101
|
Yu Y, Li J, Song B, Ma Z, Zhang Y, Sun H, Wei X, Bai Y, Lu X, Zhang P, Zhang X. Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy. Biomaterials 2021; 280:121312. [PMID: 34896861 DOI: 10.1016/j.biomaterials.2021.121312] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023]
Abstract
Checkpoint inhibitors, such as antibodies blocking the PD-1/PD-L1 pathway, are among the most promising immunotherapies to treat metastatic cancers, but their response rate remains low. In addition, the usage of monoclonal antibodies as checkpoint inhibitors is associated with a series of drawbacks. Herein, an all synthetic nanoparticle with PD-L1 blockade capability is developed for cancer photothermal-immunotherapy. The polymeric nanoparticle integrates photothermal treatment, antitumor vaccination, and PD-1/PD-L1 blockade in a single system to augment the antitumor efficacy. In a CT26 bilateral tumor model, intravenously injected nanoparticles accumulate in tumor sites and mediate strong photothermal effects, eradicate the NIR treated primary tumors and elicit strong antitumor immunity by inducing immunogenic cell death (ICD). Growth of the untreated distant tumors is also suppressed due to the synergies of systemic antitumor immune activation and PD-L1 blockade. Our strategy offers a simple but promising approach for the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Boyi Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Zhuang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Haonan Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Yayun Bai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Xueguang Lu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peng Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
102
|
Mei E, Chen C, Li C, Ding X, Chen J, Xi Q, Zhou S, Liu J, Li Z. Injectable and Biodegradable Chitosan Hydrogel-Based Drug Depot Contributes to Synergistic Treatment of Tumors. Biomacromolecules 2021; 22:5339-5348. [PMID: 34813280 DOI: 10.1021/acs.biomac.1c01279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Combined therapy provides a more effective method in the treatment of tumors and becomes a research hotspot. To improve treatment outcomes and reduce serious side effects, hydrogel-based local delivery was developed herein to form a drug depot in suit to eliminate tumors. Indocyanine green and imiquimod were coencapsulated in the novel temperature-sensitive chitosan hydrogel. After intratumoral injection of the hydrogel, indocyanine green that accumulated in the tumor area could induce thermal ablation of primary tumors under laser irradiation. In the presence of imiquimod, the immune effects increased the probability of complete ablation of primary tumors and inhibition of metastases. Combined with cyclophosphamide, the enhanced immunological responses would further inhibit tumors and prolong the survival time. In a word, this work offered an excellent local delivery platform that enabled a remarkable combined antitumor strategy and achieved synergistic therapeutic effects.
Collapse
Affiliation(s)
- Enci Mei
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Cunguo Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chunxiao Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaoxia Ding
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.,Department of Dermatology and Venereology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310000, China
| | - Jiashe Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiaoer Xi
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Sen Zhou
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jingjing Liu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
103
|
Cen D, Ge Q, Xie C, Zheng Q, Guo J, Zhang Y, Wang Y, Li X, Gu Z, Cai X. ZnS@BSA Nanoclusters Potentiate Efficacy of Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104037. [PMID: 34622500 DOI: 10.1002/adma.202104037] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/10/2021] [Indexed: 05/24/2023]
Abstract
Although immunotherapy such as immune checkpoint inhibitors has shown promising efficacy in cancer treatment, the responsiveness among patients is relatively limited. Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase/interferon gene stimulator (cGAS/STING) signaling pathway to upregulate innate immunity has become an emerging strategy for enhancing tumor immunotherapy. Herein, ZnS@BSA (bovine serum albumin) nanoclusters synthesized via a self-assembly approach are reported, where the released zinc ions under acidic tumor microenvironment significantly enhance cGAS/STING signals. Meanwhile, intracellular zinc ions can produce reactive oxygen species, which is further facilitated by the generated H2 S gas from ZnS@BSA via specifically inhibiting catalase in hepatocellular carcinoma cells. It is found that the nanoclusters activate the cGAS/STING signals in mice, which promotes the infiltration of CD8+ T cells at the tumor site and cross-presentation of dendritic cells, leading to an improved immunotherapy efficacy against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Dong Cen
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiwei Ge
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310058, China
| | - Congkun Xie
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Zheng
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiansheng Guo
- Department of Pathology of Sir Run Run Shaw Hospital, Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuqi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xiang Li
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Gu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Laboratory of Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| |
Collapse
|
104
|
Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H. Advances in metal–organic framework-based nanozymes and their applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214216] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
105
|
Zhang P, Meng J, Li Y, Yang C, Hou Y, Tang W, McHugh KJ, Jing L. Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation (N Y) 2021; 2:100174. [PMID: 34766099 PMCID: PMC8571799 DOI: 10.1016/j.xinn.2021.100174] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
A vast majority of cancer deaths occur as a result of metastasis. Unfortunately, effective treatments for metastases are currently lacking due to the difficulty of selectively targeting these small, delocalized tumors distributed across a variety of organs. However, nanotechnology holds tremendous promise for improving immunotherapeutic outcomes in patients with metastatic cancer. In contrast to conventional cancer immunotherapies, rationally designed nanomaterials can trigger specific tumoricidal effects, thereby improving immune cell access to major sites of metastasis such as bone, lungs, and lymph nodes, optimizing antigen presentation, and inducing a persistent immune response. This paper reviews the cutting-edge trends in nano-immunoengineering for metastatic cancers with an emphasis on different nano-immunotherapeutic strategies. Specifically, it discusses directly reversing the immunological status of the primary tumor, harnessing the potential of peripheral immune cells, preventing the formation of a pre-metastatic niche, and inhibiting the tumor recurrence through postoperative immunotherapy. Finally, we describe the challenges facing the integration of nanoscale immunomodulators and provide a forward-looking perspective on the innovative nanotechnology-based tools that may ultimately prove effective at eradicating metastatic diseases.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Junli Meng
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Yingying Li
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Chen Yang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005, USA
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
106
|
He R, Lao Y, Yu W, Zhang X, Jiang M, Zhu C. Progress in the Application of Immune Checkpoint Inhibitor-Based Immunotherapy for Targeting Different Types of Colorectal Cancer. Front Oncol 2021; 11:764618. [PMID: 34888243 PMCID: PMC8648667 DOI: 10.3389/fonc.2021.764618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC), a common malignant disease, has the second highest mortality rate among all cancer types. Due to the diversity and heterogeneity of CRC, few effective treatment strategies have been developed in recent years, except for surgical resection. As immunotherapy has become a revolutionary treatment after surgery, along with chemoradiotherapy and targeted therapy, numerous basic research studies and clinical trials have been conducted on CRC. Therefore, immune checkpoint inhibitor (ICI) therapy has become the main anti-CRC immunotherapy method used at present. With the rapid development of biotechnology and cell research, an increasing number of monotherapy or combination therapy strategies using ICIs for CRC have been designed in recent years. Methods to classify and review ICI strategies for different types of CRC to better guide treatment are continuously investigated. However, the identification of why the ICIs would be more effective in targeting particular subtypes of CRC such as high microsatellite instability (MSI-H) is more important because of the different immune backgrounds in patients. This review intends to classify different subtypes of CRC and summarizes the basic and clinical studies on ICIs for each subtype of CRC currently available. In addition, we also attempt to briefly discuss the progress in immunotherapy methods other than ICI therapy, such as chemoimmunotherapy strategy, chimeric antigen receptor-modified T (CAR-T) cells, or immunotherapy based on oncolytic viruses. Finally, we provide a perspective on the development of immunotherapy in the treatment of CRC and attempt to propose a new systematic classification of CRC based on immunological strategies, which may improve guidance for the selection of immunotherapy strategies for different subtypes of CRC in the future.
Collapse
Affiliation(s)
- Rui He
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yefang Lao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenyan Yu
- Department of Oncology, Shanghai International Medical Center, Shanghai, China
| | - Xiaohui Zhang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunrong Zhu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
107
|
Cheng H, Fan X, Ye E, Chen H, Yang J, Ke L, You M, Liu M, Zhang Y, Wu Y, Liu G, Loh XJ, Li Z. Dual Tumor Microenvironment Remodeling by Glucose-Contained Radical Copolymer for MRI-Guided Photoimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107674. [PMID: 34755922 DOI: 10.1002/adma.202107674] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Aberrant glucose metabolism and immune evasion are recognized as two hallmarks of cancer, which contribute to poor treatment efficiency and tumor progression. Herein, a novel material system consisting of a glucose and TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) at the distal ends of PEO-b-PLLA block copolymer (glucose-PEO-b-PLLA-TEMPO), is designed to encapsulate clinical therapeutics CUDC101 and photosensitizer IR780. The specific core-shell rod structure formed by the designed copolymer renders TEMPO radicals excellent stability against reduction-induced magnetic resonance imaging (MRI) silence. Tumor-targeting moiety endowed by glucose provides the radical copolymer outstanding multimodal imaging capabilities, including MRI, photoacoustic imaging, and fluorescence imaging. Efficient delivery of CUDC101 and IR780 is achieved to synergize the antitumor immune activation through IR780-mediated photodynamic therapy (PDT) and CUDC101-triggered CD47 inhibition, showing M1 phenotype polarization of tumor-associated macrophages (TAMs). More intriguingly, this study demonstrates PDT-stimulated p53 can also re-educate TAMs, providing a combined strategy of using dual tumor microenvironment remodeling to achieve the synergistic effect in the transition from cold immunosuppressive to hot immunoresponsive tumor microenvironment.
Collapse
Affiliation(s)
- Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Xiaoshan Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 China
| | - Enyi Ye
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Jing Yang
- Institute of High Performance Computing (IHPC) A*STAR (Agency for Science, Technology and Research) Singapore 138632 Singapore
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Mingliang You
- Hangzhou Cancer Institute Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province Affiliated Hangzhou Cancer Hospital Zhejiang University School of Medicine Hangzhou 310002 China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Yong‐Wei Zhang
- Institute of High Performance Computing (IHPC) A*STAR (Agency for Science, Technology and Research) Singapore 138632 Singapore
- Department of Materials Science and Engineering National University of Singapore Singapore 117574 Singapore
| | - Yun‐Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
- Department of Materials Science and Engineering National University of Singapore Singapore 117574 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
- Department of Materials Science and Engineering National University of Singapore Singapore 117574 Singapore
| |
Collapse
|
108
|
Zhao X, Li Y, Du L, Deng Z, Jiang M, Zeng S. Soft X-Ray Stimulated Lanthanide@MOF Nanoprobe for Amplifying Deep Tissue Synergistic Photodynamic and Antitumor Immunotherapy. Adv Healthc Mater 2021; 10:e2101174. [PMID: 34585857 DOI: 10.1002/adhm.202101174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/09/2021] [Indexed: 12/12/2022]
Abstract
Combining photodynamic therapy (PDT) and immunotherapy has shown profound impact for synergistic treatment of malignant tumors. However, the shallow penetration depth of the traditional visible light activated PDT, immunosuppressive tumor microenvironment (TME), and poor immunogenicity of deep-seated solid tumors have significantly impeded the therapeutic efficiency. Herein, a soft X-ray activated nanoprobe is rationally engineered via integrating porphyrin Zr-based metal-organic framework with lanthanide NaYF4 :Gd,Tb@NaYF4 scintillator nanoparticles (SNPs) by a new in situ growth strategy for synergistic PDT and immunotherapy of tumor. The nanoprobe possesses remarkably enhanced reactive oxygen species (ROS) generation triggered by soft X-ray via further covalently grafting rose bengal on the nanoprobe, even at tissue depths of 3 cm. Moreover, the soft X-ray induced ROS can act as potential immunogenic cell death (ICD) trigger, subsequently leading to the activation of the adaptive antitumor immune-response. Significantly, the boosted ROS generation can further modulate the immunosuppressive TME. This work provides new strategy of designing antitumor nanoprobes for soft X-ray triggered deep-tissue PDT and immune response, breaking the depth barriers suffered by the traditional photoactivated PDT or ICD using visible and near infrared light.
Collapse
Affiliation(s)
- Xiaoting Zhao
- School of Physics and Electronics Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐Dimensional Quantum Structures and Quantum Control of Ministry of Education and Key Laboratory for Matter Microstructure and Function of Hunan Province Hunan Normal University Changsha 410081 P. R. China
| | - Youbin Li
- School of Physics and Electronics Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐Dimensional Quantum Structures and Quantum Control of Ministry of Education and Key Laboratory for Matter Microstructure and Function of Hunan Province Hunan Normal University Changsha 410081 P. R. China
| | - Linman Du
- School of Physics and Electronics Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐Dimensional Quantum Structures and Quantum Control of Ministry of Education and Key Laboratory for Matter Microstructure and Function of Hunan Province Hunan Normal University Changsha 410081 P. R. China
| | - Zhiming Deng
- School of Physics and Electronics Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐Dimensional Quantum Structures and Quantum Control of Ministry of Education and Key Laboratory for Matter Microstructure and Function of Hunan Province Hunan Normal University Changsha 410081 P. R. China
| | - Mingyang Jiang
- School of Physics and Electronics Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐Dimensional Quantum Structures and Quantum Control of Ministry of Education and Key Laboratory for Matter Microstructure and Function of Hunan Province Hunan Normal University Changsha 410081 P. R. China
| | - Songjun Zeng
- School of Physics and Electronics Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐Dimensional Quantum Structures and Quantum Control of Ministry of Education and Key Laboratory for Matter Microstructure and Function of Hunan Province Hunan Normal University Changsha 410081 P. R. China
| |
Collapse
|
109
|
Chu H, Cao T, Dai G, Liu B, Duan H, Kong C, Tian N, Hou D, Sun Z. Recent advances in functionalized upconversion nanoparticles for light-activated tumor therapy. RSC Adv 2021; 11:35472-35488. [PMID: 35493151 PMCID: PMC9043211 DOI: 10.1039/d1ra05638g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/28/2021] [Indexed: 01/16/2023] Open
Abstract
Upconversion nanoparticles (UCNPs) are a class of optical nanocrystals doped with lanthanide ions that offer great promise for applications in controllable tumor therapy. In recent years, UCNPs have become an important tool for studying the treatment of various malignant and nonmalignant cutaneous diseases. UCNPs convert near-infrared (NIR) radiation into shorter-wavelength visible and ultraviolet (UV) radiation, which is much better than conventional UV activated tumor therapy as strong UV-light can be damaging to healthy surrounding tissue. Moreover, UV light generally does not penetrate deeply into the skin, an issue that UCNPs can now address. However, the current studies are still in the early stage of research, with a long way to go before clinical implementation. In this paper, we systematically analysed recent advances in light-activated tumor therapy using functionalized UCNPs. We summarized the purpose and mechanism of UCNP-based photodynamic therapy (PDT), gene therapy, immunotherapy, chemo-therapy and integrated therapy. We believe the creation of functional materials based on UCNPs will offer superior performance and enable innovative applications, increasing the scope and opportunities for cancer therapy in the future.
Collapse
Affiliation(s)
- Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Tingming Cao
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Guangming Dai
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Bei Liu
- School of Science, Minzu University of China Beijing 100081 PR China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Chengcheng Kong
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Na Tian
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Dailun Hou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| |
Collapse
|
110
|
Lu Y, Xu F, Wang Y, Shi C, Sha Y, He G, Yao Q, Shao K, Sun W, Du J, Fan J, Peng X. Cancer immunogenic cell death via photo-pyroptosis with light-sensitive Indoleamine 2,3-dioxygenase inhibitor conjugate. Biomaterials 2021; 278:121167. [PMID: 34624752 DOI: 10.1016/j.biomaterials.2021.121167] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023]
Abstract
Immune checkpoint blockade (ICB) therapy currently considered as to be effective way to cure cancer in clinic. However, the insufficient tumor immunogenicity and the immunosuppressive tumor microenvironment always result in diminished efficacy of immunotherapy. Herein, we report the synthesis of an organic photo-immune activator NBS-1MT, the combination of photosensitizer and Indoleamine 2,3-dioxygenase (IDO) inhibitor effectively stimulates lysosomes oxidative stress the releases inflammatory cytokines. This process triggers pyroptosis for the considerable immunogenic cell death (ICD) while reversing suppressive tumor microenvironment. The photo-immune drug shows outstanding potential to activate caspase-1and then remove gasdermin-D (GSDMD), which could stimulate pyroptosis and also inhibit the tumor growth successfully in both primary and distant tumor. Furthermore, pyroptosis activated by photodynamic therapy (PDT) promotes the immune related factors release, and enhance the intratumoral infiltration of cytotoxic T lymphocytes (CTLs) with the induction of ICD of tumor cells and the cascaded synergize with IDO inhibitor, so the general antitumor immune response could be strengthened effectively. Our research confirms that the use of NBS-1MT is a promising strategy to boost the immune response and eventually to inhibit tumor growth.
Collapse
Affiliation(s)
- Yang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Yuzhuo Sha
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Guangli He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China.
| |
Collapse
|
111
|
Sun Y, Hu Y, Wan C, Lovell JF, Jin H, Yang K. Local biomaterial-assisted antitumour immunotherapy for effusions in the pleural and peritoneal cavities caused by malignancies. Biomater Sci 2021; 9:6381-6390. [PMID: 34582527 DOI: 10.1039/d1bm00971k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Malignant pleural effusion (MPE) and malignant ascites (MA), which are common but serious conditions caused by malignancies, are related to poor quality of life and high mortality. Current treatments, including therapeutic thoracentesis and indwelling pleural catheters or paracentesis and catheter drainage, are largely palliative. An effective treatment is urgently needed. MPE and MA are excellent candidates for intratumoural injections that have direct contact with tumour cells and kill tumour cells more effectively and efficiently with fewer side effects, and the fluid environment of MPE and MA can provide a homogeneous area for drug distribution. The immunosuppressive environments within the pleural and peritoneal cavities suggest the feasibility of local immunotherapy. In this review, we introduce the current management of MPE and MA, discuss the latest advances and challenges in utilizing local biomaterial-assisted antitumour therapies for the treatment of MPE and MA, and discuss further opportunities in this field.
Collapse
Affiliation(s)
- Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jonathan F Lovell
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York. Buffalo, New York, 14260, USA
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
112
|
Wang Y, Song G, Liao S, Qin Q, Zhao Y, Shi L, Guan K, Gong X, Wang P, Yin X, Chen Q, Zhang X. Cyclic Amplification of the Afterglow Luminescent Nanoreporter Enables the Prediction of Anti‐cancer Efficiency. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Youjuan Wang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Guosheng Song
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Shiyi Liao
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Qiaoqiao Qin
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Yan Zhao
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Linan Shi
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Kesong Guan
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Xiangyang Gong
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Peng Wang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Xia Yin
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou 215123 China
| | - Xiao‐Bing Zhang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| |
Collapse
|
113
|
Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement. Nat Commun 2021; 12:5138. [PMID: 34446702 PMCID: PMC8390758 DOI: 10.1038/s41467-021-25391-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint blockade antibodies have promising clinical applications but suffer from disadvantages such as severe toxicities and moderate patient-response rates. None of the current delivery strategies, including local administration aiming to avoid systemic toxicities, can sustainably supply drugs over the course of weeks; adjustment of drug dose, either to lower systemic toxicities or to augment therapeutic response, is not possible. Herein, we develop an implantable miniaturized device using electrode-embedded optical fibers with both local delivery and measurement capabilities over the course of a few weeks. The combination of local immune checkpoint blockade antibodies delivery via this device with photodynamic therapy elicits a sustained anti-tumor immunity in multiple tumor models. Our device uses tumor impedance measurement for timely presentation of treatment outcomes, and allows modifications to the delivered drugs and their concentrations, rendering this device potentially useful for on-demand delivery of potent immunotherapeutics without exacerbating toxicities.
Collapse
|
114
|
Gao S, Yang X, Xu J, Qiu N, Zhai G. Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment. ACS NANO 2021; 15:12567-12603. [PMID: 34339170 DOI: 10.1021/acsnano.1c02103] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Immunotherapy that harnesses the human immune system to fight cancer has received widespread attention and become a mainstream strategy for cancer treatment. Cancer immunotherapy not only eliminates primary tumors but also treats metastasis and recurrence, representing a major advantage over traditional cancer treatments. Recently with the development of nanotechnology, there exists much work applying nanomaterials to cancer immunotherapy on the basis of their excellent physiochemical properties, such as efficient tissue-specific delivery function, huge specific surface area, and controllable surface chemistry. Consequently, nanotechnology holds significant potential in improving the efficacy of cancer immunotherapy. Nanotechnology-based immunotherapy mainly manifests its inhibitory effect on tumors via two different approaches: one is to produce an effective anti-tumor immune response during tumorigenesis, and the other is to enhance tumor immune defense ability by modulating the immune suppression mechanism in the tumor microenvironment. With the success of tumor immunotherapy, understanding the interaction between the immune system and smart nanomedicine has provided vigorous vitality for the development of cancer treatment. This review highlights the application, progress, and prospect of nanomedicine in the process of tumor immunoediting and also discusses several engineering methods to improve the efficiency of tumor treatment.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Jiangkang Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Na Qiu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| |
Collapse
|
115
|
Thangam R, Patel KD, Kang H, Paulmurugan R. Advances in Engineered Polymer Nanoparticle Tracking Platforms towards Cancer Immunotherapy-Current Status and Future Perspectives. Vaccines (Basel) 2021; 9:vaccines9080935. [PMID: 34452059 PMCID: PMC8402739 DOI: 10.3390/vaccines9080935] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Engineering polymeric nanoparticles for their shape, size, surface chemistry, and functionalization using various targeting molecules has shown improved biomedical applications for nanoparticles. Polymeric nanoparticles have created tremendous therapeutic platforms, particularly applications related to chemo- and immunotherapies in cancer. Recently advancements in immunotherapies have broadened this field in immunology and biomedical engineering, where "immunoengineering" creates solutions to target translational science. In this regard, the nanoengineering field has offered the various techniques necessary to manufacture and assemble multifunctional polymeric nanomaterial systems. These include nanoparticles functionalized using antibodies, small molecule ligands, targeted peptides, proteins, and other novel agents that trigger and encourage biological systems to accept the engineered materials as immune enhancers or as vaccines to elevate therapeutic functions. Strategies to engineer polymeric nanoparticles with therapeutic and targeting molecules can provide solutions for developing immune vaccines via maintaining the receptor storage in T- and B cells. Furthermore, cancer immunotherapy using polymeric nanomaterials can serve as a gold standard approach for treating primary and metastasized tumors. The current status of the limited availability of immuno-therapeutic drugs highlights the importance of polymeric nanomaterial platforms to improve the outcomes via delivering anticancer agents at localized sites, thereby enhancing the host immune response in cancer therapy. This review mainly focuses on the potential scientific enhancements and recent developments in cancer immunotherapies by explicitly discussing the role of polymeric nanocarriers as nano-vaccines. We also briefly discuss the role of multifunctional nanomaterials for their therapeutic impacts on translational clinical applications.
Collapse
Affiliation(s)
- Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Correspondence: (R.T.); (R.P.)
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Korea
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence: (R.T.); (R.P.)
| |
Collapse
|
116
|
Wang Y, Song G, Liao S, Qin Q, Zhao Y, Shi L, Guan K, Gong X, Wang P, Yin X, Chen Q, Zhang XB. Cyclic Amplification of the Afterglow Luminescent Nanoreporter Enables the Prediction of Anti-cancer Efficiency. Angew Chem Int Ed Engl 2021; 60:19779-19789. [PMID: 34233057 DOI: 10.1002/anie.202104127] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/18/2021] [Indexed: 01/17/2023]
Abstract
We developed a cyclic amplification method for an organic afterglow nanoreporter for the real-time visualization of self-generated reactive oxygen species (ROS). We promoted semiconducting polymer nanoparticles (PFODBT) as a candidate for emitting near-infrared afterglow luminescence. Introduction of a chemiluminescent substrate (CPPO) into PFODBT (PFODBT@CPPO) resulted in a significant enhancement of afterglow intensity through the dual cyclic amplification pathway involving singlet oxygen (1 O2 ). 1 O2 produced by PFODBT@CPPO induced cancer cell necrosis and promoted the release of damage-related molecular patterns, thereby evoking immunogenic cell death (ICD)-associated immune responses through ROS-based oxidative stress. The afterglow luminescent signals of the nanoreporter were well correlated with light-driven 1 O2 generation and anti-cancer efficiency. This imaging strategy provides a non-invasive tool for predicting the therapeutic outcome that occurs during ROS-mediated cancer therapy.
Collapse
Affiliation(s)
- Youjuan Wang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shiyi Liao
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiaoqiao Qin
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yan Zhao
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Linan Shi
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Kesong Guan
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiangyang Gong
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Peng Wang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xia Yin
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
117
|
He X, Yang L, Su H, Lin S, Qi D, Chen H, Qu Y, Liu L, Feng X. Clickable amino acid derivative tuned self-assembly of antigen and adjuvant for cancer immunotherapy. J Control Release 2021; 337:306-316. [PMID: 34311025 DOI: 10.1016/j.jconrel.2021.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Amino acid-tuned self-assembly has become an attractive strategy for constructing various functional materials. Here, a series of dibenzocyclooctyne (DIBO) functionalized amphiphilic amino acid derivatives are designed and screened as building blocks of functional supramolecular self-assembly nanoparticles for cancer immunotherapy. One top-performing supramolecular self-assembly material (named DA6C1) is identified through combinatorial screening, and spherical nanoparticles can be easily prepared by this material tuned multicomponent synergistic self-assembly of ovalbumin (OVA) and CpG oligonucleotide. DA6C1 based nanovaccine can significantly enhance the cellular uptake of OVA and CpG into the same bone marrow derived dendritic cells (BMDCs) and greatly improve the activation of DCs. Moreover, after subcutaneous injection, this nanovaccine flows rapidly to the lymph nodes and elicits strong immune responses to achieve effective prophylactic and therapeutic effect. Therefore, our work highlights the great potential of clickable amino acid derivatives as a convenient and powerful tool to construct nanovaccine for effective immunotherapy.
Collapse
Affiliation(s)
- Xiao He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hang Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shan Lin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Dongmei Qi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Yunfei Qu
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, Chongqing 404000, China.
| | - Libing Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
118
|
Ding B, Yue J, Zheng P, Ma P, Lin J. Manganese oxide nanomaterials boost cancer immunotherapy. J Mater Chem B 2021; 9:7117-7131. [PMID: 34279012 DOI: 10.1039/d1tb01001h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy, a strategy that leverages the host immune function to fight against cancer, plays an increasingly important role in clinical tumor therapy. In spite of the great success achieved in not only clinical treatment but also basic research, cancer immunotherapy still faces many huge challenges. Manganese oxide nanomaterials (MONs), as ideal tumor microenvironment (TME)-responsive biomaterials, are able to dramatically elicit anti-tumor immune responses in multiple ways, indicating great prospects for immunotherapy. In this review, on the basis of different mechanisms to boost immunotherapy, major highlighted topics are presented, covering adjusting an immunosuppressive TME by generating O2 (like O2-sensitized photodynamic therapy (PDT), programmed cell death ligand-1 (PD-L1) expression downregulation, reprogramming tumor-associated macrophages (TAMs), and restraining tumor angiogenesis and lactic acid exhaustion), inducing immunogenic cell death (ICD), photothermal therapy (PTT) induction, activating the stimulator of interferon gene (STING) pathway and immunoadjuvants for nanovaccines. We hope that this review will provide holistic understanding about MONs and their application in cancer immunotherapy, and thus pave the way to the translation from bench to bedside in the future.
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Jun Yue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Pan Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and Institute of Frontier and Interdisciplinarity Science and Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
119
|
Li Q, Dong Z, Chen M, Feng L. Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
120
|
Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnology 2021; 19:192. [PMID: 34183023 PMCID: PMC8240398 DOI: 10.1186/s12951-021-00936-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/13/2021] [Indexed: 12/20/2022] Open
Abstract
It is of utmost urgency to achieve effective and safe anticancer treatment with the increasing mortality rate of cancer. Novel anticancer drugs and strategies need to be designed for enhanced therapeutic efficacy. Fenton- and Fenton-like reaction-based chemodynamic therapy (CDT) are new strategies to enhance anticancer efficacy due to their capacity to generate reactive oxygen species (ROS) and oxygen (O2). On the one hand, the generated ROS can damage the cancer cells directly. On the other hand, the generated O2 can relieve the hypoxic condition in the tumor microenvironment (TME) which hinders efficient photodynamic therapy, radiotherapy, etc. Therefore, CDT can be used together with many other therapeutic strategies for synergistically enhanced combination therapy. The antitumor applications of Fenton- and Fenton-like reaction-based nanomaterials will be discussed in this review, including: (iþ) producing abundant ROS in-situ to kill cancer cells directly, (ii) enhancing therapeutic efficiency indirectly by Fenton reaction-mediated combination therapy, (iii) diagnosis and monitoring of cancer therapy. These strategies exhibit the potential of CDT-based nanomaterials for efficient cancer therapy.
Collapse
Affiliation(s)
- Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Caiting Deng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, People's Republic of China.
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
121
|
Chen C, Guo Q, Fu H, Yu J, Wang L, Sun Y, Zhang J, Duan Y. Asynchronous blockade of PD-L1 and CD155 by polymeric nanoparticles inhibits triple-negative breast cancer progression and metastasis. Biomaterials 2021; 275:120988. [PMID: 34186238 DOI: 10.1016/j.biomaterials.2021.120988] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023]
Abstract
PD-L1/PD-1 blockade therapy shows durable responses to triple-negative breast cancer (TNBC), but the response rate is low. CD155 promotes tumor metastasis intrinsically and modulates the immune response extrinsically as the ligand of DNAM-1 (costimulatory receptor) and TIGIT/CD96 (coinhibitory receptors). Herein, we verified that TNBC cells coexpressed PD-L1 and CD155. By examining the receptors of PD-L1 and CD155 on TNBC tumor-infiltrating lymphocytes (TILs) over time, we observed that PD-1 and DNAM-1 were upregulated early, whereas CD96 and TIGIT were upregulated late in CD8+ TILs. Based on these findings, we developed CD155 siRNA (siCD155)-loaded mPEG-PLGA-PLL (PEAL) nanoparticles (NPs) coated with PD-L1 blocking antibodies (P/PEALsiCD155) to asynchronously block PD-L1 and CD155 in a spatiotemporal manner. P/PEALsiCD155 maximized early-stage CD8+ T cell immune surveillance against 4T1 tumor, whereas reversed inhibition status of the late stage CD8+ T cells to prevent 4T1 tumor immune escape. In addition, the combination of P/PEALsiCD155 and tumor-specific CD8 T cells induced immunogenic cell death (ICD) of 4T1 cells to further boost immune checkpoint therapy. Most importantly, P/PEALsiCD155 displayed excellent TNBC targeting and induced CD8+ TILs-dominant intratumor antitumor immunity to efficiently inhibit TNBC progression and metastasis with excellent safety in a syngeneic 4T1 orthotopic TNBC tumor model.
Collapse
Affiliation(s)
- Chuanrong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Liting Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiali Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
122
|
Liu Q, Tian J, Tian Y, Sun Q, Sun D, Liu D, Wang F, Xu H, Ying G, Wang J, Yetisen AK, Jiang N. Thiophene donor for NIR-II fluorescence imaging-guided photothermal/photodynamic/chemo combination therapy. Acta Biomater 2021; 127:287-297. [PMID: 33831570 DOI: 10.1016/j.actbio.2021.03.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Organic fluorophores/photosensitizers have been widely used in biological imaging and photodynamic and photothermal combination therapy in the first near-infrared (NIR-I) window. However, their applications in the second near-infrared (NIR-II) window are still limited primarily due to low fluorescence quantum yields (QYs). Here, a boron dipyrromethene (BDP) is created as a molecularly engineered thiophene donor unit with high QYs to the redshift. Thiophene insertion initiates substantial redshifts of the absorbance as compared to its counterparts in which iodine is introduced. The fluorescent molecule can be triggered by an NIR laser with a single wavelength, thereby producing emission in the NIR-II windows. Single NIR laser-triggered phototherapeutic nanoparticles (NPs) are developed by encapsulating the BDP and the chemotherapeutic drug docetaxel (DTX) by using a synthetic amphiphilic poly(styrene-co-chloromethyl styrene)-graft-poly(ethylene glycol) functionalized with folic acid (FA). These BDP-T-N-DTX-FA NPs not only show superior solubility and high singlet oxygen QY (ΦΔ=62%) but also demonstrate single NIR laser-triggered multifunctional characteristics. After intravenous administration of the NPs into 4T1 tumor-bearing mice, the accumulation of the NPs in the tumor showed a high signal-to-background ratio (11.8). Furthermore, 4T1 tumors in mice were almost eradicated by DTX released from the BDP-T-N-DTX-FA NPs under single NIR laser excitation and the combination of photodynamic therapy (PDT) and photothermic therapy (PTT). STATEMENT OF SIGNIFICANCE: The application of organic photosensitizers is still limited primarily due to low fluorescence quantum yields (QYs) in the second near-infrared (NIR-II) window. Here, a boron dipyrromethene (BDP) as a molecularly engineered thiophene donor unit with high QYs to the redshift is created. Phototherapeutic nanoparticles (NPs) are developed by encapsulating the BDP and docetaxel (DTX) using a synthetic amphiphilic poly(styrene-co-chloromethyl styrene)-graft-poly(ethylene glycol) functionalized with folic acid (FA). These BDP-T-N-DTX-FA NPs not only show high singlet oxygen QY (ΦΔ=62%) but also demonstrate single NIR laser-triggered multifunctional characteristics and a high signal-to-background ratio (11.8). Furthermore, 4T1 tumors in mice were almost eradicated by DTX released from the BDP-T-N-DTX-FA NPs under single NIR laser excitation and the PDT/PTT combination therapy.
Collapse
Affiliation(s)
- Qiang Liu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Chemistry, Stanford University, CA 94305, United States
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 21198, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qinchao Sun
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dan Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Dewen Liu
- Department of Chemistry, Stanford University, CA 94305, United States
| | - Feifei Wang
- Department of Chemistry, Stanford University, CA 94305, United States
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China.
| | - Guoliang Ying
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139 MA, United States.
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Urology, Shenzhen People's Hospital (The First Affilated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
123
|
Zhong X, Wang X, Li J, Hu J, Cheng L, Yang X. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
124
|
Yu J, Liu S, Wang Y, He X, Zhang Q, Qi Y, Zhou D, Xie Z, Li X, Huang Y. Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioact Mater 2021; 7:389-400. [PMID: 34466740 PMCID: PMC8379359 DOI: 10.1016/j.bioactmat.2021.05.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
The combination of tumor ablation and immunotherapy is a promising strategy against tumor relapse and metastasis. Photothermal therapy (PTT) triggers the release of tumor-specific antigens and damage associated molecular patterns (DAMPs) in-situ. However, the immunosuppressive tumor microenvironment restrains the activity of the effector immune cells. Therefore, systematic immunomodulation is critical to stimulate the tumor microenvironment and augment the anti-tumor therapeutic effect. To this end, polyethylene glycol (PEG)-stabilized platinum (Pt) nanoparticles (Pt NPs) conjugated with a PD-L1 inhibitor (BMS-1) through a thermo-sensitive linkage were constructed. Upon near-infrared (NIR) exposure, BMS-1 was released and maleimide (Mal) was exposed on the surface of Pt NPs, which captured the antigens released from the ablated tumor cells, resulting in the enhanced antigen internalization and presentation. In addition, the Pt NPs acted as immune adjuvants by stimulating dendritic cells (DCs) maturation. Furthermore, BMS-1 relieved T cell exhaustion and induced the infiltration of effector T cells into the tumor tissues. Thus, Pt NPs can ablate tumors through PTT, and augment the anti-tumor immune response through enhanced antigen presentation and T cells infiltration, thereby preventing tumor relapse and metastasis. Pt NPs ablated tumor cells through PTT and served as immune adjuvants. Released BMS-1 and deprotected maleimide by thermo-sensitive Diels-Alder reaction. Pt NPs captured the antigens with exposed maleimide and stimulated dendritic cells maturation. Controlled release of BMS-1 in response to PTT relieved T cell exhaustion.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,University of Science and Technology of China, Hefei, 230026, PR China
| | - Sha Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yupeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Xidong He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,University of Science and Technology of China, Hefei, 230026, PR China
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,University of Science and Technology of China, Hefei, 230026, PR China
| | - Xiaoyuan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| |
Collapse
|
125
|
Zhang H, Cheng H, Han Y, Jin Y, Wang G, Sun C, Jiang W, Han G, Sun B, Jiang Z, Yuan Z, Zhou J, Ding Y. Natural discoidal lipoproteins with tiny modification for tumor extracellular dissociation in antitumor chemoimmunotherapy. Biomaterials 2021; 275:120859. [PMID: 34087586 DOI: 10.1016/j.biomaterials.2021.120859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/23/2022]
Abstract
Appealing cancer immunotherapy requires synchronous presentation of tumor antigens and immunoadjuvant. Herein, a "one-step" modification strategy is proposed to tinily remould endogenous discoidal high density lipoprotein (dHDL) for tumor-homing and site-specific chemoimmunotherapy. For molecular targeting therapy, lipophilic immunoadjuvant CpG oligodeoxynucleotides is conjugated to facilitate HDL-surface anchoring; and GC nucleotides provide enough reservoir for completion of doxorubicin (Dox) "sandwich". After administration, the tiny size (~30 nm) of disc nanodrug can maneuver deeply into tumors for receptor binding and in situ structural collapse. The intracellular concentrated CpG-Dox induce potent immunogenic cell death from burst Dox liberation at acidic pH. In turn, the released antigens and CpG motifs are simultaneously recognized by dendritic cells for antigen presentation and antitumor T cell responses. Combination chemoimmunotherapy with discoidal nanodrugs performed highest tumor weight inhibitory of 93.2% and extend the median survival time at a safe level. Collectively, this study suggests that the minimalist revolution of natural dHDL particulates may provide a biomimicry nanoplatform for site-specific amplified chemoimmunotherapy.
Collapse
Affiliation(s)
- Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing, 210009, China
| | - Hao Cheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Yue Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Gang Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Chenhua Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Wenxin Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Bo Sun
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zijun Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Zhou Yuan
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing, 210009, China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing, 210009, China.
| |
Collapse
|
126
|
Zhu D, Lyu M, Jiang W, Suo M, Huang Q, Li K. A biomimetic nanozyme/camptothecin hybrid system for synergistically enhanced radiotherapy. J Mater Chem B 2021; 8:5312-5319. [PMID: 32453333 DOI: 10.1039/d0tb00676a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although radiotherapy (RT) has been an effective therapeutic regimen against most solid tumors, its effect is limited by the hypoxic tumor microenvironment and radio-tolerance of tumor cells to a large extent. Here we have designed a biomimetic nanozyme/camptothecin hybrid system for synergistically enhanced radiotherapy, which consists of an internal camptothecin (CPT)-loaded hollow MnO2 core and an external tumor cell membrane. The tumor cell membrane endows the system with excellent tumor targeting ability. The hollow MnO2 core can deliver the hydrophobic drug CPT and catalyze the production of oxygen from hydrogen peroxide in tumor tissues, which was finally degraded into Mn2+, a T1-weighted contrast agent. The anti-tumor mechanism of this system includes two aspects: (i) the generated oxygen can improve the hypoxic state of the tumor microenvironment and enhance the radiotherapy sensitivity and (ii) CPT can induce cell cycle arrest in the S-phase at a low dose, which further increases the radio-sensitivity of tumor cells and augmented radiation-induced tumor damage. The results of in vivo experiments showed that the biomimetic nanozyme drug delivery system improved the hypoxic microenvironment of the tumor tissue with a high tumor inhibition rate in a murine model. This platform achieved synergistic radiotherapy sensitization and provided a novel idea for the design of a radiotherapy sensitization system.
Collapse
Affiliation(s)
- Daoming Zhu
- Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Meng Lyu
- Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, China. and Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Jiang
- Joint Laboratory of Nanozymes in Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, China
| | - Meng Suo
- Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Qinqin Huang
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Kaiyang Li
- Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
127
|
Tan Y, Yang S, Ma Y, Li J, Xie Q, Liu C, Zhao Y. Nanobubbles Containing sPD-1 and Ce6 Mediate Combination Immunotherapy and Suppress Hepatocellular Carcinoma in Mice. Int J Nanomedicine 2021; 16:3241-3254. [PMID: 34007176 PMCID: PMC8121678 DOI: 10.2147/ijn.s305857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) and sonodynamic therapy (SDT) are types of immunotherapy. In order to combine soluble programmed cell death protein 1 (sPD-1)-mediated immune checkpoint therapy and chlorin e6 (Ce6)-assisted SDT, nanobubbles (NBs) were generated to simultaneously load sPD-1 and Ce6. MATERIALS AND METHODS The sPD-1/Ce6-NBs, which were prepared by thin-film hydration and mechanical oscillation, had a stable physical condition, and delivered sPD-1 and Ce6 in a targeted manner. NBs could strengthen tumor suppression by increasing tumor-targeting accumulation of Ce6 and sPD-1, and by inducing ultrasound-targeted NB destruction. A mouse H22 cell hepatoma xenograft model was used to evaluate the synergetic immunotherapeutic effect and mechanism of sPD-1/Ce6-NBs. RESULTS By observing the tumor inhibition rate, tissue and cell apoptosis, apoptosis-related genes and protein expression, the best immunotherapeutic effect was exhibited by the sPD-1/Ce6-NBs group. The immunotherapeutic mechanism initially demonstrated that when tumor cells were transfected by sPD-1 delivered by NBs, which downregulated the expression of programmed death-ligand 1 (PD-L1) in tumor cells, and blocked the PD-1/PD-L1 signaling pathway, which improved T-cell-mediated tumor inhibition. Furthermore, ICIs combined with SDT induced immunogenic cell death by translocating calreticulin to the cell surface and then synergistically enhancing antitumor immune responses. CONCLUSION In conclusion, sPD-1/Ce6-NBs were successfully designed. Ultrasound-mediated sPD-1/Ce6-NBs are potentially effective delivery systems for combination immunotherapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yandi Tan
- Medical College of China Three Gorges University, Yichang, Hubei, People’s Republic of China
| | - Shiqi Yang
- Medical College of China Three Gorges University, Yichang, Hubei, People’s Republic of China
| | - Yao Ma
- Department of Ultrasonography, Yichang Central People’s Hospital, Yichang, People’s Republic of China
| | - Jinlin Li
- Medical College of China Three Gorges University, Yichang, Hubei, People’s Republic of China
| | - Qian Xie
- Medical College of China Three Gorges University, Yichang, Hubei, People’s Republic of China
| | - Chaoqi Liu
- Medical College of China Three Gorges University, Yichang, Hubei, People’s Republic of China
| | - Yun Zhao
- Medical College of China Three Gorges University, Yichang, Hubei, People’s Republic of China
| |
Collapse
|
128
|
Li J, Wei W, Xu F, Wang Y, Liu Y, Fu C. Clinical Therapy of Metastatic Spinal Tumors. Front Surg 2021; 8:626873. [PMID: 33937314 PMCID: PMC8084350 DOI: 10.3389/fsurg.2021.626873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Metastatic spinal tumors (MST) have high rates of morbidity and mortality. MST can destroy the vertebral body or compress the nerve roots, resulting in an increased risk of pathological fractures and intractable pain. Here, we elaborately reviewed the currently available therapeutic options for MST according to the following four aspects: surgical management, minimally invasive therapy (MIT), radiation therapy, and systemic therapy. In particular, these aspects were classified and introduced to show their developmental process, clinical effects, advantages, and current limitations. Furthermore, with the improvement of treatment concepts and techniques, we discovered the prevalent trend toward the use of radiation therapy and MIT in clinic therapies. Finally, the future directions of these treatment options were discussed. We hoped that along with future advances and study will lead to the improvement of living standard and present status of treatment in patients with MST.
Collapse
Affiliation(s)
- Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wenjie Wei
- Key Laboratory of Pathobiology, Ministry of Education, School of Basic Medical Sciences, Jilin University, Changchun, China
| | - Feng Xu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yadong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
129
|
Gao Y, Zhao Q, Xiao M, Huang X, Wu X. A versatile photothermal vaccine based on acid-responsive glyco-nanoplatform for synergistic therapy of cancer. Biomaterials 2021; 273:120792. [PMID: 33872856 DOI: 10.1016/j.biomaterials.2021.120792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023]
Abstract
The race is on for therapeutic agents that stop cancer. An effective vaccine offers a safe and promising approach for cancer immunotherapy. However, substantial barriers to immunotherapy in cancer vaccines include the low immunogenicity of cancer antigens and the immunosuppression commonly present in solid tumors, resulting in significant challenges for developing a clinically effective cancer vaccine. Here, the state of the art of synergistic therapy, which includes the photothermal effect combined with immunotherapy, was investigated to target tumors. For the first time, indocyanine green (ICG, referred to as I), imiquimod (R837, referred to as R) and a foreign cytotoxic T lymphocyte antigen peptide (CTL-Ap, referred to as Ap) with the sequence of SIINFEKL from ovalbumin (OVA) were encapsulated by acetalated dextran (AcDEX) to form nanoparticles (NPs) averaging 92 nm in diameter as an immunogen. Administration of the resulting multifunctional vaccine I-R-Ap-AcDEX NPs enhanced antitumor cytotoxic T lymphocyte (CTL) immunotherapy. On the one hand, subcutaneous immunization of the NPs allows foreign Ap to enter the major histocompatibility complex class I (MHC-I) cross-presentation pathway of antigen-presenting cells, thereby presenting Ap and eliciting high levels of Ap-specific CTLs. On the other hand, intratumor/intravenous injections of the NPs allow foreign Ap to enter tumor cells and present Ap through the MHC-I cross-presentation pathway. Ap-specific CTLs can kill Ap-presented tumor cells. Furthermore, the NPs generated near-infrared laser triggered the photothermal killing of tumor cells. To our knowledge, this is the first report of AcDEX NPs in antitumor photothermal therapy. Strikingly, systemic administration of the I-R-Ap-AcDEX NPs combined with near-infrared laser irradiation allowed for complete protection to mice from the tumors when applied to two non-OVA tumor models. This quite impressive result displays the great promise of synergistic therapy by the vaccine I-R-Ap-AcDEX NPs, an approach that harnesses the photothermal effect to boost antitumor immunotherapy.
Collapse
Affiliation(s)
- Yanan Gao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| | - Qingyu Zhao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, Shandong, 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, United States
| | - Xuanjun Wu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, Shandong, 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
130
|
Ma H, He C, Chen X. Injectable Hydrogels as Local Depots at Tumor Sites for Antitumor Immunotherapy and Immune-Based Combination Therapy. Macromol Biosci 2021; 21:e2100039. [PMID: 33818918 DOI: 10.1002/mabi.202100039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Indexed: 12/17/2022]
Abstract
Despite the encouraging clinical responses of several human cancers to immunotherapy, the efficacy of this treatment remains limited by variable objective response rates and severe systemic immune-related adverse events. To overcome these issues, injectable hydrogels have been developed as local depots that permit the sustained release of single or multiple immunotherapy agents, including traditional immunomodulatory factors, immune checkpoint blocking antibodies, and exogenous immune cells. The antitumor efficacy of immunotherapy can also be enhanced by its combination with other therapeutic approaches, including chemotherapy, radiotherapy, and phototherapy. Despite local treatment strategies, potent systemic antitumor immune responses with low systemic toxicity can be obtained, leading to significant local and abscopal tumor-killing, reduced tumor metastasis, and the prevention of tumor recurrence. This review highlights recent progress in injectable hydrogel-based local depots for tumor immunotherapy and immune-based combination therapy. Moreover, the proposed mechanisms responsible for these antitumor effects are discussed.
Collapse
Affiliation(s)
- Hongyu Ma
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
131
|
Chen C, Tong Y, Zheng Y, Shi Y, Chen Z, Li J, Liu X, Zhang D, Yang H. Cytosolic Delivery of Thiolated Mn-cGAMP Nanovaccine to Enhance the Antitumor Immune Responses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006970. [PMID: 33719177 DOI: 10.1002/smll.202006970] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/07/2021] [Indexed: 06/12/2023]
Abstract
As a stimulator of interferon gene (STING), cyclic dinucleotide activates a broad cellular immune response for anti-cancer immunotherapy (CIT). However, the inherent of instability of 2' 3'-cyclic-GMP-AMP (cGAMP) with poor cellular targeting, rapid clearance, and inefficient transport to the cytoplasm seriously hinders cGAMP potency. Here, a thiolated and Mn2+ coordinated cyclic dinucleotide nanovaccine (termed as Mn-cGAMP NVs) to enable direct cytosolic co-delivery of cGAMP and Mn2+ to potentiate the antitumor immune response is presented. In the NVs, the fixation cGAMP with Mn2+ ions not only improve its stability, but also potentiate the activation of STING. Meanwhile, the presence of polysulfides on the NVs surface allowed direct cytosolic delivery while avoiding degradation. In this way, the production of cytokines for activating T cells immunity is greatly elevated, which in turn suppressed the primary and distal tumors growth through long-term immune memory and led to long-term survival of poorly immunogenic B16F10 melanoma mice. Moreover, by further combining with anti-PD-L1 monoclonal antibody, synergistic T cells antitumor immune response is elicited. This work offers a promising strategy to enhance the potency of cGAMP, holding a considerable potential for CIT applications.
Collapse
Affiliation(s)
- Chengyun Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuhong Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Yingjun Shi
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Da Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
132
|
Zeng L, Cao Y, He L, Ding S, Bian XW, Tian G. Metal-ligand coordination nanomaterials for radiotherapy: emerging synergistic cancer therapy. J Mater Chem B 2021; 9:208-227. [PMID: 33215626 DOI: 10.1039/d0tb02294b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy (RT) plays a central role in curing malignant tumors. However, the treatment outcome is often impeded by low radiation absorption coefficients and radiation resistance of tumors along with normal tissue radio-toxicity. With the development of nanotechnology, nanomaterials in combination with RT offer the possibility to improve the therapeutic efficacy yet reduce side-effects. Metal-ligand coordination nanomaterials, including nanoscale metal-organic frameworks (NMOFs) and nanoscale coordination polymers (NCPs), formed by coordination interactions between inorganic metal ions/clusters with organic bridging ligands, have shown great potential in the field of radiation oncology in recent years in view of their unique advantages including the porous structure, high surface area, periodic frameworks, and diverse selections of both metal ions/clusters and organic ligands. In this review, we summarize the recent advances in NMOF/NCP-mediated synergistic RT in combination with hypoxia relief, chemotherapy, photodynamic therapy, photothermal therapy, chemodynamic therapy or immunotherapy, which emerged in the last 3 years, and describe cooperative enhancement interactions among these synergistic combinations. Moreover, the potential challenges and future prospects of this rapidly growing direction were also addressed.
Collapse
Affiliation(s)
- Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|
133
|
Jiao X, Sun L, Zhang W, Ren J, Zhang L, Cao Y, Xu Z, Kang Y, Xue P. Engineering oxygen-deficient ZrO 2-x nanoplatform as therapy-activated "immunogenic cell death (ICD)" inducer to synergize photothermal-augmented sonodynamic tumor elimination in NIR-II biological window. Biomaterials 2021; 272:120787. [PMID: 33819815 DOI: 10.1016/j.biomaterials.2021.120787] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022]
Abstract
Nano-zirconia, as an amphoteric semiconductor, has been industrially exploited in photocatalytic reactions and as piezoelectric sensors. However, its biomedical applications, especially in antitumor therapeutics, have been seldom investigated to date. Here, oxygen-deficient zirconia (ZrO2-x)-based nanoplatform with surface PEGylation and cyclic-Arg-Gly-Asp (cRGD) peptide functionalization (ZrO2-x@PEG/cRGD, abbreviated as ZPR) was rationally designed and established for the first time, which was utilized as therapy-activated "immunogenic cell death (ICD)" inducer to boost photothermal-augmented sonodynamic tumor elimination in NIR-II biological window. As-synthesized ZPR nanoparticles (NPs) exhibited intense optical absorbance in the wavelength range of 900-1100 nm, which endowed ZPR NPs with a photothermal conversion efficiency as high as 45.8% for photothermal therapy (PTT). Moreover, owing to the abundant surface oxygen defects, ZPR NPs can serve as a category of high-performance nano-sonosensitizer based on the strengthened separation of electron (e-)/hole (h+) pairs from the energy band under external ultrasound (US) activation. More importantly, cytotoxic reactive oxygen species (ROS) generated from sonodynamic therapy (SDT) can effectively induce immunogenic cell death (ICD), which is regarded to be significant to boost systemic anti-tumor immunity for rendering a complete tumor eradication post-treatment. In vivo experiments on tumor xenografts demonstrated the high therapeutic efficacy upon photothermal-augmented sonodynamic therapy, with the aid of photoacoustic (PA) imaging navigation. Remarkably, the level of inflammatory cytokines, including type I interferon (IFN), tumor necrosis factor α (TNF-α) as well as interleukin (IL-6) were systemically upgraded after NIR-II/US irradiation, verifying the promotion of immunogenicity. Taken together, this study delivers useful insights for extending the applications of zirconia as promising translational medicine for tumor theranostics in the near future.
Collapse
Affiliation(s)
- Xiaodan Jiao
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lihong Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Wei Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Junjie Ren
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lei Zhang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Zhigang Xu
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
134
|
Jia S, Wang S, Li S, Hu P, Yu S, Shi J, Yuan J. Specific modification and self-transport of porphyrins and their multi-mechanism cooperative antitumor studies. J Mater Chem B 2021; 9:3180-3191. [PMID: 33885622 DOI: 10.1039/d0tb02847a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In order to reduce the toxicity and side effects of anti-tumor drugs and improve their therapeutic effect against cancer, photodynamic and chemical combination therapy has been exploited. However, the complicated preparation and metabolic toxicity of photosensitizer-loaded materials remain major obstacles for bioapplications. In this study, we designed and prepared a specific photosensitizer self-transporting drug-delivery system. First, 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphine (TAPP) was modified using specific molecules of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) with a certain antitumor effect, to prepare a specific fluorescent amphiphilic system (TAPP-TPGS). Then, the drug-loaded fluorescence nanomicelle (TAPP-TPGS/PTX) was formed via self-assembly using the amphiphilic system and the anticancer drug paclitaxel (PTX). The carrier material could be used as a drug tracer and cancer therapy reagent to synergistically trace the chemotherapy drug and treat cancers. The biocompatibility and the enhanced antitumor effect of TAPP-TPGS/PTX were confirmed by in vitro and in vivo experiments. To detect the synergistic anticancer effect enhanced by TPGS, TAPP-mPEG synthesized with a similar method as TAPP-TPGS was used for a comparative analysis. The results showed that the excellent synergistic anticancer effect of the TAPP-TPGS/PTX was enhanced due to the introduction of TPGS. Thus, the specific porphyrin self-transporting nanomicelle is a very promising carrier material for applications in biomedicine.
Collapse
Affiliation(s)
- Shuxin Jia
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
135
|
Yang F, Shi K, Hao Y, Jia Y, Liu Q, Chen Y, Pan M, Yuan L, Yu Y, Qian Z. Cyclophosphamide loaded thermo-responsive hydrogel system synergize with a hydrogel cancer vaccine to amplify cancer immunotherapy in a prime-boost manner. Bioact Mater 2021; 6:3036-3048. [PMID: 33778186 PMCID: PMC7960683 DOI: 10.1016/j.bioactmat.2021.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Although neoantigen-based cancer vaccines show great potential in cancer immunotherapy due to their ability to induce effective and long-lasting anti-tumor immunity, their development is hindered by the limitations of neoantigens identification, low immunogenicity, and weak immune response. Cyclophosphamide (CTX) not only directly kills tumors but also causes immunogenic cell death, providing a promising source of antigens for cancer vaccines. Herein, a combined immunotherapy strategy based on temperature-sensitive PLEL hydrogel is designed. First, CTX-loaded hydrogel is injected intratumorally into CT26 bearing mice to prime anti-tumor immunity, and then 3 days later, PLEL hydrogels loaded with CpG and tumor lysates are subcutaneously injected into both groins to further promote anti-tumor immune responses. The results confirm that this combined strategy reduces the toxicity of CTX, and produces the cytotoxic T lymphocyte response to effectively inhibit tumor growth, prolong survival, and significantly improve the tumor cure rate. Moreover, a long-lasting immune memory response is observed in the mice. About 90% of the cured mice survive for at least 60 days after being re-inoculated with tumors, and the distant tumor growth is also well inhibited. Hence, this PLEL-based combination therapy may provide a promising reference for the clinical promotion of chemotherapy combined with cancer vaccines. PLEL based-CTX hydrogel system avoided the rapid clearance of CTX and reduced systemic toxicity. PLEL-assisted tumor lysate vaccine was cheap, safe, and contained all tumor antigens. This strategy promoted the maturation and activation of DCs, enhanced cancer-specific CD8+ T cell responses. PLEL-assisted combination strategy achieved a good tumor inhibition effect and generate a lasting immune memory. . This local administration strategy could kill tumors that could not be detected or removed surgically in the clinic.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yanpeng Jia
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Qingya Liu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yu Chen
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Meng Pan
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Liping Yuan
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yongyang Yu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
136
|
Li J, Jiang X, Li H, Gelinsky M, Gu Z. Tailoring Materials for Modulation of Macrophage Fate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004172. [PMID: 33565154 PMCID: PMC9245340 DOI: 10.1002/adma.202004172] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/31/2020] [Indexed: 05/03/2023]
Abstract
Human immune system acts as a pivotal role in the tissue homeostasis and disease progression. Immunomodulatory biomaterials that can manipulate innate immunity and adaptive immunity hold great promise for a broad range of prophylactic and therapeutic purposes. This review is focused on the design strategies and principles of immunomodulatory biomaterials from the standpoint of materials science to regulate macrophage fate, such as activation, polarization, adhesion, migration, proliferation, and secretion. It offers a comprehensive survey and discussion on the tunability of material designs regarding physical, chemical, biological, and dynamic cues for modulating macrophage immune response. The range of such tailorable cues encompasses surface properties, surface topography, materials mechanics, materials composition, and materials dynamics. The representative immunoengineering applications selected herein demonstrate how macrophage-immunomodulating biomaterials are being exploited for cancer immunotherapy, infection immunotherapy, tissue regeneration, inflammation resolution, and vaccination. A perspective on the future research directions of immunoregulatory biomaterials is also provided.
Collapse
Affiliation(s)
- Jinhua Li
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hongjun Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
137
|
Fei Z, Fan Q, Dai H, Zhou X, Xu J, Ma Q, Maruyama A, Wang C. Physiologically triggered injectable red blood cell-based gel for tumor photoablation and enhanced cancer immunotherapy. Biomaterials 2021; 271:120724. [PMID: 33636549 DOI: 10.1016/j.biomaterials.2021.120724] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Hydrogels are widely used for drug delivery and tissue engineering. Here we developed a simple injectable red blood cells (RBCs)-based gel for cancer photo-immunotherapy. We find that subcutaneous injected homologous RBCs could form hydrogel-like composition in mice, due to the infiltrated platelets and thrombin under physiological environment. In addition, the formed RBC-gel has photothermal effect under NIR laser exposure on account of deep reddish color. In mice bearing CT26 tumors, we demonstrate photo-immunotherapy of cancer by local injection of imiquimod (R837) adjuvant engineered RBCs. The photothermal effect of the in situ formed RBC-gel effectively burns tumor to release tumor-associated antigens (TAAs), promotes the release of R837 from RBCs to the tumor draining lymph node, thereby activating the lymph node-resident antigen-presenting cells (APCs) remarkably. A durable systemic immune response is induced following the combination treatment of the primary tumor. 100% mice rejected tumor rechallenge and are survived at least 250 days without any detectable tumors. Our strategy highlights the RBCs, the most common type of cell in our blood, as the hydrogel for drug delivery and cancer photo-immunotherapy.
Collapse
Affiliation(s)
- Ziying Fei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qin Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China; Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China.
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xuanfang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Yokohama, 226-8501, Japan.
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
138
|
Wang ZH, Liu JM, Yang FE, Hu Y, Lv H, Wang S. Tailor-Made Cell-Based Biomimetic Nanoprobes for Fluorescence Imaging Guided Colorectal Cancer Chemo-immunotherapy. ACS APPLIED BIO MATERIALS 2021; 4:1920-1931. [PMID: 35014461 DOI: 10.1021/acsabm.0c01553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer has become one of the malignant tumors with a high rate of morbidity and mortality. Therefore, how to effectively treat colorectal cancer is crucial. Although nanodelivery system has been applied to the therapy of colorectal cancer, the majority of existing nanodelivery systems still have drawbacks such as low biocompatibility and poor targeting ability. In this work, tailor-made cell-based biomimetic nanoplatform was prepared to enhance the targeting and therapeutic effect for colorectal cancer chemo-immunotherapy. First, hollow long persistence luminescence nanomaterials were synthesized with superior background-free bioimaging effect and high drug-loading content. After loaded with cisplatin, the nanoplatform was camouflaged with tailor-made erythrocyte and programmed cell death receptor 1 (PD-1) expressed hybrid cell membrane. In vivo animal imaging experiment showed that the nanoplatform camouflaged with hybrid cell membrane not only had excellent immune escapability but also had excellent tumor active targeting ability. In vivo anticancer experiments showed that combined chemotherapy and immunotherapy of the nanoplatform could significantly inhibit tumor growth in tumor-bearing mice. In summary, the tailor-made cell-based membrane camouflage produced excellent immune escapability and cancer active targeting ability, providing a modality for biomimetic nanodelivery systems.
Collapse
Affiliation(s)
- Zhi-Hao Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing-Min Liu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Fei-Er Yang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yaozhong Hu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
139
|
Meng Z, Zhang Y, She J, Zhou X, Xu J, Han X, Wang C, Zhu M, Liu Z. Ultrasound-Mediated Remotely Controlled Nanovaccine Delivery for Tumor Vaccination and Individualized Cancer Immunotherapy. NANO LETTERS 2021; 21:1228-1237. [PMID: 33522825 DOI: 10.1021/acs.nanolett.0c03646] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vaccines are one of utmost important weapons in modern medicine to fight a wide range of diseases. To achieve optimal vaccination effects, repeated injections of vaccines are often required, which would largely decrease patient comfort. Herein, an ultrasound-responsive self-healing hydrogel system loaded with nanovaccines is designed for remotely controlled tumor vaccine release and individualized cancer immunotherapy. The gel could be transformed into sol status in response to ultrasound treatment, allowing a burst release of nanovaccines, and self-healed to gel afterward. For mice with a single subcutaneous injection of nanovaccine-loaded gel and multiple ultrasound treatments, repeatedly released nanovaccines could elicit antitumor immune responses, which in combination with immune checkpoint blockade could effectively inhibit established tumors, and prevent postoperative tumor metastases and recurrence based on our personalized nanovaccine system. This work presents an easy-to-operate strategy to realize controllable and durable delivery of vaccines against cancer and potentially other types of diseases.
Collapse
Affiliation(s)
- Zhouqi Meng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yaojia Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jialin She
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuanfang Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jun Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiao Han
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
140
|
Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, Yu H. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 2021; 270:120709. [PMID: 33581608 DOI: 10.1016/j.biomaterials.2021.120709] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapies including cancer vaccines, immune checkpoint blockade or chimeric antigen receptor T cells have been exploited as the attractive treatment modalities in recent years. Among these approaches, cancer vaccines that designed to deliver tumor antigens and adjuvants to activate the antigen presenting cells (APCs) and induce antitumor immune responses, have shown significant efficacy in inhibiting tumor growth, preventing tumor relapse and metastasis. Despite the potential of cancer vaccination strategies, the therapeutic outcomes in preclinical trials are failed to promote their clinical translation, which is in part due to their inefficient vaccination cascade of five critical steps: antigen identification, antigen encapsulation, antigen delivery, antigen release and antigen presentation to T cells. In recent years, it has been demonstrated that various nanobiomaterials hold great potential to enhance cancer vaccination cascade and improve their antitumor performance and reduce the off-target effect. We summarize the cutting-edge advances of nanobiomaterials-based vaccination immunotherapy of cancer in this review. The various cancer nanovaccines including antigen peptide/adjuvant-based nanovaccines, nucleic acid-based nanovaccines as well as biomimetic nanobiomaterials-based nanovaccines are discussed in detail. We also provide some challenges and perspectives associated with the clinical translation of cancer nanovaccines.
Collapse
Affiliation(s)
- Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjie Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tianliang Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
141
|
Jiang Y, Huang J, Xu C, Pu K. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nat Commun 2021; 12:742. [PMID: 33531498 PMCID: PMC7854754 DOI: 10.1038/s41467-021-21047-0] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/07/2021] [Indexed: 01/16/2023] Open
Abstract
Nanomedicine in combination with immunotherapy offers opportunities to treat cancer in a safe and effective manner; however, remote control of immune response with spatiotemporal precision remains challenging. We herein report a photothermally activatable polymeric pro-nanoagonist (APNA) that is specifically regulated by deep-tissue-penetrating second near-infrared (NIR-II) light for combinational photothermal immunotherapy. APNA is constructed from covalent conjugation of an immunostimulant onto a NIR-II semiconducting transducer through a labile thermo-responsive linker. Upon NIR-II photoirradiation, APNA mediates photothermal effect, which not only triggers tumor ablation and immunogenic cell death but also initiates the cleavage of thermolabile linker to liberate caged agonist for in-situ immune activation in deep solid tumor (8 mm). Such controlled immune regulation potentiates systemic antitumor immunity, leading to promoted cytotoxic T lymphocytes and helper T cell infiltration in distal tumor, lung and liver to inhibit cancer metastasis. Thereby, the present work illustrates a generic strategy to prepare pro-immunostimulants for spatiotemporal regulation of cancer nano-immunotherapy. Precise control of immune response remains challenging for cancer immunotherapy. Here, the authors report on photothermally activatable semiconducting polymeric pro-agonist in response to second near-infrared window light for regulated photothermal immunotherapy.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Cheng Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
142
|
Wang L, Guan R, Xie L, Liao X, Xiong K, Rees TW, Chen Y, Ji L, Chao H. An ER‐Targeting Iridium(III) Complex That Induces Immunogenic Cell Death in Non‐Small‐Cell Lung Cancer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lili Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
143
|
Wang L, Guan R, Xie L, Liao X, Xiong K, Rees TW, Chen Y, Ji L, Chao H. An ER-Targeting Iridium(III) Complex That Induces Immunogenic Cell Death in Non-Small-Cell Lung Cancer. Angew Chem Int Ed Engl 2021; 60:4657-4665. [PMID: 33217194 DOI: 10.1002/anie.202013987] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Indexed: 01/01/2023]
Abstract
Immunogenic cell death (ICD) is a vital component of therapeutically induced anti-tumor immunity. An iridium(III) complex (Ir1), containing an N,N-bis(2-chloroethyl)-azane derivate, as an endoplasmic reticulum-localized ICD inducer for non-small cell lung cancer (NSCLC) is reported. The characteristic discharge of damage-associated molecular patterns (DAMPs), that is, cell surface exposure of calreticulin (CRT), extracellular exclusion of high mobility group box 1 (HMGB1), and ATP, were generated by Ir1 in A549 lung cancer cells, accompanied by an increase in endoplasmic reticulum stress and reactive oxygen species (ROS). The vaccination of immunocompetent mice with Ir1-treated dying cells elicited an antitumor CD8+ T cell response and Foxp3+ T cell depletion, which eventually resulted in long-acting anti-tumor immunity by the activation of ICD in lung cancer cells. Ir1 is the first Ir-based complex that is capable of developing an immunomodulatory response by immunogenic cell death.
Collapse
Affiliation(s)
- Lili Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
144
|
Cai Y, Zheng C, Xiong F, Ran W, Zhai Y, Zhu HH, Wang H, Li Y, Zhang P. Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Adv Healthc Mater 2021; 10:e2001239. [PMID: 32935937 DOI: 10.1002/adhm.202001239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Supramolecular peptide hydrogel (SPH) is a class of biomaterials self-assembled from peptide-based gelators through non-covalent interactions. Among many of its biomedical applications, the potential of SPH in cancer therapy has been vastly explored in the past decade, taking advantage of its good biocompatibility, multifunctionality, and injectability. SPHs can exert localized cancer therapy and induce systemic anticancer immunity to prevent tumor recurrence, depending on the design of SPH. This review first gives a brief introduction to SPH and then outlines the major types of peptide-based gelators that have been developed so far. The methodologies to tune the physicochemical properties and biological activities are summarized. The recent advances of SPH in cancer therapy as carriers, prodrugs, or drugs are highlighted. Finally, the clinical translation potential and main challenges in this field are also discussed.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao Zheng
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Fengqin Xiong
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Wei Ran
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yihui Zhai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Helen H. Zhu
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Department of Urology Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
145
|
Ma L, Jiang F, Fan X, Wang L, He C, Zhou M, Li S, Luo H, Cheng C, Qiu L. Metal-Organic-Framework-Engineered Enzyme-Mimetic Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003065. [PMID: 33124725 DOI: 10.1002/adma.202003065] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/26/2020] [Indexed: 02/05/2023]
Abstract
Nanomaterial-based enzyme-mimetic catalysts (Enz-Cats) have received considerable attention because of their optimized and enhanced catalytic performances and selectivities in diverse physiological environments compared with natural enzymes. Recently, owing to their molecular/atomic-level catalytic centers, high porosity, large surface area, high loading capacity, and homogeneous structure, metal-organic frameworks (MOFs) have emerged as one of the most promising materials in engineering Enz-Cats. Here, the recent advances in the design of MOF-engineered Enz-Cats, including their preparation methods, composite constructions, structural characterizations, and biomedical applications, are highlighted and commented upon. In particular, the performance, selectivities, essential mechanisms, and potential structure-property relations of these MOF-engineered Enz-Cats in accelerating catalytic reactions are discussed. Some potential biomedical applications of these MOF-engineered Enz-Cats are also breifly proposed. These applications include, for example, tumor therapies, bacterial disinfection, tissue regeneration, and biosensors. Finally, the future opportunities and challenges in emerging research frontiers are thoroughly discussed. Thereby, potential pathways and perspectives for designing future state-of-the-art Enz-Cats in biomedical sciences are offered.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Fuben Jiang
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin Fan
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Liyun Wang
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, Berlin, 10623, Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Chong Cheng
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Li Qiu
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
146
|
Li J, Luo Y, Li B, Xia Y, Wang H, Fu C. Implantable and Injectable Biomaterial Scaffolds for Cancer Immunotherapy. Front Bioeng Biotechnol 2020; 8:612950. [PMID: 33330440 PMCID: PMC7734317 DOI: 10.3389/fbioe.2020.612950] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy has become an emerging strategy recently producing durable immune responses in patients with varieties of malignant tumors. However, the main limitation for the broad application of immunotherapies still to reduce side effects by controlling and regulating the immune system. In order to improve both efficacy and safety, biomaterials have been applied to immunotherapies for the specific modulation of immune cells and the immunosuppressive tumor microenvironment. Recently, researchers have constantly developed biomaterials with new structures, properties and functions. This review provides the most recent advances in the delivery strategies of immunotherapies based on localized biomaterials, focusing on the implantable and injectable biomaterial scaffolds. Finally, the challenges and prospects of applying implantable and injectable biomaterial scaffolds in the development of future cancer immunotherapies are discussed.
Collapse
Affiliation(s)
- Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yiqian Luo
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
147
|
Gong Y, Chen M, Tan Y, Shen J, Jin Q, Deng W, Sun J, Wang C, Liu Z, Chen Q. Injectable Reactive Oxygen Species-Responsive SN38 Prodrug Scaffold with Checkpoint Inhibitors for Combined Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50248-50259. [PMID: 33135879 DOI: 10.1021/acsami.0c13943] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chemotherapeutic agents have been widely used for cancer treatment in clinics. Aside from their direct cytotoxicity to cancer cells, some of them could activate the immune system of the host, contributing to the enhanced antitumor activity. Here, the reactive oxygen species (ROS)-responsive hydrogel, covalently cross-linked by phenylboronic acid-modified 7-ethyl-10-hydroxycamptothecin (SN38-SA-BA) with poly(vinyl alcohol) (PVA), is fabricated for topical delivery of anti-programmed cell death protein ligand 1 antibodies (aPDL1). In the presence of endogenous ROS, SN38-SA-BA will be oxidized and hydrolyzed, leading to the degradation of hydrogel and the release of initial free SN38 and encapsulated aPDL1. It is demonstrated that SN38 could elicit specific immune responses by triggering immunogenic cell death (ICD) of cancer cells, a distinct cell death pathway featured with the release of immunostimulatory damage-associated molecular patterns (DAMPs). Meanwhile, the released aPDL1 could bind to programmed cell death protein ligand 1 (PDL1) expressed on cancer cells to augment antitumor T cell responses. Thus, the ROS-responsive prodrug hydrogel loaded with aPDL1 could induce effective innate and adaptive antitumor immune responses after local injection, significantly inhibiting or even eliminating those tumors.
Collapse
Affiliation(s)
- Yimou Gong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Yanjun Tan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Qiutong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Wutong Deng
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
| | - Jian Sun
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
148
|
Liang S, Deng X, Ma P, Cheng Z, Lin J. Recent Advances in Nanomaterial-Assisted Combinational Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003214. [PMID: 33064322 DOI: 10.1002/adma.202003214] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Indexed: 05/18/2023]
Abstract
Ultrasound (US)-triggered sonodynamic therapy (SDT), as a promising noninvasive therapeutic modality, has received ever-increasing attention in recent years. Its specialized chemical agents, named sonosensitizers, are activated by low-intensity US to produce lethal reactive oxygen species (ROS) for oncotherapy. Compared with phototherapeutic strategies, SDT provides many noteworthy opportunities and benefits, such as deeper penetration depth, absence of phototoxicity, and fewer side effects. Nevertheless, previous studies have also demonstrated its intrinsic limitations. Thanks to the facile engineering nature of nanotechnology, numerous novel nanoplatforms are being applied in this emerging field to tackle these intrinsic barriers and achieve continuous innovations. In particular, the combination of SDT with other treatment strategies has demonstrated a superior efficacy in improving anticancer activity relative to that of monotherapies alone. Therefore, it is necessary to summarize the nanomaterial-assisted combinational sonodynamic cancer therapy applications. Herein, the design principles in achieving synergistic therapeutic effects based on nanomaterial engineering methods are highlighted. The ultimate goals are to stimulate the design of better-quality combined sonodynamic treatment schemes and provide innovative ideas for the perspectives of SDT in promoting its future transformation to clinical application.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoran Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
149
|
Abstract
The immune system has evolved over time to protect the host from foreign microorganisms. Activation of the immune system is predicated on a distinction between self and nonself. Unfortunately, cancer is characterized by genetic alterations in the host's cells, leading to uncontrolled cellular proliferation and evasion of immune surveillance. Cancer immunotherapy aims to educate the host's immune system to not only recognize but also attack and kill mutated cancer cells. While immune checkpoint blockers have been proven to be effective against multiple types of advanced cancer, the overall patient response rate still remains below 30%. Therefore, there is an urgent need to improve current cancer immunotherapies. In this Account, we present an overview of our recent progress on nanoparticle-based strategies for improving cancer vaccines and immunotherapies. We also present other complementary strategies to give a well-rounded snapshot of the field of combination cancer immunotherapy. The versatility and tunability of nanoparticles make them promising platforms for addressing individual challenges posed by various cancers. For example, nanoparticles can deliver cargo materials to specific cells, such as vaccines delivered to antigen-presenting cells for strong immune activation. Nanoparticles also allow for stimuli-responsive delivery of various therapeutics to cancer cells, thus forming the basis for combination cancer immunotherapy. Here, we focus on nanoparticle platforms engineered to deliver tumor antigens, whole tumor cells, and chemotherapeutic or phototherapeutic agents in a manner to effectively and safely trigger the host's immune system against tumor cells. For each work, we discuss the nanoparticle platform developed, synthesis chemistry, and in vivo applications. Nanovaccines offer a unique platform for codelivery of personalized tumor neoantigens and adjuvants and elicitation of robust immune responses against aggressive tumors. Nanovaccines either delivering whole tumor cell lysate or formed from tumor cell lysate may increase the repertoire of tumor antigens as immune targets while exploiting immunogenic cell death to prime antitumor immune responses. We also discuss how antigen- and whole tumor cell-based approaches may open the door for personalized cancer vaccination and immunotherapy. On the other hand, chemotherapy, phototherapy, and radiotherapy are more standardized cancer therapies, and nanoparticle-based approaches may promote their ability to initiate T cell activation against tumor cells and improve antitumor efficacy with minimal toxicity. Finally, building on the recent progress in nanoparticle-based cancer immunotherapy, the field should set the ultimate goal to be clinical translation and clinical efficacy. We will discuss regulatory, analytical, and manufacturing hurdles that should be addressed to expedite the clinical translation of nanomedicine-based cancer immunotherapy.
Collapse
Affiliation(s)
- Marisa E Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Cheng Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
150
|
Long M, Liu S, Shan X, Mao J, Yang F, Wu X, Qiu L, Chen J. Self-assembly of pH-sensitive micelles for enhanced delivery of doxorubicin to melanoma cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|