101
|
Hembach L, Bonin M, Gorzelanny C, Moerschbacher BM. Unique subsite specificity and potential natural function of a chitosan deacetylase from the human pathogen Cryptococcus neoformans. Proc Natl Acad Sci U S A 2020; 117:3551-3559. [PMID: 32015121 PMCID: PMC7035615 DOI: 10.1073/pnas.1915798117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that infects ∼280,000 people every year, causing >180,000 deaths. The human immune system recognizes chitin as one of the major cell-wall components of invading fungi, but C. neoformans can circumvent this immunosurveillance mechanism by instead exposing chitosan, the partly or fully deacetylated form of chitin. The natural production of chitosans involves the sequential action of chitin synthases (CHSs) and chitin deacetylases (CDAs). C. neoformans expresses four putative CDAs, three of which have been confirmed as functional enzymes that act on chitin in the cell wall. The fourth (CnCda4/Fpd1) is a secreted enzyme with exceptional specificity for d-glucosamine at its -1 subsite, thus preferring chitosan over chitin as a substrate. We used site-specific mutagenesis to reduce the subsite specificity of CnCda4 by converting an atypical isoleucine residue in a flexible loop region to the bulkier or charged residues tyrosine, histidine, and glutamic acid. We also investigated the effect of CnCda4 deacetylation products on human peripheral blood-derived macrophages, leading to a model explaining the function of CnCda4 during infection. We propose that CnCda4 is used for the further deacetylation of chitosans already exposed on the C. neoformans cell wall (originally produced by CnChs3 and CnCda1 to 3) or released from the cell wall as elicitors by human chitinases, thus making the fungus less susceptible to host immunosurveillance. The absence of CnCda4 during infection could therefore promote the faster recognition and elimination of this pathogen.
Collapse
Affiliation(s)
- Lea Hembach
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Martin Bonin
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Christian Gorzelanny
- Experimental Dermatology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany;
| |
Collapse
|
102
|
Li Q, Hu F, Zhu B, Ni F, Yao Z. Insights into ulvan lyase: review of source, biochemical characteristics, structure and catalytic mechanism. Crit Rev Biotechnol 2020; 40:432-441. [PMID: 32050804 DOI: 10.1080/07388551.2020.1723486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ulvan, a kind of polyanionic heteropolysaccharide consisting of 3-sulfated rhamnose, uronic acids (iduronic acid and glucuronic acid) and xylose, has been widely applied in food and cosmetic industries. In addition, ulvan can be converted into fermentable monosaccharides through the cascade system of carbohydrate-active enzymes. Ulvan lyases can degrade ulvan into ulvan oligosaccharides, which is the first step in the fully degradation of ulvan. Various ulvan lyases have been cloned and characterized from marine bacteria and grouped into five polysaccharide lyase (PL) families, namely: PL24, PL25, PL28, PL37 and PL40 families. The elucidation of the biochemical characterization, action pattern and catalytic mechanism of ulvan lyase would definitely enhance our understanding of the deep utilization of marine bioresource and marine carbon cycling. In this review, we summarized the recent progresses about the source and biochemical characteristics of ulvan lyase. Additionally, the structural characteristics and catalytic mechanisms have been introduced in detail. This comprehensive information should be helpful regarding the application of ulvan lyases.
Collapse
Affiliation(s)
- Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Fu Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Fang Ni
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
103
|
Biochemical and Molecular Characterizations of a Novel pH- and Temperature-Stable Pectate Lyase from Bacillus amyloliquefaciens S6 for Industrial Application. Mol Biotechnol 2020; 61:681-693. [PMID: 31218650 DOI: 10.1007/s12033-019-00194-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this paper, we report cloning of a pectate lyase gene from Bacillus amyloliquefaciens S6 (pelS6), and biochemical characterization of the recombinant pectate lyase. PelS6 was found to be identical with B. subtilis 168 pel enzyme with 100% amino acid sequence homology. Although these two are genetically very close, they are distinctly different in physiology. pelS6 gene encodes a 421-aa protein with a molecular mass of 65,75 kDa. Enzyme activity increased from 12.8 ± 0.3 to 49.6 ± 0.4 units/mg after cloning. The relative enzyme activity of the recPel S6 ranged from 80% to 100% at pH between 4 and 14. It was quite stable at different temperature values ranging from 15 to 90 °C. The recPEL S6 showed a maximal activity at pH 10 and at 60 °C. 0.5 mM of CaCl2 is the most effective metal ion on the recPEL S6 as demonstrated by its increased relative activity with 473%. recPEL S6 remained stable at - 20 °C for 18 months. In addition recPEL S6 increased juice clarity. This study introduces a novel bacterial pectate lyase enzyme with its characteristic capability of being highly thermostable, thermotolerant, and active over a wide range of pH, meaning that it can work at both acidic and alkaline environments, which are the most preferred properties in the industry.
Collapse
|
104
|
Roy A, Jayaprakash A, Rajeswary T R, Annamalai A, Lakshmi PTV. Genome-wide annotation, comparison and functional genomics of carbohydrate-active enzymes in legumes infecting Fusarium oxysporum formae speciales. Mycology 2020; 11:56-70. [PMID: 32128282 PMCID: PMC7033727 DOI: 10.1080/21501203.2019.1706656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/25/2019] [Indexed: 11/01/2022] Open
Abstract
Fusarium wilt caused by soil borne ascomycetes fungi Fusarium oxysporum which has host-specific forms known as formae speciales (ff. spp.), apparently requires plant cell wall degrading enzymes (PCWDE) for successful invasion. In this study, 12 F. oxysporum ff. spp. were taken for genome-wide annotation and comparative analysis of CAZymes, with an assessment of secretory PCWDE and orthologues identification in the three legumes infecting ff. spp. Further, transcriptomic analysis in two legumes infecting ff. spp. using publically available data was also done. The comparative studies showed Glycoside hydrolase (GH) families to be abundant and Principle Component Analysis (PCA) formed two distinct clusters of ff. spp. based on the CAZymes modules and families. Nearly half of the CAZymes in the legumes infecting ff. spp. coded for signal peptides. The orthologue clusters of secretory CAZymes common in all the three legume infecting ff. spp. mostly belonged to families of AA9, GH28, CE5 and PL1 and the expression analysis revealed the abundant PCWDE were differentially expressed in these legumes infecting ff. spp. Therefore, this study gave an insight into the distribution of CAZymes especially extracellular PCWDE in legumes infecting ff. spp. with further shedding light onto some of the key PCWDE families through differential expression analysis.
Collapse
Affiliation(s)
- Abhijeet Roy
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Aiswarya Jayaprakash
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Raja Rajeswary T
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - A. Annamalai
- PG and Research Department of Botany, Arignar Anna Government Arts College, Villupuram, India
| | - PTV Lakshmi
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
105
|
Wu L, Davies GJ. An Overview of the Structure, Mechanism and Specificity of Human Heparanase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:139-167. [PMID: 32274709 DOI: 10.1007/978-3-030-34521-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The retaining endo-β-D-glucuronidase Heparanase (HPSE) is the primary mammalian enzyme responsible for breakdown of the glycosaminoglycan heparan sulfate (HS). HPSE activity is essential for regulation and turnover of HS in the extracellular matrix, and its activity affects diverse processes such as inflammation, angiogenesis and cell migration. Aberrant heparanase activity is strongly linked to cancer metastasis, due to structural breakdown of extracellular HS networks and concomitant release of sequestered HS-binding growth factors. A full appreciation of HPSE activity in health and disease requires a structural understanding of the enzyme, and how it engages with its HS substrates. This chapter summarizes key findings from the recent crystal structures of human HPSE and its proenzyme. We present details regarding the 3-dimensional protein structure of HPSE and the molecular basis for its interaction with HS substrates of varying sulfation states. We also examine HPSE in a wider context against related β-D-glucuronidases from other species, highlighting the structural features that control exo/endo - glycosidase selectivity in this family of enzymes.
Collapse
Affiliation(s)
- Liang Wu
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK.
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK
| |
Collapse
|
106
|
Grams N, Ospina-Giraldo M. Increased expression of Phytophthora sojae genes encoding membrane-degrading enzymes appears to suggest an early onset of necrotrophy during Glycine max infection. Fungal Genet Biol 2019; 133:103268. [PMID: 31518653 DOI: 10.1016/j.fgb.2019.103268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022]
Abstract
Phytophthora sojae is an oomycete pathogen that causes root, stem, and leaf rot in soybean plants, frequently leading to massive economic losses. Despite its importance, the mechanism by which P. sojae penetrates the host is not yet fully understood. Evidence indicates that P. sojae is not capable of penetrating the plant cell wall via mechanical force, suggesting that alternative factors facilitate breakdown of the host cell wall and membrane. Members of the carbohydrate esterase (CE) family 10 (carboxylesterases, arylesterases, sterol esterases and acetylcholine esterases, collectively known as CE10), are thought to be important for this penetration process. To gain insight into the potential role of CE10-coding genes in P. sojae pathogenesis, the newly revised version of the P. sojae genome was searched for putative CE10-coding genes, and various bioinformatic analyses were conducted using their amino acid and nucleotide sequences. In addition, in planta infection assays were conducted with P. sojae Race 4 and soybean cultivars Williams and Williams 82, and the transcriptional activity of P. sojae CE10-coding genes was evaluated at different time points during infection. Results suggest that these genes are important for both the biotrophic and necrotrophic stages of the P. sojae infection process and provide molecular evidence for stage distinction during infection progression. Furthermore, bioinformatic analyses have identified several conserved gene and protein sequence features that appear to have a significant impact on observed levels of expression during infection. Results agree with previous reports implicating other carbohydrate-active enzymes in P. sojae infection.
Collapse
Affiliation(s)
- Nicholas Grams
- Biology Department, Lafayette College, Easton, PA 18042, United States
| | | |
Collapse
|
107
|
Zhou ZY, Xu X, Zhou Y. [Research progress on carbohydrate active enzymes of human microbiome]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:666-670. [PMID: 31875448 DOI: 10.7518/hxkq.2019.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A massive variety of microorganisms live in and on the human body, especially at oral, skin, vaginal, gastroin-testinal, and respiratory sites. The complicated metabolic activities of microorganisms assist human digestive function and participate in a series of physiological and pathogenetic processes. Carbohydrate-active enzymes (CAZymes) are a series of enzymes that function in degradation, modification, and formation of glycoside bonds. Microbes regulate the physiological and pathogenetic processes of human body by producing various CAZymes to degrade and modify complex carbohydrates and generate signal molecules for further utilization in human cells. Here, we reviewed the mechanisms of complex carbohy-drate metabolism and related microbial CAZymes, especially in digestive tract and oral cavity. We also summarized the rela-tionship between microbial CAZymes and human health, and proposed potential applications.
Collapse
Affiliation(s)
- Zhi-Yan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
108
|
Comparative Genomics and CAZyme Genome Repertoires of Marine Zobellia amurskyensis KMM 3526 T and Zobellia laminariae KMM 3676 T. Mar Drugs 2019; 17:md17120661. [PMID: 31771309 PMCID: PMC6950322 DOI: 10.3390/md17120661] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023] Open
Abstract
We obtained two novel draft genomes of type Zobellia strains with estimated genome sizes of 5.14 Mb for Z. amurskyensis KMM 3526Т and 5.16 Mb for Z. laminariae KMM 3676Т. Comparative genomic analysis has been carried out between obtained and known genomes of Zobellia representatives. The pan-genome of Zobellia genus is composed of 4853 orthologous clusters and the core genome was estimated at 2963 clusters. The genus CAZome was represented by 775 GHs classified into 62 families, 297 GTs of 16 families, 100 PLs of 13 families, 112 CEs of 13 families, 186 CBMs of 18 families and 42 AAs of six families. A closer inspection of the carbohydrate-active enzyme (CAZyme) genomic repertoires revealed members of new putative subfamilies of GH16 and GH117, which can be biotechnologically promising for production of oligosaccharides and rare monomers with different bioactivities. We analyzed AA3s, among them putative FAD-dependent glycoside oxidoreductases (FAD-GOs) being of particular interest as promising biocatalysts for glycoside deglycosylation in food and pharmaceutical industries.
Collapse
|
109
|
Yang YJ, Lin W, Singh RP, Xu Q, Chen Z, Yuan Y, Zou P, Li Y, Zhang C. Genomic, Transcriptomic and Enzymatic Insight into Lignocellulolytic System of a Plant Pathogen Dickeya sp. WS52 to Digest Sweet Pepper and Tomato Stalk. Biomolecules 2019; 9:biom9120753. [PMID: 31756942 PMCID: PMC6995524 DOI: 10.3390/biom9120753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Dickeya sp., a plant pathogen, causing soft rot with strong pectin degradation capacity was taken for the comprehensive analysis of its corresponding biomass degradative system, which has not been analyzed yet. Whole genome sequence analysis of the isolated soft-rotten plant pathogen Dickeya sp. WS52, revealed various coding genes which involved in vegetable stalk degradation-related properties. A total of 122 genes were found to be encoded for putative carbohydrate-active enzymes (CAZy) in Dickeya sp. WS52. The number of pectin degradation-related genes, was higher than that of cellulolytic bacteria as well as other Dickeya spp. strains. The CAZy in Dickeya sp.WS52 contains a complete repertoire of enzymes required for hemicellulose degradation, especially pectinases. In addition, WS52 strain possessed plenty of genes encoding potential ligninolytic relevant enzymes, such as multicopper oxidase, catalase/hydroperoxidase, glutathione S-transferase, and quinone oxidoreductase. Transcriptome analysis revealed that parts of genes encoding lignocellulolytic enzymes were significantly upregulated in the presence of minimal salt medium with vegetable stalks. However, most of the genes were related to lignocellulolytic enzymes, especially pectate lyases and were downregulated due to the slow growth and downregulated secretion systems. The assay of lignocellulolytic enzymes including CMCase and pectinase activities were identified to be more active in vegetable stalk relative to MSM + glucose. However, compared with nutrient LB medium, it needed sufficient nutrient to promote growth and to improve the secretion system. Further identification of enzyme activities of Dickeya sp.WS52 by HPLC confirmed that monosaccharides were produced during degradation of tomato stalk. This identified degradative system is valuable for the application in the lignocellulosic bioenergy industry and animal production.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
| | - Wei Lin
- Tobacco Research Institute of Nanping, Nanping, Fujian 353000, China; (W.L.); (Q.X.); (Z.C.)
| | - Raghvendra Pratap Singh
- Department of Research & Development, Biotechnology, Uttaranchal University, Dehradun 248007, India
- Correspondence: (R.P.S.); (C.Z.)
| | - Qian Xu
- Tobacco Research Institute of Nanping, Nanping, Fujian 353000, China; (W.L.); (Q.X.); (Z.C.)
| | - Zhihou Chen
- Tobacco Research Institute of Nanping, Nanping, Fujian 353000, China; (W.L.); (Q.X.); (Z.C.)
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
| | - Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Y.-J.Y.); (Y.Y.); (P.Z.); (Y.L.)
- Correspondence: (R.P.S.); (C.Z.)
| |
Collapse
|
110
|
Kanungo A, Bag BP. Structural insights into the molecular mechanisms of pectinolytic enzymes. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00027-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
111
|
Structural and biochemical characterisation of a novel alginate lyase from Paenibacillus sp. str. FPU-7. Sci Rep 2019; 9:14870. [PMID: 31619701 PMCID: PMC6796002 DOI: 10.1038/s41598-019-51006-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
A novel alginate lyase, PsAly, with a molecular mass of 33 kDa and whose amino acid sequence shares no significant similarity to other known proteins, was biochemically and structurally characterised from Paenibacillus sp. str. FPU-7. The maximum PsAly activity was obtained at 65 °C, with an optimum pH of pH 7-7.5. The activity was enhanced by divalent cations, such as Mg2+, Mn2+, or Co2+, and inhibited by a metal chelator, ethylenediaminetetraacetic acid. The reaction products indicated that PsAly is an endolytic enzyme with a preference for polymannuronate. Herein, we report a detailed crystal structure of PsAly at a resolution of 0.89 Å, which possesses a β-helix fold that creates a long cleft. The catalytic site was different from that of other polysaccharide lyases. Site-directed mutational analysis of conserved residues predicted Tyr184 and Lys221 as catalytic residues, abstracting from the C5 proton and providing a proton to the glycoside bond, respectively. One cation was found to bind to the bottom of the cleft and neutralise the carboxy group of the substrate, decreasing the pKa of the C5 proton to promote catalysis. Our study provides an insight into the structural basis for the catalysis of alginate lyases and β-helix polysaccharide lyases.
Collapse
|
112
|
Mokshina N, Makshakova O, Nazipova A, Gorshkov O, Gorshkova T. Flax rhamnogalacturonan lyases: phylogeny, differential expression and modeling of protein structure. PHYSIOLOGIA PLANTARUM 2019; 167:173-187. [PMID: 30474196 DOI: 10.1111/ppl.12880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Rhamnogalacturonan lyases (RGLs; EC 4.2.2.23) degrade the rhamnogalacturonan I (RG-I) backbone of pectins present in the plant cell wall. These enzymes belong to polysaccharide lyase family 4, members of which are mainly from plants and plant pathogens. RGLs are investigated, as a rule, as pathogen 'weapons' for plant cell wall degradation and subsequent infection. Despite the presence of genes annotated as RGLs in plant genomes and the presence of substrates for enzyme activity in plant cells, evidence supporting the involvement of this enzyme in certain processes is limited. The differential expression of some RGL genes in flax (Linum usitatissimum L.) tissues, revealed in our previous work, prompted us to carry out a total revision (phylogenetic analysis, analysis of expression and protein structure modeling) of all the sequences of flax predicted as coding for RGLs. Comparison of the expressions of LusRGL in various tissues of flax stem revealed that LusRGLs belong to distinct phylogenetic clades, which correspond to two co-expression groups. One of these groups comprised LusRGL6-A and LusRGL6-B genes and was specifically upregulated in flax fibers during deposition of the tertiary cell wall, which has complex RG-I as a key noncellulosic component. The results of homology modeling and docking demonstrated that the topology of the LusRGL6-A catalytic site allowed binding to the RG-I ligand. These findings lead us to suggest the presence of RGL activity in planta and the involvement of special isoforms of RGLs in the modification of RG-I of the tertiary cell wall in plant fibers.
Collapse
Affiliation(s)
- Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', Kazan, 420111, Russian Federation
| | - Olga Makshakova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', Kazan, 420111, Russian Federation
| | - Alsu Nazipova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', Kazan, 420111, Russian Federation
| | - Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', Kazan, 420111, Russian Federation
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', Kazan, 420111, Russian Federation
| |
Collapse
|
113
|
Kikuchi M, Konno N, Suzuki T, Fujii Y, Kodama Y, Isogai A, Habu N. A bacterial endo-β-1,4-glucuronan lyase, CUL-I from Brevundimonas sp. SH203, belonging to a novel polysaccharide lyase family. Protein Expr Purif 2019; 166:105502. [PMID: 31546007 DOI: 10.1016/j.pep.2019.105502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 11/13/2022]
Abstract
Cellouronate is a (1,4)-β-D-glucuronan prepared by TEMPO-mediated oxidation from regenerated cellulose. We have previously isolated a cellouronate-degrading bacterial strain, Brevundimonas sp. SH203, that produces a cellouronate lyase (β-1,4-glucuronan lyase, CUL-I). In this study, the gene encoding CUL-I was cloned, and the recombinant enzyme was heterologously expressed in Escherichia coli. The predicted CUL-I protein is composed of 426 amino acid residues and includes a putative 21-amino acid signal peptide. The recombinant CUL-I specifically depolymerized β-1,4-glycoside linkages of cellouronate, and its mode of action was endo-type, like the native CUL-I. Sequence analysis showed CUL-I has no similarity to previously known polysaccharide lyases (PLs), indicating that CUL-I should be classified into a novel PL family.
Collapse
Affiliation(s)
- Masako Kikuchi
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Naotake Konno
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Yuta Fujii
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Akira Isogai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoto Habu
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan.
| |
Collapse
|
114
|
Stender EGP, Dybdahl Andersen C, Fredslund F, Holck J, Solberg A, Teze D, Peters GHJ, Christensen BE, Aachmann FL, Welner DH, Svensson B. Structural and functional aspects of mannuronic acid-specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. J Biol Chem 2019; 294:17915-17930. [PMID: 31530640 PMCID: PMC6879350 DOI: 10.1074/jbc.ra119.010206] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/16/2019] [Indexed: 01/28/2023] Open
Abstract
Alginate is a linear polysaccharide from brown algae consisting of 1,4-linked β-d-mannuronic acid (M) and α-l-guluronic acid (G) arranged in M, G, and mixed MG blocks. Alginate was assumed to be indigestible in humans, but bacteria isolated from fecal samples can utilize alginate. Moreover, genomes of some human gut microbiome-associated bacteria encode putative alginate-degrading enzymes. Here, we genome-mined a polysaccharide lyase family 6 alginate lyase from the gut bacterium Bacteroides cellulosilyticus (BcelPL6). The structure of recombinant BcelPL6 was solved by X-ray crystallography to 1.3 Å resolution, revealing a single-domain, monomeric parallel β-helix containing a 10-step asparagine ladder characteristic of alginate-converting parallel β-helix enzymes. Substitutions of the conserved catalytic site residues Lys-249, Arg-270, and His-271 resulted in activity loss. However, imidazole restored the activity of BcelPL6-H271N to 2.5% that of the native enzyme. Molecular docking oriented tetra-mannuronic acid for syn attack correlated with M specificity. Using biochemical analyses, we found that BcelPL6 initially releases unsaturated oligosaccharides of a degree of polymerization of 2-7 from alginate and polyM, which were further degraded to di- and trisaccharides. Unlike other PL6 members, BcelPL6 had low activity on polyMG and none on polyG. Surprisingly, polyG increased BcelPL6 activity on alginate 7-fold. LC-electrospray ionization-MS quantification of products and lack of activity on NaBH4-reduced octa-mannuronic acid indicated that BcelPL6 is an endolyase that further degrades the oligosaccharide products with an intact reducing end. We anticipate that our results advance predictions of the specificity and mode of action of PL6 enzymes.
Collapse
Affiliation(s)
- Emil G P Stender
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Dybdahl Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Folmer Fredslund
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Amalie Solberg
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - David Teze
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bjørn E Christensen
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Finn L Aachmann
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Ditte H Welner
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
115
|
Viborg AH, Terrapon N, Lombard V, Michel G, Czjzek M, Henrissat B, Brumer H. A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). J Biol Chem 2019; 294:15973-15986. [PMID: 31501245 PMCID: PMC6827312 DOI: 10.1074/jbc.ra119.010619] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Glycoside hydrolase family (GH) 16 comprises a large and taxonomically diverse family of glycosidases and transglycosidases that adopt a common β-jelly-roll fold and are active on a range of terrestrial and marine polysaccharides. Presently, broadly insightful sequence–function correlations in GH16 are hindered by a lack of a systematic subfamily structure. To fill this gap, we have used a highly scalable protein sequence similarity network analysis to delineate nearly 23,000 GH16 sequences into 23 robust subfamilies, which are strongly supported by hidden Markov model and maximum likelihood molecular phylogenetic analyses. Subsequent evaluation of over 40 experimental three-dimensional structures has highlighted key tertiary structural differences, predominantly manifested in active-site loops, that dictate substrate specificity across the GH16 evolutionary landscape. As for other large GH families (i.e. GH5, GH13, and GH43), this new subfamily classification provides a roadmap for functional glycogenomics that will guide future bioinformatics and experimental structure–function analyses. The GH16 subfamily classification is publicly available in the CAZy database. The sequence similarity network workflow used here, SSNpipe, is freely available from GitHub.
Collapse
Affiliation(s)
- Alexander Holm Viborg
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Gurvan Michel
- Sorbonne Universités, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Mirjam Czjzek
- Sorbonne Universités, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France .,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada .,Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
116
|
Jiang Z, Guo Y, Wang X, Li H, Ni H, Li L, Xiao A, Zhu Y. Molecular cloning and characterization of AlgL17, a new exo-oligoalginate lyase from Microbulbifer sp. ALW1. Protein Expr Purif 2019; 161:17-27. [DOI: 10.1016/j.pep.2019.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
|
117
|
Abstract
Glycosaminoglycans (GAGs) and their low-molecular weight derivates have received considerable interest in terms of their potential clinical applications, and display a wide variety of pharmacological and pharmacokinetic properties. Structurally distinct GAG chains can be prepared by enzymatic depolymerization. A variety of bacterial chondroitin sulfate (CS) lyases have been identified, and have been widely used as catalysts in this process. Here, we identified a putative chondroitin AC exolyase gene, AschnAC, from an Arthrobacter sp. strain found in a CS manufacturing workshop. We expressed the enzyme, AsChnAC, recombinantly in Escherichia coli, then purified and characterized it in vitro. The enzyme indeed displayed exolytic cleavage activity toward HA and various CSs. Removing the putative N-terminal secretion signal peptide of AsChnAC improved its expression level in E. coli while maintaining chondroitin AC exolyase activity. This novel catalyst exhibited its optimal activity in the absence of added metal ions. AsChnAC has potential applications in preparation of low-molecular weight GAGs, making it an attractive catalyst for further investigation.
Collapse
|
118
|
Cui J, Lian Y, Zhao C, Du H, Han Y, Gao W, Xiao H, Zheng J. Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota. Compr Rev Food Sci Food Saf 2019; 18:1514-1532. [DOI: 10.1111/1541-4337.12489] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jiefen Cui
- Inst. of Food Science and TechnologyChinese Academy of Agricultural Sciences Beijing 100193 China
| | - Yunhe Lian
- Research and Development Dept.Chenguang Biotech Group Co., Ltd. Hebei 057250 China
| | - Chengying Zhao
- Inst. of Food Science and TechnologyChinese Academy of Agricultural Sciences Beijing 100193 China
| | - Hengjun Du
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Yanhui Han
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Wei Gao
- Research and Development Dept.Chenguang Biotech Group Co., Ltd. Hebei 057250 China
| | - Hang Xiao
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Jinkai Zheng
- Inst. of Food Science and TechnologyChinese Academy of Agricultural Sciences Beijing 100193 China
| |
Collapse
|
119
|
Kumar V, Hainaut M, Delhomme N, Mannapperuma C, Immerzeel P, Street NR, Henrissat B, Mellerowicz EJ. Poplar carbohydrate-active enzymes: whole-genome annotation and functional analyses based on RNA expression data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:589-609. [PMID: 31111606 PMCID: PMC6852159 DOI: 10.1111/tpj.14417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 05/20/2023]
Abstract
Carbohydrate-active enzymes (CAZymes) catalyze the formation and modification of glycoproteins, glycolipids, starch, secondary metabolites and cell wall biopolymers. They are key enzymes for the biosynthesis of food and renewable biomass. Woody biomass is particularly important for long-term carbon storage and as an abundant renewable natural resource for many industrial applications. This study presents a re-annotation of CAZyme genes in the current Populus trichocarpa genome assembly and in silico functional characterization, based on high-resolution RNA-Seq data sets. Altogether, 1914 CAZyme and expansin genes were annotated in 101 families. About 1797 of these genes were found expressed in at least one Populus organ. We identified genes involved in the biosynthesis of different cell wall polymers and their paralogs. Whereas similar families exist in poplar and Arabidopsis thaliana (with the exception of CBM13 found only in poplar), a few families had significantly different copy numbers between the two species. To identify the transcriptional coordination and functional relatedness within the CAZymes and other proteins, we performed co-expression network analysis of CAZymes in wood-forming tissues using the AspWood database (http://aspwood.popgenie.org/aspwood-v3.0/) for Populus tremula. This provided an overview of the transcriptional changes in CAZymes during the transition from primary to secondary wall formation, and the clustering of transcripts into potential regulons. Candidate enzymes involved in the biosynthesis of polysaccharides were identified along with many tissue-specific uncharacterized genes and transcription factors. These collections offer a rich source of targets for the modification of secondary cell wall biosynthesis and other developmental processes in woody plants.
Collapse
Affiliation(s)
- Vikash Kumar
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Aix‐Marseille UniversityMarseilleFrance
- INRAUSC 1408 AFMBMarseilleFrance
| | - Nicolas Delhomme
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| | | | - Peter Immerzeel
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
- Chemical EngineeringKarlstad UniversityKarlstad65188Sweden
| | - Nathaniel R. Street
- Umeå Plant Science CenterPlant Physiology DepartmentUmeå UniversityUmeåSweden
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Aix‐Marseille UniversityMarseilleFrance
- INRAUSC 1408 AFMBMarseilleFrance
| | - Ewa J. Mellerowicz
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| |
Collapse
|
120
|
Lam MQ, Oates NC, Thevarajoo S, Tokiman L, Goh KM, McQueen-Mason SJ, Bruce NC, Chong CS. Genomic analysis of a lignocellulose degrading strain from the underexplored genus Meridianimaribacter. Genomics 2019; 112:952-960. [PMID: 31201854 DOI: 10.1016/j.ygeno.2019.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/13/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
The genus Meridianimaribacter is one of the least-studied genera within Cytophaga-Flavobacteria. To date, no genomic analysis of Meridianimaribacter has been reported. In this study, Meridianimaribacter sp. strain CL38, a lignocellulose degrading halophile was isolated from mangrove soil. The genome of strain CL38 was sequenced and analyzed. The assembled genome contains 17 contigs with 3.33 Mbp, a GC content of 33.13% and a total of 2982 genes predicted. Lignocellulose degrading enzymes such as cellulases (GH3, 5, 9, 16, 74 and 144), xylanases (GH43 and CE4) and mannanases (GH5, 26, 27 and 130) are encoded in the genome. Furthermore, strain CL38 demonstrated its ability to decompose empty fruit bunch, a lignocellulosic waste residue arising from palm oil industry. The genome information coupled with experimental studies confirmed the ability of strain CL38 to degrade lignocellulosic biomass. Therefore, Meridianimaribacter sp. strain CL38, with its halotolerance, could be useful for seawater based lignocellulosic biorefining.
Collapse
Affiliation(s)
- Ming Quan Lam
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nicola C Oates
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, United Kingdom
| | - Suganthi Thevarajoo
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Lili Tokiman
- Johor National Parks Corporation, Kota Iskandar, 79575 Iskandar Puteri, Johor, Malaysia
| | - Kian Mau Goh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, United Kingdom
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, United Kingdom.
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
121
|
Balasubramaniam K, Sharma K, Goyal A. Structure and dynamics analysis of a new member heparinase II/III of family 12 polysaccharide lyase from Pseudopedobacter saltans by computational modeling and small-angle X-ray scattering. J Biomol Struct Dyn 2019; 38:2007-2020. [DOI: 10.1080/07391102.2019.1622453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Karthika Balasubramaniam
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
122
|
Lapébie P, Lombard V, Drula E, Terrapon N, Henrissat B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat Commun 2019; 10:2043. [PMID: 31053724 PMCID: PMC6499787 DOI: 10.1038/s41467-019-10068-5] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/18/2019] [Indexed: 01/21/2023] Open
Abstract
Unlike proteins, glycan chains are not directly encoded by DNA, but by the specificity of the enzymes that assemble them. Theoretical calculations have proposed an astronomical number of possible isomers (> 1012 hexasaccharides) but the actual diversity of glycan structures in nature is not known. Bacteria of the Bacteroidetes phylum are considered primary degraders of polysaccharides and they are found in all ecosystems investigated. In Bacteroidetes genomes, carbohydrate-degrading enzymes (CAZymes) are arranged in gene clusters termed polysaccharide utilization loci (PULs). The depolymerization of a given complex glycan by Bacteroidetes PULs requires bespoke enzymes; conversely, the enzyme composition in PULs can provide information on the structure of the targeted glycans. Here we group the 13,537 PULs encoded by 964 Bacteroidetes genomes according to their CAZyme composition. We find that collectively Bacteroidetes have elaborated a few thousand enzyme combinations for glycan breakdown, suggesting a global estimate of diversity of glycan structures much smaller than the theoretical one. Bacteroidetes genomes contain polysaccharide utilization loci (PULs), each of which encodes enzymes for the breakdown of one particular glycan. By analyzing the enzyme composition of 13,537 PULs, the authors suggest that the natural glycan diversity is orders of magnitude lower than previously proposed.
Collapse
Affiliation(s)
- Pascal Lapébie
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France. .,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
123
|
Stender EG, Birch J, Kjeldsen C, Nielsen LD, Duus JØ, Kragelund BB, Svensson B. Alginate Trisaccharide Binding Sites on the Surface of β-Lactoglobulin Identified by NMR Spectroscopy: Implications for Molecular Network Formation. ACS OMEGA 2019; 4:6165-6174. [PMID: 31459761 PMCID: PMC6647953 DOI: 10.1021/acsomega.8b03532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/21/2019] [Indexed: 05/08/2023]
Abstract
β-lactoglobulin (BLG) is a promiscuous protein in terms of ligand interactions, having several binding sites reported for hydrophobic biomolecules such as fatty acids, lipids, and vitamins as well as detergents. BLG also interacts with neutral and anionic oligo- and polysaccharides for which the binding sites remain to be identified. The multivalency offered by these carbohydrate ligands is expected to facilitate coacervation, an electrostatically driven liquid-liquid phase separation. Using heteronuclear single quantum coherence NMR spectroscopy and monitoring chemical shift perturbations, we observed specific binding sites of modest affinity for alginate oligosaccharides (AOSs) prepared by alginate lyase degradation. Two different AOS binding sites (site 1 and site 2) centered around K75 and K101 were identified for monomeric BLG isoform A (BLGA) at pH 2.65. In contrast, only site 1 around K75 was observed for dimeric BLGA at pH 4.0. The data suggest a pH-dependent mechanism whereby both the BLGA dimer-monomer equilibrium and electrostatic interactions are exploited. This variability allows for control of coacervation and particle formation of BLGA/alginate mixtures via directed polysaccharide bridging of AOS binding sites and has implication for molecular network formation. The results are valuable for design of polyelectrolyte-based BLG particles and coacervates for carrying nutraceuticals and modulating viscosity in dairy products by use of alginates.
Collapse
Affiliation(s)
- Emil G.
P. Stender
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building
224, DK-2800 Kgs. Lyngby, Denmark
| | - Johnny Birch
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building
224, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Kjeldsen
- Department
of Chemistry, Technical University of Denmark, Kemitorvet, Building
207, DK-2800 Kgs. Lyngby, Denmark
| | - Lau D. Nielsen
- Structural
Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein
Science, Department of Biology, University
of Copenhagen, Ole Maaløes
Vej 5, DK-2200 Copenhagen
N, Denmark
| | - Jens Ø. Duus
- Department
of Chemistry, Technical University of Denmark, Kemitorvet, Building
207, DK-2800 Kgs. Lyngby, Denmark
| | - Birthe B. Kragelund
- Structural
Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein
Science, Department of Biology, University
of Copenhagen, Ole Maaløes
Vej 5, DK-2200 Copenhagen
N, Denmark
- E-mail: . phone: +45 3532 2081 (B.S.)
| | - Birte Svensson
- Enzyme
and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building
224, DK-2800 Kgs. Lyngby, Denmark
- E-mail: . phone: +45 4525 2740 (B.B.K.)
| |
Collapse
|
124
|
Chondroitin Sulfate-Degrading Enzymes as Tools for the Development of New Pharmaceuticals. Catalysts 2019. [DOI: 10.3390/catal9040322] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chondroitin sulfates are linear anionic sulfated polysaccharides found in biological tissues, mainly within the extracellular matrix, which are degraded and altered by specific lyases depending on specific time points. These polysaccharides have recently acquired relevance in the pharmaceutical industry due to their interesting therapeutic applications. As a consequence, chondroitin sulfate (CS) lyases have been widely investigated as tools for the development of new pharmaceuticals based on these polysaccharides. This review focuses on the major breakthrough represented by chondroitin sulfate-degrading enzymes and their structures and mechanisms of function in addition to their major applications.
Collapse
|
125
|
Vuoristo KS, Fredriksen L, Oftebro M, Arntzen MØ, Aarstad OA, Stokke R, Steen IH, Hansen LD, Schüller RB, Aachmann FL, Horn SJ, Eijsink VGH. Production, Characterization, and Application of an Alginate Lyase, AMOR_PL7A, from Hot Vents in the Arctic Mid-Ocean Ridge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2936-2945. [PMID: 30781951 DOI: 10.1021/acs.jafc.8b07190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Enzymatic depolymerization of seaweed polysaccharides is gaining interest for the production of functional oligosaccharides and fermentable sugars. We describe a thermostable alginate lyase belonging to Polysaccharide Lyase family 7 (PL7), which can be used to degrade brown seaweed, Saccharina latissima, at conditions also suitable for a commercial cellulase cocktail (Cellic CTec2). This enzyme, AMOR_PL7A, is a β-d-mannuronate specific (EC 4.2.2.3) endoacting alginate lyase, which degrades alginate and poly mannuronate within a broad range of pH, temperature and salinity. At 65 °C and pH 6.0, its Km and kcat values for sodium alginate are 0.51 ± 0.09 mg/mL and 7.8 ± 0.3 s-1 respectively. Degradation of seaweed with blends of Cellic CTec2 and AMOR_PL7A at 55 °C in seawater showed that the lyase efficiently reduces viscosity and increases glucose solublization. Thus, AMOR_PL7A may be useful in development of efficient protocols for enzymatic seaweed processing.
Collapse
Affiliation(s)
| | - Lasse Fredriksen
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Aas , Norway
| | - Maren Oftebro
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Aas , Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Aas , Norway
| | - Olav A Aarstad
- Department of Biotechnology and Food Science , NTNU Norwegian University of Science and Technology , Sem Sælands vei 6/8 , N-7491 Trondheim , Norway
| | - Runar Stokke
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research , University of Bergen , N-5020 Bergen , Norway
| | - Ida H Steen
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research , University of Bergen , N-5020 Bergen , Norway
| | - Line Degn Hansen
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Aas , Norway
| | - Reidar B Schüller
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Aas , Norway
| | - Finn L Aachmann
- Department of Biotechnology and Food Science , NTNU Norwegian University of Science and Technology , Sem Sælands vei 6/8 , N-7491 Trondheim , Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, N-1432 Aas , Norway
| | | |
Collapse
|
126
|
Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space. Proc Natl Acad Sci U S A 2019; 116:6063-6068. [PMID: 30850540 PMCID: PMC6442616 DOI: 10.1073/pnas.1815791116] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Over the last two decades, the number of gene/protein sequences gleaned from sequencing projects of individual genomes and environmental DNA has grown exponentially. Only a tiny fraction of these predicted proteins has been experimentally characterized, and the function of most proteins remains hypothetical or only predicted based on sequence similarity. Despite the development of postgenomic methods, such as transcriptomics, proteomics, and metabolomics, the assignment of function to protein sequences remains one of the main challenges in modern biology. As in all classes of proteins, the growing number of predicted carbohydrate-active enzymes (CAZymes) has not been accompanied by a systematic and accurate attribution of function. Taking advantage of the CAZy database, which groups CAZymes into families and subfamilies based on amino acid similarities, we recombinantly produced 564 proteins selected from subfamilies without any biochemically characterized representatives, from distant relatives of characterized enzymes and from nonclassified proteins that show little similarity with known CAZymes. Screening these proteins for activity on a wide collection of carbohydrate substrates led to the discovery of 13 CAZyme families (two of which were also discovered by others during the course of our work), revealed three previously unknown substrate specificities, and assigned a function to 25 subfamilies.
Collapse
|
127
|
Jensen PF, Kadziola A, Comamala G, Segura DR, Anderson L, Poulsen JCN, Rasmussen KK, Agarwal S, Sainathan RK, Monrad RN, Svendsen A, Nielsen JE, Lo Leggio L, Rand KD. Structure and Dynamics of a Promiscuous Xanthan Lyase from Paenibacillus nanensis and the Design of Variants with Increased Stability and Activity. Cell Chem Biol 2019; 26:191-202.e6. [DOI: 10.1016/j.chembiol.2018.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
|
128
|
Zhu B, Ni F, Sun Y, Ning L, Yao Z. Elucidation of degrading pattern and substrate recognition of a novel bifunctional alginate lyase from Flammeovirga sp. NJ-04 and its use for preparation alginate oligosaccharides. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:13. [PMID: 30647773 PMCID: PMC6327446 DOI: 10.1186/s13068-019-1352-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/02/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND The alginate oligosaccharides have been widely used in agriculture, medicine, and food industries due to their versatile physiological functions such as antioxidant, anticoagulant, and antineoplastic activities. The bifunctional alginate lyases can degrade the alginate polysaccharide more efficiently into alginate oligosaccharides. Therefore, it is crucial to discover new bifunctional alginate lyase for alginate oligosaccharide production. RESULTS Herein, a novel bifunctional alginate lyase FsAlgB was cloned and identified from deep-sea bacterium Flammeovirga sp. NJ-04, which exhibited broad substrate specificity and the highest activity (1760.8 U/mg) at pH 8.0 and 40 °C. Furthermore, the K m values of FsAlgB towards polyG (0.69 mM) and polyMG (0.92 mM) were lower than that towards sodium alginate (1.28 mM) and polyM (2.06 mM). Recombinant FsAlgB was further characterized as an endolytic alginate lyase, and it can recognize the tetrasaccharide as the minimal substrate and cleave the glycosidic bonds between the subsites of - 3 and + 1. CONCLUSION This study provided extended insights into the substrate recognition and degrading pattern of alginate lyases with broad substrate specificity.
Collapse
Affiliation(s)
- Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd, Nanjing, 211816 People’s Republic of China
| | - Fang Ni
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd, Nanjing, 211816 People’s Republic of China
| | - Yun Sun
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd, Nanjing, 211816 People’s Republic of China
| | - Limin Ning
- College of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd, Nanjing, 211816 People’s Republic of China
| |
Collapse
|
129
|
Xu W, Ni D, Zhang W, Guang C, Zhang T, Mu W. Recent advances in Levansucrase and Inulosucrase: evolution, characteristics, and application. Crit Rev Food Sci Nutr 2018; 59:3630-3647. [DOI: 10.1080/10408398.2018.1506421] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
130
|
Konasani VR, Jin C, Karlsson NG, Albers E. Ulvan lyase from Formosa agariphila and its applicability in depolymerisation of ulvan extracted from three different Ulva species. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
131
|
Yang M, Yu Y, Yang S, Shi X, Mou H, Li L. Expression and Characterization of a New PolyG-Specific Alginate Lyase From Marine Bacterium Microbulbifer sp. Q7. Front Microbiol 2018; 9:2894. [PMID: 30555439 PMCID: PMC6281962 DOI: 10.3389/fmicb.2018.02894] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/12/2018] [Indexed: 01/12/2023] Open
Abstract
Alginate lyases play an important role in preparation of alginate oligosaccharides. Although a large number of alginate lyases have been characterized, reports on directional preparation of alginate oligosaccharides by alginate lyases are still rather less. Here, a gene alyM encoding a new alginate lyase AlyM was cloned from Microbulbifer sp. Q7 and expressed in Escherichia coli. AlyM exhibited the maximumactivity at pH 7.0 and 55°C and showed special preference to poly-guluronic acid (polyG). Glycine promoted the extracellular secretion of AlyM by 3.6 times. PBS and glycerol significantly improved the thermal stability of AlyM, the enzyme activity remained 75 and 78% after heat-treatment at 45°C for 2 h, respectively. ESI-MS analysis suggested that AlyM mainly produced oligosaccharides with degrees of polymerization (DP) of 2-5. The results of 1H-NMR showed that guluronic acid (G) occupied the reducing end of the end products, indicating that AlyM preferred to degrade the glycosidic bond at the G-X linkage. HPLC analysis showed that the hydrolysis products with a lower degree of polymerization contained more G. Therefore, AlyM shows good potential to produce alginate oligosaccharides with specific M/G ratio and molecular weights.
Collapse
Affiliation(s)
- Min Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuan Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Suxiao Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaohui Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Li Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
132
|
Atanasova L, Dubey M, Grujić M, Gudmundsson M, Lorenz C, Sandgren M, Kubicek CP, Jensen DF, Karlsson M. Evolution and functional characterization of pectate lyase PEL12, a member of a highly expanded Clonostachys rosea polysaccharide lyase 1 family. BMC Microbiol 2018; 18:178. [PMID: 30404596 PMCID: PMC6223089 DOI: 10.1186/s12866-018-1310-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background Pectin is one of the major and most complex plant cell wall components that needs to be overcome by microorganisms as part of their strategies for plant invasion or nutrition. Microbial pectinolytic enzymes therefore play a significant role for plant-associated microorganisms and for the decomposition and recycling of plant organic matter. Recently, comparative studies revealed significant gene copy number expansion of the polysaccharide lyase 1 (PL1) pectin/pectate lyase gene family in the Clonostachys rosea genome, while only low numbers were found in Trichoderma species. Both of these fungal genera are widely known for their ability to parasitize and kill other fungi (mycoparasitism) and certain species are thus used for biocontrol of plant pathogenic fungi. Results In order to understand the role of the high number of pectin degrading enzymes in Clonostachys, we studied diversity and evolution of the PL1 gene family in C. rosea compared with other Sordariomycetes with varying nutritional life styles. Out of 17 members of C. rosea PL1, we could only detect two to be secreted at acidic pH. One of them, the pectate lyase pel12 gene was found to be strongly induced by pectin and, to a lower degree, by polygalacturonic acid. Heterologous expression of the PEL12 in a PL1-free background of T. reesei revealed direct enzymatic involvement of this protein in utilization of pectin at pH 5 without a requirement for Ca2+. The mutants showed increased utilization of pectin compounds, but did not increase biocontrol ability in detached leaf assay against the plant pathogen Botrytis cinerea compared to the wild type. Conclusions In this study, we aimed to gain insight into diversity and evolution of the PL1 gene family in C. rosea and other Sordariomycete species in relation to their nutritional modes. We show that C. rosea PL1 expansion does not correlate with its mycoparasitic nutritional mode and resembles those of strong plant pathogenic fungi. We further investigated regulation, specificity and function of the C. rosea PEL12 and show that this enzyme is directly involved in degradation of pectin and pectin-related compounds, but not in C. rosea biocontrol. Electronic supplementary material The online version of this article (10.1186/s12866-018-1310-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lea Atanasova
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden. .,Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria. .,Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria.
| | - Mukesh Dubey
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Marica Grujić
- Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria
| | - Mikael Gudmundsson
- Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007, Uppsala, Sweden
| | - Cindy Lorenz
- Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Mats Sandgren
- Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007, Uppsala, Sweden
| | - Christian P Kubicek
- Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria.,, Present address: Steinschötelgasse 7, 1100, Vienna, Austria
| | - Dan Funck Jensen
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Magnus Karlsson
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| |
Collapse
|
133
|
Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R, Šantek B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 2018; 18:768-778. [PMID: 32624871 PMCID: PMC6999254 DOI: 10.1002/elsc.201800039] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 11/10/2022] Open
Abstract
This review aims to present current knowledge of the fungi involved in lignocellulose degradation with an overview of the various classes of lignocellulose-acting enzymes engaged in the pretreatment and saccharification step. Fungi have numerous applications and biotechnological potential for various industries including chemicals, fuel, pulp, and paper. The capability of fungi to degrade lignocellulose containing raw materials is due to their highly effective enzymatic system. Along with the hydrolytic enzymes consisting of cellulases and hemicellulases, responsible for polysaccharide degradation, they have a unique nonenzymatic oxidative system which together with ligninolytic enzymes is responsible for lignin modification and degradation. An overview of the enzymes classification is given by the Carbohydrate-Active enZymes (CAZy) database as the major database for the identification of the lignocellulolytic enzymes by their amino acid sequence similarity. Finally, the recently discovered novel class of recalcitrant polysaccharide degraders-lytic polysaccharide monooxygenases (LPMOs) are presented, because of these enzymes importance in the cellulose degradation process.
Collapse
Affiliation(s)
- Martina Andlar
- Department of Biochemical EngineeringFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| | - Tonči Rezić
- Department of Biochemical EngineeringFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| | - Nenad Marđetko
- Department of Biochemical EngineeringFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| | - Daniel Kracher
- Department of Food Sciences and TechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Roland Ludwig
- Department of Food Sciences and TechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Božidar Šantek
- Department of Biochemical EngineeringFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| |
Collapse
|
134
|
Tomazini A, Lal S, Munir R, Stott M, Henrissat B, Polikarpov I, Sparling R, Levin DB. Analysis of carbohydrate-active enzymes in Thermogemmatispora sp. strain T81 reveals carbohydrate degradation ability. Can J Microbiol 2018; 64:992-1003. [PMID: 30338698 DOI: 10.1139/cjm-2018-0336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phylum Chloroflexi is phylogenetically diverse and is a deeply branching lineage of bacteria that express a broad spectrum of physiological and metabolic capabilities. Members of the order Ktedonobacteriales, including the families Ktedonobacteriaceae, Thermosporotrichaceae, and Thermogemmatisporaceae, all have flexible aerobic metabolisms capable of utilizing a wide range of carbohydrates. A number of species within these families are considered cellulolytic and are capable of using cellulose as a sole carbon and energy source. In contrast, Ktedonobacter racemifer, the type strain of the order, does not appear to possess this cellulolytic phenotype. In this study, we confirmed the ability of Thermogemmatispora sp. strain T81 to hydrolyze cellulose, determined the whole-genome sequence of Thermogemmatispora sp. T81, and using comparative bioinformatics analyses, identified genes encoding putative carbohydrate-active enzymes (CAZymes) in the Thermogemmatispora sp. T81, Thermogemmatispora onikobensis, and Ktedonobacter racemifer genomes. Analyses of the Thermogemmatispora sp. T81 genome identified 64 CAZyme gene sequences belonging to 57 glycoside hydrolase families. The genome of Thermogemmatispora sp. T81 encodes 19 genes for putative extracellular CAZymes, similar to the number of putative extracellular CAZymes identified in T. onikobensis (17) and K. racemifer (17), despite K. racemifer not possessing a cellulolytic phenotype. These results suggest that these members of the order Ktedonobacteriales may use a broader range of carbohydrate polymers than currently described.
Collapse
Affiliation(s)
- Atilio Tomazini
- a São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil
| | - Sadhana Lal
- b Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Riffat Munir
- b Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Matthew Stott
- c School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Bernard Henrissat
- d Architecture et fonction des macromolécules biologiques (AFMB), CNRS-INRA, Aix-Marseille Université, Marseille, France USC1408
| | - Igor Polikarpov
- a São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil
| | - Richard Sparling
- e Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David B Levin
- b Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
135
|
Luis AS, Martens EC. Interrogating gut bacterial genomes for discovery of novel carbohydrate degrading enzymes. Curr Opin Chem Biol 2018; 47:126-133. [PMID: 30326425 DOI: 10.1016/j.cbpa.2018.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 01/07/2023]
Abstract
Individual human gut bacteria often encode hundreds of enzymes for degrading different polysaccharides. Identification of co-localized and co-regulated genes in these bacteria has been a successful approach to identify enzymes that participate in full or partial saccharification of complex carbohydrates, often unmasking novel catalytic activities. Here, we review recent studies that have led to the discovery of new activities from gut bacteria and summarize a general scheme for identifying gut bacteria with novel catalytic abilities, locating the enzymes involved and investigating their activities in detail. The strength of this approach is amplified by the availability of abundant genomic and metagenomic data for the human gut microbiome, which facilitates comparative approaches to mine existing data for new or orthologous enzymes.
Collapse
Affiliation(s)
- Ana S Luis
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric C Martens
- University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
136
|
Pellock SJ, Walton WG, Biernat KA, Torres-Rivera D, Creekmore BC, Xu Y, Liu J, Tripathy A, Stewart LJ, Redinbo MR. Three structurally and functionally distinct β-glucuronidases from the human gut microbe Bacteroides uniformis. J Biol Chem 2018; 293:18559-18573. [PMID: 30301767 DOI: 10.1074/jbc.ra118.005414] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
The glycoside hydrolases encoded by the human gut microbiome play an integral role in processing a variety of exogenous and endogenous glycoconjugates. Here we present three structurally and functionally distinct β-glucuronidase (GUS) glycoside hydrolases from a single human gut commensal microbe, Bacteroides uniformis We show using nine crystal structures, biochemical, and biophysical data that whereas these three proteins share similar overall folds, they exhibit different structural features that create three structurally and functionally unique enzyme active sites. Notably, quaternary structure plays an important role in creating distinct active site features that are hard to predict via structural modeling methods. The enzymes display differential processing capabilities toward glucuronic acid-containing polysaccharides and SN-38-glucuronide, a metabolite of the cancer drug irinotecan. We also demonstrate that GUS-specific and nonselective inhibitors exhibit varying potencies toward each enzyme. Together, these data highlight the diversity of GUS enzymes within a single Bacteroides gut commensal and advance our understanding of how structural details impact the specific roles microbial enzymes play in processing drug-glucuronide and glycan substrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongmei Xu
- Chemical Biology and Medicinal Chemistry, and
| | - Jian Liu
- Chemical Biology and Medicinal Chemistry, and
| | | | - Lance J Stewart
- the Department of Biochemistry, Institute for Protein Design, University of Washington, Seattle, Washington 98195
| | - Matthew R Redinbo
- From the Departments of Chemistry, .,Biochemistry and Biophysics, and.,the Departments of Microbiology and Immunology, and Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
137
|
Konasani VR, Jin C, Karlsson NG, Albers E. A novel ulvan lyase family with broad-spectrum activity from the ulvan utilisation loci of Formosa agariphila KMM 3901. Sci Rep 2018; 8:14713. [PMID: 30279430 PMCID: PMC6168547 DOI: 10.1038/s41598-018-32922-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/17/2018] [Indexed: 11/19/2022] Open
Abstract
Ulvan, which is one of the major structural polysaccharides of the cell walls of green macroalgae, is degraded by ulvan lyases via the β-elimination mechanism with the release of oligosaccharides that have unsaturated 4-deoxy-L-threo-hex-4-enopyranosiduronic acid (∆) at the non-reducing end. These ulvan lyases belong to the PL24 or PL25 or PL28 family in the CAZy database. In this study, we identify and biochemically characterise a periplasmic novel broad-spectrum ulvan lyase from Formosa agariphila KMM 3901. The lyase was overexpressed in Escherichia coli, and the purified recombinant enzyme depolymerised ulvan in an endolytic manner with a Km of 0.77 mg/ml, and displayed optimum activity at 40 °C and pH 8. This lyase also degraded heparan sulphate and chondroitin sulphate. Detailed analyses of the end-products of the enzymatic degradation of ulvan using 1H- and 13C-NMR and LC-MS revealed an unsaturated disaccharide (∆Rha3S) and a tetrasaccharide (∆Rha3S-Xyl-Rha) as the principal end-products. In contrast to the previously described ulvan lyases, this novel lyase is mostly composed of α-helices that form an (α/α)6 incomplete toroid domain and displays a remarkably broad-spectrum activity. This novel lyase is the first member of a new family of ulvan lyases.
Collapse
Affiliation(s)
- Venkat Rao Konasani
- Industrial Biotechnology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Eva Albers
- Industrial Biotechnology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
138
|
Pei X, Chang Y, Shen J. Cloning, expression and characterization of an endo-acting bifunctional alginate lyase of marine bacterium Wenyingzhuangia fucanilytica. Protein Expr Purif 2018; 154:44-51. [PMID: 30248453 DOI: 10.1016/j.pep.2018.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022]
Abstract
Alginate is the major constituent of brown algae and a commercially important polysaccharide with wide applications. Alginate lyases are desired tools for degrading alginate. Based on the genome mining of marine bacterium Wenyingzhuangia funcanilytica, an alginate lyase Aly7B_Wf was discovered, cloned and expressed in Escherichia coli. Aly7B_Wf belonged to subfamily 6 of PL7 family. Its biochemical properties, kinetic constants, substrate specificity and degradation pattern were clarified. The enzyme is an endo-acting bifunctional alginate lyase, and preferably cleaved polymannuronate (polyM). The Km (0.0237 ± 0.0004 μM, 0.0105 ± 0.0002 mg/mL) and kcat/Km (1180.65 ± 19.81 μM-1 s-1, 2654.34 ± 44.54 mg-1 ml s-1) indicated relatively high substrate-binding affinity and catalysis efficiency of Aly7B_Wf. By using mass spectrometry, final products of alginate degraded by Aly7B_Wf were identified as alginate hexasaccharide to disaccharide, and final products of polyguluronate (polyG) and polyM were confirmed as tetrasaccharide to disaccharide. The most predominant oligosaccharide in the final products of polyG and polyM was trisaccharide and disaccharide respectively. The broad substrate specificity, endo-acting degradation pattern and high catalysis efficiency suggested that Aly7B_Wf could be utilizied as a potential tool for tailoring the size of alginate and preparing alginate oligosaccharides.
Collapse
Affiliation(s)
- Xiaojie Pei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
139
|
Zhuang J, Zhang K, Liu X, Liu W, Lyu Q, Ji A. Characterization of a Novel PolyM-Preferred Alginate Lyase from Marine Vibrio splendidus OU02. Mar Drugs 2018; 16:md16090295. [PMID: 30135412 PMCID: PMC6165035 DOI: 10.3390/md16090295] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
Alginate lyases are enzymes that degrade alginate into oligosaccharides which possess a variety of biological activities. Discovering and characterizing novel alginate lyases has great significance for industrial and medical applications. In this study, we reported a novel alginate lyase, AlyA-OU02, derived from the marine Vibrio splendidus OU02. The BLASTP searches showed that AlyA-OU02 belonged to polysaccharide lyase family 7 (PL7) and contained two consecutive PL7 domains, which was rare among the alginate lyases in PL7 family. Both the two domains, AlyAa and AlyAb, had lyase activities, while AlyAa exhibited polyM preference, and AlyAb was polyG-preferred. In addition, the enzyme activity of AlyAa was much higher than AlyAb at 25 °C. The full-length enzyme of AlyA-OU02 showed polyM preference, which was the same as AlyAa. AlyAa degraded alginate into di-, tri-, and tetra-alginate oligosaccharides, while AlyAb degraded alginate into tri-, tetra-, and penta-alginate oligosaccharides. The degraded products of AlyA-OU02 were similar to AlyAa. Our work provided a potential candidate in the application of alginate oligosaccharide production and the characterization of the two domains might provide insights into the use of alginate of this organism.
Collapse
Affiliation(s)
| | - Keke Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiaohua Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Weizhi Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Qianqian Lyu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
140
|
Belik AA, Silchenko AS, Kusaykin MI, Zvyagintseva TN, Ermakova SP. Alginate Lyases: Substrates, Structure, Properties, and Prospects of Application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
141
|
Zhu B, Ni F, Ning L, Sun Y, Yao Z. Cloning and characterization of a new pH-stable alginate lyase with high salt tolerance from marine Vibrio sp. NJ-04. Int J Biol Macromol 2018; 115:1063-1070. [DOI: 10.1016/j.ijbiomac.2018.04.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 03/09/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022]
|
142
|
Zhu B, Ning L, Jiang Y, Ge L. Biochemical Characterization and Degradation Pattern of a Novel Endo-Type Bifunctional Alginate Lyase AlyA from Marine Bacterium Isoptericola halotolerans. Mar Drugs 2018; 16:E258. [PMID: 30065151 PMCID: PMC6117692 DOI: 10.3390/md16080258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 01/13/2023] Open
Abstract
Alginate lyases are important tools to prepare oligosaccharides with various physiological activities by degrading alginate. Particularly, the bifunctional alginate lyase can efficiently hydrolyze the polysaccharide into oligosaccharides. Herein, we cloned and identified a novel bifunctional alginate lyase, AlyA, with a high activity and broad substrate specificity from bacterium Isoptericola halotolerans NJ-05 for oligosaccharides preparation. For further applications in industry, the enzyme has been characterized and its action mode has been also elucidated. It exhibited the highest activity (7984.82 U/mg) at pH 7.5 and 55 °C. Additionally, it possessed a broad substrate specificity, showing high activities towards not only polyM (polyβ-d-mannuronate) (7658.63 U/mg), but also polyG (poly α-l-guluronate) (8643.29 U/mg). Furthermore, the Km value of AlyA towards polyG (3.2 mM) was lower than that towards sodium alginate (5.6 mM) and polyM (6.7 mM). TLC (Thin Layer Chromatography) and ESI-MS (Electrospray Ionization Mass Spectrometry) were used to study the action mode of the enzyme, showing that it can hydrolyze the substrates in an endolytic manner to release a series of oligosaccharides such as disaccharide, trisaccharide, and tetrasaccharide. This study provided extended insights into the substrate recognition and degrading pattern of the alginate lyases, with a broad substrate specificity.
Collapse
Affiliation(s)
- Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| | - Limin Ning
- College of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.
| | - Yucui Jiang
- College of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.
| | - Lin Ge
- Technology Transfer Center, Nanjing Forest University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
143
|
Mathieu S, Touvrey-Loiodice M, Poulet L, Drouillard S, Vincentelli R, Henrissat B, Skjåk-Bræk G, Helbert W. Ancient acquisition of "alginate utilization loci" by human gut microbiota. Sci Rep 2018; 8:8075. [PMID: 29795267 PMCID: PMC5966431 DOI: 10.1038/s41598-018-26104-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/04/2018] [Indexed: 01/29/2023] Open
Abstract
In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called “polysaccharide utilization loci” (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.
Collapse
Affiliation(s)
- Sophie Mathieu
- CERMAV, CNRS and Grenoble Alpes Université, BP53, 38000, Grenoble Cedex 9, France
| | | | - Laurent Poulet
- CERMAV, CNRS and Grenoble Alpes Université, BP53, 38000, Grenoble Cedex 9, France
| | - Sophie Drouillard
- CERMAV, CNRS and Grenoble Alpes Université, BP53, 38000, Grenoble Cedex 9, France
| | - Renaud Vincentelli
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, Marseille, 13288, France.,INRA, USC 1408 AFMB, 13288, Marseille, France
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, Marseille, 13288, France.,INRA, USC 1408 AFMB, 13288, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gudmund Skjåk-Bræk
- Department of Biotechnology, Norwegian University of Science and Technology, NTNU Sem Sælands vei 6-8, 7491, Trondheim, Norway
| | - William Helbert
- CERMAV, CNRS and Grenoble Alpes Université, BP53, 38000, Grenoble Cedex 9, France.
| |
Collapse
|
144
|
Moroz OV, Jensen PF, McDonald SP, McGregor N, Blagova E, Comamala G, Segura DR, Anderson L, Vasu SM, Rao VP, Giger L, Sørensen TH, Monrad RN, Svendsen A, Nielsen JE, Henrissat B, Davies GJ, Brumer H, Rand KD, Wilson KS. Structural Dynamics and Catalytic Properties of a Multimodular Xanthanase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olga V. Moroz
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Pernille F. Jensen
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sean P. McDonald
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Nicholas McGregor
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Gerard Comamala
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | - Lars Anderson
- Novozymes A/S, Krogshojvej 36, DK-2880 Bagsvard, Denmark
| | | | | | - Lars Giger
- Novozymes A/S, Krogshojvej 36, DK-2880 Bagsvard, Denmark
| | - Trine Holst Sørensen
- Department of Science and Environment, INM, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | | | - Allan Svendsen
- Novozymes A/S, Krogshojvej 36, DK-2880 Bagsvard, Denmark
| | | | - Bernard Henrissat
- Institut National de la Recherche Agronomique, USC 1408, Architecture et Fonction des Macromolecules Biologiques, F-13288, UMR 7857 CNRS, Aix-Marseille University, F-13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Harry Brumer
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Kasper D. Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
145
|
Martínez-Martínez M, Coscolín C, Santiago G, Chow J, Stogios PJ, Bargiela R, Gertler C, Navarro-Fernández J, Bollinger A, Thies S, Méndez-García C, Popovic A, Brown G, Chernikova TN, García-Moyano A, Bjerga GEK, Pérez-García P, Hai T, Del Pozo MV, Stokke R, Steen IH, Cui H, Xu X, Nocek BP, Alcaide M, Distaso M, Mesa V, Peláez AI, Sánchez J, Buchholz PCF, Pleiss J, Fernández-Guerra A, Glöckner FO, Golyshina OV, Yakimov MM, Savchenko A, Jaeger KE, Yakunin AF, Streit WR, Golyshin PN, Guallar V, Ferrer M, The INMARE Consortium. Determinants and Prediction of Esterase Substrate Promiscuity Patterns. ACS Chem Biol 2018; 13:225-234. [PMID: 29182315 DOI: 10.1021/acschembio.7b00996] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Esterases receive special attention because of their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases' substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here, we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps rank (classify) the promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence data sets.
Collapse
Affiliation(s)
| | - Cristina Coscolín
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Gerard Santiago
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Jennifer Chow
- Biozentrum Klein Flottbek, Mikrobiologie & Biotechnologie, Universität Hamburg, 22609 Hamburg, Germany
| | - Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, M5S 3E5 Toronto, Ontario, Canada
| | - Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Christoph Gertler
- School of Biological Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - José Navarro-Fernández
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Alexander Bollinger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, 52425 Jülich, Germany
| | - Stephan Thies
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, 52425 Jülich, Germany
| | - Celia Méndez-García
- Department of Functional Biology-IUBA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ana Popovic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, M5S 3E5 Toronto, Ontario, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, M5S 3E5 Toronto, Ontario, Canada
| | | | | | - Gro E. K. Bjerga
- Uni Research AS, Center for Applied Biotechnology, 5006 Bergen, Norway
| | - Pablo Pérez-García
- Biozentrum Klein Flottbek, Mikrobiologie & Biotechnologie, Universität Hamburg, 22609 Hamburg, Germany
| | - Tran Hai
- School of Biological Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Mercedes V. Del Pozo
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Runar Stokke
- Department of Biology and KG Jebsen Centre for Deep Sea Research, University of Bergen, 5020 Bergen, Norway
| | - Ida H. Steen
- Department of Biology and KG Jebsen Centre for Deep Sea Research, University of Bergen, 5020 Bergen, Norway
| | - Hong Cui
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, M5S 3E5 Toronto, Ontario, Canada
| | - Xiaohui Xu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, M5S 3E5 Toronto, Ontario, Canada
| | - Boguslaw P. Nocek
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, 60439 Illinois, United States
| | - María Alcaide
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Marco Distaso
- School of Biological Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Victoria Mesa
- Department of Functional Biology-IUBA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ana I. Peláez
- Department of Functional Biology-IUBA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Jesús Sánchez
- Department of Functional Biology-IUBA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Antonio Fernández-Guerra
- Jacobs University Bremen gGmbH, Bremen, Germany
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- University of Oxford, Oxford e-Research Centre, Oxford, United Kingdom
| | - Frank O. Glöckner
- Jacobs University Bremen gGmbH, Bremen, Germany
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Olga V. Golyshina
- School of Biological Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Michail M. Yakimov
- Institute for Coastal Marine Environment, Consiglio Nazionale delle Ricerche, 98122 Messina, Italy
- Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, M5S 3E5 Toronto, Ontario, Canada
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, 52425 Jülich, Germany
- Institute for Bio- and Geosciences IBG-1: Biotechnology, Forschunsgzentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, M5S 3E5 Toronto, Ontario, Canada
| | - Wolfgang R. Streit
- Biozentrum Klein Flottbek, Mikrobiologie & Biotechnologie, Universität Hamburg, 22609 Hamburg, Germany
| | - Peter N. Golyshin
- School of Biological Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Víctor Guallar
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | | |
Collapse
|
146
|
Characterization of a Novel Alginate Lyase from Marine Bacterium Vibrio furnissii H1. Mar Drugs 2018; 16:md16010030. [PMID: 29342949 PMCID: PMC5793078 DOI: 10.3390/md16010030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 11/27/2022] Open
Abstract
Alginate lyases show great potential for industrial and medicinal applications, especially as an attractive biocatalyst for the production of oligosaccharides with special bioactivities. A novel alginate lyase, AlyH1, from the marine bacterium Vibrio furnissii H1, which has been newly isolated from rotten seaweed, was purified and characterized. The purified enzyme showed the specific activity of 2.40 U/mg. Its molecular mass was 35.8 kDa. The optimal temperature and pH were 40 °C and pH 7.5, respectively. AlyH1 maintained stability at neutral pH (7.0–8.0) and temperatures below 30 °C. Metal ions Na+, Mg2+, and K+ increased the activity of the enzyme. With sodium alginate as the substrate, the Km and Vmax values of AlyH1 were 2.28 mg/mL and 2.81 U/mg, respectively. AlyH1 exhibited activities towards both polyguluronate and polymannuronate, and preferentially degraded polyguluronate. Products prepared from sodium alginate by AlyH1 were displayed to be di-, tri-, and tetra-alginate oligosaccharides. A partial amino acid sequence (190 aa) of AlyH1 analysis suggested that AlyH1 was an alginate lyase of polysaccharide lyase family 7. The sequence showed less than 77% identity to the reported alginate lyases. These data demonstrated that AlyH1 could be as a novel and potential candidate in application of alginate oligosaccharides production with low polymerization degrees.
Collapse
|
147
|
Qin HM, Xu P, Guo Q, Cheng X, Gao D, Sun D, Zhu Z, Lu F. Biochemical characterization of a novel ulvan lyase from Pseudoalteromonas sp. strain PLSV. RSC Adv 2018; 8:2610-2615. [PMID: 35541464 PMCID: PMC9077492 DOI: 10.1039/c7ra12294b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/29/2017] [Indexed: 11/21/2022] Open
Abstract
Ulvans, complex polysaccharides found in the ulvales (green seaweed) cell wall, contain predominantly 3-sulfated rhamnose (Rha3S) linked to either d-glucuronic acid, l-iduronic acid or d-xylose. The ulvan lyase endolytically cleaves the glycoside bond between Rha3S and uronic acid via a β-elimination mechanism. Ulvan lyase has been identified as belonging to the polysaccharide lyase family PL24 or PL25 in the carbohydrate active enzymes database, in which fewer members have been characterized. We present the cloning and characterization of a novel ulvan lyase from Pseudoalteromonas sp. strain PLSV (PsPL). The enzymes were heterologously expressed in Escherichia coli BL21 (DE3) and purified as the His-tag fusion protein using affinity chromatography, ion-exchange chromatography and size-exclusion chromatography. The degradation products were determined by thin-layer chromatography (TLC), liquid chromatography-mass spectrometry (LC-MS) to be mainly disaccharides and tetrasaccharides. Ulvan lyase provides an example of degrading ulvales into oligosaccharides. Arg265, His152 and Tyr249 were considered to serve as catalytic residues based on PsPL structural model analysis.
Collapse
Affiliation(s)
- Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education China +86-22-60602298 +86-22-60601958
- Tianjin Key Laboratory of Industrial Microbiology China
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Panpan Xu
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Qianqian Guo
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Xiaotao Cheng
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Dengke Gao
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Dengyue Sun
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Zhangliang Zhu
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education China +86-22-60602298 +86-22-60601958
- Tianjin Key Laboratory of Industrial Microbiology China
- College of Biotechnology, Tianjin University of Science and Technology China
- National Engineering Laboratory for Industrial Enzymes Tianjin 300457 People's Republic of China
| |
Collapse
|
148
|
Schückel J, Kračun SK. Two-Dimensional High-Throughput Endo-Enzyme Screening Assays Based on Chromogenic Polysaccharide Hydrogel and Complex Biomass Substrates. Methods Mol Biol 2018; 1796:201-217. [PMID: 29856056 DOI: 10.1007/978-1-4939-7877-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this chapter, we present a two-dimensional approach for high-throughput screening of endo-cellulases as well as other endo-acting enzymes. The method is based on chromogenic substrates, produced either from purified or complex material, providing valuable information about enzyme activity toward its target as well as that same target in a context of complex natural material normally encountered in bioindustrial settings. The enzymes that can be tested using this assay can be from virtually any source: in purified form, directly from microbial cultures or even from raw materials, enabling study of the interplay between enzyme mixtures such as synergistic or inhibitory effects. By using the method of analysis described in this chapter, enzymes can be screened and evaluated quickly and information pertinent to both the inherent properties of the enzyme itself as well as predictions about its performance on complex biomass samples can be obtained.
Collapse
|
149
|
Reina R, García-Sánchez M, Liers C, García-Romera I, Aranda E. An Overview of Fungal Applications in the Valorization of Lignocellulosic Agricultural By-Products: The Case of Two-Phase Olive Mill Wastes. Fungal Biol 2018. [DOI: 10.1007/978-3-319-77386-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
150
|
Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology 2017; 28:3-8. [DOI: 10.1093/glycob/cwx089] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/06/2017] [Indexed: 12/22/2022] Open
|