101
|
Ai L, Shi R, Yang J, Zhang K, Zhang T, Lu S. Efficient Combination of G-C 3 N 4 and CDs for Enhanced Photocatalytic Performance: A Review of Synthesis, Strategies, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007523. [PMID: 33683817 DOI: 10.1002/smll.202007523] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/01/2021] [Indexed: 05/14/2023]
Abstract
Recently, heterogeneous photocatalysts have achieved much interest on account of their great potential applications in resolving many tough energy and environmental troubles around the world through an ecologically sustainable way. Heterogeneous nanocomposites composed of graphitic carbon nitride (g-C3 N4 ) and carbon dots (CDs) possess broad spectrum absorption, appropriate electronic band structures, rapid carrier mobility, abundant reserves, excellent chemical stability, and facile synthesis methods, which make them promising composite photocatalysts for suitable applications such as photocatalytic solar fuels production and contaminant decomposition. With the rapid development in photocatalysis by hybridization of g-C3 N4 and CDs, a systematic summary and prospection of performance improvement are urgent and meaningful. This review first focuses on various kinds of effectively synthetic methods of composites. Following, the strategies available for enhanced performance, including morphology optimization, spectral absorption improvement, ternary or quaternary composition hybrid, lateral or vertical heterostructures construction, heteroatom doping, and so forth, are fully discussed. Then, the applications mainly in efficient photocatalytic hydrogen generation, photocatalytic carbon dioxide reduction, and organic pollutants degradation are systematically demonstrated. Finally, the remaining issues and prospect of further development are proposed as some kind of guidance for powerful combination of g-C3 N4 and CDs with high efficiency to photocatalysis.
Collapse
Affiliation(s)
- Lin Ai
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jie Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kan Zhang
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
102
|
Kong H, Zhao Y, Cao P, Luo J, Liu Y, Qu H, Zhang Y, Zhao Y. The Bioactivity of Scutellariae Radix Carbonisata-Derived Carbon Dots: Antiallergic Effect. J Biomed Nanotechnol 2021; 17:2485-2494. [PMID: 34974871 DOI: 10.1166/jbn.2021.3200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chinese medicine is a treasure of the Chinese nation, and charcoal drugs are a class of medicine with distinctive characteristics. Scutellariae Radix Carbonisata (SRC) could be a sort of calcined herb medicate that has been utilized in traditional Chinese medicine (TCM) clinics to treat hypersensitivities. However, to date, the function of the carbonized part and action mechanisms of SRCs have not been elucidated. In this study, novel water-soluble carbon dots (CDs, named SRC-CDs) ranging from 2 to 9 nm were observed and separated from aqueous extracts of SRC. These SRC-CDs were characterized using transmission electron microscopy (TEM) and high-resolution TEM, as well as Fourier transform infrared, ultraviolet-visible, and fluorescence spectroscopy, to determine particle size, morphology, chemical structure, and optical properties. Then, the in vitro antiallergic efficacy of the SRC-CDs was studied in a C48/80-induced RBL-2H3 cell model, in which remarkable antiallergic effects were revealed. These results will provide new solution directions and technical methods for follow-up research of charcoal drugs and new understanding of potential biomedical applications of CDs.
Collapse
Affiliation(s)
- Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Cao
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuhan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huihua Qu
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
103
|
Ji Z, Liu K, Chen L, Nie Y, Pasang D, Yu Q, Shen X, Xu K, Premlatha S. Hierarchical flower-like architecture of nickel phosphide anchored with nitrogen-doped carbon quantum dots and cobalt oxide for advanced hybrid supercapacitors. J Colloid Interface Sci 2021; 609:503-512. [PMID: 34809991 DOI: 10.1016/j.jcis.2021.11.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/20/2023]
Abstract
The exploitation of hybrid supercapacitors with excellent electrochemical properties is of great significance for energy storage systems. Herein, a three-dimensional hierarchical flower-like architecture of nickel phosphide (Ni2P) decorated with nitrogen-doped carbon quantum dots (N-CQDs) and cobalt oxide (Co3O4) is constructed by an effective two-step hydrothermal strategy followed by in situ phosphorization process. Introducing N-CQDs with superior electrochemical characteristics can not only induce the formation of N-CQDs deposited nickel hydroxide (Ni(OH)2) flower-like architecture but also significantly enhance the electrochemical features of Ni(OH)2 nanosheets. After combination with Co3O4 nanoparticles and phosphorization treatment, an advanced cathode of Ni2P/Co3O4/N-CQDs with enriched surface phosphate ions is obtained, which possesses an ultra-high capacity of 1044 C g-1 (2088 F g-1) at 1 A g-1 with a splendid rate capacity of 876 C g-1 (1752 F g-1) at 20 A g-1. Moreover, a device assembled by Ni2P/Co3O4/N-CQDs hierarchical flower-like architecture and p-phenylenediamine functionalized reduced graphene oxide (PPD/rGO) nanosheets depicts a commendable energy density of 53.5 Wh kg-1 at 772.9 W kg-1. This work provides a novel hierarchical multi-component electrode material with decent electrochemical capacities for hybrid supercapacitors, which has a broad prospect in energy storage devices.
Collapse
Affiliation(s)
- Zhenyuan Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lizhi Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yunjin Nie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Drolma Pasang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiang Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoping Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Keqiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Subramanian Premlatha
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
104
|
Liao J, Yao Y, Lee CH, Wu Y, Li P. In Vivo Biodistribution, Clearance, and Biocompatibility of Multiple Carbon Dots Containing Nanoparticles for Biomedical Application. Pharmaceutics 2021; 13:pharmaceutics13111872. [PMID: 34834287 PMCID: PMC8623098 DOI: 10.3390/pharmaceutics13111872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/10/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Current research on the use of carbon dots for various biological systems mainly focuses on the single carbon dots, while particles that contain multiple carbon dots have scarcely been investigated. Here, we assessed multiple carbon dots-crosslinked polyethyleneimine nanoparticles (CDs@PEI) for their in vivo biodistribution, clearance, biocompatibility, and cellular uptake. The in vivo studies demonstrate three unique features of the CDs@PEI nanoparticles: (1) the nanoparticles possess tumor-targeting ability with steady and prolonged retention time in the tumor region. (2) The nanoparticles show hepatobiliary excretion and are clear from the intestine in feces. (3) The nanoparticles have much better biocompatibility than the polyethyleneimine passivated single carbon dots (PEI-CD). We also found that pegylated CDs@PEI nanoparticles can be effectively taken up by the cells, which the confocal laser scanning microscope can image under different excitation wavelengths (at 405, 488, and 800 nm). These prior studies provide invaluable information and new opportunities for this new type of intrinsic photoluminescence nanoparticles in carbon dot-based biomedical applications.
Collapse
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Southern Renmin Road, Chengdu 610041, China; (J.L.); (Y.W.)
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (Y.Y.); (C.-H.L.)
| | - Yuan Yao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (Y.Y.); (C.-H.L.)
| | - Cheng-Hao Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (Y.Y.); (C.-H.L.)
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Southern Renmin Road, Chengdu 610041, China; (J.L.); (Y.W.)
| | - Pei Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (Y.Y.); (C.-H.L.)
- Correspondence:
| |
Collapse
|
105
|
Octadecylamine and glucose-coderived hydrophobic carbon dots-modified porous silica for chromatographic separation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
106
|
Li J, Wang Y, Xu C, Yu Q, Wang X, Xie H, Tian L, Qiu Y, Guo R, Lu Z, Li M, He Q. Rapid pH-responsive self-disintegrating nanoassemblies balance tumor accumulation and penetration for enhanced anti-breast cancer therapy. Acta Biomater 2021; 134:546-558. [PMID: 33882357 DOI: 10.1016/j.actbio.2021.04.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
The dilemma of tumor accumulation and deep penetration has always been a barrier in antitumor therapy. Stimuli-responsive size changeable drug delivery systems provide possible solutions. Nevertheless, the low size-shrinkage efficiency limited the antitumor effects. In this study, an instant pH-responsive size shrinkable nanoassemblies named self-aggregated DOX@HA-CD (SA-DOX@HA-CD) was formulated using small-sized hyaluronic acid modified carbon dots (HA-CD) as monomers, which could self-aggregate into raspberry-like structure via hydrophobicity force in neutral pH and rapidly disassemble into shotgun-like DOX-loaded CD monomer in simulated tumor microenvironment (pH 6.5), owing to the transformation in electrical charge and hydrophobicity/hydrophilicity of this system. The transmission electron microscopy showed that the clustered SA-DOX@HA-CD had a diameter of ~150 nm, and thoroughly disassembled into ~30 nm nanoparticles in response to acidic environment. The disassemble efficiency was approximately 100%. Attributed to this property, SA-DOX@HA-CD led to enhanced cellular internalization and accumulation in 4T1 cells in simulated tumor microenvironment, as well as deep tumor penetration in 3D tumor spheroid model. Besides, the imine bond between DOX and HA-CD endowed DOX with pH-responsive release profile in the acidic lysosome environment. Furthermore, in the orthotopic 4T1 tumor-bearing mouse model, SA-DOX@HA-CD demonstrated higher tumor accumulation than non-aggregated DOX-HA-CD. Meanwhile, in response to the acid tumor microenvironment, the dissociated DOX-HA achieved deep tumor penetration, which consequently resulted in 2.5-fold higher antitumor efficiency. The formulation of self-aggregated SA-DOX@HA-CD provides a simple and effective alternative to prepare pH-responsive size-shrinkable nanodrug delivery systems. STATEMENT OF SIGNIFICANCE: The heterogeneity of tumor vasculature and the high tumor interstitial pressure lead to the barriers in tumor accumulation and deep penetration, which calls for opposite properties (e.g. size) of drug delivery systems. To address this dilemma, various size changeable nanoparticles have been developed utilizing special features of tumor microenvironment, such as pH, enzyme and reactive oxygen species. Nevertheless, the current strategies face the problems of incomplete hydrolysis of chemical bonds or insufficient enzyme degradation, which result in only partial size shrinkage, hindering the tumor deep penetration effects. Here we developed a self-assembled nanocluster, which could respond to acidic pH rapidly and thoroughly disassemble into small nanodots due to the alteration of hydrophobicity/hydrophilicity/charge, leading to approximately 100% dissociation. This strategy provides a new concept for design of size changeable drug delivery systems.
Collapse
Affiliation(s)
- Jianping Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chaoqun Xu
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610041, People's Republic of China
| | - Qianwen Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuhui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Hanbing Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610064, People's Republic of China
| | - Lifeng Tian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yue Qiu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Rong Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhengze Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
107
|
Luo WK, Zhang LL, Yang ZY, Guo XH, Wu Y, Zhang W, Luo JK, Tang T, Wang Y. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnology 2021; 19:320. [PMID: 34645456 PMCID: PMC8513293 DOI: 10.1186/s12951-021-01072-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 02/02/2023] Open
Abstract
Since the number of raw material selections for the synthesis of carbon dots (CDs) has grown extensively, herbal medicine as a precursor receives an increasing amount of attention. Compared with other biomass precursors, CDs derived from herbal medicine (HM-CDs) have become the most recent incomer in the family of CDs. In recent ten years, a great many studies have revealed that HM-CDs tend to be good at theranostics without drug loading. However, the relevant development and research results are not systematically reviewed. Herein, the origin and history of HM-CDs are outlined, especially their functional performances in medical diagnosis and treatment. Besides, we sort out the herbal medicine precursors, and analyze the primary synthetic methods and the key characteristics. In terms of the applications of HM-CDs, medical therapeutics, ion and molecular detection, bioimaging, as well as pH sensing are summarized. Finally, we discuss the crucial challenges and future prospects. ![]()
Collapse
Affiliation(s)
- Wei-Kang Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Liang-Lin Zhang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Yu Yang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Xiao-Hang Guo
- Hunan University of Chinese Medicine, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie-Kun Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China.
| |
Collapse
|
108
|
Jin J, Li L, Zhang L, Luan Z, Xin S, Song K. Progress in the Application of Carbon Dots-Based Nanozymes. Front Chem 2021; 9:748044. [PMID: 34631669 PMCID: PMC8497709 DOI: 10.3389/fchem.2021.748044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
As functional nanomaterials with simulating enzyme-like properties, nanozymes can not only overcome the inherent limitations of natural enzymes in terms of stability and preparation cost but also possess design, versatility, maneuverability, and applicability of nanomaterials. Therefore, they can be combined with other materials to form composite nanomaterials with superior performance, which has garnered considerable attention. Carbon dots (CDs) are an ideal choice for these composite materials due to their unique physical and chemical properties, such as excellent water dispersion, stable chemical inertness, high photobleaching resistance, and superior surface engineering. With the continuous emergence of various CDs-based nanozymes, it is vital to thoroughly understand their working principle, performance evaluation, and application scope. This review comprehensively discusses the recent advantages and disadvantages of CDs-based nanozymes in biomedicine, catalysis, sensing, detection aspects. It is expected to provide valuable insights into developing novel CDs-based nanozymes.
Collapse
Affiliation(s)
| | | | | | | | - Shuquan Xin
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Kai Song
- School of Life Sciences, Changchun Normal University, Changchun, China
| |
Collapse
|
109
|
Synthesized carbon dots with high N and S content as excellent corrosion inhibitors for copper in sulfuric acid solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116702] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
110
|
Zhang Y, Wang S, Lu F, Zhang M, Kong H, Cheng J, Luo J, Zhao Y, Qu H. The neuroprotective effect of pretreatment with carbon dots from Crinis Carbonisatus (carbonized human hair) against cerebral ischemia reperfusion injury. J Nanobiotechnology 2021; 19:257. [PMID: 34454522 PMCID: PMC8399708 DOI: 10.1186/s12951-021-00908-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/22/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cerebral infarction and cerebral hemorrhage, also known as "stroke", is one of the leading cause of death. At present, there is no real specific medicine for stroke. Crinis Carbonisatus (named Xue-yu-tan in Chinese), produced from carbonized hair of healthy human, and has been widely applied to relieve pain and treat epilepsy, stroke and other diseases in China for thousands of years. RESULTS In this work, a new species of carbon dots derived from Crinis Carbonisatus (CrCi-CDs) were separated and identified. And the neuroprotective effect of carbon dots from CrCi were evaluated using the middle cerebral artery occlusion (MCAO) model. Neurological deficit score and infarction volume was assessed, evans blue content of ischemic hemispheres was measured, the concentrations of inflammatory factors, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) in the cortex were measured, and the levels of neurotransmitters in the brain were determined. Preconditioning of CrCi-CDs significantly reduced ischemic lesion volume and blood-brain-barrier (BBB) permeability, improved neurologic deficits, decreased the level of TNF-α and IL-6 in MCAO rats, inhibited excitatory neurotransmitters aspartate (Asp) and glutamate (Glu), and increased the level of 5-hydroxytryptamine (5-HT). The RNA-Sequencing results reveal that further potential mechanisms behind the activities may be related to the anti-inflammation effects and inhibition of neuroexcitatory toxicity. CONCLUSION CrCi-CDs performs neuroprotective effect on cerebral ischemia and reperfusion injury, and the mechanisms may correlate with its anti-inflammatory action, which suggested that CrCi-CDs have potential value in clinical therapy on the acute apoplexy cases in combination with thrombolytic drugs.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Suna Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.,School of Basic Medical Sciences, Guizhou University of Chinese Medicine, Beijing, China
| | - Fang Lu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China
| | - Hui Kong
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China
| | - Juan Luo
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
111
|
Kou E, Li W, Zhang H, Yang X, Kang Y, Zheng M, Qu S, Lei B. Nitrogen and Sulfur Co-doped Carbon Dots Enhance Drought Resistance in Tomato and Mung Beans. ACS APPLIED BIO MATERIALS 2021; 4:6093-6102. [PMID: 35006883 DOI: 10.1021/acsabm.1c00427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Drought stress is widespread worldwide, which severely restricts world food production. The antioxidant property of carbon dots (CDs) is promising for inflammation and disease treatment. However, little is known about the functions of CDs in the abiotic stress of plants, especially in drought-resistant fields. In this study, CDs were synthesized using cysteine and glucose by the hydrothermal method. The in vitro antioxidant capacity of CDs and the reactive oxygen species (ROS) scavenging capacity were evaluated. We speculate on the antioxidant mechanism of CDs by comparing size distribution, fluorescence spectra, elements, and surface functional groups of CDs before and after oxidation. Besides, we evaluated the effects of CDs on seed germination and seedling physiology under drought stress. Also, the responses of antioxidant CDs to long-term drought stress and subsequent recovery metabolism in tomato plants were evaluated. The results show that CDs accelerated the germination rate and the germination drought resistance index by promoting the water absorption of seeds. CDs enhanced the drought resistance of seedlings by improving the activity of peroxidase (POD) and superoxide dismutase (SOD). Moreover, CDs can activate the antioxidant metabolism activity and upregulate the expression of aquaporin (AQP) genes SlPIP2;7, SlPIP2;12, and SlPIP1;7. All of these results render tomato plants distinguished resilience once rewatering after drought stress. These results facilitate us to design and fabricate CDs to meet the challenge of abiotic stress in food production.
Collapse
Affiliation(s)
- Erfeng Kou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.,College of Horticulture, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yunyan Kang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingtao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525100, Guangdong, P. R. China
| | - Songnan Qu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macau, P. R. China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.,College of Horticulture, South China Agricultural University, Guangzhou 510642, P. R. China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525100, Guangdong, P. R. China
| |
Collapse
|
112
|
Ghirardello M, Ramos-Soriano J, Galan MC. Carbon Dots as an Emergent Class of Antimicrobial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1877. [PMID: 34443713 PMCID: PMC8400628 DOI: 10.3390/nano11081877] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023]
Abstract
Antimicrobial resistance is a recognized global challenge. Tools for bacterial detection can combat antimicrobial resistance by facilitating evidence-based antibiotic prescribing, thus avoiding their overprescription, which contributes to the spread of resistance. Unfortunately, traditional culture-based identification methods take at least a day, while emerging alternatives are limited by high cost and a requirement for skilled operators. Moreover, photodynamic inactivation of bacteria promoted by photosensitisers could be considered as one of the most promising strategies in the fight against multidrug resistance pathogens. In this context, carbon dots (CDs) have been identified as a promising class of photosensitiser nanomaterials for the specific detection and inactivation of different bacterial species. CDs possess exceptional and tuneable chemical and photoelectric properties that make them excellent candidates for antibacterial theranostic applications, such as great chemical stability, high water solubility, low toxicity and excellent biocompatibility. In this review, we will summarize the most recent advances on the use of CDs as antimicrobial agents, including the most commonly used methodologies for CD and CD/composites syntheses and their antibacterial properties in both in vitro and in vivo models developed in the last 3 years.
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Javier Ramos-Soriano
- Centro de Investigaciones Científicas Isla de La Cartuja, Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain;
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
113
|
Zhang Y, Zhang S, Tan B, Guo L, Li H. Solvothermal synthesis of functionalized carbon dots from amino acid as an eco-friendly corrosion inhibitor for copper in sulfuric acid solution. J Colloid Interface Sci 2021; 604:1-14. [PMID: 34261015 DOI: 10.1016/j.jcis.2021.07.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022]
Abstract
In this work, novel N-doped carbon dots (N-CDs) were synthesized from citric acid and l-serine. The results of fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) show that there are many unsaturated bonds and polar groups in the N-CDs. The inhibition performance of the concerned zero-dimensional nanomaterial for copper was investigated by electrochemical, combining FT-IR, XPS and Raman to investigate the corrosion products. Results indicate that the N-CDs were found to be effective inhibitor with the suppression efficiency as high as 98.5% means after immersed for 24 h, and they interacted with copper substrate by chemical & physical adsorption. Moreover, the related anticorrosion mechanism was explored and elucidated in detail. The purpose of this work is to explore eco-friendly and efficient corrosion inhibitor materials for metal protection.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Shengtao Zhang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Bochuan Tan
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lei Guo
- School of Material and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Hantang Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
114
|
Arcudi F, Ðorđević L, Rebeccani S, Cacioppo M, Zanut A, Valenti G, Paolucci F, Prato M. Lighting up the Electrochemiluminescence of Carbon Dots through Pre- and Post-Synthetic Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100125. [PMID: 34258161 PMCID: PMC8261489 DOI: 10.1002/advs.202100125] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/28/2021] [Indexed: 05/19/2023]
Abstract
Carbon dots (CDs), defined by their size of less than 10 nm, are a class of photoluminescent (PL) and electrochemiluminescent (ECL) nanomaterials that include a variety of carbon-based nanoparticles. However, the control of their properties, especially ECL, remains elusive and afflicted by a series of problems. Here, the authors report CDs that display ECL in water via coreactant ECL, which is the dominant mechanism in biosensing applications. They take advantage of a multicomponent bottom-up approach for preparing and studying the luminescence properties of CDs doped with a dye acting as PL and ECL probe. The dependence of luminescence properties on the surface chemistry is further reported, by investigating the PL and ECL response of CDs with surfaces rich in primary, methylated, or propylated amino groups. While precursors that contribute to the core characterize the PL emission, the surface states influence the efficiency of the excitation-dependent PL emission. The ECL emission is influenced by surface states from the organic shell, but states of the core strongly interact with the surface, influencing the ECL efficiency. These findings offer a framework of pre- and post-synthetic design strategies to improve ECL emission properties, opening new opportunities for exploring biosensing applications of CDs.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 1Trieste34127Italy
- Present address:
Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Luka Ðorđević
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 1Trieste34127Italy
- Present address:
Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Sara Rebeccani
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 2Bologna40126Italy
| | - Michele Cacioppo
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 1Trieste34127Italy
- Carbon Bionanotechnology GroupCenter for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo de Miramón 182Donostia‐San Sebastián20014Spain
| | - Alessandra Zanut
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 2Bologna40126Italy
- Present address:
Tandon School of EngineeringNew York UniversityBrooklynNY11201USA
| | - Giovanni Valenti
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 2Bologna40126Italy
| | - Francesco Paolucci
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 2Bologna40126Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical SciencesINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 1Trieste34127Italy
- Carbon Bionanotechnology GroupCenter for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo de Miramón 182Donostia‐San Sebastián20014Spain
- IkerbasqueBasque Foundation for ScienceBilbao48013Spain
| |
Collapse
|
115
|
Seven ES, Seven YB, Zhou Y, Poudel-Sharma S, Diaz-Rucco JJ, Kirbas Cilingir E, Mitchell GS, Van Dyken JD, Leblanc RM. Crossing the blood-brain barrier with carbon dots: uptake mechanism and in vivo cargo delivery. NANOSCALE ADVANCES 2021; 3:3942-3953. [PMID: 34263140 PMCID: PMC8243484 DOI: 10.1039/d1na00145k] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/30/2021] [Indexed: 06/10/2023]
Abstract
The blood-brain barrier (BBB) is a major obstacle for drug delivery to the central nervous system (CNS) such that most therapeutics lack efficacy against brain tumors or neurological disorders due to their inability to cross the BBB. Therefore, developing new drug delivery platforms to facilitate drug transport to the CNS and understanding their mechanism of transport are crucial for the efficacy of therapeutics. Here, we report (i) carbon dots prepared from glucose and conjugated to fluorescein (GluCD-F) cross the BBB in zebrafish and rats without the need of an additional targeting ligand and (ii) uptake mechanism of GluCDs is glucose transporter-dependent in budding yeast. Glucose transporter-negative strain of yeast showed undetectable GluCD accumulation unlike the glucose transporter-positive yeast, suggesting glucose-transporter-dependent GluCD uptake. We tested GluCDs' ability to cross the BBB using both zebrafish and rat models. Following the injection to the heart, wild-type zebrafish showed GluCD-F accumulation in the central canal consistent with the transport of GluCD-F across the BBB. In rats, following intravenous administration, GluCD-F was observed in the CNS. GluCD-F was localized in the gray matter (e.g. ventral horn, dorsal horn, and middle grey) of the cervical spinal cord consistent with neuronal accumulation. Therefore, neuron targeting GluCDs hold tremendous potential as a drug delivery platform in neurodegenerative disease, traumatic injury, and malignancies of the CNS.
Collapse
Affiliation(s)
- Elif S Seven
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Yasin B Seven
- Department of Physical Therapy, University of Florida 101 Newell Dr. Gainesville FL 32603 USA
- McKnight Brain Institute, University of Florida 1149 Newell Dr. Gainesville FL 32610 USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Sijan Poudel-Sharma
- Department of Biology, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Juan J Diaz-Rucco
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Emel Kirbas Cilingir
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Gordon S Mitchell
- Department of Physical Therapy, University of Florida 101 Newell Dr. Gainesville FL 32603 USA
- McKnight Brain Institute, University of Florida 1149 Newell Dr. Gainesville FL 32610 USA
| | - J David Van Dyken
- Department of Biology, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| |
Collapse
|
116
|
Gu X, Chen Z, Li Y, Wu J, Wang X, Huang H, Liu Y, Dong B, Shao M, Kang Z. Polyaniline/Carbon Dots Composite as a Highly Efficient Metal-Free Dual-Functional Photoassisted Electrocatalyst for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24814-24823. [PMID: 34009941 DOI: 10.1021/acsami.1c04386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photoassisted electrocatalytic (P-EC) water splitting for H2 production has received much attention. Here, we report a metal-free bifunctional photoassisted catalyst of a polyaniline/carbon dots (PANI/CDs) composite for overall water splitting. In a neutral electrolyte, under visible light, the overpotentials of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) for PANI/CDs/NF are reduced by 150 and 65 mV to reach the current densities of 30 and 20 mA cm-2, respectively. In a full water-splitting cell, under visible light, the current density is 13.27 mA cm-2 at 2.0 V, which increases by 62.8% compared with that under the dark conditions (8.15 mA cm-2). The in situ transient photovoltage (TPV) tests were used to study the light-induced effects on half-reactions of water splitting, as well as the charge-transfer kinetic characteristics at the catalyst interface.
Collapse
Affiliation(s)
- Xiaoqing Gu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Zhaomin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yi Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Xiao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, P. R. China
| |
Collapse
|
117
|
|
118
|
Hu C, Lin TJ, Huang YC, Chen YY, Wang KH, Andrew Lin KY. Photoluminescence quenching of thermally treated waste-derived carbon dots for selective metal ion sensing. ENVIRONMENTAL RESEARCH 2021; 197:111008. [PMID: 33737077 DOI: 10.1016/j.envres.2021.111008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/27/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
In the present study, carbon-dots (CDs) were derived from the thermal oxidation of an agricultural waste, bitter tea residue, to obtain different sp2/sp3 ratios and electronic structures for metal sensing. The CDs obtained from calcination at 700 °C exhibited the highest photoluminescence (PL) quantum yield (QY) of 11.8% among all the samples treated at different temperatures. These CDs had a high degree of graphitization, which resulted in a strong π-π* electron transition, and hence in a high QY. The strong photoluminescence of the CDs could be used to sense the metal ions Ag+, Sr2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, and Sn2+ by monitoring their PL intensity at an excitation wavelength of 320 nm. The metals inhibited the PL intensity in the order Ag+ > Fe2+, Fe3+, Ni2+ > Sr2+, Co2+, Cu2+, Sn2+, which demonstrated that the CDs exhibited high metal ion detection capability and selectivity. The detection of Fe3+ using CDs was performed in the range of 10-100 ppm with a LOD (limit of detection) value of 0.380 ppm. Theoretical calculations demonstrated that Ag+, Sr2+, and Sn2+ induced charge transfer excitation and that Fe2+ and Ni2+ induced d-d transitions via complexation with the sp2 clusters. The charge transfer excitation and d-d transitions hindered the π-π* transition of the sp2 clusters, leading to a quenching effect. On the other hand, Li+, Na+, and K+ ions did not alter the π-π* transition of the sp2 clusters, resulting in a negligible quenching effect. In summary, the oxidation level and electronic structure of CDs derived from bitter tea residue could be tailored, and the CDs were shown to be a facile, sustainable, and eco-friendly material for metal sensing.
Collapse
Affiliation(s)
- Chechia Hu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei City, 106, Taiwan; Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli Dist., Taoyuan City, 320, Taiwan.
| | - Tzu-Jen Lin
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli Dist., Taoyuan City, 320, Taiwan.
| | - Ying-Chu Huang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli Dist., Taoyuan City, 320, Taiwan.
| | - You-Yu Chen
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli Dist., Taoyuan City, 320, Taiwan.
| | - Ke-Hsuan Wang
- Department of Industrial Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, Kuo-Kuang Road, Taichung, 250, Taiwan.
| |
Collapse
|
119
|
Mauro N, Utzeri MA, Varvarà P, Cavallaro G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021; 26:3085. [PMID: 34064173 PMCID: PMC8196792 DOI: 10.3390/molecules26113085] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer theranostics is a new concept of medical approach that attempts to combine in a unique nanoplatform diagnosis, monitoring and therapy so as to provide eradication of a solid tumor in a non-invasive fashion. There are many available solutions to tackle cancer using theranostic agents such as photothermal therapy (PTT) and photodynamic therapy (PDT) under the guidance of imaging techniques (e.g., magnetic resonance-MRI, photoacoustic-PA or computed tomography-CT imaging). Additionally, there are several potential theranostic nanoplatforms able to combine diagnosis and therapy at once, such as gold nanoparticles (GNPs), graphene oxide (GO), superparamagnetic iron oxide nanoparticles (SPIONs) and carbon nanodots (CDs). Currently, surface functionalization of these nanoplatforms is an extremely useful protocol for effectively tuning their structures, interface features and physicochemical properties. This approach is much more reliable and amenable to fine adjustment, reaching both physicochemical and regulatory requirements as a function of the specific field of application. Here, we summarize and compare the most promising metal- and carbon-based theranostic tools reported as potential candidates in precision cancer theranostics. We focused our review on the latest developments in surface functionalization strategies for these nanosystems, or hybrid nanocomposites consisting of their combination, and discuss their main characteristics and potential applications in precision cancer medicine.
Collapse
Affiliation(s)
- Nicolò Mauro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Mara Andrea Utzeri
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Paola Varvarà
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
- Advanced Technologies Network Center, University of Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
120
|
Rigodanza F, Burian M, Arcudi F, Đorđević L, Amenitsch H, Prato M. Snapshots into carbon dots formation through a combined spectroscopic approach. Nat Commun 2021; 12:2640. [PMID: 33976167 PMCID: PMC8113590 DOI: 10.1038/s41467-021-22902-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
The design of novel carbon dots with ad hoc properties requires a comprehensive understanding of their formation mechanism, which is a complex task considering the number of variables involved, such as reaction time, structure of precursors or synthetic protocol employed. Herein, we systematically investigated the formation of carbon nanodots by tracking structural, chemical and photophysical features during the hydrothermal synthesis. We demonstrate that the formation of carbon nanodots consists of 4 consecutive steps: (i) aggregation of small organic molecules, (ii) formation of a dense core with an extended shell, (iii) collapse of the shell and (iv) aromatization of the core. In addition, we provide examples of routes towards tuning the core-shell design, synthesizing five novel carbon dots that all consist of an electron-dense core covered by an amine rich ligand shell.
Collapse
Affiliation(s)
- Francesco Rigodanza
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy
- Department of Chemistry, University of Padova, 35151, Padova, Italy
| | - Max Burian
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Luka Đorđević
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia San Sebastián, Spain.
- Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Spain.
| |
Collapse
|
121
|
Lysosome-targeted carbon dots for colorimetric and fluorescent dual mode detection of iron ion, in vitro and in vivo imaging. Talanta 2021; 232:122423. [PMID: 34074409 DOI: 10.1016/j.talanta.2021.122423] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 01/29/2023]
Abstract
In this work, a colorimetric and fluorescent dual mode sensor based on lysosome-targeted CDs has been desirably implemented to identify Fe3+ fluctuations in vitro and in vivo. By simple one-pot hydrothermal carbonization of dried field mint, yellow-fluorescent CDs were directly fabricated without the assistance of other reagents and hold exceptional stability, superior biocompatibility as well as ultra-low cytotoxicity. Results indicated that as-prepared CDs can provide a rapid, reliable, and highly selective recognition of Fe3+ with a linear range of 0 μM-400 μM and a detection limit of 0.037 μM. Impressively, it was found that as-developed CDs can successfully target lysosome with high colocalization coefficient (0.85) and responds to fluctuations of Fe3+ in living cells. Further, acquired CDs was ingeniously devoted to Escherichia coli imaging. Besides, obtained CDs was eventually utilized to track the variation of Fe3+ in vivo system. A preliminary research expresses that as-synthesized CDs can function as an effective tool to detect Fe3+ in vitro and in vivo and thus indicates the promising applicability for disease detection in physiology and pathology in the future.
Collapse
|
122
|
Bettini S, Ottolini M, Pagano R, Pal S, Licciulli A, Valli L, Giancane G. Coffee Grounds-Derived CNPs for Efficient Cr(VI) Water Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1064. [PMID: 33919207 PMCID: PMC8143114 DOI: 10.3390/nano11051064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022]
Abstract
Carbon nanomaterials are a group of materials characterized by sp2/sp3 carbon backbone which, combined with surface atoms and/or chemical groups, ensures peculiar physical chemical features for a wide range of applications. Among these materials, carbon dots and carbon nanoparticles belong to carbon nanomaterials with a few nanometer dimensions. In this work, carbon nanoparticles were produced from spent coffee grounds as sustainable carbon source through a simple, cheap and eco-friendly procedure according to an oxidation process (at controlled temperature) driven by hydrogen peroxide. Atomic Force Microscope (AFM) and fluorescence, UV-Vis absorption, FT-IR and Raman spectroscopy were used to assess the formation of carbon nanomaterials of about 10 nm with the typical emission and absorption properties of carbon dots and peculiar surface features. In fact, the presence of heteroatoms, i.e., phosphorus, and the carbonyl/carboxyl surface groups on carbon nanoparticles, was proposed to confer peculiar properties allowing the fast Mn(VII) reduction to Mn(II) at neutral pH and the Cr(VI) reduction to Cr(III) in weak acid aqueous media.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento, Via per Arnesano, I-73100 Lecce, Italy; (R.P.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Michela Ottolini
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, I-73100 Lecce, Italy; (M.O.); (S.P.); (A.L.)
| | - Rosanna Pagano
- Department of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento, Via per Arnesano, I-73100 Lecce, Italy; (R.P.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Sudipto Pal
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, I-73100 Lecce, Italy; (M.O.); (S.P.); (A.L.)
| | - Antonio Licciulli
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, I-73100 Lecce, Italy; (M.O.); (S.P.); (A.L.)
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento, Via per Arnesano, I-73100 Lecce, Italy; (R.P.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Gabriele Giancane
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
- Department of Cultural Heritage, University of Salento, Via D. Birago, 48, I-73100 Lecce, Italy
| |
Collapse
|
123
|
Cheng Y, Ling SD, Geng Y, Wang Y, Xu J. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. NANOSCALE ADVANCES 2021; 3:2180-2195. [PMID: 36133767 PMCID: PMC9417800 DOI: 10.1039/d0na00933d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/13/2021] [Indexed: 05/17/2023]
Abstract
Bio-sensing and bio-imaging of organisms or molecules can provide key information for the study of physiological processes or the diagnosis of diseases. Quantum dots (QDs) stand out to be promising optical detectors because of their excellent optical properties such as high brightness, stability, and multiplexing ability. Diverse approaches have been developed to generate QDs, while microfluidic technology is one promising path for their industrial production. In fact, microfluidic devices provide a controllable, rapid and effective route to produce high-quality QDs, while serving as an effective in situ platform to understand the synthetic mechanism or optimize reaction parameters for QD production. In this review, the recent research progress in microfluidic synthesis and bio-detection applications of QDs is discussed. The definitions of different QDs are first introduced, and the advances in microfluidic-based fabrication of quantum dots are summarized with a focus on perovskite QDs and carbon QDs. In addition, QD-based bio-sensing and bio-imaging technologies for organisms of different scales are described in detail. Finally, perspectives for future development of microfluidic synthesis and applications of QDs are presented.
Collapse
Affiliation(s)
- Yu Cheng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Si Da Ling
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuhao Geng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yundong Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Jianhong Xu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
124
|
Abstract
Aim: Several types of nanocarriers, most of which show significant cytotoxicity, have been developed to overcome the problem of gene-delivery barriers. Biocompatibility, low toxicity and water solubility of carbon nanodots (CNDs) are major advantages that recommend them as delivery systems. Materials & methods: We present a simple method to produce positively charged CNDs. Ethanolamine, ethylenediamine and hydrogen peroxide were utilized to synthesize these CNDs. Results & conclusion: Our results indicated that delivery of the CND-siGFP complex led to significant switching-off of the fluorescence of the GFP-expressing A549 cell. Next, the A549 cells were transfected with siRNA against BiP, which is a pivotal protein in the chemotherapy resistance of cancer cells. The expression levels of BiP decreased remarkably.
Collapse
|
125
|
Cui F, Sun J, Ji J, Yang X, Wei K, Xu H, Gu Q, Zhang Y, Sun X. Carbon dots-releasing hydrogels with antibacterial activity, high biocompatibility, and fluorescence performance as candidate materials for wound healing. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124330. [PMID: 33144016 DOI: 10.1016/j.jhazmat.2020.124330] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/13/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Antibacterial hydrogels have received attention for preventing infections and for their biomedical applications. However, traditional antibiotics-containing and metal nanoparticle-containing hydrogels often cause bacterial resistance, exhibit low biocompatibility, and lack real-time monitoring capability. Here, a fluorescent antibacterial hydrogel with antibacterial ability, excellent optical performance, and high biocompatibility was developed based on cationic carbon dots (CDs), pectin, and acrylic acid triggered construction of the hydrogel network by cross-linker. The antibacterial high-cationic CDs (+51.20 mV) were synthesized by a simple hydrothermal method and released from hydrogel in response to broken hydrogen bonds due to a change in the ambient environment caused by the growing bacteria. The hydrogel showed long-term potent broad-spectrum antibacterial ability (even drug-resistant bacteria) due to the bacterial membrane seriously damaged by the released CDs. The inhibitory capability of this hydrogel was 108.5-fold higher than the other hydrogel. After implantation or incubation with cells, no obvious cytotoxicity or tissue toxicity was observed for the antibacterial hydrogel. This hydrogel enhanced both the application of CDs in vivo and the biosafety of hydrogel. Furthermore, the multicolor fluorescence emission produced by CD provides a potential idea for the development of dual-function hydrogels with in situ monitoring and prevention of bacterial infections to treat wounds.
Collapse
Affiliation(s)
- Fangchao Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Jiangsu, Wuxi 214122, PR China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Jiangsu, Wuxi 214122, PR China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Jiangsu, Wuxi 214122, PR China
| | - Xingxing Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Jiangsu, Wuxi 214122, PR China
| | - Kaimin Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Jiangsu, Wuxi 214122, PR China
| | - Hongwen Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Jiangsu, Wuxi 214122, PR China
| | - Qingyin Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Jiangsu, Wuxi 214122, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Jiangsu, Wuxi 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Jiangsu, Wuxi 214122, PR China.
| |
Collapse
|
126
|
Rimal V, Shishodia S, Srivastava PK, Gupta S, Mallick AI. Synthesis and characterization of Indian essential oil Carbon Dots for interdisciplinary applications. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01737-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
127
|
Wang X, Bian W, Ma Y, Liu Y, Wang Z, Shi C, Lin H, Liu Y, Huang H, Kang Z. Hydroxyl-terminated carbon dots for efficient conversion of cyclohexane to adipic acid. J Colloid Interface Sci 2021; 591:281-289. [PMID: 33609895 DOI: 10.1016/j.jcis.2021.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/26/2023]
Abstract
Adipic acid (HOOC(CH2)4COOH, AA) is a crucial chemical in industrial manufactures and mainly produced by the oxidation of cyclohexane with air and nitric acid via a homogeneous two step path in industry. However, the conventional industrial method inevitably results in the generation of nitrous oxide (N2O, etc.), which is the main cause of the greenhouse effect and ozone depletion. Herein, we engineered five kinds of carbon dots (CDs) with different oxygen-containing functional groups on their surfaces, which were directly used as catalysts over the selective catalytic oxidation of cyclohexane. Among the five CDs, the hydroxyl-terminated CDs show the best catalytic activity with the conversion of cyclohexane ~ 29.43% and selectivity to AA ~ 95.89% under 130 °C, 20 atm with oxygen as oxidant. With the CDs directly as catalyst, the one-step efficient catalytic oxidation reaction for cyclohexane to AA was realized to replace the two-step routes. In addition, the density functional theory (DFT) computational results were performed to further prove that the more quantity of hydroxyl on CDs and the higher O2 pressure can boost the higher catalytic activity of CDs over oxidation of cyclohexane.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Wenyi Bian
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Yurong Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Yan Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Zhenzhen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Chunfeng Shi
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, No. 18 Xueyuan Road, Beijing 100083, China.
| | - Haiping Lin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
128
|
Tan Q, An X, Pan S, Liu H, Hu X. Hydrogen peroxide assisted synthesis of sulfur quantum dots for the detection of chromium (VI) and ascorbic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119122. [PMID: 33161271 DOI: 10.1016/j.saa.2020.119122] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Sulfur quantum dots (SQDs), heavy-metal-free quantum dots, are regarded as the next generation promising green nanomaterials compared with traditional heavy-metal-based quantum dots. However, there have been few reports on the synthesis and application of SQDs for analytical detection. Herein, an H2O2-assisted top-down method is used to synthesize SQDs. The as-obtained SQDs have good water dispersion, stability, photoluminescence (PL) properties and achieving a quantum yield (QY) to 11%. After adding Cr (VI) in SQDs, the fluorescence intensity decreases base on inner filter effect (IFE). Moreover, Cr (VI) can be reduced to Cr(III) when ascorbic acid (AA) is introduced into the SQDs - Cr (VI) system, accompanying the recovery of the fluorescence intensity. The fluorescence sensor displays high sensitivity and quickly response toward Cr (VI) and AA in a range of 10-120 μmol L-1 and 20-500 μmol L-1 with a detection limit of 0.36 μmol L-1 and 1.21 μmol L-1, respectively. In addition, the fluorescence sensor has been applied for the determination of Cr (VI) and AA in real samples.
Collapse
Affiliation(s)
- Qin Tan
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xuanxuan An
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shuang Pan
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hui Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoli Hu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
129
|
Review of recent developments (2018–2020) on acetylcholinesterase inhibition based biosensors for organophosphorus pesticides detection. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105779] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
130
|
Sharma A, Panwar V, Thomas J, Chopra V, Roy HS, Ghosh D. Actin-binding carbon dots selectively target glioblastoma cells while sparing normal cells. Colloids Surf B Biointerfaces 2021; 200:111572. [PMID: 33476956 DOI: 10.1016/j.colsurfb.2021.111572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/01/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Curcumin, a pleiotropic signalling molecule from Curcuma longa, is reported to be effective against multiple cancers. Despite its promising effect, curcumin had failed in clinical trials due to its low aqueous solubility, stability and poor bioavailability. While several approaches are being attempted to overcome the limitations, the improved solubility observed with curcumin-derived carbon dots appeared to be a strategy worth exploring. To assess if the carbon dots possess bio-activity similar to curcumin, we synthesized carbon dots (CurCD) from curcumin and ethylenediamine. Unlike curcumin, the as-synthesized curcumin carbon dots exhibited excellent solubility, excitation-dependent emission and photostability. The anti-cancer activity evaluated with glioblastoma cells using the well-established in vitro models indicated its comparable/enhanced activity over curcumin. Besides, the selective affinity of CurCD to the actin filament, indicated it's prospective to serve as a marker of actin filaments. In addition, the non-toxic effects observed in normal cells and fish embryos indicated CurCD was more biocompatible than curcumin. While this work reveals the superior properties of CurCD over curcumin, it provides a new approach to explore other plant derived molecules with similar limitations like curcumin.
Collapse
Affiliation(s)
- Anjana Sharma
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, 160062, Punjab, India
| | - Vineeta Panwar
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, 160062, Punjab, India
| | - Jijo Thomas
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, 160062, Punjab, India
| | - Vianni Chopra
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, 160062, Punjab, India
| | - Himadri Shekhar Roy
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, 160062, Punjab, India
| | - Deepa Ghosh
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, 160062, Punjab, India.
| |
Collapse
|
131
|
Das S, Ngashangva L, Goswami P. Carbon Dots: An Emerging Smart Material for Analytical Applications. MICROMACHINES 2021; 12:84. [PMID: 33467583 PMCID: PMC7829846 DOI: 10.3390/mi12010084] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) are optically active carbon-based nanomaterials. These nanomaterials can change their light emission properties in response to various external stimuli such as pH, temperature, pressure, and light. The CD's remarkable stimuli-responsive smart material properties have recently stimulated massive research interest for their exploitation to develop various sensor platforms. Herein, an effort has been made to review the major advances made on CDs, focusing mainly on its smart material attributes and linked applications. Since the CD's material properties are largely linked to their synthesis approaches, various synthesis methods, including surface passivation and functionalization of CDs and the mechanisms reported so far in their photophysical properties, are also delineated in this review. Finally, the challenges of using CDs and the scope for their further improvement as an optical signal transducer to expand their application horizon for developing analytical platforms have been discussed.
Collapse
Affiliation(s)
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; (S.D.); (L.N.)
| |
Collapse
|
132
|
Weiss M, Fan J, Claudel M, Lebeau L, Pons F, Ronzani C. Combined In Vitro and In Vivo Approaches to Propose a Putative Adverse Outcome Pathway for Acute Lung Inflammation Induced by Nanoparticles: A Study on Carbon Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:180. [PMID: 33450894 PMCID: PMC7828340 DOI: 10.3390/nano11010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
With the growth of nanotechnologies, concerns raised regarding the potential adverse effects of nanoparticles (NPs), especially on the respiratory tract. Adverse outcome pathways (AOP) have become recently the subject of intensive studies in order to get a better understanding of the mechanisms of NP toxicity, and hence hopefully predict the health risks associated with NP exposure. Herein, we propose a putative AOP for the lung toxicity of NPs using emerging nanomaterials called carbon dots (CDs), and in vivo and in vitro experimental approaches. We first investigated the effect of a single administration of CDs on mouse airways. We showed that CDs induce an acute lung inflammation and identified airway macrophages as target cells of CDs. Then, we studied the cellular responses induced by CDs in an in vitro model of macrophages. We observed that CDs are internalized by these cells (molecular initial event) and induce a series of key events, including loss of lysosomal integrity and mitochondrial disruption (organelle responses), as well as oxidative stress, inflammasome activation, inflammatory cytokine upregulation and macrophage death (cellular responses). All these effects triggering lung inflammation as tissular response may lead to acute lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, 67400 Illkirch, France; (M.W.); (J.F.); (M.C.); (L.L.); (F.P.)
| |
Collapse
|
133
|
Nitrogen, sulfur, phosphorus, and chlorine co-doped carbon nanodots as an “off-on” fluorescent probe for sequential detection of curcumin and europium ion and luxuriant applications. Mikrochim Acta 2021; 188:16. [DOI: 10.1007/s00604-020-04618-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
|
134
|
Near Infrared Light-Actuated PEG Wrapping Carbon Nanodots Loaded Cisplatin for Targeted Therapy of Lung Cancer Therapy. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01769-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
135
|
Liu J, Li R, Yang B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS CENTRAL SCIENCE 2020; 6:2179-2195. [PMID: 33376780 PMCID: PMC7760469 DOI: 10.1021/acscentsci.0c01306] [Citation(s) in RCA: 499] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 05/07/2023]
Abstract
Carbon dots (CDs), as a new type of carbon-based nanomaterial, have attracted broad research interest for years, because of their diverse physicochemical properties and favorable attributes like good biocompatibility, unique optical properties, low cost, ecofriendliness, abundant functional groups (e.g., amino, hydroxyl, carboxyl), high stability, and electron mobility. In this Outlook, we comprehensively summarize the classification of CDs based on the analysis of their formation mechanism, micro-/nanostructure and property features, and describe their synthetic methods and optical properties including strong absorption, photoluminescence, and phosphorescence. Furthermore, the recent significant advances in diverse applications, including optical (sensor, anticounterfeiting), energy (light-emitting diodes, catalysis, photovoltaics, supercapacitors), and promising biomedicine, are systematically highlighted. Finally, we envisage the key issues to be challenged, future research directions, and perspectives to show a full picture of CDs-based materials.
Collapse
Affiliation(s)
- Junjun Liu
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Rui Li
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
136
|
Wang J, Li D, Qiu Y, Liu X, Huang L, Wen H, Hu J. An europium functionalized carbon dot-based fluorescence test paper for visual and quantitative point-of-care testing of anthrax biomarker. Talanta 2020; 220:121377. [DOI: 10.1016/j.talanta.2020.121377] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
|
137
|
Xu A, Wang G, Li Y, Dong H, Yang S, He P, Ding G. Carbon-Based Quantum Dots with Solid-State Photoluminescent: Mechanism, Implementation, and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004621. [PMID: 33145929 DOI: 10.1002/smll.202004621] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Indexed: 05/24/2023]
Abstract
Carbon-based quantum dots (CQDs), including spherical carbon dots and graphene quantum dots, are an emerging class of photoluminescent (PL) materials with unique properties. Great progress has been made in the design and fabrication of high-performance CQDs, however, the challenge of developing solid-state PL CQDs have aroused great interest among researchers. A clear PL mechanism is the basis for the development of high-performance solid-state CQDs for light emission and is also a prerequisite for the realization of multiple practical applications. However, the extremely complex structure of a CQD greatly limits the understanding of the solid-state PL mechanism of CQDs. So far, a variety of models have been proposed to explain the PL of solid-state CQDs, but they have not been unified. This review summarizes the current understanding of the solid-state PL of solid-state CQDs from the perspective of energy band theory and electronic transitions. In addition, the common strategies for realizing solid-state PL in CQDs are also summarized. Furthermore, the applications of CQDs in the fields of light-emitting devices, anti-counterfeiting, fingerprint detection, etc., are proposed. Finally, a brief outlook is given, highlighting current problems, and directions for development of solid-state PL of CQDs.
Collapse
Affiliation(s)
- Anli Xu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Yongqiang Li
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Dong
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siwei Yang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng He
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guqiao Ding
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
138
|
Ganesan M, Nagaraaj P. Quantum dots as nanosensors for detection of toxics: a literature review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4254-4275. [PMID: 32940270 DOI: 10.1039/d0ay01293a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Great advances have been made in sensor-based methods for chemical analysis owing to their high sensitivity, selectivity, less testing time, and minimal usage of chemical reagents. Quantum Dots (QDs) having excellent optical properties have been thoroughly explored for variety of scientific applications wherein light plays an important role. In recent years, there have been an increasing number of publications on the applications of QDs as photoluminescent nanosensors for the detection of chemicals and biomolecules. However, there has been hardly any publication describing the use of QDs in the detection of various toxic chemicals at one place. Hence, a literature survey has been made on the applications of QDs as chemosensors for the detection of gaseous, anionic, phenolic, metallic, drug-overdose, and pesticide poison so as to open a new perspective towards the role of sensors in analytical toxicology. In this review, the QD-based analysis of biospecimens for poison detection in clinical and forensic toxicology laboratories is highlighted.
Collapse
Affiliation(s)
- Muthupandian Ganesan
- Toxicology Division, Regional Forensic Science Laboratory, Forensic Sciences Department, Forensic House, Chennai-4, India.
| | | |
Collapse
|
139
|
Sun M, Han Y, Yuan X, Jing P, Zhang L, Zhao J, Zheng Y. Efficient full-color emitting carbon-dot-based composite phosphors by chemical dispersion. NANOSCALE 2020; 12:15823-15831. [PMID: 32692328 DOI: 10.1039/d0nr02021d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Realizing full-color emission plays a key role in exploring the luminescence mechanisms of carbon dots (CDots) and promoting the applications of CDots in light-emitting diodes (LEDs). Herein, a synthesis strategy for full-color emitting CDots was developed through the solvothermal reaction of citric acid and urea with a constant mass ratio but varying reactant concentrations in solvent. With the reactant concentrations increasing, a dual regulation mechanism including an enhanced nucleation growth process and subsequently increased C[double bond, length as m-dash]O/C[double bond, length as m-dash]N-related surface states should be responsible for the photoluminescence (PL) shift of CDots from blue to red. Relying on the hydrolyzation and condensation processes of 3-aminopropyltrimethoxysilane, a simple and universal method was developed by chemically dispersing the CDots into a cross-linked silica network on the surface of SiO2 nanoparticles to produce efficient full-color emitting SiO2/CDot composite phosphors with considerable PL quantum yields in the range of 30-60%. It was proved that the full-color emitting SiO2/CDot composite phosphors could be flexibly applied in packaging white LEDs, releasing pure white light at the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.33) with a color rendering index (CRI) of 80.4 and a high color-rendering white light coming entirely from CDots with the CIE coordinates of (0.34, 0.36) and a CRI of 97.4, indicating promising application of the full-color emitting SiO2/CDot composite phosphors in the LED field.
Collapse
Affiliation(s)
- Mingye Sun
- School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang 157011, China.
| | | | | | | | | | | | | |
Collapse
|
140
|
Dong Y, Du P, Liu P. Absolutely "off-on" fluorescent CD-based nanotheranostics for tumor intracellular real-time imaging and pH-triggered DOX delivery. J Mater Chem B 2020; 8:8002-8009. [PMID: 32761044 DOI: 10.1039/d0tb01596b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbon dots (CDs) have attracted intense attention in tumor nanotheranostics recently; however, those nanotheranostics exhibited similar fluorescence in both normal and tumor tissues, limiting their practical application. In the present work, absolutely "off-on" fluorescent CD-based nanotheranostics was designed for tumor intracellular real-time imaging and pH-triggered DOX delivery via both static quenching by the crosslinking of benzaldehyde-containing diblock copolymers and dynamic quenching because of the surrounding conjugated DOX molecules. The proposed PPEGMA42-b-PFPMA122-(CDs)-DOX nanotheranostics did not exhibit fluorescence in a normal physiological medium, while strong fluorescence recovery occurred in the tumor intracellular microenvironment due to pH-triggered disintegration, releasing the CDs and DOX. The pH-triggered DOX release and absolute "off-on" fluorescence make the proposed nanotheranostics promising for tumor-specific pH-triggered DOX delivery and imaging.
Collapse
Affiliation(s)
- Yuman Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | | | | |
Collapse
|
141
|
Cacioppo M, Scharl T, Đorđević L, Cadranel A, Arcudi F, Guldi DM, Prato M. Symmetry-Breaking Charge-Transfer Chromophore Interactions Supported by Carbon Nanodots. Angew Chem Int Ed Engl 2020; 59:12779-12784. [PMID: 32282973 PMCID: PMC7496469 DOI: 10.1002/anie.202004638] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/10/2022]
Abstract
Carbon dots (CDs) and their derivatives are useful platforms for studying electron-donor/acceptor interactions and dynamics therein. Herein, we couple amorphous CDs with phthalocyanines (Pcs) that act as electron donors with a large extended π-surface and intense absorption across the visible range of the solar spectrum. Investigations of the intercomponent interactions by means of steady-state and pump-probe transient absorption spectroscopy reveal symmetry-breaking charge transfer/separation and recombination dynamics within pairs of phthalocyanines. The CDs facilitate the electronic interactions between the phthalocyanines. Thus, our findings suggest that CDs could be used to support electronic couplings in multichromophoric systems and further increase their applicability in organic electronics, photonics, and artificial photosynthesis.
Collapse
Affiliation(s)
- Michele Cacioppo
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste, and INSTM, unit of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Tobias Scharl
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander Universität Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Luka Đorđević
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste, and INSTM, unit of TriesteVia Licio Giorgieri 134127TriesteItaly
- Present address: Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Present address: Simpson Querrey InstituteNorthwestern University303 E. SuperiorChicagoIL60611USA
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander Universität Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
- Universidad de Buenos AiresFacultad de Ciencias Exactas y NaturalesDepartamento de Química Inorgánica, Analítica y Química FísicaPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
- CONICET—Universidad de Buenos AiresInstituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE)Pabellón 2, Ciudad UniversitariaC1428EHA BuenosAiresArgentina
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste, and INSTM, unit of TriesteVia Licio Giorgieri 134127TriesteItaly
- Present address: Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander Universität Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste, and INSTM, unit of TriesteVia Licio Giorgieri 134127TriesteItaly
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo de Miramon 18220014Donostia San SebastiánSpain
- Basque Foundation for ScienceIkerbasqueBilbao48013Spain
| |
Collapse
|
142
|
Affiliation(s)
- Cristian Rosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
| |
Collapse
|
143
|
Zulfajri M, Abdelhamid HN, Sudewi S, Dayalan S, Rasool A, Habib A, Huang GG. Plant Part-Derived Carbon Dots for Biosensing. BIOSENSORS 2020; 10:E68. [PMID: 32560540 PMCID: PMC7345696 DOI: 10.3390/bios10060068] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Carbon dots (CDs) are a new cluster of carbon atoms with particle size less than 10 nm. CDs also exhibit interesting fluorescence (FL) properties. CDs are attractive because of their fascinating characteristics including low toxicity, good water solubility, and tremendous biocompatibility. Recently, CDs have been investigated as biosensors for numerous target analytes. Meanwhile, the utilization of cheap and renewable natural resources not only fulfills the pressing requirement for the large-scale synthesis of CDs but also encourages the establishment of sustainable applications. The preparation of CDs using natural resources, i.e., plants, offers several advantages as it is inexpensive, eco-friendly, and highly available in the surroundings. Plant parts are readily available natural resources as the starting materials to produce CDs with different characteristics and attractive applications. Several review articles are now available covering the synthesis, properties, and applications of CDs. However, there is no specific and focused review literature discussing plant part-derived CDs for biosensing applications. To handle this gap, we provide a review of the progress of CDs derived from various plant parts with their synthesis methods, optical properties, and biosensing applications in the last five years. We highlight the synthesis methods and then give an overview of their optical properties and applications as biosensors for various biomolecules and molecules in biological samples. Finally, we discuss some future perspectives for plant part-derived CDs for better material development and applications.
Collapse
Affiliation(s)
- Muhammad Zulfajri
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.S.); (S.D.)
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh 23245, Indonesia
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Sri Sudewi
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.S.); (S.D.)
- Department of Pharmacy, Universitas Sam Ratulangi, Manado 95115, Indonesia
| | - Sandhiya Dayalan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.S.); (S.D.)
| | - Akhtar Rasool
- Department of Environmental Sciences, Osmania University, Hyderabad 500007, Telangana, India;
| | - Ahsan Habib
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.S.); (S.D.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80724, Taiwan
| |
Collapse
|
144
|
Cacioppo M, Scharl T, Đorđević L, Cadranel A, Arcudi F, Guldi DM, Prato M. Symmetry‐Breaking Charge‐Transfer Chromophore Interactions Supported by Carbon Nanodots. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michele Cacioppo
- Department of Chemical and Pharmaceutical Sciences University of Trieste, and INSTM, unit of Trieste Via Licio Giorgieri 1 34127 Trieste Italy
| | - Tobias Scharl
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials Friedrich-Alexander Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Luka Đorđević
- Department of Chemical and Pharmaceutical Sciences University of Trieste, and INSTM, unit of Trieste Via Licio Giorgieri 1 34127 Trieste Italy
- Present address: Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Present address: Simpson Querrey Institute Northwestern University 303 E. Superior Chicago IL 60611 USA
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials Friedrich-Alexander Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Química Inorgánica, Analítica y Química Física Pabellón 2, Ciudad Universitaria C1428EHA Buenos Aires Argentina
- CONICET— Universidad de Buenos Aires Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE) Pabellón 2, Ciudad Universitaria C1428EHA Buenos Aires Argentina
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences University of Trieste, and INSTM, unit of Trieste Via Licio Giorgieri 1 34127 Trieste Italy
- Present address: Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials Friedrich-Alexander Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences University of Trieste, and INSTM, unit of Trieste Via Licio Giorgieri 1 34127 Trieste Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
- Basque Foundation for Science Ikerbasque Bilbao 48013 Spain
| |
Collapse
|
145
|
Liu W, Liang R, Lin Y. Confined synthesis of carbon dots with tunable long-wavelength emission in a 2-dimensional layered double hydroxide matrix. NANOSCALE 2020; 12:7888-7894. [PMID: 32227005 DOI: 10.1039/d0nr00272k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fluorescent carbon dots (CDs) have drawn significant attention due to their variable species and intriguing optical properties; however, spectrally tuning the fluorescence color of CDs, especially in a long-wavelength region, is still a challenge. In this study, CDs were synthesized through the hydrothermal reaction of 2,5-diaminobenzenesulfonate (DBS) and dodecyl sulfate (DS) in the confined interlayer space of layered double hydroxides (LDHs). Particularly, the emission color of the obtained CD/LDH phosphors could be spectrally tuned from greenish-yellow (λem = 537 nm) to red (λem = 597 nm) by simply changing the molar ratio of the intercalated DBS and DS. Through the detailed characterization of different interlayer CDs by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, elemental analysis, and X-ray photoelectron spectroscopy (XPS), a new route of modulating the absorption and emission wavelengths of CDs by regulating the content of graphitic nitrogen during heteroatom doping is presented. In addition, the stabilities of the solid-state luminescence against UV bleaching and temperature variation were improved by the rigid 2-dimensional (2D) LDH matrix, and prospective applications of the proposed CD/LDH phosphors were demonstrated in multicolour displays and in the fabrication of white light-emitting diodes (WLEDs).
Collapse
Affiliation(s)
- Wendi Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | |
Collapse
|
146
|
Liu J, Geng Y, Li D, Yao H, Huo Z, Li Y, Zhang K, Zhu S, Wei H, Xu W, Jiang J, Yang B. Deep Red Emissive Carbonized Polymer Dots with Unprecedented Narrow Full Width at Half Maximum. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906641. [PMID: 32191372 DOI: 10.1002/adma.201906641] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 05/23/2023]
Abstract
Development of high-performance carbon dots (CDs) with emission wavelength longer than 660 nm (deep red emission) is critical in deep-tissue bioimaging, yet it is still a major challenge to obtain CDs with both narrow full width at half maximum (FWHM) and high deep red/near-infrared emission yield. Here, deep red emissive carbonized polymer dots (CPDs) with unprecedented FWHM of 20 nm are synthesized. The purified CPDs in dimethyl sulfoxide (DMSO) solution possess quantum yield (QY) as high as 59% under 413 nm excitation, as well as recorded QY of 31% under 660 nm excitation in the deep red fluorescent window. Detailed characterizations identify that CPDs have unique polymer characteristics, consisting of carbon cores and the shells of polymer chains, and π conjugated system formed with N heterocycles and aromatic rings governs the single photoluminescence (PL) center, which is responsible for high QY in deep red emissive CPDs with narrow FWHM. The CPDs exhibit strong absorption and emission in the deep red light region, low toxicity, and good biocompatibility, making them an efficient probe for both one-photon and two-photon bioimaging. CPDs are rapidly excreted via the kidney system and hepatobiliary system.
Collapse
Affiliation(s)
- Junjun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yijia Geng
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Hua Yao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| | - Zepeng Huo
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haotong Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
147
|
Du H, Li Z, Wang Y, Yang Q, Wu W. Nanomaterial-based Optical Biosensors for the Detection of Foodborne Bacteria. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1740733] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Han Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
148
|
Lai Z, Guo X, Cheng Z, Ruan G, Du F. Green Synthesis of Fluorescent Carbon Dots from Cherry Tomatoes for Highly Effective Detection of Trifluralin Herbicide in Soil Samples. ChemistrySelect 2020. [DOI: 10.1002/slct.201904517] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhan Lai
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Xinyuan Guo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Zhenfang Cheng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
- College of Biological and Environmental Engineering Changsha University Changsha 410022 PR China
| |
Collapse
|
149
|
Zhu Z, Cheng R, Ling L, Li Q, Chen S. Rapid and Large-Scale Production of Multi-Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angew Chem Int Ed Engl 2020; 59:3099-3105. [PMID: 31828854 DOI: 10.1002/anie.201914331] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Indexed: 12/31/2022]
Abstract
The intrinsic low yield of carbon dots (CDs) is a barrier that limits practical application. Now, a magnetic hyperthermia (MHT) method is used to synthesize fluorescent CDs on a large scale (up to 85 g) in one hour (yield ca. 60 %). The reaction process is intensified by MHT since the efficient heating system enhances the energy transfer. CDs with blue, green, and yellow luminescence are synthesized by using carbamide and citrate with three different cations (Zn2+ , Na+ , K+ ), respectively. The CDs exhibit bright fluorescence under UV light and show excellent monodispersity and solubility in water. The alternation of photoluminescence (PL) emissions of these CDs is probably due to the difference in particle sizes and surface state. A bar coating technique is used to construct large-area emissive polymer/CDs films. CDs can insert themselves into the polymer chains by hydrogen bonding and electrostatic interactions. Wound healing efficiency can be enhanced by the Zn-CDs/PCL nanofibrous scaffold.
Collapse
Affiliation(s)
- Zhijie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Rui Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Luting Ling
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
150
|
Rapid and Large‐Scale Production of Multi‐Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|