101
|
Transcriptional heterologous expression of two type III PKS from the lichen Cladonia uncialis. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01539-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
102
|
Wan X, Yao G, Liu Y, Chen J, Jiang H. Research Progress in the Biosynthetic Mechanisms of Marine Polyether Toxins. Mar Drugs 2019; 17:E594. [PMID: 31652489 PMCID: PMC6835853 DOI: 10.3390/md17100594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/28/2022] Open
Abstract
Marine polyether toxins, mainly produced by marine dinoflagellates, are novel, complex, and diverse natural products with extensive toxicological and pharmacological effects. Owing to their harmful effects during outbreaks of marine red tides, as well as their potential value for the development of new drugs, marine polyether toxins have been extensively studied, in terms of toxicology, pharmacology, detection, and analysis, structural identification, as well as their biosynthetic mechanisms. Although the biosynthetic mechanisms of marine polyether toxins are still unclear, certain progress has been made. In this review, research progress and current knowledge on the biosynthetic mechanisms of polyether toxins are summarized, including the mechanisms of carbon skeleton deletion, pendant alkylation, and polyether ring formation, along with providing a summary of mined biosynthesis-related genes. Finally, future research directions and applications of marine polyether toxins are discussed.
Collapse
Affiliation(s)
- Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Jisheng Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
103
|
Robertsen HL, Musiol-Kroll EM. Actinomycete-Derived Polyketides as a Source of Antibiotics and Lead Structures for the Development of New Antimicrobial Drugs. Antibiotics (Basel) 2019; 8:E157. [PMID: 31547063 PMCID: PMC6963833 DOI: 10.3390/antibiotics8040157] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 01/15/2023] Open
Abstract
Actinomycetes are remarkable producers of compounds essential for human and veterinary medicine as well as for agriculture. The genomes of those microorganisms possess several sets of genes (biosynthetic gene cluster (BGC)) encoding pathways for the production of the valuable secondary metabolites. A significant proportion of the identified BGCs in actinomycetes encode pathways for the biosynthesis of polyketide compounds, nonribosomal peptides, or hybrid products resulting from the combination of both polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The potency of these molecules, in terms of bioactivity, was recognized in the 1940s, and started the "Golden Age" of antimicrobial drug discovery. Since then, several valuable polyketide drugs, such as erythromycin A, tylosin, monensin A, rifamycin, tetracyclines, amphotericin B, and many others were isolated from actinomycetes. This review covers the most relevant actinomycetes-derived polyketide drugs with antimicrobial activity, including anti-fungal agents. We provide an overview of the source of the compounds, structure of the molecules, the biosynthetic principle, bioactivity and mechanisms of action, and the current stage of development. This review emphasizes the importance of actinomycetes-derived antimicrobial polyketides and should serve as a "lexicon", not only to scientists from the Natural Products field, but also to clinicians and others interested in this topic.
Collapse
Affiliation(s)
- Helene L Robertsen
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Ewa M Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
104
|
Liao J, Pang K, Sun G, Pai T, Hsu P, Lin J, Sun K, Hsieh C, Tang S. Chimeric 6-methylsalicylic acid synthase with domains of acyl carrier protein and methyltransferase from Pseudallescheria boydii shows novel biosynthetic activity. Microb Biotechnol 2019; 12:920-931. [PMID: 31199579 PMCID: PMC6681407 DOI: 10.1111/1751-7915.13445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 01/09/2023] Open
Abstract
Polyketides are important secondary metabolites, many of which exhibit potent pharmacological applications. Biosynthesis of polyketides is carried out by a single polyketide synthase (PKS) or multiple PKSs in successive elongations of enzyme-bound intermediates related to fatty acid biosynthesis. The polyketide gene PKS306 from Pseudallescheria boydii NTOU2362 containing domains of ketosynthase (KS), acyltransferase (AT), dehydratase (DH), acyl carrier protein (ACP) and methyltransferase (MT) was cloned in an attempt to produce novel chemical compounds, and this PKS harbouring green fluorescent protein (GFP) was expressed in Saccharomyces cerevisiae. Although fluorescence of GFP and fusion protein analysed by anti-GFP antibody were observed, no novel compound was detected. 6-methylsalicylic acid synthase (6MSAS) was then used as a template and engineered with PKS306 by combinatorial fusion. The chimeric PKS containing domains of KS, AT, DH and ketoreductase (KR) from 6MSAS with ACP and MT from PKS306 demonstrated biosynthesis of a novel compound. The compound was identified with a deduced chemical formula of C7 H10 O3 , and the chemical structure was named as 2-hydroxy-2-(propan-2-yl) cyclobutane-1,3-dione. The novel compound synthesized by the chimeric PKS in this study demonstrates the feasibility of combinatorial fusion of PKS genes to produce novel polyketides.
Collapse
Affiliation(s)
- Ji‐Long Liao
- Department of Bioscience and BiotechnologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Ka‐Lai Pang
- Department of Marine BiologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Guang‐Huan Sun
- Division of UrologyDepartment of SurgeryNational Defense Medical CenterTri‐Service General HospitalNo. 325, Sec. 2, Cheng‐gong Rd.TaipeiTaiwan
| | - Tun‐Wen Pai
- Department of Computer Science and EngineeringNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Pang‐Hung Hsu
- Department of Bioscience and BiotechnologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Jyuan‐Siou Lin
- Department of Bioscience and BiotechnologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Kuang‐Hui Sun
- Department of Biotechnology and Laboratory Science in MedicineNational Yang‐Ming UniversityNo. 155, Sec. 2, Linong StreetTaipeiTaiwan
- Department of Education and ResearchTaipei City HospitalTaipeiTaiwan
| | | | - Shye‐Jye Tang
- Department of Bioscience and BiotechnologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| |
Collapse
|
105
|
Yang XL, Friedrich S, Yin S, Piech O, Williams K, Simpson TJ, Cox RJ. Molecular basis of methylation and chain-length programming in a fungal iterative highly reducing polyketide synthase. Chem Sci 2019; 10:8478-8489. [PMID: 31803427 PMCID: PMC6839510 DOI: 10.1039/c9sc03173a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/28/2019] [Indexed: 12/28/2022] Open
Abstract
Exchange of 32 different sub-fragments of the C-methyltransferase (C-MeT), pseudo-ketoreductase (ΨKR) and ketoreductase (KR) catalytic domains of the tenellin iterative Type I polyketide synthase non ribosomal peptide synthetase (PKS-NRPS) TENS by homologous fragments from the desmethylbassianin (DMBS) and militarinone (MILS) PKS-NRPS led to the creation of chimeric synthetases in which programming fidelity was altered, resulting in the production of mixtures of products with different methylation patterns and chain lengths. Swap of KR domain subfragments with the homologous fragments from the KR of the heptaketide militarinone synthetase resulted in the synthesis of penta, hexa and heptaketides. The results of these and previous experiments are rationalised by considering the existence of competition for acyl-carrier protein (ACP) bound substrates between different catalytic domains of the PKS. In particular, competition between the C-MeT and ketoreductase domains (KR) can account for methylation programming, and competition between the KR and the off-loading NRPS accounts for chain-length selectivity.
Collapse
Affiliation(s)
- Xiao-Long Yang
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany . .,BMWZ , Leibniz University of Hannover , Schneiderberg 38 , 30167 , Hannover , Germany
| | - Steffen Friedrich
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany . .,BMWZ , Leibniz University of Hannover , Schneiderberg 38 , 30167 , Hannover , Germany
| | - Sen Yin
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany . .,BMWZ , Leibniz University of Hannover , Schneiderberg 38 , 30167 , Hannover , Germany
| | - Oliver Piech
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany . .,BMWZ , Leibniz University of Hannover , Schneiderberg 38 , 30167 , Hannover , Germany
| | - Katherine Williams
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany . .,BMWZ , Leibniz University of Hannover , Schneiderberg 38 , 30167 , Hannover , Germany.,School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK
| | - Thomas J Simpson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK
| | - Russell J Cox
- Institute for Organic Chemistry , Leibniz University of Hannover , Schneiderberg 1B , 30167 , Hannover , Germany . .,BMWZ , Leibniz University of Hannover , Schneiderberg 38 , 30167 , Hannover , Germany
| |
Collapse
|
106
|
Paiva P, Sousa SF, Fernandes PA, João Ramos M. Human Fatty Acid Synthase: A Computational Study of the Transfer of the Acyl Moieties from MAT to the ACP Domain. ChemCatChem 2019. [DOI: 10.1002/cctc.201900548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pedro Paiva
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica Faculdade de CiênciasUniversidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica Faculdade de CiênciasUniversidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
- UCIBIO@REQUIMTE, BioSIM – Departamento de Biomedicina Faculdade de MedicinaUniversidade do Porto Alameda Prof. Hernâni Monteiro 4200-319 Porto Portugal
| | - Pedro A. Fernandes
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica Faculdade de CiênciasUniversidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - Maria João Ramos
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica Faculdade de CiênciasUniversidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
| |
Collapse
|
107
|
Heil CS, Wehrheim SS, Paithankar KS, Grininger M. Fatty Acid Biosynthesis: Chain‐Length Regulation and Control. Chembiochem 2019; 20:2298-2321. [DOI: 10.1002/cbic.201800809] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Christina S. Heil
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - S. Sophia Wehrheim
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Karthik S. Paithankar
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| |
Collapse
|
108
|
Morishita Y, Zhang H, Taniguchi T, Mori K, Asai T. The Discovery of Fungal Polyene Macrolides via a Postgenomic Approach Reveals a Polyketide Macrocyclization by trans-Acting Thioesterase in Fungi. Org Lett 2019; 21:4788-4792. [PMID: 31180682 DOI: 10.1021/acs.orglett.9b01674] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heterologous expression of a unique biosynthetic gene cluster (BGC) comprising a highly reducing polyketide synthase and stand-alone thioesterase genes in Aspergillus oryzae enabled us to isolate a novel 34-membered polyene macrolide, phaeospelide A (1). This is the first isolation of a fungal polyene macrolide and the first demonstration of fungal aliphatic macrolide biosynthetic machinery. In addition, sequence similarity network analysis demonstrated the existence of a large number of BGCs for novel fungal macrolides.
Collapse
Affiliation(s)
- Yohei Morishita
- Department of Life Sciences, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| | - Huiping Zhang
- NMR Science and Development Division , RIKEN Spring-8 Center , 1-7-22 Suehiro-cho , Tsurumi-ku, Yokohama , Kanagawa 230-0045 , Japan
| | - Tohru Taniguchi
- Faculty of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology , Hokkaido University , Kita 21 Nishi 11 , Sapporo 001-0021 , Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering , Tokyo University of Agriculture and Technology , 2-24-16 Nakacho , Koganei, Tokyo 184-8588 , Japan
| | - Teigo Asai
- Department of Life Sciences, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| |
Collapse
|
109
|
Yan Q, Pfleger BF. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 2019; 58:35-46. [PMID: 31022535 DOI: 10.1016/j.ymben.2019.04.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/20/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023]
Abstract
Microbial production of oleochemicals from renewable feedstocks remains an attractive route to produce high-energy density, liquid transportation fuels and high-value chemical products. Metabolic engineering strategies have been applied to demonstrate production of a wide range of oleochemicals, including free fatty acids, fatty alcohols, esters, olefins, alkanes, ketones, and polyesters in both bacteria and yeast. The majority of these demonstrations synthesized products containing long-chain fatty acids. These successes motivated additional effort to produce analogous molecules comprised of medium-chain fatty acids, molecules that are less common in natural oils and therefore of higher commercial value. Substantial progress has been made towards producing a subset of these chemicals, but significant work remains for most. The other primary challenge to producing oleochemicals in microbes is improving the performance, in terms of yield, rate, and titer, of biocatalysts such that economic large-scale processes are feasible. Common metabolic engineering strategies include blocking pathways that compete with synthesis of oleochemical building blocks and/or consume products, pulling flux through pathways by removing regulatory signals, pushing flux into biosynthesis by overexpressing rate-limiting enzymes, and engineering cells to tolerate the presence of oleochemical products. In this review, we describe the basic fundamentals of oleochemical synthesis and summarize advances since 2013 towards improving performance of heterotrophic microbial cell factories.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
110
|
Shiraishi T, Nishiyama M, Kuzuyama T. Biosynthesis of the uridine-derived nucleoside antibiotic A-94964: identification and characterization of the biosynthetic gene cluster provide insight into the biosynthetic pathway. Org Biomol Chem 2019; 17:461-466. [PMID: 30570639 DOI: 10.1039/c8ob02765j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The natural product A-94964 is a uridine-derived nucleoside antibiotic isolated from Streptomyces sp. SANK 60404. In this study, we propose a biosynthetic pathway for A-94964 using gene deletion experiments coupled with in silico analysis of the biosynthetic gene cluster. This study provides insights into the unique biosynthetic pathway for A-94964.
Collapse
Affiliation(s)
- Taro Shiraishi
- Biotechnology Research Center and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8567, Japan.
| | | | | |
Collapse
|
111
|
Rittner A, Paithankar KS, Drexler DJ, Himmler A, Grininger M. Probing the modularity of megasynthases by rational engineering of a fatty acid synthase Type I. Protein Sci 2018; 28:414-428. [PMID: 30394635 DOI: 10.1002/pro.3550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022]
Abstract
Modularity is a fundamental property of megasynthases such as polyketide synthases (PKSs). In this study, we exploit the close resemblance between PKSs and animal fatty acid synthase (FAS) to re-engineer animal FAS to probe the modularity of the FAS/PKS family. Guided by sequence and structural information, we truncate and dissect animal FAS into its components, and reassemble them to generate new PKS-like modules as well as bimodular constructs. The novel re-engineered modules resemble all four common types of PKSs and demonstrate that this approach can be a powerful tool to deliver products with higher catalytic efficiency. Our data exemplify the inherent plasticity and robustness of the overall FAS/PKS fold, and open new avenues to explore FAS-based biosynthetic pathways for custom compound design.
Collapse
Affiliation(s)
- Alexander Rittner
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Karthik S Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - David Jan Drexler
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Aaron Himmler
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| |
Collapse
|
112
|
Palmer CM, Alper HS. Expanding the Chemical Palette of Industrial Microbes: Metabolic Engineering for Type III PKS-Derived Polyketides. Biotechnol J 2018; 14:e1700463. [DOI: 10.1002/biot.201700463] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/18/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Claire M. Palmer
- Institute for Cellular and Molecular Biology; The University of Texas at Austin; Austin 200 E Dean Keeton St. Stop C0400 Austin TX 78712
| | - Hal S. Alper
- Institute for Cellular and Molecular Biology; The University of Texas at Austin; Austin 200 E Dean Keeton St. Stop C0400 Austin TX 78712
- McKetta Department of Chemical Engineering; The University of Texas at Austin; Austin 200 E Dean Keeton St. Stop C0400 Austin TX 78712
| |
Collapse
|