbons on Pc films. On the other hand, the Elovich equation generates a straight line that best fits the data of adsorption of alkanes and amines.
Collapse
Affiliation(s)
- Esra Kakı
- Department of Chemistry, Marmara University, 34722, Göztepe, Istanbul, Turkey
| | - Nurcan Gögsu
- Department of Chemistry, Marmara University, 34722, Göztepe, Istanbul, Turkey
| | - Ahmet Altındal
- Department of Physics, Yıldız Technical University, 34220, Istanbul, Turkey
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, 06532, Ankara, Turkey
| | - Özer Bekaroğlu
- Faculty of Pharmacy, Istinye University, Zeytinburnu, 34010, Istanbul, Turkey
| |
Collapse
|
137
|
Revuelta‐Maza MA, Hally C, Nonell S, de la Torre G, Torres T. Crosswise Phthalocyanines with Collinear Functionalization: New Paradigmatic Derivatives for Efficient Singlet Oxygen Photosensitization. Chempluschem 2019; 84:673-679. [DOI: 10.1002/cplu.201800631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/19/2019] [Indexed: 11/05/2022]
Affiliation(s)
| | - Cormac Hally
- Institut Químic de SarriàUniversitat Ramon Llull 08017 Barcelona Spain
| | - Santi Nonell
- Institut Químic de SarriàUniversitat Ramon Llull 08017 Barcelona Spain
| | - Gema de la Torre
- Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Tomás Torres
- Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia c/ Faraday 9, Cantoblanco 28049 Madrid Spain
| |
Collapse
|
138
|
Nar I, Bortolussi S, Postuma I, Atsay A, Berksun E, Viola E, Ferrari C, Cansolino L, Ricciardi G, Donzello MP, Hamuryudan E. A Phthalocyanine‐
ortho
‐Carborane Conjugate for Boron Neutron Capture Therapy: Synthesis, Physicochemical Properties, and in vitro Tests. Chempluschem 2019; 84:345-351. [DOI: 10.1002/cplu.201800560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/14/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Ilgın Nar
- Department of ChemistryIstanbul Technical University 34469, Maslak Istanbul Turkey
| | - Silva Bortolussi
- Dipartimento di FisicaUniversità of Pavia Via Bassi 6 27100 Pavia Italy
- Istituto Nazionale Di Fisica Nucleare (INFN)Unit of Pavia Italy
| | - Ian Postuma
- Dipartimento di FisicaUniversità of Pavia Via Bassi 6 27100 Pavia Italy
| | - Armağan Atsay
- Department of ChemistryIstanbul Technical University 34469, Maslak Istanbul Turkey
| | - Ekin Berksun
- Department of ChemistryIstanbul Technical University 34469, Maslak Istanbul Turkey
| | - Elisa Viola
- Dipartimento di ChimicaUniversità di Roma Sapienza Piazzale A. Moro 5 I-00185 Roma Italy
| | - Cinzia Ferrari
- Dipartimento di Scienze Clinico-ChirurgicheLaboratorio di Chirurgia SperimentaleUniversità di Pavia Via Ferrata 9 27100 Pavia Italy
| | - Laura Cansolino
- Dipartimento di Scienze Clinico-ChirurgicheLaboratorio di Chirurgia SperimentaleUniversità di Pavia Via Ferrata 9 27100 Pavia Italy
| | - Giampaolo Ricciardi
- Scuola di Scienze Agrarie, Alimentari, Forestali e Ambientali (SAFE)Università della Basilicata Viale dell'Ateneo Lucano 10 85100 Potenza Italy
| | - Maria Pia Donzello
- Dipartimento di ChimicaUniversità di Roma Sapienza Piazzale A. Moro 5 I-00185 Roma Italy
| | - Esin Hamuryudan
- Department of ChemistryIstanbul Technical University 34469, Maslak Istanbul Turkey
| |
Collapse
|
139
|
The photodynamic activity and toxicity evaluation of 5,10,15-tris(ethoxylcarbonyl)corrole phosphorus(V) in vivo and in vitro. Eur J Med Chem 2019; 163:779-786. [DOI: 10.1016/j.ejmech.2018.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
|
140
|
Cheng HB, Li X, Kwon N, Fang Y, Baek G, Yoon J. Photoswitchable phthalocyanine-assembled nanoparticles for controlled “double-lock” photodynamic therapy. Chem Commun (Camb) 2019; 55:12316-12319. [DOI: 10.1039/c9cc03960k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new nanoparticle platform,NanoAzoPcS, is created by co-assembly of phthalocyanine and azobenzene amphiphiles, which can be used to gain precise control of PDT simply by regulating the stoichiometric ratio of the components and using light irradiation.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- Department of Chemistry and Nano Science Ewha Womans University
- Seoul 120-750
- Korea
| | - Xingshu Li
- Department of Chemistry and Nano Science Ewha Womans University
- Seoul 120-750
- Korea
| | - Nahyun Kwon
- Department of Chemistry and Nano Science Ewha Womans University
- Seoul 120-750
- Korea
| | - Yanyan Fang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry, Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Gain Baek
- Department of Chemistry and Nano Science Ewha Womans University
- Seoul 120-750
- Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science Ewha Womans University
- Seoul 120-750
- Korea
| |
Collapse
|
141
|
Revuelta-Maza MA, Nonell S, de la Torre G, Torres T. Boosting the singlet oxygen photosensitization abilities of Zn(ii) phthalocyanines through functionalization with bulky fluorinated substituents. Org Biomol Chem 2019; 17:7448-7454. [DOI: 10.1039/c9ob00872a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Non-aggregated, crosswise ZnPcs functionalized with bis(trifluoromethyl)phenyl groups in facing isoindoles have proved efficient photosensitizers for singlet oxygen generation.
Collapse
Affiliation(s)
| | - Santi Nonell
- Institut Químic de Sarrià
- Universitat Ramon Llull
- 08017 Barcelona
- Spain
| | - Gema de la Torre
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
- Universidad Autónoma de Madrid
| | - Tomás Torres
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
- Universidad Autónoma de Madrid
| |
Collapse
|
142
|
Castro KADF, Figueira F, Almeida Paz FA, Tomé JPC, da Silva RS, Nakagaki S, Neves MGPMS, Cavaleiro JAS, Simões MMQ. Copper-phthalocyanine coordination polymer as a reusable catechol oxidase biomimetic catalyst. Dalton Trans 2019; 48:8144-8152. [DOI: 10.1039/c9dt00378a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report the synthesis, characterization and catalytic activity of a new phthalocyanine coordination polymer (Cu4CuPcSPy).
Collapse
Affiliation(s)
- Kelly A. D. F. Castro
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Flávio Figueira
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | | | - João P. C. Tomé
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Roberto S. da Silva
- Faculty of Pharmaceutical Sciences
- University of São Paulo
- Ribeirão Preto
- Brazil
| | - Shirley Nakagaki
- Laboratory of Bioinorganic and Catalysis and Department of Chemistry
- Federal University of Paraná
- Curitiba
- Brazil
| | | | - José A. S. Cavaleiro
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Mário M. Q. Simões
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
143
|
Er Ö, Colak SG, Ocakoglu K, Ince M, Bresolí-Obach R, Mora M, Sagristá ML, Yurt F, Nonell S. Selective Photokilling of Human Pancreatic Cancer Cells Using Cetuximab-Targeted Mesoporous Silica Nanoparticles for Delivery of Zinc Phthalocyanine. Molecules 2018; 23:molecules23112749. [PMID: 30355983 PMCID: PMC6278564 DOI: 10.3390/molecules23112749] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023] Open
Abstract
Background: Photodynamic therapy (PDT) is a non-invasive and innovative cancer therapy based on the photodynamic effect. In this study, we sought to determine the singlet oxygen production, intracellular uptake, and in vitro photodynamic therapy potential of Cetixumab-targeted, zinc(II) 2,3,9,10,16,17,23,24-octa(tert-butylphenoxy))phthalocyaninato(2-)-N29,N30,N31,N32 (ZnPcOBP)-loaded mesoporous silica nanoparticles against pancreatic cancer cells. Results: The quantum yield (ΦΔ) value of ZnPcOBP was found to be 0.60 in toluene. In vitro cellular studies were performed to determine the dark- and phototoxicity of samples with various concentrations of ZnPcOBP by using pancreatic cells (AsPC-1, PANC-1 and MIA PaCa-2) and 20, 30, and 40 J/cm2 light fluences. No dark toxicity was observed for any sample in any cell line. ZnPcOBP alone showed a modest photodynamic activity. However, when incorporated in silica nanoparticles, it showed a relatively high phototoxic effect, which was further enhanced by Cetuximab, a monoclonal antibody that targets the Epidermal Growth Factor Receptor (EGFR). The cell-line dependent photokilling observed correlates well with EGFR expression levels in these cells. Conclusions: Imidazole-capped Cetuximab-targeted mesoporous silica nanoparticles are excellent vehicles for the selective delivery of ZnPcOBP to pancreatic cancer cells expressing the EGFR receptor. The novel nanosystem appears to be a suitable agent for photodynamic therapy of pancreatic tumors.
Collapse
Affiliation(s)
- Özge Er
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Suleyman Gokhan Colak
- Advanced Technology Research & Application Center, Mersin University, Ciftlikkoy Campus, Yenisehir, Mersin 33343, Turkey.
| | - Kasim Ocakoglu
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Tarsus 33400, Turkey.
| | - Mine Ince
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Tarsus 33400, Turkey.
| | - Roger Bresolí-Obach
- Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| | - Margarita Mora
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, E-08028 Barcelona, Spain.
| | - Maria Lluïsa Sagristá
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, E-08028 Barcelona, Spain.
| | - Fatma Yurt
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Santi Nonell
- Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| |
Collapse
|