101
|
Xu Y, Ma Y, Chen X, Wu K, Wang K, Shen Y, Liu S, Gao XJ, Zhang Y. Regulating Reactive Oxygen Intermediates of Fe-N-C SAzyme via Second-Shell Coordination for Selective Aerobic Oxidation Reactions. Angew Chem Int Ed Engl 2024; 63:e202408935. [PMID: 38895986 DOI: 10.1002/anie.202408935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Reactive oxygen species (ROS) regulation for single-atom nanozymes (SAzymes), e.g., Fe-N-C, is a key scientific issue that determines the activity, selectivity, and stability of aerobic reaction. However, the poor understanding of ROS formation mechanism on SAzymes greatly hampers their wider deployment. Herein, inspired by cytochromes P450 affording bound ROS intermediates in O2 activation, we report Fe-N-C containing the same FeN4 but with tunable second-shell coordination can effectively regulate ROS production pathways. Remarkably, compared to the control Fe-N-C sample, the second-shell sulfur functionalized Fe-N-C delivered a 2.4-fold increase of oxidase-like activity via the bound Fe=O intermediate. Conversely, free ROS (⋅O2 -) release was significantly reduced after functionalization, down to only 17 % of that observed for Fe-N-C. The detailed characterizations and theoretical calculations revealed that the second-shell sulfur functionalization significantly altered the electronic structure of FeN4 sites, leading to an increase of electron density at Fermi level. It enhanced the electron transfer from active sites to the key intermediate *OOH, thereby ultimately determining the type of ROS in aerobic oxidation process. The proposed Fe-N-Cs with different second-shell anion were further applied to three aerobic oxidation reactions with enhanced activity, selectivity, and stability.
Collapse
Affiliation(s)
- Yuan Xu
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Yuanjie Ma
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinghua Chen
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Kaiqing Wu
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Kaiyuan Wang
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| |
Collapse
|
102
|
Hou H, Jia W, Zhang A, Su M, Bu Y, Liu L, Du B. Unveiling Generally-ignored Co-substrate Effect of Catalase-inherent Peroxidase Mimic for Self-verifiable Detection of High-concentration Hydrogen Peroxide. SMALL METHODS 2024:e2400847. [PMID: 39221463 DOI: 10.1002/smtd.202400847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
One nanoparticle possessing both peroxidase (POD) and catalase (CAT) activities is a prevalent co-substrate nanozyme system, distinct from the extensively researched cascade nanozyme system. During the sensing of hydrogen peroxide by POD, the impact of CAT is actually ignored in most studies. In this study, the CAT effect on hydrogen peroxide detection is thoroughly investigated based on POD catalysis by finely tuning the relative activity of POD and CAT. It is discovered that the CAT effect can be changed by delaying the injection of chromogenic substrate after adding hydrogen peroxide and that the linear range grows with the delayed time. Then, a theoretical mechanism showed that the time-delay mediated CAT effect magnification does not change the Vmax, but it causes Km to linearly increase with delayed time, consistent with the experiment results. Furthermore, the detection of high concentrations of hydrogen peroxide is successfully realized in contact lens care solutions by utilizing time-delay-mediated POD/CAT nanozyme. On the other hand, its linear range-tunable characteristic is used to produce multiple standard curves, then enabled self-verifying hydrogen peroxide detection. Overall, this work investigates the role of CAT in CAT-inherent POD nanozymes both theoretically and experimentally, and confirms POD/CAT nanozyme's priority in developing high-performance sensors.
Collapse
Affiliation(s)
- Haiwei Hou
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Weijuan Jia
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Aoxue Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Minyang Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lan Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baoji Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
103
|
Du N, Weng W, Xu Y, Zhou Y, Yi Y, Zhao Y, Zhu G. Vanadium-Based Metal-Organic Frameworks with Peroxidase-like Activity as a Colorimetric Sensing Platform for Direct Detection of Organophosphorus Pesticides. Inorg Chem 2024; 63:16442-16450. [PMID: 39172690 DOI: 10.1021/acs.inorgchem.4c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Colorimetry based on the bioenzyme inhibition strategy holds promising application prospects in the field of organophosphorus pesticide (OPs) detection. However, overcoming the challenges of the high cost and low stability of bioenzymes remains crucial. In this study, we successfully synthesized a peroxidase vanadium-based metal-organic framework (MOF) nanozyme named MIL-88B(V) and employed its mediated bioenzyme-free colorimetric strategy for direct OPs detection. The experimental results demonstrated that MIL-88B(V) exhibited a remarkable affinity and a remarkable catalytic rate. When the OPs target is added, it can be anchored on the MOF surface through a V-O-P bond, effectively inhibiting the MOF's activity. Subsequently, leveraging the advantages of smartphones such as convenience, speed, and sensitivity, we developed a paper sensor integrated into a smartphone for efficient OPs detection. The as-designed nanozyme-based colorimetric assay and paper sensor presented herein offer notable advantages, including affordability, speed, stability, wide adaptability, low cost, and accuracy in detecting OPs, thus providing a versatile and promising analytical approach for real sample analysis and allowing new applications of V-based MOF nanozymes.
Collapse
Affiliation(s)
- Ningjing Du
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenchuan Weng
- Guangzhou Baiyun Airport Customs Comprehensive Technical Service Center, Guangzhou Baiyun Airport Customs District People's Republic of China, Guangzhou 510470, P. R. China
| | - Yuanyuan Xu
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yi Zhou
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yinhui Yi
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Yong Zhao
- Guangzhou Baiyun Airport Customs Comprehensive Technical Service Center, Guangzhou Baiyun Airport Customs District People's Republic of China, Guangzhou 510470, P. R. China
| | - Gangbing Zhu
- School of the Environment and Safety Engineering and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao 266061, P. R. China
| |
Collapse
|
104
|
Fan H, Dukenbayev K, Nurtay L, Nazir F, Daniyeva N, Pham TT, Benassi E. Mechanism of the antimicrobial activity induced by phosphatase inhibitor sodium ortho-vanadate. J Inorg Biochem 2024; 258:112619. [PMID: 38823066 DOI: 10.1016/j.jinorgbio.2024.112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
The present study describes a novel antimicrobial mechanism based on Sodium Orthovanadate (SOV), an alkaline phosphatase inhibitor. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) were employed to examine the surface morphologies of the test organism, Escherichia coli (E. coli), during various antibacterial phases. Our results indicated that SOV kills bacteria by attacking cell wall growth and development, leaving E. coli's outer membrane intact. Our antimicrobial test indicated that the MIC of SOV for both E. coli and Lactococcus lactis (L. lactis) is 40 μM. A combination of quantum mechanical calculations and vibrational spectroscopy revealed that divanadate from SOV strongly coordinates with Ca2+ and Mg2+, which are the activity centers for the phosphatase that regulates bacterial cell wall synthesis. The current study is the first to propose the antibacterial mechanism caused by SOV attacking cell wall.
Collapse
Affiliation(s)
- Haiyan Fan
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Republic of Kazakhstan.
| | - Kanat Dukenbayev
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Republic of Kazakhstan.
| | - Lazzat Nurtay
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Republic of Kazakhstan.
| | - Faisal Nazir
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Republic of Kazakhstan.
| | - Nurgul Daniyeva
- Core Facility, Nazarbayev University, Nur-Sultan 010000, Republic of Kazakhstan.
| | - Tri T Pham
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Republic of Kazakhstan.
| | - Enrico Benassi
- Novosibirsk State University, Pirogov str. 2, Novosibirsk 630090, Russia.
| |
Collapse
|
105
|
Liu J, Zhang X, Zhang Y, Zhao B, Liu Z, Dong X, Feng S, Du Y. Mn-based Prussian blue analogues: Multifunctional nanozymes for hydrogen peroxide detection and photothermal therapy of tumors. Talanta 2024; 277:126320. [PMID: 38824861 DOI: 10.1016/j.talanta.2024.126320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Nanozymes have the advantages of simple synthesis, high stability, low cost and easy recycling, and can be applied in many fields including molecular detection, disease diagnosis and cancer therapy. However, most of the current nanozymes suffer from the defects of low catalytic activity and single function, which limits their sensing sensitivity and multifunctional applications. The development of highly active and multifunctional nanozymes is an important way to realize multidisciplinary applications. In this work, Mn-based Prussian blue analogues (Mn-PBA) and their derived double-shelled nanoboxes (DSNBs) are synthesized by co-precipitation method. The nanobox structure of DSNBs formed by etching Mn-PBA with tannic acid endows Mn-PBA DSNBs with better peroxidase-like activity than Mn-PBA. A colorimetric method for the rapid and sensitive determination of H2O2 is developed using Mn-PBA DSNBs-1.5 as a sensor with a detection limit as low as 0.62 μM. Moreover, Mn-PBA DSNBs-2 has excellent photothermal conversion ability, which can be applied to the photothermal therapy of tumors to inhibit the proliferation of tumor cells without damaging other tissues and organs. This study provides a new idea for the rational design of nanozymes and the expansion of their multi-functional applications in various fields.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, PR China
| | - Bo Zhao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| | - Zhelin Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| | - Xiangting Dong
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, PR China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| |
Collapse
|
106
|
Zou H, Hong Y, Xu B, Wang M, Xie H, Lin Q. Multifunctional cerium oxide nanozymes with high ocular surface retention for dry eye disease treatment achieved by restoring redox balance. Acta Biomater 2024; 185:441-455. [PMID: 38997079 DOI: 10.1016/j.actbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Dry eye disease (DED) is a kind of multifactorial ocular surface disease that displays ocular discomfort, visual disturbance, and tear film instability. Oxidative stress is a fundamental pathogenesis in DED. An imbalance between the reactive oxygen species (ROS) level and protective enzyme action will lead to oxidative stress, cell dysfunction, tear hyperosmolarity, and inflammation. Herein, a multifunctional cerium oxide nanozyme with high ocular surface retention property was designed to neutralize over-accumulated ROS and restore redox balance. Cerium oxide nanozymes were fabricated via branched polyethylenimine-graft-poly (ethylene glycol) nucleation and dispersion, followed by phenylboronic acid (PBA) functionalization (defined as Ce@PB). Due to the dynamic chemical bonding formation between the PBA segment and the cis-diol groups in the mucin layer of the tear film, Ce@PB nanozymes possess good adhesive capability to the ocular surface, thus extending the drug's retention time. On the other hand, Ce@PB nanozymes could mimic the cascade processes of superoxide dismutase and catalase to maintain intracellular redox balance. In vitro and in vivo studies suggest that such multifunctional nanozymes possess good biocompatibility and hemocompatibility. More importantly, Ce@PB nanozymes treatment in the animal model could repair corneal epithelial defect, increase the number of goblet cells and promote tear secretion, thus achieving an effective treatment for DED. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Haoyu Zou
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yueze Hong
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoqi Xu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengting Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hongying Xie
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
107
|
Sun Q, Bao B, Dong W, Lyu Y, Wang M, Xi Z, Han J, Guo R. Expression of chiral molecular and supramolecular structure on enantioselective catalytic activity. J Colloid Interface Sci 2024; 669:944-951. [PMID: 38759593 DOI: 10.1016/j.jcis.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Understanding the structure-function relationships encoded on chiral catalysts is important for investigating the fundamental principles of catalytic enantioselectivity. Herein, the synthesis and self-assembly of naphthalene substituted bis-l/d-histidine amphiphiles (bis-l/d-NapHis) in DMF/water solution mixture is reported. The resulting supramolecular assemblies featuring well-defined P/M nanoribbons (NRs). With combination of the (P/M)-NR and metal ion catalytic centers (Mn+ = Co2+, Cu2+, Fe3+), the (P)-NR-Mn+ as chiral supramolecular catalysts show catalytic preference to 3,4-dihydroxy-S-phenylalanine (S-DOPA) oxidation while the (M)-NR-Mn+ show enantioselective bias to R-DOPA oxidation. In contrast, their monomeric counterparts bis-l/d-NapHis-Mn+ display an inverse and dramatically lower catalytic selectivity in the R/S-DOPA oxidation. Among them, the Co2+-coordinated supramolecular nanostructures show the highest catalytic efficiency and enantioselectivity (select factor up to 2.70), while the Fe3+-coordinated monomeric ones show nearly racemic products. Analysis of the kinetic results suggests that the synergistic effect between metal ions and the chiral supramolecular NRs can significantly regulate the enantioselective catalytic activity, while the metal ion-mediated monomeric bis-l/d-NapHis were less active. The studies on association constants and activation energies reveal the difference in catalytic efficiency and enantioselectivity resulting from the different energy barriers and binding affinities existed between the chiral molecular/supramolecular structures and R/S-DOPA enantiomers. This work clarifies the correlation between chiral molecular/supramolecular structures and enantioselective catalytic activity, shedding new light on the rational design of chiral catalysts with outstanding enantioselectivity.
Collapse
Affiliation(s)
- Qingqing Sun
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China.
| | - Baocheng Bao
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China
| | - Wenqian Dong
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China
| | - Yanchao Lyu
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China.
| | - Mengyuan Wang
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China
| | - Zheng Xi
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China
| | - Jie Han
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China.
| | - Rong Guo
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China
| |
Collapse
|
108
|
Xu W, Zhou H, Hu B, Liang X, Tang Y, Ning S, Ding H, Yang P, Wang C. Prussian Blue-Derived Nanocomposite Synergized with Calcium Overload for Three-Mode ROS Outbreak Generation to Enhance Oncotherapy. Adv Healthc Mater 2024; 13:e2400591. [PMID: 38861753 DOI: 10.1002/adhm.202400591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
Calcium overload can lead to tumor cell death. However, because of the powerful calcium channel excretory system within tumor cells, simplistic calcium overloads do not allow for an effective antitumor therapy. Hence, the nanoparticles are created with polyethylene glycol (PEG) donor-modified calcium phosphate (CaP)-coated, manganese-doped hollow mesopores Prussian blue (MMPB) encapsulating glucose oxidase (GOx), called GOx@MMPB@CaP-PEG (GMCP). GMCP with a three-mode enhancement of intratumor reactive oxygen species (ROS) levels is designed to increase the efficiency of the intracellular calcium overload in tumor cells to enhance its anticancer efficacy. The released exogenous Ca2+ and the production of cytotoxic ROS resulting from the perfect circulation of the three-mode ROS outbreak generation that Fenton/Fenton-like reaction and consumption of glutathione from Fe2+/Fe3+and Mn2+/Mn3+ circle, and amelioration of hypoxia from MMPB-guided and GOx-mediated starvation therapy. Photothermal efficacy-induced heat generation owing to MMPB accelerates the above reactions. Furthermore, abundant ROS contribute to damage to mitochondria, and the calcium channels of efflux Ca2+ are inhibited, resulting in a calcium overload. Calcium overload further increases ROS levels and promotes apoptosis of tumor cells to achieve excellent therapy.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Hongmei Zhou
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Bangli Hu
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Xinqiang Liang
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Yanping Tang
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Shufang Ning
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Chen Wang
- Department of Research and Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| |
Collapse
|
109
|
Wang L, Ruan L, Zhang H, Sun Y, Shi W, Huang H, Li Y. A facile and on-site sensing strategy for phenolic compounds based on a novel nanozyme with high polyphenol oxidase-like activity. Talanta 2024; 277:126422. [PMID: 38897016 DOI: 10.1016/j.talanta.2024.126422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Phenolic compounds (PCs) are diverse in nature and undergo complex migration and transformations in the environment, making it challenging to use techniques such as chromatography and other traditional methods to determine the concentration of PCs by separation, individual monitoring and subsequent addition. To address this issue, a facile and on-site strategy was developed to measure the concentration of PCs using a novel nanozyme with polyphenol oxidase-like activity. First, the nanozyme was designed by coordinating the asymmetric ligand nicotinic acid with copper to mimic the structure of mononuclear and trinuclear copper clusters of natural laccases. Subsequently, by introducing 2-mercaptonicotinic acid to regulate the valence state of copper, the composite nanozyme CuNA10S was obtained with significantly enhanced activity. Interestingly, CuNA10S was shown to have a broad substrate spectrum capable of catalyzing common PCs. Building upon the superior performance of this nanozyme, a method was developed to determine the concentration of PCs. To enable rapid on-site sensing, we designed and prepared CuNA10S-based test strips and developed a tailored smartphone sensing platform. Using paper strip sensors combined with a smartphone sensing platform with RGB streamlined the sensing process, facilitating rapid on-site analysis of PCs within a range of 0-100 μM. Our method offers a solution for the quick screening of phenolic wastewater at contaminated sites, allowing sensitive and quick monitoring of PCs without the need for standard samples. This significantly simplifies the monitoring procedure compared to more cumbersome large-scale instrumental methods.
Collapse
Affiliation(s)
- Le Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Ling Ruan
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Hao Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Yue Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Wenqi Shi
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China
| | - Yongxin Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
110
|
Miao Y, Zhao X, Sun X, Lv J. Wide temperature adaptive oxidase-like based on mesoporous manganese based metal-organic framework for detecting total antioxidant capacity. Food Chem 2024; 451:139378. [PMID: 38670019 DOI: 10.1016/j.foodchem.2024.139378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Overcoming the intense variation of enzymatic activity among different temperatures is very critical in catalytic medicine and catalytic biology. Here, Mn-based metal-organic framework-based wide-temperature-adaptive mesoporous artificial enzymes (Mn-TMA-MOF) were designed and synthesized. The oxidase-like Mn-TMA-MOF showed excellent catalytic activity at 0-50 °C and avoided the activity loss and instability due to temperature variation that occurred. The excellent oxidase-like properties of Mn-TMA-MOF with wide temperature adaptativeness are mainly ascribed to the mixed oxidized state (Mn3+/Mn2+) and high substrate affinity (Km = 0.034 mM) of Mn. Moreover, the mesopore-micropores two-level structure of Mn-TMA-MOF provides a large space and surface area for enzyme catalysis. Based on the stability of Mn-TMA-MOF, we developed a colorimetric sensor that can detect total antioxidant capacity in fruits with a limit of detection up to 0.59 μM.
Collapse
Affiliation(s)
- Yanming Miao
- Shanxi Normal University, Taiyuan 030006, PR China.
| | - Xujuan Zhao
- Shanxi Normal University, Taiyuan 030006, PR China
| | - Xiaojie Sun
- Shanxi Normal University, Taiyuan 030006, PR China
| | - Jinzhi Lv
- Shanxi Normal University, Taiyuan 030006, PR China.
| |
Collapse
|
111
|
Wu X, Wei H, Tian J, Lu J. An aptasensor for chloramphenicol determination based on dual signal output of photoelectrochemistry and colorimetry. Talanta 2024; 277:126430. [PMID: 38878510 DOI: 10.1016/j.talanta.2024.126430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
In the present work, we developed an aptasensor to determine chloramphenicol (CAP) based on the dual signal output of photoelectrochemistry (PEC) and colorimetry. The Fe3+-doped porous tungsten trioxide was prepared by sol-gel method and coated on the ITO conductive glass to form ITO/p-W(Fe)O3. After assembling the captured DNA (cDNA) and the aptamer of CAP (apt) successively, the constructed ITO/p-W(Fe)O3-cDNA/apt aptasensor exhibited excellent photocurrent response under visible light irradiation in the presence of glucose, which provided the feasibility for PEC measurement with high sensitivity. In the presence of CAP, the apt left the ITO/p-W(Fe)O3 surface and AuNPs linked on the probe DNA would be assembled on it, which led to the decrease of photocurrent. Thanks to the oxidase-mimic catalytic performance of AuNPs and the recycling catalytic hydrolysis by exonuclease I, the measurement signal of the aptasensor could be amplified significantly, and the photocurrent decrease of the aptasensor was linearly related to the concentration of CAP in the range of 1.0 pM-10.0 nM and low detection limit was 0.36 pM. Meanwhile, the H2O2 produced from catalytic oxidation of glucose could oxidize TMB to blue oxTMB under HRP catalysis, which absorbance at 652 nm was linearly related to the concentration of CAP in the range of 5.0 pM-10.0 nM and low detection limit was 1.72 pM. Therefore, an aptasensor that determine CAP in real samples was successfully constructed with good precision of the relative standard deviation less than 5.7 % for PEC method and 7.3 % for colorimetric method, which can meet the analysis needs in different scenarios.
Collapse
Affiliation(s)
- Xingyang Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Haiyue Wei
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Jiuying Tian
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Jusheng Lu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| |
Collapse
|
112
|
Tong Y, Liu Q, Fu H, Han M, Zhu H, Yang K, Xu L, Meng M, Yin Y, Xi R. Cascaded Nanozyme Based pH-Responsive Oxygenation for Targeted Eradication of Resistant Helicobacter Pylori. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401059. [PMID: 38775621 DOI: 10.1002/smll.202401059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Indexed: 10/04/2024]
Abstract
Nanozymes, as substitutes for natural enzymes, are constructed as cascade catalysis systems for biomedical applications due to their inherent catalytic properties, high stability, tunable physicochemical properties, and environmental responsiveness. Herein, a multifunctional nanozyme is reported to initiate cascade enzymatic reactions specific in acidic environments for resistant Helicobacter pylori (H. pylori) targeting eradication. The cobalt-coated Prussian blue analog based FPB-Co-Ch NPs displays oxidase-, superoxide dismutase-, peroxidase-, and catalase- mimicking activities that trigger •O 2 - ${\mathrm{O}}_2^ - {\bm{\ }}$ and H2O2 to supply O2, thereby killing H. pylori in the stomach. To this end, chitosan is modified on the surface to exert bacterial targeted adhesion and improve the biocompatibility of the composite. In the intestinal environment, the cascade enzymatic activities are significantly inhibited, ensuring the biosafety of the treatment. In vitro, sensitive and resistant strains of H. pylori are cultured and the antibacterial activity is evaluated. In vivo, murine infection models are developed and its success is confirmed by gastric mucosal reculturing, Gram staining, H&E staining, and Giemsa staining. Additionally, the antibacterial capacity, anti-inflammation, repair effects, and biosafety of FPB-Co-Ch NPs are comprehensively investigated. This strategy renders a drug-free approach that specifically targets and kills H. pylori, restoring the damaged gastric mucosa while relieving inflammation.
Collapse
Affiliation(s)
- Yue Tong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Qian Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Hongli Fu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Mengfan Han
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Hanchen Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Kun Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Le Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| |
Collapse
|
113
|
Wang AT, Wen X, Duan S, Tian J, Liu L, Zhang W. A gold cluster fused manganese dioxide nanocube loaded with dihydroartemisinin for effective cancer treatment via amplified oxidative stress. RSC Adv 2024; 14:27703-27711. [PMID: 39224649 PMCID: PMC11367086 DOI: 10.1039/d4ra03164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chemodynamic therapy, leveraging metabolic processes for reactive oxygen species (ROS) generation, shows promise in cancer eradication. However, its efficacy is hampered by hypoxic conditions, substrate scarcity, and abundant ROS scavengers. In this study, we have devised a cubic manganese oxide nanozyme (BSA-AuNC-MnO2@DHA) to tackle these obstacles. This nanozyme integrates MnO2 with bovine serum albumin (BSA)-coated gold nanoclusters (AuNC), forming BSA-AuNC-MnO2, and further incorporates dihydroartemisinin (DHA) to confer both bioimaging and anticancer capabilities. The BSA-AuNC-MnO2 nanoparticles exhibit a uniform cubic morphology, with an average hydrated particle diameter of 76.4 ± 7.1 nm and a zeta potential of -32.6 mV, indicative of their excellent dispersion and stability. The encapsulation efficiency of DHA within the BSA-AuNC-MnO2@DHA system achieved a remarkable value of 72.45%, attesting to its substantial drug-loading capacity. MnO2 serves a dual function within the nanozyme: it augments oxidative stress while concurrently inhibiting antioxidant defenses. It depletes the antioxidant glutathione (GSH) to release Mn2+, which in turn catalyzes ROS production from intracellular substrates and DHA. The remarkable anticancer efficacy of this tailored approach is evidenced by the potent inhibition of tumor growth observed after a single-dose administration, which underscores the amplification of oxidative stress. Additionally, BSA-AuNC-MnO2@DHA exhibits negligible toxicity to major organs, highlighting its exceptional biocompatibility and safety profile.
Collapse
Affiliation(s)
- Alan Tianyi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
- Shanghai Xianguang Biotechnology Co., Ltd 318 Jungong Road Shanghai 200090 China
| | - Xin Wen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Shangyi Duan
- Shanghai Xianguang Biotechnology Co., Ltd 318 Jungong Road Shanghai 200090 China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Liang Liu
- Shanghai Xianguang Biotechnology Co., Ltd 318 Jungong Road Shanghai 200090 China
| | - Wangning Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| |
Collapse
|
114
|
Wang Y, Li T, Lin L, Wang D, Feng L. Copper-doped cherry blossom carbon dots with peroxidase-like activity for antibacterial applications. RSC Adv 2024; 14:27873-27882. [PMID: 39224643 PMCID: PMC11367405 DOI: 10.1039/d4ra04614e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Safety concerns arising from bacteria present a significant threat to human health, underscoring the pressing need for the exploration of novel antimicrobial materials. Nanozymes, as a new type of nanoscale material, have attracted widespread attention for antibacterial applications owing to their ability to mimic the catalytic activity of natural enzymes. In this work, we have constructed copper-doped cherry blossom carbon dots (Cu-CDs) with excellent peroxidase-like (POD) activity using a one-pot hydrothermal method. The utilization of cherry blossom as a natural material precursor significantly enhances its biocompatibility. Furthermore, the incorporation of copper ions initiates Fenton-like reaction-triggered POD-like catalytic activity, effectively eradicating bacteria by converting hydrogen peroxide (H2O2) into hydroxyl radicals (·OH). The antibacterial test results demonstrate that Cu-CDs exhibit a bactericidal efficacy of over 90% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). This study presents a novel environmentally friendly nanozyme material derived from natural sources, exhibiting significant antimicrobial properties and offering innovative insights for the advancement of antimicrobial materials.
Collapse
Affiliation(s)
- Yitong Wang
- QianWeichang College, Shanghai University Shanghai 200444 China
| | - Tianliang Li
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
| | - Lixing Lin
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
| | - Dong Wang
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
| | - Lingyan Feng
- QianWeichang College, Shanghai University Shanghai 200444 China
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education Shanghai 200444 China
| |
Collapse
|
115
|
Bao L, Liu J, Mao T, Zhao L, Wang D, Zhai Y. Nanobiotechnology-mediated regulation of reactive oxygen species homeostasis under heat and drought stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1418515. [PMID: 39258292 PMCID: PMC11385006 DOI: 10.3389/fpls.2024.1418515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
Global warming causes heat and drought stress in plants, which affects crop production. In addition to osmotic stress and protein inactivation, reactive oxygen species (ROS) overaccumulation under heat and drought stress is a secondary stress that further impairs plant performance. Chloroplasts, mitochondria, peroxisomes, and apoplasts are the main ROS generation sites in heat- and drought-stressed plants. In this review, we summarize ROS generation and scavenging in heat- and drought-stressed plants and highlight the potential applications of plant nanobiotechnology for enhancing plant tolerance to these stresses.
Collapse
Affiliation(s)
- Linfeng Bao
- College of Agriculture, Tarim University, Alar, China
| | - Jiahao Liu
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Tingyong Mao
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Linbo Zhao
- College of Agriculture, Tarim University, Alar, China
| | - Desheng Wang
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Yunlong Zhai
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| |
Collapse
|
116
|
Ge L, Chen Y, Geng B, Chu X, Jiang R, Wang X, Qin X, Li W, Song S. Synthesis of Mo-Pt/CeO 2 Dual Single-Atom Nanozyme for Multifunctional Biochemical Detection Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404608. [PMID: 39177179 DOI: 10.1002/smll.202404608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Elaborated structural modulation of Pt-based artificial nanozymes can efficiently improve their catalytic activity and expand their applications in clinical diagnosis and biochemical sensing. Herein, a highly efficient dual-site peroxidase mimic composed of highly dispersed Pt and Mo atoms is reported. The obtained Mo-Pt/CeO2 exhibits exceptional peroxidase-like catalytic activity, with a Vmax as high as 34.16 × 10-8 m s-1, which is 37.5 times higher than that of the single-site counterpart. Mechanism studies suggest that the Mo atoms can not only serve as adsorption and activation sites for the H2O2 substrate but also regulate the charge density of Pt centers to promote the generation ability of •OH. As a result, the synergistic effect between the dual active sites significantly improves the catalytic efficiency. Significantly, the application of the Mo-Pt/CeO2 catalyst's excellent peroxidase-like activity is extended to various biochemical detection applications, including the trace detection of glucose and cysteine, as well as the assessment of antioxidants' antioxidant capacity. This work reveals the great potential of rational design dual-site active centers for constructing high-performance artificial nanozymes.
Collapse
Affiliation(s)
- Litao Ge
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yujia Chen
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Baokang Geng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Chu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ruize Jiang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinxin Qin
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
117
|
Matysik J, Długosz O, Banach M. Development of Nanozymatic Characteristics in Metal-Doped Oxide Nanomaterials. J Phys Chem B 2024; 128:8007-8016. [PMID: 39120940 PMCID: PMC11345814 DOI: 10.1021/acs.jpcb.4c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Nanozymes are nanoscale materials that exhibit enzymatic-like activity, combining the benefits of nanomaterials with biocatalytic effects. The addition of metals to nanomaterials can enhance their nanozyme activity by mimicking the active sites of enzymes, providing structural support and promoting redox activity. In this study, nanostructured oxide and silicate-phosphate nanomaterials with varying manganese and copper additions were characterized. The objective was to assess the influence of metal modifications (Mn and Cu) on the acquisition of the nanozymatic activity by selected nanomaterials. An increase in manganese content in each material enhanced proteolytic activity (from 20 to 40 mUnit/mg for BG-Mn), while higher copper addition in glassy materials increased activity by 40%. Glassy materials exhibited approximately twice the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical activity (around 40 μmol/mL) compared to that of oxide materials. The proteolytic and antioxidant activities discussed in the study can be considered indicators for evaluating the enzymatic properties of the nanomaterials. Observations conducted on nanomaterials may aid in the development of materials with enhanced catalytic efficiency and a wide range of applications.
Collapse
Affiliation(s)
- Julia Matysik
- Faculty of Chemical Engineering and Technology, Institute of Chemistry and Inorganic Technology, Cracow University of Technology, Warszawska St. 24, Cracow 31-155, Poland
| | - Olga Długosz
- Faculty of Chemical Engineering and Technology, Institute of Chemistry and Inorganic Technology, Cracow University of Technology, Warszawska St. 24, Cracow 31-155, Poland
| | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Institute of Chemistry and Inorganic Technology, Cracow University of Technology, Warszawska St. 24, Cracow 31-155, Poland
| |
Collapse
|
118
|
Liu C, Zhang W, Zhang H, Zhao C, Du X, Ren J, Qu X. Biomimetic engineering of a neuroinflammation-targeted MOF nanozyme scaffolded with photo-trigger released CO for the treatment of Alzheimer's disease. Chem Sci 2024; 15:13201-13208. [PMID: 39183930 PMCID: PMC11339965 DOI: 10.1039/d4sc02598a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most fatal and irreversible neurodegenerative diseases, which causes a huge emotional and financial burden on families and society. Despite the progress made with recent clinical use of inhibitors of acetylcholinesterase and amyloid-β (Aβ) antibodies, the curative effects of AD treatment remain unsatisfactory, which is probably due to the complexity of pathogenesis and the multiplicity of therapeutic targets. Thus, modulating complex pathological networks could be an alternative approach to treat AD. Here, a neutrophil membrane-coated MOF nanozyme (denoted as Neu-MOF/Fla) is biomimetically engineered to disturb the malignant Aβ deposition-inflammation cycle and ameliorate the pathological network for effective AD treatment. Neu-MOF/Fla could recognize the pathological inflammatory signals of AD, and deliver the photo-triggered anti-inflammatory CO and MOF based hydrolytic nanozymes to the lesion area of the brain in a spontaneous manner. Based on the in vitro and in vivo studies, Neu-MOF/Fla significantly suppresses neuroinflammation, mitigates the Aβ burden, beneficially modulates the pro-inflammatory microglial phenotypes and improves the cognitive defects of AD mice models. Our work presents a good example for developing biomimetic multifunctional nanotherapeutics against AD by means of amelioration of multiple symptoms and improvement of cognitive defects.
Collapse
Affiliation(s)
- Chun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Haochen Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University Shenzhen 518060 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
119
|
Xiao R, Liu J, Shi L, Zhang T, Liu J, Qiu S, Ruiz M, Dupuis J, Zhu L, Wang L, Wang Z, Hu Q. Au-modified ceria nanozyme prevents and treats hypoxia-induced pulmonary hypertension with greatly improved enzymatic activity and safety. J Nanobiotechnology 2024; 22:492. [PMID: 39160624 PMCID: PMC11331617 DOI: 10.1186/s12951-024-02738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Despite recent advances the prognosis of pulmonary hypertension remains poor and warrants novel therapeutic options. Extensive studies, including ours, have revealed that hypoxia-induced pulmonary hypertension is associated with high oxidative stress. Cerium oxide nanozyme or nanoparticles (CeNPs) have displayed catalytic activity mimicking both catalase and superoxide dismutase functions and have been widely used as an anti-oxidative stress approach. However, whether CeNPs can attenuate hypoxia-induced pulmonary vascular oxidative stress and pulmonary hypertension is unknown. RESULTS In this study, we designed a new ceria nanozyme or nanoparticle (AuCeNPs) exhibiting enhanced enzyme activity. The AuCeNPs significantly blunted the increase of reactive oxygen species and intracellular calcium concentration while limiting proliferation of pulmonary artery smooth muscle cells and pulmonary vasoconstriction in a model of hypoxia-induced pulmonary hypertension. In addition, the inhalation of nebulized AuCeNPs, but not CeNPs, not only prevented but also blunted hypoxia-induced pulmonary hypertension in rats. The benefits of AuCeNPs were associated with limited increase of intracellular calcium concentration as well as enhancement of extracellular calcium-sensing receptor (CaSR) activity and expression in rat pulmonary artery smooth muscle cells. Nebulised AuCeNPs showed a favorable safety profile, systemic arterial pressure, liver and kidney function, plasma Ca2+ level, and blood biochemical parameters were not affected. CONCLUSION We conclude that AuCeNPs is an improved reactive oxygen species scavenger that effectively prevents and treats hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Jie Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Shuyi Qiu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of medicine, Université de Montréal, Montréal, Québec, Canada
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| |
Collapse
|
120
|
Liu R, Zhou T, Li X, Zou Q, Yu J, Ye J, Wang W, Zhou Y, Sun SK. A Non-Metallic Nanozyme Ameliorates Pulmonary Hypertension Through Inhibiting ROS/TGF-β1 Signaling. Adv Healthc Mater 2024:e2401909. [PMID: 39155419 DOI: 10.1002/adhm.202401909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Pulmonary hypertension (PH) is a life-threatening cardiovascular disease with a lack of effective treatment options. Nanozymes, though promising for PH therapy, pose safety risks due to their metallic nature. Here, a non-metallic nanozyme is reported for the treatment of monocrotaline (MCT)-induced PH with a therapeutic mechanism involving the ROS/TGF-β1 signaling. The synthesized melanin-polyvinylpyrrolidone-polyethylene glycol (MPP) nanoparticles showcase ultra-small size, excellent water solubility, high biocompatibility, and remarkable antioxidant capacity. The MPP nanoparticles are capable of effectively eliminating ROS in isolated pulmonary artery smooth muscle cells (PASMCs) from PH rats, and significantly reduce PASMC proliferation and migration. In vivo results from a PH model demonstrate that MPP nanoparticles significantly increase pulmonary artery acceleration time, decrease wall thickening and PCNA expression in lung tissues, as evidenced by echocardiograpy, histology and immunoblot analysis. Additionally, MPP nanoparticles treatment improve running capacity, decrease Fulton index, and attenuate right ventricular fibrosis in MCT-PH rats by using treadmill test, picrosirius red, and trichrome Masson staining. Further transcriptomic and biochemical analyses reveal that inhibiting ROS-driven activation of TGF-β1 in the PA is the mechanism by which MPP nanoparticles exert their therapeutic effect. This study provides a novel approach for treating PH with non-metallic nanozymes based on a well-understood mechanism.
Collapse
Affiliation(s)
- Ruxia Liu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Ting Zhou
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
- Department of CT, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, 710068, China
| | - Xinsheng Li
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Quan Zou
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jiaojiao Yu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jingjing Ye
- Trauma Treatment Center, Peking University People's Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, China
| | - Wenhui Wang
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yan Zhou
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| |
Collapse
|
121
|
Liao Y, He Y, Zhang B, Ma Y, Zhao M, Xu R, Cui H. Preparation of hollow double-layer Pt@CeO 2 nanospheres as oxidase mimetics for the colorimetric-fluorescent-SERS triple-mode detection of glutathione in serum. Talanta 2024; 276:126234. [PMID: 38749161 DOI: 10.1016/j.talanta.2024.126234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/06/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Glutathione (GSH) is an essential antioxidant in the human body, but its detection is difficult due to the interference of complex components in serum. Herein, hollow double-layer Pt@CeO2 nanospheres were developed as oxidase mimetics, and the light-assisted oxidase mimetics effects were found. The oxidase activity was enhanced significantly by utilizing the synergistic effect of Schottky junction and the localized surface plasmon resonance (LSPR) of Pt under UV light. A novel GSH colorimetric-fluorescent-SERS sensing platform was established, with the sensing performance notably boosted by using the light-assisted oxidase mimetics effects. This platform boasts an exceptionally low detection limit (LOD) of 0.084 μM, while the detection time was shortened from 10 min to just 2 min. The anti-interference detection with high recovery rate (96.84%-107.4 %) in real serum made it be promising for practical application.
Collapse
Affiliation(s)
- Yiquan Liao
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Yichang He
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Bin Zhang
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Ye Ma
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Minggang Zhao
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China.
| | - Ruiqi Xu
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Hongzhi Cui
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| |
Collapse
|
122
|
Zheng JJ, Zhu F, Song N, Deng F, Chen Q, Chen C, He J, Gao X, Liang M. Optimizing the standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc 2024:10.1038/s41596-024-01034-7. [PMID: 39147983 DOI: 10.1038/s41596-024-01034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 08/17/2024]
Abstract
Nanozymes are nanomaterials with enzyme-like catalytic properties. They are attractive reagents because they do not have the same limitations of natural enzymes (e.g., high cost, low stability and difficult storage). To test, optimize and compare nanozymes, it is important to establish fundamental principles and systematic standards to fully characterize their catalytic performance. Our 2018 protocol describes how to characterize the catalytic activity and kinetics of peroxidase nanozymes, the most widely used type of nanozyme. This approach was based on Michaelis-Menten enzyme kinetics and is now updated to take into account the unique physicochemical properties of nanomaterials that determine the catalytic kinetics of nanozymes. The updated procedure describes how to determine the number of active sites as well as other physicochemical properties such as surface area, shape and size. It also outlines how to calculate the hydroxyl adsorption energy from the crystal structure using the density functional theory method. The calculations now incorporate these measurements and computations to better characterize the catalytic kinetics of peroxidase nanozymes that have different shapes, sizes and compositions. This updated protocol better describes the catalytic performance of nanozymes and benefits the development of nanozyme research since further nanozyme development requires precise control of activity by engineering the electronic, geometric structure and atomic configuration of the catalytic sites of nanozymes. The characterization of the catalytic activity of peroxidase nanozymes and the evaluation of their kinetics can be performed in 4 h. The procedure is suitable for users with expertise in nano- and materials technology.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Feiyan Zhu
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Fang Deng
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Qi Chen
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Chen Chen
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiuyang He
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
123
|
Duan J, Xia S, Sang X, Chen Y, Wei H, Nie J, Xu G, Yuan Y, Niu W. A colorimetric sensor for rapid discrimination of tea polyphenols and tea authentication based on Rh-decorated Pd nanocubes with high peroxidase-like activity. Talanta 2024; 276:126209. [PMID: 38728802 DOI: 10.1016/j.talanta.2024.126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The rapid development of nanozymes has offered substantial opportunities for the fields of biomedicine, chemical sensing, and food safety. Among these applications, multichannel sensors, with the capability of simultaneously detecting multiple target analytes, hold promise for the practical application of nanozymes in chemical sensing with high detection efficiency. In this study, Rh-decorated Pd nanocubes (Pd-Rh nanocubes) with significantly enhanced peroxidase-like activity are synthesized through the mediation of underpotential deposition (UPD) and subsequently employed to develop a multichannel colorimetric sensor for discriminating tea polyphenols (TPs) and tea authentication. Based on a single reactive unit of efficient catalytic oxidation of 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB), the nanozyme-based multichannel colorimetric sensor responds to each analyte in as short as 1 min. With the aid of principal component analysis (PCA) and hierarchical cluster analysis (HCA), various TPs and types of tea can be accurately identified. This work not only provides a new type of simply structured and highly active nanozymes but also develops a concise and rapid multichannel sensor for practical application in tea authentication and quality inspection.
Collapse
Affiliation(s)
- Jin Duan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Xueqing Sang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, PR China
| | - Yuxin Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Haili Wei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, PR China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, PR China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
124
|
Jacob E, Mathew D, Benny L, Varghese A. Emerging Nanomaterials as Versatile Nanozymes: A New Dimension in Biomedical Research. Top Curr Chem (Cham) 2024; 382:28. [PMID: 39141170 DOI: 10.1007/s41061-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
The enzyme-mimicking nature of versatile nanomaterials proposes a new class of materials categorized as nano-enzymes, ornanozymes. They are artificial enzymes fabricated by functionalizing nanomaterials to generate active sites that can mimic enzyme-like functions. Materials extend from metals and oxides to inorganic nanoparticles possessing intrinsic enzyme-like properties. High cost, low stability, difficulty in separation, reusability, and storage issues of natural enzymes can be well addressed by nanozymes. Since 2007, more than 100 nanozymes have been reported that mimic enzymes like peroxidase, oxidase, catalase, protease, nuclease, hydrolase, superoxide dismutase, etc. In addition, several nanozymes can also exhibit multi-enzyme properties. Vast applications have been reported by exploiting the chemical, optical, and physiochemical properties offered by nanozymes. This review focuses on the reported nanozymes fabricated from a variety of materials along with their enzyme-mimicking activity involving tuning of materials such as metal nanoparticles (NPs), metal-oxide NPs, metal-organic framework (MOF), covalent organic framework (COF), and carbon-based NPs. Furthermore, diverse applications of nanozymes in biomedical research are discussed in detail.
Collapse
Affiliation(s)
- Evin Jacob
- Department of Chemistry, Christ University, Hosur Road, Bengaluru, 560029, India
| | - Denno Mathew
- Department of Chemistry, Christ University, Hosur Road, Bengaluru, 560029, India
| | - Libina Benny
- Department of Chemistry, Christ University, Hosur Road, Bengaluru, 560029, India
| | - Anitha Varghese
- Department of Chemistry, Christ University, Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
125
|
Tian Q, Li S, Tang Z, Zhang Z, Du D, Zhang X, Niu X, Lin Y. Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges. Adv Healthc Mater 2024:e2401630. [PMID: 39139016 DOI: 10.1002/adhm.202401630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
As nanoscale materials with the function of catalyzing substrates through enzymatic kinetics, nanozymes are regarded as potential alternatives to natural enzymes. Compared to protein-based enzymes, nanozymes exhibit attractive characteristics of low preparation cost, robust activity, flexible performance adjustment, and versatile functionalization. These advantages endow them with wide use from biochemical sensing and environmental remediation to medical theranostics. Especially in biomedical diagnosis, the feature of catalytic signal amplification provided by nanozymes makes them function as emerging labels for the detection of biomarkers and diseases, with rapid developments observed in recent years. To provide a comprehensive overview of recent progress made in this dynamic field, here an overview of biomedical diagnosis enabled by nanozymes is provided. This review first summarizes the synthesis of nanozyme materials and then discusses the main strategies applied to enhance their catalytic activity and specificity. Subsequently, representative utilization of nanozymes combined with biological elements in disease diagnosis is reviewed, including the detection of biomarkers related to metabolic, cardiovascular, nervous, and digestive diseases as well as cancers. Finally, some development trends in nanozyme-enabled biomedical diagnosis are highlighted, and corresponding challenges are also pointed out, aiming to inspire future efforts to further advance this promising field.
Collapse
Affiliation(s)
- Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shu Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Ziyu Zhang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiao Zhang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
126
|
Shaheen A, Dhanagar A. Gemini Surfactant-Induced Cysteine-Capped Copper Nanoclusters Self-Assembly with Enhanced Peroxidase-Like Activity and Colorimetric Glutathione Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16909-16920. [PMID: 39087886 DOI: 10.1021/acs.langmuir.4c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We have prepared a novel assembly with copper nanoclusters (CuNCs) and imidazolium-based gemini surfactants (different chain lengths). These novel mimic enzymes formed through the assembly of nanocluster-gemini surfactants have been utilized in creating colorimetric sensors to detect biomolecules. Yet, understanding the method for detecting glutathione (GSH) and its sensing mechanism using this specific assembly-based colorimetric sensor poses a significant challenge. Because of the role of surface ligands, the complexes of cysteine-capped CuNCs (Cys-CuNCs) and gemini surfactants exhibit strong amphiphilicity, enabling them to self-assemble like a molecular amphiphile. We have investigated the kinetics and catalytic capabilities of this Cys-CuNCs@gemini surfactant assembly through peroxidase-like activity. Additionally, a sensitive and simple-to-use colorimetric sensing approach for glutathione (GSH) is also disclosed here, demonstrating a low limit of detection, by using this peroxidase-like activity of Cys-CuNCs@gemini surfactant assemblies. Thus, the remarkable advantages of the Cys-CuNCs@gemini surfactant nanozyme make it suitable for the precise colorimetric detection of GSH, demonstrating excellent sensitivity and reliable selectivity. Additionally, it performs well in detecting GSH in various soft drinks.
Collapse
Affiliation(s)
- Arifa Shaheen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Arun Dhanagar
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
127
|
Nie L, Zhang H, Kong W, Kong RM, Zhang ES, Li J, Zhao Y, Qu F. Integrating a Copper-Histidine Brace in a Mimetic Nanozyme Streamlines the Tyrosinase Recognition Moiety to Achieve Chiral Differentiation. Anal Chem 2024; 96:13158-13165. [PMID: 39078164 DOI: 10.1021/acs.analchem.4c01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Designing artificial mimetic enzymes with high activity/selectivity to replace chiral bioenzymes is of great interest in the development of chiral materials consisting of molecules, enantiomers, that exist in two forms as mirror images of one another but cannot be superimposed. In this study, the chiral catalytic structural unit was streamlined from tyrosinase to integrate a mimetic nanozyme. The chiral amino acid l-histidine, as the chiral binding/recognition site, and the active metal site Cu were coupled (Cu@l-His) to create a copper-histidine brace with enantioselective catalytic ability to tyrosinol enantiomers. Results of kinetic parameters and activation energies confirmed the excellent peroxidase-like activity with a preference of Cu@l-His to l-tyrosinol. Such a preference could be attributed to the structurally oriented copper-histidine brace with a stronger affinity and catalytic activity to l-tyrosinol. By accurately evaluating chiral recognition units derived from bioenzymes, stable and superior chiral mimetic nanoenzymes could be constructed in a more straightforward and simplified manner, and they could also be extended to the reconstruction of diverse chiral enzymes.
Collapse
Affiliation(s)
- Lingyu Nie
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Hui Zhang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Weiheng Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Rong-Mei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - En-Sheng Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jin Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yan Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Fengli Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
128
|
Wei S, Ma W, Sun M, Xiang P, Tian Z, Mao L, Gao L, Li Y. Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity. Nat Commun 2024; 15:6888. [PMID: 39134525 PMCID: PMC11319669 DOI: 10.1038/s41467-024-51022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N4 sites as catalytic sites and Zn-N4Cl1 sites as catalytic regulator. The Zn-N4Cl1 catalytic regulators effectively boost the peroxidase-like activities of Zn-N4 catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N4Cl1 catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N4Cl1 catalytic regulators facilitate the adsorption of *H2O2 and re-exposure of Zn-N4 catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.
Collapse
Affiliation(s)
- Shengjie Wei
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Minmin Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Pan Xiang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
129
|
Li H, Sun D, Zhao Z, Fang J, Li M, Lv C, Zhou W, Li N, Guo Y, Cao Z, Liu K, Chen X. Neutrophil membrane-derived nanoparticles protect traumatic brain injury via inhibiting calcium overload and scavenging ROS. J Nanobiotechnology 2024; 22:477. [PMID: 39135044 PMCID: PMC11320991 DOI: 10.1186/s12951-024-02753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
The secondary injury is more serious after traumatic brain injury (TBI) compared with primary injury. Release of excessive reactive oxygen species (ROS) and Ca2+ influx at the damaged site trigger the secondary injury. Herein, a neutrophil-like cell membrane-functionalized nanoparticle was developed to prevent ROS-associated secondary injury. NCM@MP was composed of three parts: (1) Differentiated neutrophil-like cell membrane (NCM) was synthesized, with inflammation-responsive ability to achieve effective targeting and to increase the retention time of Mn3O4 and nimodipine (MP) in deep injury brain tissue via C-X-C chemokine receptor type 4, integrin beta 1 and macrophage antigen-1. (2) Nimodipine was used to inhibit Ca2+ influx, eliminating the ROS at source. (3) Mn3O4 further eradicated the existing ROS. In addition, NCM@MP also exhibited desirable properties for T1 enhanced imaging and low toxicity which may serve as promising multifunctional nanoplatforms for precise therapies. In our study, NCM@MP obviously alleviated oxidative stress response, reduced neuroinflammation, protected blood-brain barrier integrity, relieved brain edema, promoted the regeneration of neurons, and improved the cognition of TBI mice. This study provides a promising TBI management to relieve the secondary spread of damage.
Collapse
Affiliation(s)
- Hongqing Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Duo Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhenghuan Zhao
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jingqin Fang
- Department of Ultrasound, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Muyao Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chaoqun Lv
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Weicheng Zhou
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ning Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhile Cao
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
130
|
Zhang T, Dong X, Gao X, Yang Y, Song W, Song J, Bi H, Guo Y, Song J. Applications of Metals and Metal Compounds in Improving the Sensitivity of Microfluidic Biosensors - A Review. Chemistry 2024; 30:e202400578. [PMID: 38801721 DOI: 10.1002/chem.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The enhancement of detection sensitivity in microfluidic sensors has been a continuously explored field. Initially, many strategies for sensitivity improvement involved introducing enzyme cascade reactions, but enzyme-based reactions posed challenges in terms of cost, stability, and storage. Therefore, there is an urgent need to explore enzyme-free cascade amplification methods, which are crucial for expanding the application range and improving detection stability. Metal or metal compound nanomaterials have gained great attention in the exploitation of microfluidic sensors due to their ease of preparation, storage, and lower cost. The unique physical properties of metallic nanomaterials, including surface plasmon resonance, surface-enhanced Raman scattering, metal-enhanced fluorescence, and surface-enhanced infrared absorption, contribute significantly to enhancing detection capabilities. The metal-based catalytic nanomaterials, exemplified by Fe3O4 nanoparticles and metal-organic frameworks, are considered viable alternatives to biological enzymes due to their excellent performance. Herein, we provide a detailed overview of the applications of metals and metal compounds in improving the sensitivity of microfluidic biosensors. This review not only highlights the current developments but also critically analyzes the challenges encountered in this field. Furthermore, it outlines potential directions for future research, contributing to the ongoing development of microfluidic biosensors with improved detection sensitivity.
Collapse
Affiliation(s)
- Taiyi Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xuezhen Dong
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Yujing Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Weidu Song
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Jike Song
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250353, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yurong Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, P. R. China
| |
Collapse
|
131
|
Cai Y, Wu Y, Tang Y, Xu W, Chen Y, Su R, Fan Y, Jiang W, Wen Y, Gu W, Sun H, Zhu C. In Situ Defect Engineering of Fe-MIL for Self-Enhanced Peroxidase-Like Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403354. [PMID: 39101616 DOI: 10.1002/smll.202403354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/07/2024] [Indexed: 08/06/2024]
Abstract
Defect engineering is an effective strategy to enhance the enzyme-like activity of nanozymes. However, previous efforts have primarily focused on introducing defects via de novo synthesis and post-synthetic treatment, overlooking the dynamic evolution of defects during the catalytic process involving highly reactive oxygen species. Herein, a defect-engineered metal-organic framework (MOF) nanozyme with mixed linkers is reported. Over twofold peroxidase (POD)-like activity enhancement compared with unmodified nanozyme highlights the critical role of in situ defect formation in enhancing the catalytic performance of nanozyme. Experimental results reveal that highly active hydroxyl radical (•OH) generated in the catalytic process etches the 2,5-dihydroxyterephthalic acid ligands, contributing to electronic structure modulation of metal sites and enlarged pore sizes in the framework. The self-enhanced POD-like activity induced by in situ defect engineering promotes the generation of •OH, holding promise in colorimetric sensing for detecting dichlorvos. Utilizing smartphone photography for RGB value extraction, the resultant sensing platform achieves the detection for dichlorvos ranging from 5 to 300 ng mL-1 with a low detection limit of 2.06 ng mL-1. This pioneering work in creating in situ defects in MOFs to improve catalytic activity offers a novel perspective on traditional defect engineering.
Collapse
Affiliation(s)
- Yujia Cai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yinjun Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yifei Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Rina Su
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yuexi Fan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenxuan Jiang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yating Wen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hongcheng Sun
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
132
|
Yan L, Zheng P, Wang Z, Wang W, Chen X, Liu Q. Multimodal biosensing systems based on metal nanoparticles. Analyst 2024; 149:4116-4134. [PMID: 39007333 DOI: 10.1039/d4an00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biosensors are currently among the most commonly used devices for analysing biomarkers and play an important role in environmental detection, food safety, and disease diagnosis. Researchers have developed multimodal biosensors instead of single-modal biosensors to meet increasing sensitivity, accuracy, and stability requirements. Metal nanoparticles (MNPs) are beneficial for preparing core probes for multimodal biosensors because of their excellent physical and chemical properties, such as easy regulation and modification, and because they can integrate diverse sensing strategies. This review mainly summarizes the excellent physicochemical properties of MNPs applied as biosensing probes and the principles of commonly used MNP-based multimodal sensing strategies. Recent applications and possible improvements of multimodal biosensors based on MNPs are also described, among which on-site inspection and sensitive detection are particularly important. The current challenges and prospects for multimodal biosensors based on MNPs may provide readers with a new perspective on this field.
Collapse
Affiliation(s)
- Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
133
|
Cheng T, Wu X, Qiu Y, Yuan B, Zhao C, Chen JL, Peng YK. Spatially Decoupled H 2O 2 Activation Pathways and Multi-Enzyme Activities in Rod-Shaped CeO 2 with Implications for Facet Distribution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401032. [PMID: 38618652 DOI: 10.1002/smll.202401032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/23/2024] [Indexed: 04/16/2024]
Abstract
CeO2, particularly in the shape of rod, has recently gained considerable attention for its ability to mimic peroxidase (POD) and haloperoxidase (HPO). However, this multi-enzyme activities unavoidably compete for H2O2 affecting its performance in relevant applications. The lack of consensus on facet distribution in rod-shaped CeO2 further complicates the establishment of structure-activity correlations, presenting challenges for progress in the field. In this study, the HPO-like activity of rod-shaped CeO2 is successfully enhanced while maintaining its POD-like activity through a facile post-calcination method. By studying the spatial distribution of these two activities and their exclusive H2O2 activation pathways on CeO2 surfaces, this study finds that the increased HPO-like activity originated from the newly exposed (111) surface at the tip of the shortened rods after calcination, while the unchanged POD-like activity is attributed to the retained (110) surface in their lateral area. These findings not only address facet distribution discrepancies commonly reported in the literature for rod-shaped CeO2 but also offer a simple approach to enhance its antibacterial performance. This work is expected to provide atomic insights into catalytic correlations and guide the design of nanozymes with improved activity and reaction specificity.
Collapse
Affiliation(s)
- Tianqi Cheng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Xinyu Wu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yuwei Qiu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Bo Yuan
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Chao Zhao
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Jian Lin Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, Hong Kong
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, Hong Kong
- City University of Hong Kong Chengdu Research Institute, Chengdu, China
| |
Collapse
|
134
|
Zhu Z, Wang X, Wang N, Zeng C, Zhang L, Fan J, Yang X, Li P, Yuan H, Feng Y, Huo S, Lu X. Raspberry-shaped ZIF-8/Au nanozymes with excellent peroxidase-like activity for simple and visual detection of glutathione. Anal Bioanal Chem 2024; 416:4417-4426. [PMID: 38864916 DOI: 10.1007/s00216-024-05378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Artificial enzymes with high stability, adjustable catalytic activity, controllable preparation, and good reproducibility have been widely studied. Noble metal nanozymes, particularly gold nanoparticles (Au NPs), exhibit good catalytic activity, but their stability is poor. In this study, zeolitic imidazolate framework-8 (ZIF-8) was used as a carrier for Au NPs, thus improving the utilization efficiency and conservation stability of the nanozymes. A ZIF-8/Au nanocomposite with peroxidase activity and a raspberry-shaped structure was synthesized. In the assay, ZIF-8/Au catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to a blue product oxidized TMB (oxTMB). Glutathione (GSH) selectively inhibited this reaction, with a detection limit of 0.28 µM and linear range of 0.5-60 µM. Using the photo and chromaticity analysis functions, we developed a portable analysis method using a smartphone equipped with a camera module as a detection terminal for a wide range of rapid screening techniques for GSH. Preparation of raspberry-shaped ZIF-8/Au improved the catalytic activity of Au NPs and good results were demonstrated in serum, which suggests their promising application under physiological conditions.
Collapse
Affiliation(s)
- Zhentong Zhu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China.
| | - Xiaoli Wang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Na Wang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Chaoqin Zeng
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Jiamin Fan
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Xin Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Peizhe Li
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Hongxia Yuan
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, 730070, People's Republic of China
| | - Yanjun Feng
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Shuhui Huo
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
135
|
Khorasani ME, Darroudi M, Bastami TR, Mahmoudi V. Sonochemical synthesis of graphene oxide-Ag 2O nanozyme as an oxidize-like mimic for the highly sensitive detection of lithium in blood serum. ULTRASONICS SONOCHEMISTRY 2024; 108:106960. [PMID: 38908076 PMCID: PMC11253722 DOI: 10.1016/j.ultsonch.2024.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
Bipolar disorder is commonly treated with lithium carbonate. The concentration of lithium in the blood serum should be closely monitored in patients who require long-term lithium therapy. To date, no colorimetric method of detecting lithium ions has been reported using nanosensors. We have developed a novel chemosensor based on nanozyme (NZ) to address this clinical need. The GO-Ag2O NZs were synthesized by a sonochemical method and used as a colorimetric nanosensor to detect lithium ions in human blood serum (Li (I)). To characterize NZs, various techniques were employed, including XRD, FTIR, TEM, FESEM, EDX, Raman spectroscopy, BET, DLS, Zeta potential, and ICP-OES. According to TEM and FESEM images of GO-Ag2O, the nanoparticles (NPs) of Ag2O are uniformly distributed on the surface of 2D graphene oxide sheets. In addition, silver oxide nanoparticles exhibited a cubic morphology with an average size of 3.5 nm. We have examined the performance of the NZs in an aqueous medium and in human blood serum that contains Li (I). A colorimetric test revealed that NZs synthesized in the presence of ultrasound were more sensitive to Li (I). According to the linearity of the calibration curves' ranges, Li (I) has a limit of detection (LOD) of 0.01 µg/mL. Furthermore, it displayed a linear range between 0 and 12 µg/mL. GO-Ag2O NZs showed noticeable color changes from green to orange after exposure to Li (I). An incubation time of two minutes was found to be the most effective for sensing. This innovative approach provides a reliable method for monitoring lithium levels and ensuring patient safety during long-term lithium therapy for bipolar disorder.
Collapse
Affiliation(s)
- Maryam Entezari Khorasani
- Department of Chemical Engineering, Faculty of Advanced Technology, Quchan University of Technology, 94771-77870 Quchan, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Rohani Bastami
- Department of Chemical Engineering, Faculty of Advanced Technology, Quchan University of Technology, 94771-77870 Quchan, Iran.
| | - Vahid Mahmoudi
- Department of Chemical Engineering, Faculty of Engineering, University of Gonabad, Gonabad, Iran.
| |
Collapse
|
136
|
Zhang J, Guo M, He Q, Zhang Z, Wu B, Wu H, Li R, Zhang Q, Tang Y, Lin Y, Jin Y. Precise Control of Metal Active Sites of Metal-Organic Framework Nanozymes for Achieving Excellent Enzyme-Like Activity and Efficient Pancreatitis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310675. [PMID: 38488710 DOI: 10.1002/smll.202310675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/28/2024] [Indexed: 08/09/2024]
Abstract
Acute pancreatitis (AP) is a potentially life-threatening inflammatory disease that can lead to the development of systemic inflammatory response syndrome and its progression to severe acute pancreatitis. Hence, there is an urgent need for the rational design of highly efficient antioxidants to treat AP. Herein, an optimized Cu-based metal-organic framework (MOF) nanozyme with exceptional antioxidant activity is introduced, designed to effectively alleviate AP, by engineering the metal coordination centers in MN2Cl2 (M = Co, Ni, Cu). Specifically, the Cu MOF, which benefits from a Cu active center similar to that of natural superoxide dismutase (SOD), exhibited at least four times higher SOD-like activity than the Ni/Co MOF. Theoretical analyses further demonstrate that the CuN2Cl2 site not only has a moderate adsorption effect on the substrate molecule •OOH but also reduces the dissociation energy of the product H2O2. Additionally, the Cu MOF nanozyme possesses the excellent catalase-like activity and •OH removal ability. Consequently, the Cu MOF with broad-spectrum antioxidant activity can efficiently scavenge reactive oxygen species to alleviate arginine-induced AP. More importantly, it can also mitigate apoptosis and necrosis of acinar cells by activating the PINK1/PARK2-mediated mitophagy pathway. This study highlights the distinctive functions of tunable MOF nanozymes and their potential bio-applications.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Meilin Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Qikuan He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Boda Wu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Hongji Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Rizhao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Qiyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Yonghua Tang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuepeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| |
Collapse
|
137
|
Han Q, Huang D, Li S, Xia B, Wang X. Multifunctional nanozymes for disease diagnosis and therapy. Biomed J 2024; 47:100699. [PMID: 38278414 PMCID: PMC11344012 DOI: 10.1016/j.bj.2024.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
The development of nanotechnology has brought about groundbreaking advancements in diseases' diagnostics and therapeutics. Among them, multifunctional nanomaterials with enzyme-like activities (i.e., nanozymes) featured with high stability, large surface area for bioconjugation, and easy storage, offer unprecedented opportunities for disease diagnostics and treatment. Recent years have witnessed the great progress of nanozyme-based theranostics. To highlight these achievements, this review first introduces the recent advancements on nanozymes in biosensing and diagnostics. Then, it summarizes the applications of nanozymes in therapeutics including anti-tumor and antibacterial treatment, anti-inflammatory treatment, and other diseases treatment. In addition, several targeted strategies to improve the therapeutic efficacy of nanozyme are discussed. Finally, the opportunities and challenges in the field of diagnosis and therapy are summarized.
Collapse
Affiliation(s)
- Qingzhi Han
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China
| | - Di Huang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China
| | - Sijie Li
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China
| | - Bing Xia
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China.
| | - Xiaoyu Wang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
138
|
Yuan Y, Chen B, An X, Guo Z, Liu X, Lu H, Hu F, Chen Z, Guo C, Li CM. MOFs-Based Magnetic Nanozyme to Boost Cascade ROS Accumulation for Augmented Tumor Ferroptosis. Adv Healthc Mater 2024; 13:e2304591. [PMID: 38528711 DOI: 10.1002/adhm.202304591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/16/2024] [Indexed: 03/27/2024]
Abstract
The emerging cell death modality of ferroptosis has garnered increasing attention for antitumor treatment but still suffers from low therapeutic efficacy. A metal-organic frameworks (MOFs)-based magnetic nanozyme (PZFH) comprising porphyrin-based Zr-MOF (PCN) on zinc ferrite (ZF) nanoparticles modified with hyaluronic acid, delivering excellent magnetophotonic response for efficient ferroptosis, is reported here. PZFH shows multienzyme-like cascade activity encompassing a photon-triggered oxidase-like catalysis to generate O2 -, which is converted to H2O2 by superoxide dismutase-like activity and subsequent ·OH by magneto-promoted peroxidase (POD) behavior. Newly formed Fe─N coordination and increased Fe2+/Fe3+ levels in the PZFH contribute to the enhanced POD activity, which is further enhanced by accelerated surface electron transfer when exposure to alternated magnetic field. Accumulation of lipid peroxides is eventually accomplished through the conversion of ·OH radicals and singlet oxygen (1O2) produced through laser irradiation. When combined with the depletion of inhibition of glutathione and glutathione peroxidase 4, PZFH exhibits significantly enhanced ferroptosis in tumor-bearing mice, offering insights into nanomedicine for ferroptosis and holding great promise in clinical antitumor therapies.
Collapse
Affiliation(s)
- Ying Yuan
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Xingxing An
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Zhanhang Guo
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xin Liu
- The Third School of Clinical Medical, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, P. R. China
| | - Hao Lu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Fangxin Hu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Zhigang Chen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| |
Collapse
|
139
|
Gao S, He X, Liu H, Liu Y, Wang H, Zhou Z, Chen L, Ji X, Yang R, Xie J. Multifunctional Bioactive Nanozyme Systems for Enhanced Diabetic Wound Healing. Adv Healthc Mater 2024:e2401580. [PMID: 39077928 DOI: 10.1002/adhm.202401580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Indexed: 07/31/2024]
Abstract
The protracted transition from inflammation to proliferation in diabetic wound healing poses significant challenges, exacerbated by persistent inflammatory responses and inadequate vascularization. To address these issues, a novel nanozymatic therapeutic approach utilizing asymmetrically structured MnO₂-Au-mSiO₂@aFGF Janus nanoparticles is engineered. Nanozymes featuring a mSiO₂ head and MnO₂ extensions, into which acidic fibroblast growth factor (aFGF) is encapsulated, resulting in MnO₂-Au-mSiO₂@aFGF Janus nanoparticles (mSAM@aFGF), are synthesized. This nanozyme system effectively emulates enzymatic activities of catalase (CAT) and superoxide dismutase (SOD), catalyzing degradation of reactive oxygen species (ROS) and generating oxygen. In addition, controlled release of aFGF fosters tissue regeneration and vascularization. In vitro studies demonstrate that mSAM@aFGF significantly alleviates oxidative stress in cells, and enhances cell proliferation, migration, and angiogenesis. An injectable hydrogel based on photocrosslinked hyaluronic acid (HAMA), incorporating the nanozymatic ROS-scavenging and growth factor-releasing system, is developed. The HAMA-mSAM@aFGF hydrogel exhibits multifaceted benefits in a diabetic wound model, including injectability, wound adhesion, hemostasis, anti-inflammatory effects, macrophage polarization from M1 to M2 phenotype, and promotion of vascularization. These attributes underscore the potential of this system to facilitate transition from chronic inflammation to the proliferative phase of wound repair, offering a promising therapeutic strategy for diabetic wound management.
Collapse
Affiliation(s)
- Suyue Gao
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xuefeng He
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hengdeng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yiling Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hanwen Wang
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Ziheng Zhou
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Lei Chen
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
140
|
Liu Y, Liu G, Chen L, Hong S. Designing Fe8-N2 Catalytic Sites of Nitrogen-Doped Iron-Based Nanoparticles with Oxidase-Like Activity: Characterization, Calculation and Application. CHEMSUSCHEM 2024:e202400252. [PMID: 39078603 DOI: 10.1002/cssc.202400252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/07/2024] [Indexed: 07/31/2024]
Abstract
Designing metal nanoparticles with oxidase-mimicking capabilities has garnered significant attention due to their promising attributes. However, understanding the intricate catalytic mechanisms underlying these nanoparticles poses a formidable challenge. In this study, a straightforward pyrolysis procedure was employed to synthesize nitrogen-doped iron-based nanoparticles (Fe NPs-N@C) with Fe8-N2 serving as active sites. The confirmation of these sites was thoroughly confirmed through density functional theory (DFT) calculations complemented by experimental validation. The resulting Fe NPs-N@C nanoparticles, averaging 5.45 nm in size, exhibited excellent oxidase-mimicking activity, with vmax=1.11×10-7 M s-1and km=1.67 mM, employing 3,3',5,5'-tetramethylbenzidine as a substrate. The oxidation pathway and catalytic mechanism of Fe NPs-N@C involved 1O2⋅ radicals, validated through electron paramagnetic resonance analysis and DFT calculations. Furthermore, Fe NPs-N@C/TMB system was devised for ascorbic acid and nitrite quantitative detection. This method demonstrated the capability to detect ascorbic acid within concentrations ranging from 1 to 55 μM, with a limit of detection (LOD) of 0.81 μM, and nitrite within concentrations from 1 to 160 μM, with a LOD value of 0.45 μM. These findings offer a comprehensive understanding of the catalytic mechanisms of Fe NPs-N@C nanoparticles at the atomic level, along with its potential for colorimetric sensor in future.
Collapse
Affiliation(s)
- Yun Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guijiang Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lichuan Chen
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Song Hong
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
141
|
Qin J, Guo N, Yang J, Wei J. Recent advances in metal oxide nanozyme-based optical biosensors for food safety assays. Food Chem 2024; 447:139019. [PMID: 38520903 DOI: 10.1016/j.foodchem.2024.139019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Metal oxide nanozymes are emerging as promising materials for food safety detection, offering several advantages over natural enzymes, including superior stability, cost-effectiveness, large-scale production capability, customisable functionality, design options, and ease of modification. Optical biosensors based on metal oxide nanozymes have significantly accelerated the advancement of analytical research, facilitating the rapid, effortless, efficient, and precise detection and characterisation of contaminants in food. However, few reviews have focused on the application of optical biosensors based on metal oxide nanozymes for food safety detection. In this review, the catalytic mechanisms of the catalase, oxidase, peroxidase, and superoxide dismutase activities of metal oxide nanozymes are characterized. Research developments in optical biosensors based on metal oxide nanozymes, including colorimetric, fluorescent, chemiluminescent, and surface-enhanced Raman scattering biosensors, are comprehensively summarized. The application of metal oxide nanozyme-based biosensors for the detection of nitrites, sulphites, metal ions, pesticides, antibiotics, antioxidants, foodborne pathogens, toxins, and other food contaminants has been highlighted. Furthermore, the challenges and future development prospects of metal oxide nanozymes for sensing applications are discussed. This review offers insights and inspiration for further investigations on optical biosensors based on metal oxide nanozymes for food safety detection.
Collapse
Affiliation(s)
- Jing Qin
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China.
| | - Ningning Guo
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Jia Yang
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Jing Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Analytical Chemistry and Instrument for Life Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
142
|
Fan X, Zhai S, Xue S, Zhi L. Enzyme Immobilization using Covalent Organic Frameworks: From Synthetic Strategy to COFs Functional Role. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39072501 DOI: 10.1021/acsami.4c06556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Enzymes, a class of biocatalysts, exhibit remarkable catalytic efficiency, specificity, and selectivity, governing many reactions that are essential for various cascades within living cells. The immobilization of structurally flexible enzymes on appropriate supports holds significant importance in facilitating biomimetic transformations in extracellular environments. Covalent organic frameworks (COFs) have emerged as ideal candidates for enzyme immobilization due to high surface tunability, diverse chemical/structural designs, exceptional stability, and metal-free nature. Various immobilization techniques have been proposed to fabricate COF-enzyme biocomposites, offering significant enhancements in activity and reusability for COF-immobilized enzymes as well as new insights into developing advanced enzyme-based applications. In this review, we provide a comprehensive overview of state-of-the-art strategies for immobilizing enzymes within COFs by focusing on their applicability and versatility. These strategies are systematically summarized and compared by categorizing them into postsynthesis immobilization and in situ immobilization, where their respective strengths and limitations are thoroughly discussed. Combined with an overview of critical emerging applications, we further elucidate the multifaceted roles of COFs in enzyme immobilization and subsequent applications, highlighting the advanced biofunctionality achievable through COFs.
Collapse
Affiliation(s)
- Xiying Fan
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Shibo Zhai
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Song Xue
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Linjie Zhi
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
143
|
Lin FL, Guo XY, Shen HR, Guo XM, Dai Y, Zheng QH, Chen JC, Xu QX, Zhang Y, He SB, Chen W. Laminarin-modulated osmium nanozymes with high substrate-affinity and selective peroxidase-like behavior engineered colorimetric assay for hydroxyl radical scavenging capacity estimation. Mikrochim Acta 2024; 191:488. [PMID: 39066796 DOI: 10.1007/s00604-024-06571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Hydroxyl radical (·OH) scavenging capacity (HOSC) estimation is essential for evaluating antioxidants, natural extracts, or drugs against clinical diseases. While nanozymes offer advantages in related applications, they still face limitations in activity and selectivity. In response, this work showcases the fabrication of laminarin-modulated osmium (laminarin-Os) nanoclusters (1.45 ± 0.05 nm), functioning as peroxidase-like nanozymes within a colorimetric assay tailored for rational HOSC estimation. This study validates both the characterization and remarkable stability of laminarin-Os. By leveraging the abundant surface negative charges of laminarin-Os and the surface hydroxyls of laminarin, oxidation reactions are facilitated, augmenting laminarin-Os's affinity for 3,3',5,5'-tetramethylbenzidine (TMB) (KM = 0.04 mM). This enables the laminarin-Os-based colorimetric assay to respond to ·OH more effectively than citrate-, albumin-, or other polysaccharides-based Os. In addition, experimental results also validate the selective peroxidase-like behavior of laminarin-Os under acidic conditions. Antioxidants like ascorbic acid, glutathione, tannic acid, and cysteine inhibit absorbance at 652 nm in the colorimetric platform using laminarin-Os's peroxidase-like activity. Compared with commercial kits, this assay demonstrates superior sensitivity (e.g., responds to ascorbic acid 0.01-0.075 mM, glutathione 1-15 µg/mL, tannic acid 0.5-5 µM, and monoammonium glycyrrhizinate cysteine 1.06-10.63 µM) and HOSC testing for glutathione, tannic acid, and monoammonium glycyrrhizinate cysteine. Overall, this study introduces a novel Os nanozyme with exceptional TMB affinity and ·OH selectivity, paving the way for HOSC estimation in biomedical research, pharmaceutical analysis, drug quality control, and beyond.
Collapse
Affiliation(s)
- Feng-Lin Lin
- Department of Pharmacy, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, China
| | - Xiao-Yun Guo
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Huan-Ran Shen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Xiu-Mei Guo
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yun Dai
- Department of Pharmacy, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, China
| | - Qiong-Hua Zheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Jin-Cheng Chen
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Qiu-Xia Xu
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yin Zhang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Shao-Bin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
144
|
Jiang M, Xu Z, Li L, Li M, He G, Zhang W. Fe/Cu MOFs of Fe 2+-rich and Cu-doping via in situ reduction as nanozyme for peroxidase-like catalycity enhancement. Mikrochim Acta 2024; 191:478. [PMID: 39039252 DOI: 10.1007/s00604-024-06562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Fe-MOFs of mixed valence was synthesized by a solvothermal method via the in-situ reduction of ethylene glycol (EG) pre-coordination with the proper ratio of Fe2+/Fe3+ between 0.83 and 2.46. Synchronously with copper introduction, the Fe/Cu MOFs of mixed valence (Fe/Cu-MVMOFs) was then one pot acquired to remarkably improve the affinity of Fe2+ and Cu+ to H2O2 and promote the conversion efficiency of Fe2+/Fe3+ via the electron transfer among Fe-Cu bimetal clusters (XPS and XRD). Hence, the maximum reaction rate of H2O2 with Fe/Cu-MVMOFs reached 16.65 M·s-1, along with Km as low as 0.0479 mM. H2O2 and glutathione (GSH) were efficiently detected, ranging from 0.25 to 60 µM and from 0.2 to 40 µM, respectively. The investigation of catalyzation selectivity and practical serum detection by Fe/Cu-MVMOFs illustrated the efficacy and efficiency, denoting Fe/Cu-MVMOFs as the promising peroxidase candidate.
Collapse
Affiliation(s)
- Minqiang Jiang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, Liaoning Province, P. R. China
| | - Zixuan Xu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, Liaoning Province, P. R. China
| | - Lijie Li
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, Liaoning Province, P. R. China
| | - Min Li
- Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, P. R. China
| | - Gaohong He
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, Liaoning Province, P. R. China.
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China.
| | - Wenjun Zhang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, Liaoning Province, P. R. China.
| |
Collapse
|
145
|
Dai JJ, Chen GY, Xu L, Zhu H, Yang FQ. Applications of Nanozymes in Chiral-Molecule Recognition through Electrochemical and Ultraviolet-Visible Analysis. Molecules 2024; 29:3376. [PMID: 39064954 PMCID: PMC11280305 DOI: 10.3390/molecules29143376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Chiral molecules have similar physicochemical properties, which are different in terms of physiological activities and toxicities, rendering their differentiation and recognition highly significant. Nanozymes, which are nanomaterials with inherent enzyme-like activities, have garnered significant interest owing to their high cost-effectiveness, enhanced stability, and straightforward synthesis. However, constructing nanozymes with high activity and enantioselectivity remains a significant challenge. This review briefly introduces the synthesis methods of chiral nanozymes and systematically summarizes the latest research progress in enantioselective recognition of chiral molecules based on electrochemical methods and ultraviolet-visible absorption spectroscopy. Moreover, the challenges and development trends in developing enantioselective nanozymes are discussed. It is expected that this review will provide new ideas for the design of multifunctional chiral nanozymes and broaden the application field of nanozymes.
Collapse
Affiliation(s)
| | | | | | | | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (J.-J.D.); (G.-Y.C.); (L.X.); (H.Z.)
| |
Collapse
|
146
|
Liu S, Sun J. Magnetic nanomaterials mediate precise magnetic therapy. Biomed Phys Eng Express 2024; 10:052001. [PMID: 38981447 DOI: 10.1088/2057-1976/ad60cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Magnetic nanoparticle (MNP)-mediated precision magnet therapy plays a crucial role in treating various diseases. This therapeutic strategy compensates for the limitations of low spatial resolution and low focusing of magnetic stimulation, and realizes the goal of wireless teletherapy with precise targeting of focal areas. This paper summarizes the preparation methods of magnetic nanomaterials, the properties of magnetic nanoparticles, the biological effects, and the measurement methods for detecting magnetism; discusses the research progress of precision magnetotherapy in the treatment of psychiatric disorders, neurological injuries, metabolic disorders, and bone-related disorders, and looks forward to the future development trend of precision magnet therapy.
Collapse
Affiliation(s)
- Sha Liu
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jianfei Sun
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
147
|
Han X, Li B, Wang W, Feng B, Tang Q, Qi Y, Zhao R, Qiu W, Zhao S, Pan Z, Guo X, Du H, Qiu J, Liu H, Li G, Xue H. Cerium Vanadate Nanozyme with pH-Dependent Dual Enzymatic Activity for Glioblastoma Targeted Therapy and Postradiotherapy Damage Protection. ACS NANO 2024; 18. [PMID: 39016679 PMCID: PMC11295195 DOI: 10.1021/acsnano.4c06616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Nanocatalytic therapy is an emerging technology that uses synthetic nanoscale enzyme mimics for biomedical treatment. However, in the field of neuroscience, achieving neurological protection while simultaneously killing tumor cells is a technical challenge. Herein, we synthesized a biomimic and translational cerium vanadate (CeVO4) nanozyme for glioblastoma (GBM) therapy and the repair of brain damage after GBM ionizing radiation (IR). This system exhibited pH dependence: it showed potent Superoxide dismutase (SOD) enzyme activity in a neutral environment and Peroxidase (POD) enzyme activity in an acidic environment. In GBM cells, this system acted in lysosomes, causing cellular damage and reactive oxygen species (ROS) accumulation; in neuronal cells, this nanozyme could undergo lysosomal escape and nanozyme aggregation with mitochondria, reversing the mitochondrial damage caused by IR and restoring the expression level of the antiapoptotic BCL-2 protein. Mechanistically, we believe that this distribution difference is related to the specific uptake internalization mechanism and lysosomal repair pathway in neurons, and ultimately led to the dual effect of tumor killing and nerve repair in the in vivo model. In summary, this study provides insight into the repair of brain damage after GBM radiation therapy.
Collapse
Affiliation(s)
- Xiao Han
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
- Department
of Neurosurgery, Children’s Hospital
Affiliated to Shandong University, Jinan Children’s Hospital, Jinan, Shandong 250001, P.R. China
| | - Boyan Li
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Wenhan Wang
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Bowen Feng
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Qilin Tang
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Yanhua Qi
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Rongrong Zhao
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Wei Qiu
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Shulin Zhao
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Ziwen Pan
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Xiaofan Guo
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Hao Du
- Department
of Cell Biology, University of Connecticut
School of Medicine, Farmington, Connecticut 06032, United States
| | - Jichuan Qiu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan, Shandong 250100, P. R. China
| | - Hong Liu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan, Shandong 250100, P. R. China
- Institute
for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Gang Li
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Hao Xue
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
148
|
Luo X, Liu H, Wen J, Hu J, Li Y, Li G, Dai G, Li Y, Li J. Composite hydrogels with antioxidant and robust adhesive properties for the prevention of radiation-induced dermatitis. J Mater Chem B 2024; 12:6927-6939. [PMID: 38904166 DOI: 10.1039/d4tb00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Radiotherapy is a pivotal means of cancer treatment, but it often leads to radiation dermatitis, a skin injury caused by radiation-induced excess reactive oxygen species (ROS). Scavenging free radicals in the course of radiation therapy will be an effective means to prevent radiation dermatitis. This study demonstrates a novel double network hydrogel doped with MoS2 nanosheets for the prevention of radiation-induced dermatitis. The resultant SPM hydrogel constructed from polyacrylamide (PAM) and sodium alginate (SA) nanofiber presented favorable mechanical and adhesion properties. It could conform well to the human body's irregular contours without secondary dressing fixation, making it suitable for skin protection applications. The in vitro and in vivo experiments showed that the antioxidant properties conferred by MoS2 nanosheets enable SPM to effectively mitigate excessive ROS and reduce oxidative stress, thereby preventing radiation dermatitis caused by oxidative damage. Biosafety assessments indicated good biocompatibility of the composite hydrogel, suggesting SPM's practicality and potential as an external dressing for skin radiation protection.
Collapse
Affiliation(s)
- Xue Luo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Huan Liu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jing Wen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jiaxin Hu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Yongzhi Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Guangjun Li
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Guyu Dai
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| |
Collapse
|
149
|
Zong X, Xu X, Pang DW, Huang X, Liu AA. Fine-Tuning Electron Transfer for Nanozyme Design. Adv Healthc Mater 2024:e2401836. [PMID: 39015050 DOI: 10.1002/adhm.202401836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Indexed: 07/18/2024]
Abstract
Nanozymes, with their versatile composition and structural adaptability, present distinct advantages over natural enzymes including heightened stability, customizable catalytic activity, cost-effectiveness, and simplified synthesis process, making them as promising alternatives in various applications. Recent advancements in nanozyme research have shifted focus from serendipitous discovery toward a more systematic approach, leveraging machine learning, theoretical calculations, and mechanistic explorations to engineer nanomaterial structures with tailored catalytic functions. Despite its pivotal role, electron transfer, a fundamental process in catalysis, has often been overlooked in previous reviews. This review comprehensively summarizes recent strategies for modulating electron transfer processes to fine-tune the catalytic activity and specificity of nanozymes, including electron-hole separation and carrier transfer. Furthermore, the bioapplications of these engineered nanozymes, including antimicrobial treatments, cancer therapy, and biosensing are also introduced. Ultimately, this review aims to offer invaluable insights for the design and synthesis of nanozymes with enhanced performance, thereby advancing the field of nanozyme research.
Collapse
Affiliation(s)
- Xia Zong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xinran Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
150
|
Othman A, Gowda A, Andreescu D, Hassan MH, Babu SV, Seo J, Andreescu S. Two decades of ceria nanoparticle research: structure, properties and emerging applications. MATERIALS HORIZONS 2024; 11:3213-3266. [PMID: 38717455 DOI: 10.1039/d4mh00055b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cerium oxide nanoparticles (CeNPs) are versatile materials with unique and unusual properties that vary depending on their surface chemistry, size, shape, coating, oxidation states, crystallinity, dopant, and structural and surface defects. This review encompasses advances made over the past twenty years in the development of CeNPs and ceria-based nanostructures, the structural determinants affecting their activity, and translation of these distinct features into applications. The two oxidation states of nanosized CeNPs (Ce3+/Ce4+) coexisting at the nanoscale level facilitate the formation of oxygen vacancies and defect states, which confer extremely high reactivity and oxygen buffering capacity and the ability to act as catalysts for oxidation and reduction reactions. However, the method of synthesis, surface functionalization, surface coating and defects are important factors in determining their properties. This review highlights key properties of CeNPs, their synthesis, interactions, and reaction pathways and provides examples of emerging applications. Due to their unique properties, CeNPs have become quintessential candidates for catalysis, chemical mechanical planarization (CMP), sensing, biomedical applications, and environmental remediation, with tremendous potential to create novel products and translational innovations in a wide range of industries. This review highlights the timely relevance and the transformative potential of these materials in addressing societal challenges and driving technological advancements across these fields.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Akshay Gowda
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - Mohamed H Hassan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - S V Babu
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Jihoon Seo
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| |
Collapse
|