101
|
Zhong M, Kong L, Zhao K, Zhang Y, Li N, Bu X. Recent Progress of Nanoscale Metal-Organic Frameworks in Synthesis and Battery Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001980. [PMID: 33643787 PMCID: PMC7887588 DOI: 10.1002/advs.202001980] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/28/2020] [Indexed: 05/21/2023]
Abstract
As one type of promising inorganic-organic hybrid crystal material, metal-organic frameworks (MOFs) have attracted widespread attention in many potential fields, particularly in energy storage and conversion. Recently, effective strategies have been developed to construct uniform nanoscale MOFs (NMOFs), which not only retain inherent advantages of MOFs but also develop some improved superiorities, including shorter diffusion pathway for guest transportation and more accessible active sites for surface adsorption and reaction. Additonally, their nanometer size provides more opportunity for post-functionalization and hybridization. In this review, recent progress on the preparation of NMOFs is summarized, primarily through bottom-up strategies including reaction parameter- and coordination-assisted synthesis, and top-down strategies such as liquid exfoliation and salt-template confinement. Additionally, recent applications of NMOFs in batteries as electrodes, separators, and electrolytes is discussed. Finally, some important issues concerning the fabrication and application are emphasized, which should be paid attention in future.
Collapse
Affiliation(s)
- Ming Zhong
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhou730050P. R. China
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Lingjun Kong
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Kun Zhao
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhou730050P. R. China
| | - Ying‐Hui Zhang
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Na Li
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Xian‐He Bu
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| |
Collapse
|
102
|
Chen S, Cui M, Yin Z, Xiong J, Mi L, Li Y. Single-Atom and Dual-Atom Electrocatalysts Derived from Metal Organic Frameworks: Current Progress and Perspectives. CHEMSUSCHEM 2021; 14:73-93. [PMID: 33089643 DOI: 10.1002/cssc.202002098] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Single-atom catalysts (SACs) have attracted increasing research interests owing to their unique electronic structures, quantum size effects and maximum utilization rate of atoms. Metal organic frameworks (MOFs) are good candidates to prepare SACs owing to the atomically dispersed metal nodes in MOFs and abundant N and C species to stabilize the single atoms. In addition, the distance of adjacent metal atoms can be turned by adjusting the size of ligands and adding volatile metal centers to promote the formation of isolated metal atoms. Moreover, the diverse metal centers in MOFs can promote the preparation of dual-atom catalysts (DACs) to improve the metal loading and optimize the electronic structures of the catalysts. The applications of MOFs derived SACs and DACs for electrocatalysis, including oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, carbon dioxide reduction reaction and nitrogen reduction reaction are systematically summarized in this Review. The corresponding synthesis strategies, atomic structures and electrocatalytic performances of the catalysts are discussed to provide a deep understanding of MOFs-based atomic electrocatalysts. The catalytic mechanisms of the catalysts are presented, and the crucial challenges and perspectives are proposed to promote further design and applications of atomic electrocatalysts.
Collapse
Affiliation(s)
- Siru Chen
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Ming Cui
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, P. R. China
| | - Zehao Yin
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, P. R. China
| | - Jiabin Xiong
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Yanqiang Li
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, P. R. China
| |
Collapse
|
103
|
Fu H, Lin Q, Wang F, Zhang J. Construction of Titanium-Based Metal-Organic Frameworks Based on the Ti/Cu Heteronuclear Cluster. Inorg Chem 2021; 60:24-27. [PMID: 33306384 DOI: 10.1021/acs.inorgchem.0c03257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Presented here are two titanium-based metal-organic frameworks (Ti-MOFs) based on well-defined [Ti6Cu6(μ3-O)2(μ2-O)9(HSO4)2(SO4)6], which can be easily obtained from a cheap Ti source and CuSO4 and exhibited interesting magnetic properties. Furthermore, this clusters can be isolated in pure phase. Numerous uncoordinated sites of SO4 and labile ligands on the Ti and Cu centers of this cluster make it a good candidate as a secondary building unit to construct various Ti-MOFs in the future.
Collapse
Affiliation(s)
- Hao Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yang Qiao West Road, Fuzhou, Fujian 350002, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201210, China
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yang Qiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yang Qiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yang Qiao West Road, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
104
|
Jing Q, Li W, Wang J, Chen X, Pang H. Calcination activation of three-dimensional cobalt organic phosphate nanoflake assemblies for supercapacitors. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00797a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three-dimensional organic phosphate nanoflake assemblies were obtained by calcination activation. In the two-electrode system, 3D COP assemblies showed excellent cycle stability, and the capacity retention was 99.61% after 3000 long cycles.
Collapse
Affiliation(s)
- Qingling Jing
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Wenting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Jiajing Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Xudong Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| |
Collapse
|
105
|
Ryu U, Jee S, Rao PC, Shin J, Ko C, Yoon M, Park KS, Choi KM. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord Chem Rev 2021; 426:213544. [PMID: 32981945 PMCID: PMC7500364 DOI: 10.1016/j.ccr.2020.213544] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Progress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals. Therefore, there have been limited opportunities to share the challenges, goals, and findings with most of the MOF field. In this review, we examine the issues and demands for MOF commercialization and investigate recent advances in MOF process engineering and applications. Specifically, we discuss the criteria for MOF commercialization from the views of stability, producibility, regulations, and production cost. This review covers progress in the mass production and formation of MOFs along with future applications that are not currently well known but have high potential for new areas of MOF commercialization.
Collapse
Key Words
- 2,4-DNT, 2,4-dinitrotoluene
- 4-NP, 4-nitrophenol
- ABS, acrylonitril-butadiene-styrene
- BET, Brunauer–Emmett–Teller
- CA, Cellulose-acetate
- CEES, 2-Chloroethyl ethyl sulfide
- CIE, Commission international ed’Eclairage
- CNF, Cellulose nanofiber
- CNG, compressed natural gas
- CVD, Chemical vapor deposition
- CWA, Chemical warfare agent
- CWC, Chemical weapons convention
- Commercialization
- DCP, Diethylchlorophosphonate
- DDM, n-dodecyl β-D-maltoside
- DEF, N,N-Diethyl formamide
- DFP, Diisopropyl fluorophosphate
- DFT, Density functional theory
- DIFP, Diisopropylfluorophosphate
- DLS, Dynamic light scattering
- DMA, Dimethylacetamide
- DMF, N,N-Dimethyl formamide
- DMMP, Dimethyl methylphosphonate
- DRIFTS, Diffuse reflectance infrared fourier transform spectroscopy
- Dispersion
- E. Coli, Escherichia coli
- ECS, Extrusion-crushing-sieving
- EDLCs, Electrochemical double-layer capacitors
- EPA, Environmental protection agency
- EXAFS, Extended X-ray absorption fine structure
- FT-IR, Fourier-transform infrared spectroscopy
- Fn, Fusobacterium nucleatum
- Future applications
- GC–MS, Gas chromatography–mass spectrometry
- GRGDS, Gly-Arg-Gly-Asp-Ser
- ILDs, Interlayer dielectrics
- ITRS, International technology roadmap for semiconductors
- LED, Light-emitting diode
- LIBs, Lithium-ion batteries
- LMOF, Luminescent metal–organic framework
- LOD, Limit of detection
- MB, methylene blue
- MBC, Minimum bactericidal concentration
- MIC, Minimum inhibitory concentration
- MIM, Metal-insulator–metal
- MMP, Methyl methylphosphonate
- MOF, metal–organic framework
- MOGs, Metal-organic gels
- MRA, mesoporous ρ-alumina
- MRSA, Methicillin-resistant staphylococcus aureus
- MVTR, Moisture vapor transport rate
- Mass production
- Metal–organic framework
- NMP, N-methyl-2-pyrrolidone
- NMR, Nuclear magnetic resonance
- PAN, Polyacrylonitrile
- PANI, Polyaniline
- PEG-CCM, polyethylene-glycol-modified mono-functional curcumin
- PEI, Polyetherimide
- PEMFCs, Proton-exchange membrane fuel cells
- PM, Particulate matter
- POM, Polyoxometalate
- PPC, Polypropylene/polycarbonate
- PS, Polystyrene
- PSM, Post-synthetic modification
- PVA, Polyvinyl alcohol
- PVB, Polyvinyl Butyral
- PVC, Polyvinylchloride
- PVF, Polyvinylformal
- PXRD, Powder x-ray diffraction
- Pg, Porphyromonas gingivalis
- RDX, 1,3,5-trinitro-1,3,5-triazinane
- ROS, Reactive oxygen species
- SALI, Solvent assisted ligand incorporation
- SBU, Secondary building unit
- SCXRD, Single-crystal X-ray diffraction
- SEM, Scanning electron microscope
- SIBs, Sodium-ion batteries
- SSEs, Solid-state electrolytes
- STY, space–time yield, grams of MOF per cubic meter of reaction mixture per day of synthesis
- Shaping
- TEA, Triethylamine
- TIPS-HoP, Thermally induced phase separation-hot pressing
- TNP, 2,4,6-trinitrophenol
- TNT, 2,4,6-trinitrotoluene
- UPS, Ultraviolet photoelectron spectroscopy
- VOC, Volatile organic compound
- WHO, World health organization
- WLED, White light emitting diode
- XPS, X-ray photoelectron spectroscopy
- ZIF, zeolitic imidazolate framework
- hXAS, Hard X-ray absorption spectroscopy
- sXAS, Soft X-ray absorption spectroscopy
Collapse
Affiliation(s)
- UnJin Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Seohyeon Jee
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Purna Chandra Rao
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeeyoung Shin
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Changhyun Ko
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Department of Applied Physics, College of Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyo Sung Park
- Corporation R&D, Research Park, LG Chem, LG Science Park, 30, Magokjungang-10-Ro, Gangseo-Gu, Seoul, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
106
|
Zhong M, Li L, Zhao K, Peng H, Xu S, Su B, Wang D. Metal–organic framework-engaged synthesis of core–shell MoO 2/ZnSe@N-C nanorods as anodes in high-performance lithium-ion batteries. NEW J CHEM 2021. [DOI: 10.1039/d1nj01585k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A MoO2/ZnSe@N-C nanorod was prepared through novel carbonization and selenization methods, shedding light on the design and application of metal selenides.
Collapse
Affiliation(s)
- Ming Zhong
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Lingling Li
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Kun Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Hui Peng
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Shixian Xu
- College of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao 334001
- P. R. China
| | - Bitao Su
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Dahui Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| |
Collapse
|
107
|
Broicher C, Klingenhof M, Frisch M, Dresp S, Kubo NM, Artz J, Radnik J, Palkovits S, Beine AK, Strasser P, Palkovits R. Particle size-controlled synthesis of high-performance MnCo-based materials for alkaline OER at fluctuating potentials. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00905b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mn and Co containing nanocubes were produced by hydrothermal synthesis. The materials consist of metal spinels and carbonates, where spinels ensure high activity and carbonates contribute to high stability in the oxygen evolution reaction.
Collapse
Affiliation(s)
- Cornelia Broicher
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Malte Klingenhof
- Department of Chemistry, Chemical and Materials Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Marvin Frisch
- Department of Chemistry, Chemical and Materials Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Sören Dresp
- Department of Chemistry, Chemical and Materials Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Nikolas Mao Kubo
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Jens Artz
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Jörg Radnik
- Bundesanstalt für Materialforschung und -prüfung, BAM, Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Stefan Palkovits
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Anna Katharina Beine
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Peter Strasser
- Department of Chemistry, Chemical and Materials Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Regina Palkovits
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
108
|
Zhao D, Song J, Zhang X, Wang F, Li B, Yang L, Deng Y, Li Q, Fan L. A pillar-layered binuclear 3D cobalt(ii) coordination polymer as an electrocatalyst for overall water splitting and as a chemosensor for Cr(vi) anion detection. CrystEngComm 2021. [DOI: 10.1039/d1ce00685a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 3D pillar-layered cobalt(ii) CP with a 3D (4,6)-connected {44·610·8}{44·62} fsc net was designed and it showed great potential as an electrocatalyst in the overall water splitting and as a chemosensor for Cr(vi) anion detection.
Collapse
Affiliation(s)
- Dongsheng Zhao
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Junqi Song
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Feng Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Bei Li
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Lulu Yang
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Yuxin Deng
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Qingbo Li
- Center for Optics Research and Engineering, Shandong University, Qingdao, Shandong, P. R. China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| |
Collapse
|
109
|
Liang Z, Wang HY, Zheng H, Zhang W, Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem Soc Rev 2021; 50:2540-2581. [DOI: 10.1039/d0cs01482f] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| |
Collapse
|
110
|
Mou Q, Xu Z, Wang G, Li E, Liu J, Zhao P, Liu X, Li H, Cheng G. A bimetal hierarchical layer structure MOF grown on Ni foam as a bifunctional catalyst for the OER and HER. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00267h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The as-synthesized NiFe-MOF-5 exhibited an overpotential of 168 mV at 10 mA cm−2 for OER and a voltage of 1.57 V at 10 mA cm−2 for overall water splitting, outperforming most non-noble metal catalysts reported in 1 M KOH.
Collapse
Affiliation(s)
- Qiuxiang Mou
- School of Printing and Packaging
- Wuhan University
- Wuhan
- P. R. China
| | - Zhenhang Xu
- College of Chemistry and Molecular Sciences
- Wuhan University Wuhan
- Hubei
- P. R. China
| | - Guannan Wang
- School of Printing and Packaging
- Wuhan University
- Wuhan
- P. R. China
| | - Erlei Li
- School of Printing and Packaging
- Wuhan University
- Wuhan
- P. R. China
| | - Jinyan Liu
- Department of Biological and Chemical Engineering
- Zhixing College of Hubei University
- Wuhan 430011
- China
| | - Pingping Zhao
- School of Printing and Packaging
- Wuhan University
- Wuhan
- P. R. China
| | - Xinghai Liu
- School of Printing and Packaging
- Wuhan University
- Wuhan
- P. R. China
| | - Houbin Li
- School of Printing and Packaging
- Wuhan University
- Wuhan
- P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences
- Wuhan University Wuhan
- Hubei
- P. R. China
| |
Collapse
|
111
|
Sang X, Wu H, Zang N, Che H, Liu D, Nie X, Wang D, Ma X, Jin W. Co 2P nanoparticle/multi-doped porous carbon nanosheets for the oxygen evolution reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj00613d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Co2P hybridized with multi-doped carbon nanoleaves is obtained via direct carbonization of ZIF-L/PEI/PA and show good electro-catalytic performance in OER.
Collapse
Affiliation(s)
- Xinxin Sang
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Hengbo Wu
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Nan Zang
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Huilian Che
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Dongyin Liu
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Xiangdao Nie
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Xiaoxue Ma
- Institute of Rare and Scattered Elements Chemistry
- College of Chemistry
- Liaoning University
- Shenyang
- China
| | - Wei Jin
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- P. R. China
| |
Collapse
|
112
|
Zheng Y, Xu X. Surface Atom Regulation on Polyoxometalate Electrocatalyst for Simultaneous Low-Voltage H 2 Production and Phenol Degradation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53739-53748. [PMID: 33201666 DOI: 10.1021/acsami.0c14431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The electrocatalytic hydrogen evolution reaction is an ideal method for H2 production. To improve the performance of polyoxometalate-based electrocatalyst in the hydrogen evolution reaction, one O2- in polyoxometalate is replaced by S2-. This weakens the binding of polyoxometalate to H*, facilitates its desorption, and improves the H2 generation property. Vulcanized polyoxometalate only requires 55 mV to achieve 10 mA·cm-2 current in the hydrogen evolution reaction. This electrocatalyst also exhibits promising performance in phenol degradation reaction, which is an ideal substitute for high-energy-consuming oxygen evolution reaction in H2 production due to low voltage to drive. To acquire 100 and 200 mA·cm-2 in the phenol degradation reaction, this vulcanized polyoxometalate only consumes 1.38 and 1.41 V. With this electrocatalyst working as a cathode and an anode simultaneously, an electrolyzer is constructed by employing phenol-containing KOH as an electrolyte. To obtain 100 and 200 mA·cm-2 current, the electrolyzer only requires 1.54 and 1.57 V. Because energy-efficient phenol degradation reaction occurs, these values are obviously lower than the oxygen evolution reaction involved in the overall water-splitting H2 production. This work provides a universal method to enhance the hydrogen evolution reaction (HER) activity of polyoxometalates. Furthermore, a new method is explored, which achieves energy conservation and phenol degradation simultaneously in H2 production.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
- Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang 110819, China
| |
Collapse
|
113
|
Yu L, Peel GK, Cheema FH, Lawrence WS, Bukreyeva N, Jinks CW, Peel JE, Peterson JW, Paessler S, Hourani M, Ren Z. Catching and killing of airborne SARS-CoV-2 to control spread of COVID-19 by a heated air disinfection system. MATERIALS TODAY PHYSICS 2020; 15:100249. [PMID: 34173438 DOI: 10.1016/j.mtphys.2020.100279] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 05/28/2023]
Abstract
Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via air-conditioning systems poses a significant threat for the continued escalation of the current coronavirus disease (COVID-19) pandemic. Considering that SARS-CoV-2 cannot tolerate temperatures above 70 °C, here we designed and fabricated efficient filters based on heated nickel (Ni) foam to catch and kill SARS-CoV-2. Virus test results revealed that 99.8% of the aerosolized SARS-CoV-2 was caught and killed by a single pass through a novel Ni-foam-based filter when heated up to 200 °C. In addition, the same filter was also used to catch and kill 99.9% of Bacillus anthracis, an airborne spore. This study paves the way for preventing transmission of SARS-CoV-2 and other highly infectious airborne agents in closed environments.
Collapse
Affiliation(s)
- L Yu
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX 77204, USA
| | - G K Peel
- Medistar Corporation, 7670 Woodway, Suite 160, Houston, TX 77063, USA
| | - F H Cheema
- Department of Biomedical & Clinical Sciences, University of Houston College of Medicine, Houston, TX 77204, USA
| | - W S Lawrence
- Aerobiology Division, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - N Bukreyeva
- Preclinical Studies Core, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - C W Jinks
- Medistar Corporation, 7670 Woodway, Suite 160, Houston, TX 77063, USA
| | - J E Peel
- Aerobiology Division, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - J W Peterson
- Aerobiology Division, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - S Paessler
- Preclinical Studies Core, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - M Hourani
- Medistar Corporation, 7670 Woodway, Suite 160, Houston, TX 77063, USA
| | - Z Ren
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX 77204, USA
| |
Collapse
|
114
|
Zhang J, Bai T, Huang H, Yu MH, Fan X, Chang Z, Bu XH. Metal-Organic-Framework-Based Photocatalysts Optimized by Spatially Separated Cocatalysts for Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004747. [PMID: 33150624 DOI: 10.1002/adma.202004747] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/27/2020] [Indexed: 05/27/2023]
Abstract
Efficient charge separation and utilization are critical factors in photocatalysis. Herein, it is demonstrated that the complete spatial separation of oxidation and reduction cocatalysts enhances the efficacy of charge separation and surface reaction. Specifically, a Pt@NH2 -UiO-66@MnOx (PUM) heterostructured photocatalyst with Pt and MnOx as cocatalysts is designed for the optimization of the NH2 -UiO-66 photocatalyst. Compared with the pristine NH2 -UiO-66, Pt@NH2 -UiO-66 (PU), and NH2 -UiO-66@MnOx (UM) samples, the PUM sample exhibits the highest hydrogen production activity. As cocatalysts, Pt favors trapping of electrons, while MnOx tends to collect holes. Upon generation from NH2 -UiO-66, electrons and holes flow inward and outward of the metal-organic framework photocatalyst, accumulating on the corresponding cocatalysts, and then take part in the redox reactions. The PUM photocatalyst greatly prolongs the lifetime of the photogenerated electrons and holes, which favors the electron-hole separation. Furthermore, the PUM sample facilitates overall water splitting in the absence of sacrificial agents, thereby demonstrating its potential as a modification method of MOF-type semiconductors for the overall water-splitting reaction.
Collapse
Affiliation(s)
- Jijie Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Tianyu Bai
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Hui Huang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Ze Chang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
115
|
Adhikari S, Selvaraj S, Ji SH, Kim DH. Encapsulation of Co 3 O 4 Nanocone Arrays via Ultrathin NiO for Superior Performance Asymmetric Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005414. [PMID: 33150729 DOI: 10.1002/smll.202005414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Designing of multicomponent transition metal oxide system through the employment of advanced atomic layer deposition (ALD) technique over nanostructures obtained from wet chemical process is a novel approach to construct rational supercapacitor electrodes. Following the strategy, core-shell type NiO/Co3 O4 nanocone array structures are architectured over Ni-foam (NF) substrate. The high-aspect-ratio Co3 O4 nanocones are hydrothermally grown over NF following the precision controlled deposition of shell NiO considering Co3 O4 nanocone as host. NiO thickness of 5 nm exhibits the highest specific capacity of 1242 C g-1 (2760 F g-1 ) at current density 2 A g-1 , which is greater than pristine Co3 O4 @NF (1045.8 C g-1 or 2324 F g-1 ). The rate capability with 5 nm NiO/Co3 O4 @NF nanocone structures is about 77% whereas Co3 O4 @NF retains 46 % of capability at 10 A g-1 . The ultrathin ALD 5 nm NiO accelerates both rate capability and 95.5% cyclic stability after 12 000 charge-discharge cycles. An asymmetric device fabricated between 5 nm NiO/Co3 O4 @NF (positive) || activated carbon (negative) achieves an energy density of 81.45 Wh kg-1 (4268 W kg-1 ) with good cycling device stability. Additionally, LEDs can be energized by two ASC device in series. This work opens the path in both advanced electrode material and surface modification of earth-abundant systems for efficient and real-time supercapacitor applications.
Collapse
Affiliation(s)
- Sangeeta Adhikari
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Seenivasan Selvaraj
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Su-Hyeon Ji
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|
116
|
Zhang Y, Jiang H, Luan L, Zeng H, Zou G, Lin Z. Metal phosphate-oxalates with unique framework topologies: Solvent-free synthesis, water stability, and proton conduction. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
117
|
Xu Y, Ye X, Qiu Y, Gan C, Huang L, Tang X, Luo X. A Novel Co
3
O
4
/MnO
2
/C Electrode with Hierarchical Heterostructure for High‐performance Lithium‐Ion Batteries. ChemistrySelect 2020. [DOI: 10.1002/slct.202003656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ying Xu
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Xiongbiao Ye
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Yiwei Qiu
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Chuanhai Gan
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Liuqing Huang
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Xueyuan Tang
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Xuetao Luo
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
118
|
Zhu G, Zhang X, Li Y, Zhao G, Xu H, Jin Z. A carbon-coated shuttle-like Fe 2O 3/Fe 1-x S heterostructure derived from metal-organic frameworks with high pseudocapacitance for ultrafast lithium storage. NANOSCALE ADVANCES 2020; 2:5201-5208. [PMID: 36132038 PMCID: PMC9417708 DOI: 10.1039/d0na00372g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/18/2020] [Indexed: 06/15/2023]
Abstract
Pursuing active, low-cost, and stable electrode materials with superior rate capability and long-life cycling performances for lithium-ion batteries remains a big challenge. In this study, a carbon-coated shuttle-like Fe2O3/Fe1-x S heterostructure is synthesized by simply annealing Fe-based metal-organic frameworks (MIL-88(Fe)) as precursors and sublimed sulfur. Carbon-coated Fe2O3/Fe1-x S displays a unique structure with ultrafine Fe2O3/Fe1-x S nanoparticles distributed in the hollow and porous carbon matrix, which offers a large specific surface area and fast charge transfer ability, and alleviates the volume change upon cycling. When evaluated as an anode material for lithium-ion batteries, it exhibits an ultra-high specific capacity of 1200 mA h g-1 at 0.1 A g-1, and superior high rate capability with a capacity of 345 mA h g-1 at a very high current density of 5.0 A g-1 owing to its high electrical conductivity and enhanced pseudocapacitive contribution from surface effects. The current strategy is promising to synthesize the carbon-coated porous structure from metal-organic frameworks for next-generation energy-storage applications.
Collapse
Affiliation(s)
- Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University Suzhou 234000 P. R. China
| | - Xiaojie Zhang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology Huaian 223003 China
- School of Electrical and Power Engineering, China University of Mining and Technology Xuzhou 221116 China
| | - Yanjiang Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University Suzhou 234000 P. R. China
| | - Guangzhen Zhao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University Suzhou 234000 P. R. China
| | - Haifeng Xu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University Suzhou 234000 P. R. China
| | - Zhong Jin
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
119
|
Li J, Gadipelli S. Synthesis and Optimization of Zeolitic Imidazolate Frameworks for the Oxygen Evolution Reaction. Chemistry 2020; 26:14167-14172. [PMID: 32846009 DOI: 10.1002/chem.202002702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 02/05/2023]
Abstract
Metal-organic frameworks/zeolitic imidazolate frameworks (MOFs/ZIFs) and their post-synthesis modified nanostructures, such as oxides, hydroxides, and carbons have generated significant interest for electrocatalytic reactions. In this work, a high and durable oxygen evolution reaction (OER) performance directly from bimetallic Zn100-x Cox -ZIF samples is reported, without carrying out high-temperature calcination and/or carbonization. ZIFs can be reproducibly and readily synthesized in large scale at ambient conditions. The bimetallic ZIFs show a systematic and gradually improved OER activity with increasing cobalt concentration. A further increase in OER activity is evidenced in ZIF-67 polyhedrons with controlled particle size of <200 nm among samples of different sizes between 50 nm and 2 μm. Building on this, a significantly enhanced, >50 %, OER activity is obtained with ZIF-67/carbon black, which shows a low overpotential of approximately 320 mV in 1.0 m KOH electrolyte. Such activity is comparable to or better than numerous MOF/ZIF-derived electrocatalysts. The optimized ZIF-67 sample also exhibits increased activity and durability over 24 h, which is attributed to an in situ developed active cobalt oxide/oxyhydroxide related nanophase.
Collapse
Affiliation(s)
- Juntao Li
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Srinivas Gadipelli
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.,College of Physics, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
120
|
Wang L, Chen G, Xiao Q, Zhang D, Sang Y, Huang J. Bifunctional Porous Organic Polymers Based on Postfunctionalization of the Ketone-Based Polymers. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lizhi Wang
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Gui Chen
- College of Chemistry and Materials, Huaihua University, Huaihua 418000, China
| | - Qin Xiao
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Du Zhang
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yafei Sang
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jianhan Huang
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
121
|
Zhang J, Xing F, Zhang H, Huang Y. Ultrafine NiFe clusters anchored on N-doped carbon as bifunctional electrocatalysts for efficient water and urea oxidation. Dalton Trans 2020; 49:13962-13969. [PMID: 32794531 DOI: 10.1039/d0dt02459g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogen production through electrocatalysis is crucial in renewable energy technologies but significantly impeded by sluggish anodic reactions. Developing bifunctional anode noble-metal-free electrocatalysts towards oxygen evolution reaction (OER) and urea oxidation reaction (UOR) to boost cathodic hydrogen evolution reaction (HER) is promising but challenging to meet different reaction media and multiple applications for simultaneous clean energy production and pollution treatment. Herein, a facile one-pot thermal treatment strategy is presented to anchor NiFe nanoclusters (with a size of about 2 nm) on N-doped carbon as bifunctional electrocatalysts for both OER and UOR. Such an electrocatalyst can deliver a current density of 20 mA cm-2 with a low overpotential of 260 mV and a small Tafel slope of 42 mV dec-1 for OER, superior to the state-of-the-art Ru-based materials. Besides, this electrocatalyst also shows excellent activity for UOR with the need for just 1.37 V (vs. RHE) to attain a current density of 100 mA cm-2. In a two-electrode electrolyzer for both cathodic HER and anodic UOR, only a cell voltage of 1.50 V is required to drive a current density of 10 mA cm-2, which is 140 mV lower than that of overall water splitting electrolysis (1.64 V). The excellent electrooxidative performance can be attributed to the improved conductivity, abundant active sites and fast charge transfer and transport benefiting from the ultrafine structure of NiFe clusters and their synergistic effect with N-doped carbon.
Collapse
Affiliation(s)
- Jingfang Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Fei Xing
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Hongjuan Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Yi Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
122
|
Li J, Meng Z, Brett DJL, Shearing PR, Skipper NT, Parkin IP, Gadipelli S. High-Performance Zinc-Air Batteries with Scalable Metal-Organic Frameworks and Platinum Carbon Black Bifunctional Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42696-42703. [PMID: 32852934 DOI: 10.1021/acsami.0c10151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic framework (MOF)-related derivatives have generated significant interest in numerous energy conversion and storage applications, such as adsorption, catalysis, and batteries. However, such materials' real-world applicability is hindered because of scalability and reproducibility issues as they are produced by multistep postsynthesis modification of MOFs, often with high-temperature carbonization and/or calcination. In this process, MOFs act as self-sacrificial templates to develop functional materials at the expense of severe mass loss, and the resultant materials exhibit complex process-performance relationships. In this work, we report the direct applicability of a readily synthesized and commercially available MOF, a zeolitic imidazolate framework (ZIF-8), in a rechargeable zinc-air battery. The composite of cobalt-based ZIF-8 and platinum carbon black (ZIF-67@Pt/CB) prepared via facile solution mixing shows a promising bifunctional electrocatalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), the key charge and discharge mechanisms in a battery. ZIF-67@Pt/CB exhibits long OER/ORR activity durability, notably, a significantly enhanced ORR stability compared to Pt/CB, 85 versus 52%. Interestingly, a ZIF-67@Pt/CB-based battery delivers high performance with a power density of >150 mW cm-2 and long stability for 100 h of charge-discharge cyclic test runs. Such remarkable activities from as-produced ZIF-67 are attributed to the electrochemically driven in situ development of an active cobalt-(oxy)hydroxide nanophase and interfacial interaction with platinum nanoparticles. This work shows commercial feasibility of zinc-air batteries as MOF-cathode materials can be reproducibly synthesized in mass scale and applied as produced.
Collapse
Affiliation(s)
- Juntao Li
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Zhu Meng
- Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Dan J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K
| | - Neal T Skipper
- Department of Physics & Astronomy, University College London, London WC1E 6BT, U.K
| | - Ivan P Parkin
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Srinivas Gadipelli
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| |
Collapse
|
123
|
Shi ZQ, Ji NN, Hu HL. Luminescent triphenylamine-based metal-organic frameworks: recent advances in nitroaromatics detection. Dalton Trans 2020; 49:12929-12939. [PMID: 32902551 DOI: 10.1039/d0dt02213f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Luminescent metal-organic frameworks (LMOFs), as one branch of MOFs, have attracted considerable attention in recent years due to their good crystallinity, structural diversity, tunable porosity and easily induced fluorescence emission. Importantly, their photoluminescence (PL) properties can be adjusted by altering metal ions or metal clusters and organic ligands in one hybrid system. Among the various sensing applications, using LMOFs as chemical sensors to detect the explosive and environment pollution causing nitroaromatic compounds (NACs) is an important topic. In this account, we describe the recent advancements in the field of NAC detection by LMOFs based on the triphenylamine (TPA) unit as the π-conjugated fluorophore.
Collapse
Affiliation(s)
- Zhi-Qiang Shi
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, P. R. China.
| | | | | |
Collapse
|
124
|
Wang D, Zeng F, Hu X, Li C, Su Z. Synthesis of a Magnetic 2D Co@NC-600 Material by Designing a MOF Precursor for Efficient Catalytic Reduction of Water Pollutants. Inorg Chem 2020; 59:12672-12680. [PMID: 32805997 DOI: 10.1021/acs.inorgchem.0c01760] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
2D metal-organic framework (MOFs) can be ideal sacrificial templates for fabricating nanomaterials because of active sites exposed on the surface rather than in pores and channels, often exhibiting improved performance in catalysis applications. In this study, the novel 2D layered cobalt-based MOF [Co(TPT)(fma)(H2O)2]·3H2O (Co-MOF) has been constructed by the selection of high N atom content ligands. On this basis, a 2D nitrogen-doped carbon-coated cobalt nanoparticle composite (Co@NC) was prepared by using this MOF as a precursor. Magnetic Co@NC has excellent catalytic activity and recycling features regarding the reaction of 4-nitrophenol (4-NP) reducing to 4-aminophenol (4-AP) in the presence of NaBH4 at ambient temperature. 2D Co@NC-600 can reach nearly 100% conversion within 120 s and its stability remains almost unchanged after five reaction cycles. Moreover, this Co@NC catalyst also is highly active for catalytic reduction of dyes such as Rhodamine B (RhB) and Methylene blue (MB).
Collapse
Affiliation(s)
- Dongsheng Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| | - Fanming Zeng
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| | - Xiaoli Hu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| | - Chun Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zhongmin Su
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China.,Joint Sino-Russian Laboratory of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| |
Collapse
|
125
|
Huang J, Chen J, Yin Z, Wu J. A hierarchical porous P-doped carbon electrode through hydrothermal carbonization of pomelo valves for high-performance supercapacitors. NANOSCALE ADVANCES 2020; 2:3284-3291. [PMID: 36134269 PMCID: PMC9417857 DOI: 10.1039/d0na00211a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/11/2020] [Indexed: 05/23/2023]
Abstract
Porous carbon materials are synthesized from pomelo valves by the hydrothermal activation of H3PO4 followed by simple carbonization. The as-synthesized hierarchically porous carbon electrode exhibits a high specific capacitance of 966.4 F g-1 at 1 A g-1 and an ultra-high stability of 95.6% even after 10 000 cycles. Moreover, the supercapacitor also demonstrates a maximum energy of 36.39 W h kg-1 and a maximum power of 33.33 kW kg-1 with an energy retention of 25.56 W h kg-1, which paves the way for the development of high-performance, green supercapacitors for advanced energy storage systems.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University Chongqing 400715 P. R. China
| | - Jie Chen
- Institute for Clean Energy & Advanced Materials Chongqing 400715 P. R. China
| | - Zhenyao Yin
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University Chongqing 400715 P. R. China
| | - Jinggao Wu
- Key Laboratory of Rare Earth Optoelectronic Materials & Devices, College of Chemistry and Materials Engineering, Huaihua University Huaihua 418000 P. R. China
| |
Collapse
|
126
|
Hu J, Gupta SK, Ozdemir J, Beyzavi MH. Applications of Dynamic Covalent Chemistry Concept towards Tailored Covalent Organic Framework Nanomaterials: A Review. ACS APPLIED NANO MATERIALS 2020; 3:6239-6269. [PMID: 34327307 PMCID: PMC8317485 DOI: 10.1021/acsanm.0c01327] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are a rapidly developing class of materials that has been of immense research interest during the last ten years. Numerous reviews have been devoted to summarizing the synthesis and applications of COFs. However, the underlying dynamic covalent chemistry (DCC), which is the foundation of COFs synthesis, has never been systematically reviewed in this context. Dynamic covalent chemistry is the practice of using thermodynamic equilibriums to molecular assemblies. This Critical Review will cover the state-of-the-art use of DCC to both synthesize COFs and expand the applications of COFs. Five synthetic strategies for COF synthesis are rationalized, namely: modulation, mixed linker/linkage, sub-stoichiometric reaction, framework isomerism, and linker exchange, which highlight the dynamic covalent chemistry to regulate the growth and to modify the properties of COFs. Furthermore, the challenges in these approaches and potential future perspectives in the field of COF chemistry are also provided.
Collapse
Affiliation(s)
- Jiyun Hu
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Suraj K Gupta
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - John Ozdemir
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - M Hassan Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
127
|
Murata T, Koide T, Nobukuni H, Tsuji R, Morita Y. 2D Coordination Network of Trioxotriangulene with Multiple Redox Abilities and Its Rechargeable Battery Performance. Int J Mol Sci 2020; 21:ijms21134723. [PMID: 32630686 PMCID: PMC7369800 DOI: 10.3390/ijms21134723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022] Open
Abstract
A three-fold symmetric trioxotriangulene derivative with three pyridyl groups as coordinating sites was designed and synthesized. In a cyclic voltammetry measurement, the trioxotriangulene skeleton exhibited a multi-stage redox ability from neutral radical to radical tetra-anion species. In the zinc complex of monoanion species, three pyridyl groups coordinated to the zinc ion to build up a two-dimensional coordination network with a cavity larger than 12 Å in diameter. This complex was utilized as a cathode active material of a lithium ion battery, and it exhibited a capacity of ca. 60 mAh g-1 per the weight of the active material with a stable cycling performance up to 1000 cycles. This work shows that the coordination network formed by the trioxotriangulene-based ligand was effective in the improvement of cycle performance of the organic rechargeable battery.
Collapse
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa 1247, Yakusa, Toyota, Aichi 470-0392, Japan; (T.K.); (H.N.)
- Correspondence: (T.M.); (Y.M.)
| | - Taro Koide
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa 1247, Yakusa, Toyota, Aichi 470-0392, Japan; (T.K.); (H.N.)
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Hirofumi Nobukuni
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa 1247, Yakusa, Toyota, Aichi 470-0392, Japan; (T.K.); (H.N.)
| | - Ryotaro Tsuji
- Material Solutions New Research Engine, KANEKA Corporation, Suita, Osaka 565-0871, Japan;
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Yachigusa 1247, Yakusa, Toyota, Aichi 470-0392, Japan; (T.K.); (H.N.)
- Correspondence: (T.M.); (Y.M.)
| |
Collapse
|
128
|
Yang W, Yang Y, Li H, Lin D, Yang W, Guo D, Pan Q. Integration of Cd:ZnS QDs into ZIF-8 for enhanced selectivity toward Cu2+ detection. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00821d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cd:ZnS QDs were integrated into ZIF-8 that could specifically interact with Cu2+ for enhanced selectivity toward Cu2+ detection.
Collapse
Affiliation(s)
- Weikang Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education
- School of Science
- Hainan University
- Haikou 570228
- China
| | - Yonghang Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education
- School of Science
- Hainan University
- Haikou 570228
- China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education
- School of Science
- Hainan University
- Haikou 570228
- China
| | - Duoyu Lin
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education
- School of Science
- Hainan University
- Haikou 570228
- China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education
- School of Science
- Hainan University
- Haikou 570228
- China
| | - Dongyu Guo
- Department of Clinical Laboratory
- Xiamen Huli Guoyu Clinic
- Co
- Ltd
- Xiamen 361000
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education
- School of Science
- Hainan University
- Haikou 570228
- China
| |
Collapse
|
129
|
Li HY, Zhao SN, Zang SQ, Li J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem Soc Rev 2020; 49:6364-6401. [DOI: 10.1039/c9cs00778d] [Citation(s) in RCA: 434] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds.
Collapse
Affiliation(s)
- Hai-Yang Li
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shu-Na Zhao
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Jing Li
- Department of Chemistry and Chemical Biology
- Rutgers University
- Piscataway
- USA
| |
Collapse
|
130
|
Biradha K, Goswami A, Moi R. Coordination polymers as heterogeneous catalysts in hydrogen evolution and oxygen evolution reactions. Chem Commun (Camb) 2020; 56:10824-10842. [DOI: 10.1039/d0cc04236f] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article highlights various strategies of designing coordination polymers for catalysing water splitting reactions.
Collapse
Affiliation(s)
- Kumar Biradha
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Anindita Goswami
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Rajib Moi
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| |
Collapse
|
131
|
Mukhopadhyay S, Basu O, Nasani R, Das SK. Evolution of metal organic frameworks as electrocatalysts for water oxidation. Chem Commun (Camb) 2020; 56:11735-11748. [DOI: 10.1039/d0cc03659e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of metal organic framework based water oxidation catalysts is discussed here in connection with various design strategies.
Collapse
Affiliation(s)
| | - Olivia Basu
- School of Chemistry
- University of Hyderabad
- Hyderabad-500046
- India
| | - Rajendar Nasani
- School of Chemistry
- University of Hyderabad
- Hyderabad-500046
- India
| | - Samar K. Das
- School of Chemistry
- University of Hyderabad
- Hyderabad-500046
- India
| |
Collapse
|
132
|
Yang G, Zhang YM, Cai Y, Yang B, Gu C, Zhang SXA. Advances in nanomaterials for electrochromic devices. Chem Soc Rev 2020; 49:8687-8720. [DOI: 10.1039/d0cs00317d] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review article systematically highlights the recent advances regarding the design, preparation, performance and application of new and unique nanomaterials for electrochromic devices.
Collapse
Affiliation(s)
- Guojian Yang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
- College of Chemistry
| | - Yu-Mo Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
- College of Chemistry
| | - Yiru Cai
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Baige Yang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
- College of Chemistry
| | - Chang Gu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
- College of Chemistry
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
- College of Chemistry
| |
Collapse
|