101
|
Whole blood sequencing reveals circulating microRNA associations with high-risk traits in non-ST-segment elevation acute coronary syndrome. Atherosclerosis 2017; 261:19-25. [PMID: 28437675 DOI: 10.1016/j.atherosclerosis.2017.03.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Although circulating microRNA (miRNAs) have emerged as biomarkers predicting mortality in acute coronary syndrome (ACS), more data are needed to understand these mechanisms. Mapping miRNAs to high-risk traits may identify miRNAs involved in pathways conferring risk for poor outcome in ACS. We aim to investigate the relationship between circulating miRNAs and high-risk traits in non-ST-segment elevation acute coronary syndrome (NSTE-ACS). METHODS Whole-genome miRNA sequencing was performed on RNA extracted from whole blood of 199 patients with NSTE-ACS. Generalized linear models were used to test associations of miRNAs and 13 high-risk clinical traits, including the Global Registry of Acute Coronary Events (GRACE) score, a widely validated risk score for mortality in NSTE-ACS. RESULTS There were 205 nominally significant miRNA-risk factor associations (p < 0.05) observed. Significant associations occurred most frequently with chronic heart failure (HF) (43 miRs), GRACE risk score (30 miRs), and renal function (32 miRs). In hierarchical cluster analysis, chronic HF and GRACE risk score clustered most tightly together, sharing 14 miRNAs with matching fold-change direction. Controlling for a false discovery rate of 5%, chronic HF was significantly associated with lower circulating levels of miR-3135b (p < 0.0006), miR-126-5p (p < 0.0001), miR-142-5p (p = 0.0004) and miR-144-5p (p = 0.0007), while increasing GRACE risk score inversely correlated with levels of miR-3135b (p < 0.0001) and positively correlated with levels of miR-28-3p (p = 0.0002). CONCLUSIONS Circulating miRs clustered around two powerful traits for mortality risk in NSTE-ACS. MiR-3135b, which was under-expressed in chronic HF and increasing GRACE risk score, and miR-28-3p, which has no known association with cardiovascular disease, warrant further investigation.
Collapse
|
102
|
Xu J, Jiang N, Shi H, Zhao S, Yao S, Shen H. miR-28-5p promotes the development and progression of ovarian cancer through inhibition of N4BP1. Int J Oncol 2017; 50:1383-1391. [DOI: 10.3892/ijo.2017.3915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/21/2017] [Indexed: 11/06/2022] Open
|
103
|
Pichler M, Stiegelbauer V, Vychytilova-Faltejskova P, Ivan C, Ling H, Winter E, Zhang X, Goblirsch M, Wulf-Goldenberg A, Ohtsuka M, Haybaeck J, Svoboda M, Okugawa Y, Gerger A, Hoefler G, Goel A, Slaby O, Calin GA. Genome-Wide miRNA Analysis Identifies miR-188-3p as a Novel Prognostic Marker and Molecular Factor Involved in Colorectal Carcinogenesis. Clin Cancer Res 2017; 23:1323-1333. [PMID: 27601590 PMCID: PMC5544252 DOI: 10.1158/1078-0432.ccr-16-0497] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/12/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022]
Abstract
Purpose: Characterization of colorectal cancer transcriptome by high-throughput techniques has enabled the discovery of several differentially expressed genes involving previously unreported miRNA abnormalities. Here, we followed a systematic approach on a global scale to identify miRNAs as clinical outcome predictors and further validated them in the clinical and experimental setting.Experimental Design: Genome-wide miRNA sequencing data of 228 colorectal cancer patients from The Cancer Genome Atlas dataset were analyzed as a screening cohort to identify miRNAs significantly associated with survival according to stringent prespecified criteria. A panel of six miRNAs was further validated for their prognostic utility in a large independent validation cohort (n = 332). In situ hybridization and functional experiments in a panel of colorectal cancer cell lines and xenografts further clarified the role of clinical relevant miRNAs.Results: Six miRNAs (miR-92b-3p, miR-188-3p, miR-221-5p, miR-331-3p, miR-425-3p, and miR-497-5p) were identified as strong predictors of survival in the screening cohort. High miR-188-3p expression proves to be an independent prognostic factor [screening cohort: HR = 4.137; 95% confidence interval (CI), 1.568-10.917; P = 0.004; validation cohort: HR = 1.538; 95% CI, 1.107-2.137; P = 0.010, respectively]. Forced miR-188-3p expression increased migratory behavior of colorectal cancer cells in vitro and metastases formation in vivo (P < 0.05). The promigratory role of miR-188-3p is mediated by direct interaction with MLLT4, a novel identified player involved in colorectal cancer cell migration.Conclusions: miR-188-3p is a novel independent prognostic factor in colorectal cancer patients, which can be partly explained by its effect on MLLT4 expression and migration of cancer cells. Clin Cancer Res; 23(5); 1323-33. ©2016 AACR.
Collapse
Affiliation(s)
- Martin Pichler
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Verena Stiegelbauer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Petra Vychytilova-Faltejskova
- Molecular Oncology II - Solid Cancers, Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Center for RNA Interference and Non-coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elke Winter
- Institute of Pathology, Medical University of Graz (MUG), Graz, Austria
| | - Xinna Zhang
- The Center for RNA Interference and Non-coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Matthew Goblirsch
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Masahisa Ohtsuka
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz (MUG), Graz, Austria
| | - Marek Svoboda
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research and Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz (MUG), Graz, Austria
| | - Ajay Goel
- Center for Gastrointestinal Research and Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Ondrej Slaby
- Molecular Oncology II - Solid Cancers, Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- The Center for RNA Interference and Non-coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
104
|
MicroRNA-34 directly targets pair-rule genes and cytoskeleton component in the honey bee. Sci Rep 2017; 7:40884. [PMID: 28098233 PMCID: PMC5241629 DOI: 10.1038/srep40884] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/12/2016] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are key regulators of developmental processes, such as cell fate determination and differentiation. Previous studies showed Dicer knockdown in honeybee embryos disrupt the processing of functional mature miRNAs and impairs embryo patterning. Here we investigated the expression profiles of miRNAs in honeybee embryogenesis and the role of the highly conserved miR-34-5p in the regulation of genes involved in insect segmentation. A total of 221 miRNAs were expressed in honey bee embryogenesis among which 97 mature miRNA sequences have not been observed before. Interestingly, we observed a switch in dominance between the 5-prime and 3-prime arm of some miRNAs in different embryonic stages; however, most miRNAs present one dominant arm across all stages of embryogenesis. Our genome-wide analysis of putative miRNA-target networks and functional pathways indicates miR-34-5p is one of the most conserved and connected miRNAs associated with the regulation of genes involved in embryonic patterning and development. In addition, we experimentally validated that miR-34-5p directly interacts to regulatory elements in the 3'-untranslated regions of pair-rule (even-skipped, hairy, fushi-tarazu transcription factor 1) and cytoskeleton (actin5C) genes. Our study suggests that miR-34-5p may regulate the expression of pair-rule and cytoskeleton genes during early development and control insect segmentation.
Collapse
|
105
|
Almeida MI, Silva AM, Vasconcelos DM, Almeida CR, Caires H, Pinto MT, Calin GA, Santos SG, Barbosa MA. miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget 2016; 7:7-22. [PMID: 26683705 PMCID: PMC4807979 DOI: 10.18632/oncotarget.6589] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/28/2015] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal Stromal/Stem Cells (MSC) are currently being explored in diverse clinical applications, including regenerative therapies. Their contribution to regeneration of bone fractures is dependent on their capacity to proliferate, undergo osteogenesis and induce angiogenesis. This study aimed to uncover microRNAs capable of concomitantly regulate these mechanisms. Following microRNA array results, we identified miR-195 and miR-497 as downregulated in human primary MSC under osteogenic differentiation. Overexpression of miR-195 or miR-497 in human primary MSC leads to a decrease in osteogenic differentiation and proliferation rate. Conversely, inhibition of miR-195 increased alkaline phosphatase expression and activity and cells proliferation. Then, miR-195 was used to study MSC capacity to recruit blood vessels in vivo. We provide evidence that the paracrine effect of MSC on angiogenesis is diminishedwhen cells over-express miR-195. VEGF may partially mediate this effect, as its expression and secreted protein levels are reduced by miR-195, while increased by anti-miR-195, in human MSC. Luciferase reporter assays revealed a direct interaction between miR-195 and VEGF 3′-UTR in bone cancer cells. In conclusion, our results suggest that miR-195 regulates important mechanisms for bone regeneration, specifically MSC osteogenic differentiation, proliferation and control of angiogenesis; therefore, it is a potential target for clinical bone regenerative therapies.
Collapse
Affiliation(s)
- Maria Ines Almeida
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Andreia Machado Silva
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Daniel Marques Vasconcelos
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Catarina Rodrigues Almeida
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Hugo Caires
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Marta Teixeira Pinto
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto (Ipatimup), Porto, Portugal
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susana Gomes Santos
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Mário Adolfo Barbosa
- Instituto de Investigação e Inovação em Saúde/Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
106
|
Bibi F, Naseer MI, Alvi SA, Yasir M, Jiman-Fatani AA, Sawan A, Abuzenadah AM, Al-Qahtani MH, Azhar EI. microRNA analysis of gastric cancer patients from Saudi Arabian population. BMC Genomics 2016; 17:751. [PMID: 27766962 PMCID: PMC5073958 DOI: 10.1186/s12864-016-3090-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background The role of small non-coding microRNAs (miRNAs) in several types of cancer has been evident. However, its expression studies have never been performed in gastric cancer (GC) patients from Saudi population. First time this study was conducted to identify miRNAs that are differentially expressed in GC patients compared with normal controls. Methods We investigated the role of miRNAs in GC patients using formalin-fixed paraffin-embedded (FFPE) tissues of 34 samples from GC patients (early stage = 7 and late-stage = 26) and 15 from normal control. We have used miRNA microarray analysis and validated the results by Real-time quantitative PCR (RT-qPCR). Results We obtained data of 1082 expressed genes, from cancer tissues and noncancerous tissues (49 samples in total). Where 129 genes were up-regulated (P > 0.05) and 953 genes (P > 0.05) were down-regulated in 49 FFPE tissue samples. Only 33 miRNAs had significant expression in early and late-stage cancer tissues. After candidate miRNAs were selected, RT-qPCR further confirmed that four miRNAs (hsa-miR-200c-3p, hsa-miR-3613, hsa-miR-27b-3p, hsa-miR-4668-5p) were significantly aberrant in GC tissues compared to the normal gastric tissues. Conclusions In this study we provide miRNAs profile of GC where many miRNAs showed aberrant expression from normal tissues, suggesting their involvement in the development and progression of gastric cancer. In early and late-stage miR-200c-3p showed significant down regulation as compare to control samples. Many of miRNAs reported in our study showing up-regulation are new and not reported before may be due to population difference. In conclusion, our results suggest that miR-200c-3p had potential to use as diagnostic biomarker for distinguishing GC patients from normal individuals and can be used for diagnosis of cancer at early stage.
Collapse
Affiliation(s)
- Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
| | - Muhammad I Naseer
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sana Akhtar Alvi
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Asif A Jiman-Fatani
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Sawan
- Department of Anatomical Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Mohammed H Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
107
|
Rasool M, Malik A, Zahid S, Basit Ashraf MA, Qazi MH, Asif M, Zaheer A, Arshad M, Raza A, Jamal MS. Non-coding RNAs in cancer diagnosis and therapy. Noncoding RNA Res 2016; 1:69-76. [PMID: 30159413 PMCID: PMC6096421 DOI: 10.1016/j.ncrna.2016.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer invasion involves a series of fundamental heterogeneous steps, with each step being distinct in its type regarding its dependence on various oncogenic pathways. Over the past few years, researchers have been focusing on targeted therapies to treat malignancies relying not only on a single oncogenic pathway, but on multiple pathways. Scientists have recently identified potential targets in the human genome considered earlier as non-functional but the discovery of their potential role in gene regulation has put new insights to cancer diagnosis, prognosis and therapeutics. Non coding RNAs (ncRNAs) have been identified as the key gene expression regulators. Long non-coding RNA (lncRNAs) reveal diverse gene expression profiles in benign and metastatic tumours. Improved clinical research may lead to better knowledge of their biogenesis and mechanism and eventually be used as diagnostic biomarkers and therapeutic agents. Small non coding RNAs or micro RNA (miRNA) are capable of reprogramming multiple oncogenic cascades and, thus, can be used as target agents. This review is aimed to give a perspective of non coding transcription in cancer metastasis with an eye on rising clinical relevance of non coding RNAs and their mechanism of action focusing on potential therapeutics for cancer pathogenesis.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Sara Zahid
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | | | - Mahmood Husain Qazi
- Center for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan
| | | | - Ahmad Zaheer
- National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Arshad
- National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Amir Raza
- National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Mohammad Sarwar Jamal
- King Fahd Medical Research Center (KFMRC), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
108
|
Tang W, Cai P, Huo W, Li H, Tang J, Zhu D, Xie H, Chen P, Hang B, Wang S, Xia Y. Suppressive action of miRNAs to ARP2/3 complex reduces cell migration and proliferation via RAC isoforms in Hirschsprung disease. J Cell Mol Med 2016; 20:1266-1275. [PMID: 26991540 PMCID: PMC4929290 DOI: 10.1111/jcmm.12799] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 12/22/2015] [Indexed: 01/05/2023] Open
Abstract
Hirschsprung disease (HSCR) is a congenital disorder caused by the defective function of the embryonic enteric neural crest. The impaired migration of embryonic enteric neural crest plays an important role in the pathogenesis of this disease. Recent studies showed that the ARP2/3 complex and RAC isoforms had effects on actin cytoskeleton remodelling, which contributes to migration. Moreover, some regulatory relationships were identified between ARP2/3 complex and RAC isoforms. Although microRNAs (miRNAs) have been known to modulate target gene expression on the post-transcriptional level, little is known about the regulation among miRNAs, ARP2/3 complex and RAC isoforms. Here, we report that down-regulation of ARP2 and ARP3, two main subunits of ARP2/3 complex, suppressed migration and proliferation in 293T and SH-SY5Y cell lines via the inhibition of RAC1 and RAC2. Meanwhile, as the target genes, ARP2 and ARP3 are reduced by increased miR-24-1* and let-7a*, respectively, in 70 HSCR samples as compared with 74 normal controls. Co-immunoprecipitation showed that aberrant reduction in ARP2 and ARP3 could weaken the function of ARP2/3 complex. Our study demonstrates that the miR-24-1*/let-7a*-ARP2/3 complex-RAC isoforms pathway may represent a novel pathogenic mechanism for HSCR.
Collapse
Affiliation(s)
- Weibing Tang
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Cai
- Children's Hospital of Soochow University, Soochow, China
| | - Weiwei Huo
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, Nanjing, China
| | - Hongxing Li
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junwei Tang
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Zhu
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hua Xie
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pingfa Chen
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bo Hang
- Department of Cell and Molecular Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shouyu Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, Nanjing, China
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- Children's Hospital of Soochow University, Soochow, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, Nanjing, China
| |
Collapse
|
109
|
Zhou SL, Hu ZQ, Zhou ZJ, Dai Z, Wang Z, Cao Y, Fan J, Huang XW, Zhou J. miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis. Hepatology 2016; 63:1560-75. [PMID: 26754294 DOI: 10.1002/hep.28445] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED MicroRNAs (miRNAs) play a critical role in regulation of tumor metastasis. However, the role of these molecules in hepatocellular carcinoma (HCC) has not been fully elucidated. In this study, we employed miRNA-sequencing and identified 22 miRNAs involved in HCC metastasis. One of these, miR-28-5p, was down-regulated in HCCs. This down-regulation correlated with tumor metastasis, recurrence, and poor survival. Biofunctional investigations revealed that miR-28-5p deficiency promoted tumor growth and metastasis in nude mice without altering the in vitro biological characteristics of HCC cells. Through gene expression profiles and bioinformatics analysis, we identified interleukin-34 (IL-34) as a direct target of miR-28-5p, and the effects of miR-28-5p deficiency on HCC growth and metastasis was dependent on IL-34-mediated tumor-associated macrophage (TAM) infiltration. Moreover, we found that TAMs induced by miR-28-5p-IL-34 signaling inhibit miR-28-5p expression on HCC cells by transforming growth factor beta 1, resulting in an miR-28-5p-IL-34-macrophage-positive feedback loop. In clinical HCC samples, miR-28-5p levels were inversely correlated with IL-34 expression and the number of TAMs. Patients with low miR-28-5p expression, high IL-34 levels, and high numbers of TAMs had a poor prognosis with shorter overall survival and time to recurrence. CONCLUSION A miR-28-5p-IL-34-macrophage feedback loop modulates HCC metastasis and serves as a novel prognostic factor as well as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Shao-Lai Zhou
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zhi-Qiang Hu
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zheng-Jun Zhou
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zhi Dai
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zheng Wang
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ya Cao
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
| | - Jia Fan
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Wu Huang
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jian Zhou
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
110
|
MiR-193a-3p and miR-193a-5p suppress the metastasis of human osteosarcoma cells by down-regulating Rab27B and SRR, respectively. Clin Exp Metastasis 2016; 33:359-72. [PMID: 26913720 PMCID: PMC4799803 DOI: 10.1007/s10585-016-9783-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/17/2016] [Indexed: 11/01/2022]
Abstract
MicroRNAs have been identified as key players in the development and progression of osteosarcoma, which is the most common primary malignancy of bone. Sequencing-based miR-omic and quantitative real-time PCR analyses suggested that the expression of miR-193a-3p and miR-193a-5p was decreased by DNA methylation at their promoter region in a highly metastatic osteosarcoma cell line (MG63.2) relative to their expression in the less metastatic MG63 cell line. Further wound-healing and invasion assays demonstrated that both miR-193a-3p and miR-193a-5p suppressed osteosarcoma cell migration and invasion. Moreover, introducing miR-193a-3p and miR-193a-5p mimics into MG63.2 cells or antagomiRs into MG63 cells confirmed their critical roles in osteosarcoma metastasis. Additionally, bioinformatics prediction along with biochemical assay results clearly suggested that the secretory small GTPase Rab27B and serine racemase (SRR) were direct targets of miR-193a-3p and miR-193a-5p, respectively. These two targets are indeed involved in the miR-193a-3p- and miR-193a-5p-induced suppression of osteosarcoma cell migration and invasion. MiR-193a-3p and miR-193a-5p play important roles in osteosarcoma metastasis through down-regulation of the Rab27B and SRR genes and therefore may serve as useful biomarkers for the diagnosis of osteosarcoma and as potential candidates for the treatment of metastatic osteosarcoma.
Collapse
|
111
|
Yang S, Li W, Sun H, Wu B, Ji F, Sun T, Chang H, Shen P, Wang Y, Zhou D. Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC Cancer 2015; 15:969. [PMID: 26674205 PMCID: PMC4682213 DOI: 10.1186/s12885-015-1958-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Background Silence of the tumor suppressor miR-34c is implicated in the development of colorectal cancer (CRC). For the past few years, Resveratrol (Res) has been introduced to oncotherapies alone or with traditional chemotherapeutic drugs. However, the study of molecular mechanism involved in the anti-CRC effect of Res is still ongoing. Methods The anti-CRC effect of Res alone or with Oxaliplatin (Oxa) was determined by cell viability assay, soft agar colony formation assay, flow cytometry and real-time cellular analyzer in HT-29 (p53+) and HCT-116 (p53−) CRC cell lines. Expressions of miR-34c and its targets were detected by qPCR and/or western blot. To evaluate the role of miR-34c in anti-CRC effect by Res alone or with Oxa, miR-34c was up or down-regulated by lentiviral mediation or specific inhibitor, respectively. To investigate how miR-34c was increased by Res, the methylation status of miR-34c promoter was detected by MSP. The tumor bearing mouse model was established by subcutaneous injection of HCT-116 cells to assess anti-CRC effect of Res alone or with Oxa in vivo. IL-6 and TNF-α in xenografts were detected by ELISA. Results Res inhibited cell viability, proliferation, migration and invasion as well as promoted apoptosis both in HT-29 and HCT-116 CRC cells. The anti-CRC effect of Res was partially but specifically through up-regulating miR-34c which further knocked down its target KITLG; and the effect was enhanced in the presence of p53 probably through inactivating PI3K/Akt pathway. Besides, Res sensitized CRC cells to Oxa in a miR-34c dependent manner. The xenograft experiments showed that exposure to Res or Oxa suppressed tumor growth; and the efficacy was evidently augmented by the co-treatment of Res and Oxa. Likewise, miR-34c level was elevated in xenografts of Res-treated mice while the KITLG was decreased. Finally, Res clearly reduced IL-6 in xenografts. Conclusion Res suppressed CRC by specifically activating miR-34c-KITLG in vitro and in vivo; and the effect was strengthened in the presence of p53. Besides, Res exerted a synergistic effect with Oxa in a miR-34c dependent manner. We also suggested that Res-increased miR-34c could interfere IL-6-triggered CRC progression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1958-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China. .,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, P. R. China. .,Cancer Institute of Capital Medical University, Beijing, 100069, P. R. China.
| | - Wenshuai Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China. .,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, P. R. China.
| | - Haimei Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China. .,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, P. R. China. .,Cancer Institute of Capital Medical University, Beijing, 100069, P. R. China.
| | - Bo Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China. .,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, P. R. China. .,Cancer Institute of Capital Medical University, Beijing, 100069, P. R. China.
| | - Fengqing Ji
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China. .,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, P. R. China. .,Cancer Institute of Capital Medical University, Beijing, 100069, P. R. China.
| | - Tingyi Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China. .,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, P. R. China. .,Cancer Institute of Capital Medical University, Beijing, 100069, P. R. China.
| | - Huanhuan Chang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China. .,Cancer Institute of Capital Medical University, Beijing, 100069, P. R. China.
| | - Ping Shen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China. .,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, P. R. China.
| | - Yaxi Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China. .,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, P. R. China.
| | - Deshan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China. .,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, P. R. China. .,Cancer Institute of Capital Medical University, Beijing, 100069, P. R. China.
| |
Collapse
|
112
|
Zhou X, Wen W, Shan X, Qian J, Li H, Jiang T, Wang W, Cheng W, Wang F, Qi L, Ding Y, Liu P, Zhu W, Chen Y. MiR-28-3p as a potential plasma marker in diagnosis of pulmonary embolism. Thromb Res 2015; 138:91-95. [PMID: 26702486 DOI: 10.1016/j.thromres.2015.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/18/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Circulating miRNAs have been reported to have potential in detecting various diseases. However, few studies explored differentially expressed miRNAs in plasma of patients with pulmonary embolism (PE). Our study is to identify plasma miRNAs which can serve as potential biomarkers of PE. MATERIALS AND METHODS Exiqon miRCURY Ready-to-Use PCR Human panel I+II V1.M was conducted to identify differently expressed miRNAs in pooled plasma samples of PE patients compared with normal controls. Expressions of identified miRNAs were assessed in 37 PE patients as well as matched normal individuals followed by validation on six Beagle dogs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS Twelve miRNAs were identified from the screening phase. Moreover, miR-134, previously reported related with PE, and hypoxia-induced miR-210 were also submitted to the validation phase. Only miR-28-3p was found significantly elevated in the plasma of PE patients. Compared with the level of plasma miR-28-3p of the dogs before PE, the elevated miR-28-3p did not alter significantly at 1, 2, 4 and 6h after PE. The area under the receiver operating characteristic (ROC) curve of plasma miR-28-3p was 0.792 (95% confidence interval: 0.689-0.896). KEGG pathway analysis showed that miR-28-3p might involve in PE related pathways such as inositol phosphate metabolism and phosphatidylinositol signaling system. CONCLUSION Our study indicated that elevated plasma miR-28-3p could be used as a non-invasive and stable biomarker in the detection of PE. Further researches on the miRNA are warranted.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Wei Wen
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Xia Shan
- Department of Respiration, The Affiliated Jiangning Hospital of Nanjing Medical University, 168 Gushan Road, Nanjing 211100, PR China
| | - Jiaqi Qian
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Hai Li
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Ting Jiang
- Department of Emergency, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Weiwei Wang
- Department of Emergency, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Wenfang Cheng
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Fang Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Lianwen Qi
- State Key Laboratory of Natural Medicines and Department of Pharmacognosy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009,PR China
| | - Yin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No. 22 Hankou Road, Nanjing 210093, PR China
| | - Ping Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; Cancer Center of Nanjing Medical University, Nanjing 210029, PR China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China.
| | - Yan Chen
- Department of Emergency, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China.
| |
Collapse
|
113
|
LIU JIA, LIU XUEQING, LIU YING, SUN YANAN, LI SI, LI CHUNMEI, LI JIE, TIAN WEI, SHANG XIAOMING, ZHOU YUNTAO. MicroRNA 28-5p regulates ATP-binding cassette transporter A1 via inhibiting extracellular signal-regulated kinase 2. Mol Med Rep 2015; 13:433-40. [DOI: 10.3892/mmr.2015.4563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 07/29/2015] [Indexed: 11/05/2022] Open
|
114
|
Lin Z, Tan C, Qiu Q, Kong S, Yang H, Zhao F, Liu Z, Li J, Kong Q, Gao B, Barrett T, Yang GY, Zhang J, Fang D. Ubiquitin-specific protease 22 is a deubiquitinase of CCNB1. Cell Discov 2015; 1. [PMID: 27030811 PMCID: PMC4809424 DOI: 10.1038/celldisc.2015.28] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The elevated level of CCNB1 indicates more aggressive cancer and poor prognosis. However, the factors that cause CCNB1 upregulation remain enigmatic. Herein, we identify USP22 as a CCNB1 interactor and discover that both USP22 and CCNB1 are dramatically elevated with a strong positive correlation in colon cancer tissues. USP22 stabilizes CCNB1 by antagonizing proteasome-mediated degradation in a cell cycle-specific manner. Phosphorylation of USP22 by CDK1 enhances its activity in deubiquitinating CCNB1. The ubiquitin ligase anaphase-promoting complex (APC/C) targets USP22 for degradation by using the substrate adapter CDC20 during cell exit from M phase, presumably allowing CCNB1 degradation. Finally, we discover that USP22 knockdown leads to slower cell growth and reduced tumor size. Our study demonstrates that USP22 is a CCNB1 deubiquitinase, suggesting that targeting USP22 might be an effective approach to treat cancers with elevated CCNB1 expression.
Collapse
Affiliation(s)
- Zhenghong Lin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Can Tan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Quan Qiu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sinyi Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Heeyoung Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fang Zhao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhaojian Liu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jinping Li
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qingfei Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Terry Barrett
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jianing Zhang
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| |
Collapse
|
115
|
Amirkhah R, Schmitz U, Linnebacher M, Wolkenhauer O, Farazmand A. MicroRNA-mRNA interactions in colorectal cancer and their role in tumor progression. Genes Chromosomes Cancer 2015; 54:129-41. [PMID: 25620079 DOI: 10.1002/gcc.22231] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNA/miR) play an important role in gene regulatory networks through targeting mRNAs. They are involved in diverse biological processes such as cell proliferation, differentiation, angiogenesis, and apoptosis. Due to their pivotal effects on multiple genes and pathways, dysregulated miRNAs have been reported to be associated with different diseases, including colorectal cancer (CRC). Recent evidence indicates that aberrant miRNA expression is tightly linked with the initiation and progression of CRC. To elucidate the influence of miRNA regulation in CRC, it is critical to identify dysregulated miRNAs, their target mRNA genes and their involvement in gene regulatory and signaling networks. Various experimental and computational studies have been conducted to decipher the function of miRNAs involved in CRC. Experimental studies that are used for this purpose can be classified into two categories: direct/individual and indirect/high-throughput gene expression studies. Here we review miRNA target identification studies related to CRC with an emphasis on experimental data based on Luciferase reporter assays. Recent advances in determining the function of miRNAs and the signaling pathways they are involved in have also been summarized. The review helps bioinformaticians and biologists to find extensive information about downstream targets of dysregulated miRNAs, and their pro-/anti-CRC effects.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | |
Collapse
|
116
|
Caenorhabditis elegans ALG-1 antimorphic mutations uncover functions for Argonaute in microRNA guide strand selection and passenger strand disposal. Proc Natl Acad Sci U S A 2015; 112:E5271-80. [PMID: 26351692 DOI: 10.1073/pnas.1506576112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)]. alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA and protein populations associated with ALG-1(anti) complexes in vivo. We extensively characterized proteins associated with wild-type and mutant ALG-1 and found that the mutant ALG-1(anti) protein fails to interact with numerous miRISC cofactors, including proteins known to be necessary for target repression. In addition, alg-1(anti) mutants dramatically overaccumulated microRNA* (passenger) strands, and immunoprecipitated ALG-1(anti) complexes contained nonstoichiometric yields of mature microRNA and microRNA* strands, with some microRNA* strands present in the ALG-1(anti) Argonaute far in excess of the corresponding mature microRNAs. We show complex and microRNA-specific defects in microRNA strand selection and microRNA* strand disposal. For certain microRNAs (for example mir-58), microRNA guide strand selection by ALG-1(anti) appeared normal, but microRNA* strand release was inefficient. For other microRNAs (such as mir-2), both the microRNA and microRNA* strands were selected as guide by ALG-1(anti), indicating a defect in normal specificity of the strand choice. Our results suggest that wild-type ALG-1 complexes recognize structural features of particular microRNAs in the context of conducting the strand selection and microRNA* ejection steps of miRISC maturation.
Collapse
|
117
|
Zhou C, Lu Y, Li X. miR-339-3p inhibits proliferation and metastasis of colorectal cancer. Oncol Lett 2015; 10:2842-2848. [PMID: 26722251 PMCID: PMC4665768 DOI: 10.3892/ol.2015.3661] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) serve important roles in regulating cancer cell proliferation and metastasis. The same hairpin RNA structure may produce mature products from each strand, termed miR-5p and miR-3p, which can bind different mRNAs. Previously, the present authors reported that miR-339-5p could inhibit cell proliferation and migration by targeting the 3′-untranslated region (3′-UTR) of PRL-1 mRNA. The present study analyzed the expression, function and preliminary regulatory mechanism of miR-339-3p in colorectal cancer (CRC). The results of reverse transcription-quantitative polymerase chain reaction analysis demonstrated that miR-339-3p is downregulated in CRC specimens and highly invasive cell lines. Furthermore, the low-level expression of miR-339-3p was significantly associated with lymph node metastasis in patients with CRC; however, reduced miR-339-3p expression was not associated with age, gender or the differentiation status of the tumor. Overexpression of miR-339-3p was sufficient to suppress tumor growth and metastasis in vitro. In addition, the present study demonstrated that unlike miR-339-5p, PRL-1 expression was not regulated by miR-339-3p. The findings of the present study indicate that miR-339-5p and miR-339-3p may target different mRNA. The target gene of miR-339-3p requires future identification.
Collapse
Affiliation(s)
- Chang Zhou
- Department of Anatomy and Histology, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Yenxia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
118
|
Millar JA, Valdés R, Kacharia FR, Landfear SM, Cambronne ED, Raghavan R. Coxiella burnetii and Leishmania mexicana residing within similar parasitophorous vacuoles elicit disparate host responses. Front Microbiol 2015; 6:794. [PMID: 26300862 PMCID: PMC4528172 DOI: 10.3389/fmicb.2015.00794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/21/2015] [Indexed: 12/24/2022] Open
Abstract
Coxiella burnetii is a bacterium that thrives in an acidic parasitophorous vacuole (PV) derived from lysosomes. Leishmania mexicana, a eukaryote, has also independently evolved to live in a morphologically similar PV. As Coxiella and Leishmania are highly divergent organisms that cause different diseases, we reasoned that their respective infections would likely elicit distinct host responses despite producing phenotypically similar parasite-containing vacuoles. The objective of this study was to investigate, at the molecular level, the macrophage response to each pathogen. Infection of THP-1 (human monocyte/macrophage) cells with Coxiella and Leishmania elicited disparate host responses. At 5 days post-infection, when compared to uninfected cells, 1057 genes were differentially expressed (746 genes up-regulated and 311 genes down-regulated) in C. burnetii infected cells, whereas 698 genes (534 genes up-regulated and 164 genes down-regulated) were differentially expressed in L. mexicana infected cells. Interestingly, of the 1755 differentially expressed genes identified in this study, only 126 genes (~7%) are common to both infections. We also discovered that 1090 genes produced mRNA isoforms at significantly different levels under the two infection conditions, suggesting that alternate proteins encoded by the same gene might have important roles in host response to each infection. Additionally, we detected 257 micro RNAs (miRNAs) that were expressed in THP-1 cells, and identified miRNAs that were specifically expressed during Coxiella or Leishmania infections. Collectively, this study identified host mRNAs and miRNAs that were influenced by Coxiella and/or Leishmania infections, and our data indicate that although their PVs are morphologically similar, Coxiella and Leishmania have evolved different strategies that perturb distinct host processes to create and thrive within their respective intracellular niches.
Collapse
Affiliation(s)
- Jess A Millar
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR USA
| | - Raquel Valdés
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
| | - Fenil R Kacharia
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR USA
| | - Scott M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
| | - Eric D Cambronne
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR USA
| |
Collapse
|
119
|
Nuñez-Sánchez MA, Dávalos A, González-Sarrías A, Casas-Agustench P, Visioli F, Monedero-Saiz T, García-Talavera NV, Gómez-Sánchez MB, Sánchez-Álvarez C, García-Albert AM, Rodríguez-Gil FJ, Ruiz-Marín M, Pastor-Quirante FA, Martínez-Díaz F, Tomás-Barberán FA, García-Conesa MT, Espín JC. MicroRNAs expression in normal and malignant colon tissues as biomarkers of colorectal cancer and in response to pomegranate extracts consumption: Critical issues to discern between modulatory effects and potential artefacts. Mol Nutr Food Res 2015; 59:1973-86. [PMID: 26105520 DOI: 10.1002/mnfr.201500357] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 02/06/2023]
Abstract
SCOPE MicroRNAs (miRs) are proposed as colorectal cancer (CRC) biomarkers. Pomegranate ellagic acid and their microbiota metabolites urolithins exert anticancer effects in preclinical CRC models, and target normal and malignant colon tissues in CRC patients. Herein, we investigated whether the intake of pomegranate extract (PE) modified miRs expression in surgical colon tissues versus biopsies from CRC patients. METHODS AND RESULTS We conducted a randomized, double-blind, controlled trial. Thirty-five CRC patients consumed 900 mg PE daily before surgery. Control CRC patients (no PE intake, n = 10) were included. Our results revealed: (1) significant differences for specific miRs between malignant and normal tissues modifiable by the surgical protocols; (2) opposed trends between -5p and -3p isomolecules; (3) general induction of miRs attributable to the surgery; (4) moderate modulation of various miRs following the PE intake, and (5) no association between tissue urolithins and the observed miRs changes. CONCLUSION PE consumption appears to affect specific colon tissue miRs but surgery critically alters miRs levels hindering the discrimination of significant changes caused by dietary factors and the establishment of genuine differences between malignant and normal tissues as biomarkers. The components responsible for the PE effects and the clinical relevance of these observations deserve further research.
Collapse
Affiliation(s)
- María A Nuñez-Sánchez
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Alberto Dávalos
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain
| | - Antonio González-Sarrías
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Patricia Casas-Agustench
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain
| | - Francesco Visioli
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain
| | - Tamara Monedero-Saiz
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain.,Nutrition Service, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, Murcia, Spain
| | | | - María B Gómez-Sánchez
- Nutrition Service, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, Murcia, Spain
| | - Carmen Sánchez-Álvarez
- Nutrition Service, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, Murcia, Spain
| | - Ana M García-Albert
- Digestive Service, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, Murcia, Spain
| | | | - Miguel Ruiz-Marín
- Surgery Service, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, Murcia, Spain
| | | | - Francisco Martínez-Díaz
- Anatomical Pathology Service, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, Murcia, Spain
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - María Teresa García-Conesa
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Juan Carlos Espín
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
120
|
Down-regulated miR-28-5p in human hepatocellular carcinoma correlated with tumor proliferation and migration by targeting insulin-like growth factor-1 (IGF-1). Mol Cell Biochem 2015; 408:283-93. [DOI: 10.1007/s11010-015-2506-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 07/04/2015] [Indexed: 02/08/2023]
|
121
|
miR-28-5p Involved in LXR-ABCA1 Pathway is Increased in the Plasma of Unstable Angina Patients. Heart Lung Circ 2015; 24:724-30. [DOI: 10.1016/j.hlc.2014.12.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 11/21/2022]
|
122
|
Dokanehiifard S, Soltani BM, Parsi S, Hosseini F, Javan M, Mowla SJ. Experimental verification of a conserved intronic microRNA located in the human TrkC gene with a cell type-dependent apoptotic function. Cell Mol Life Sci 2015; 72:2613-25. [PMID: 25772499 PMCID: PMC11113298 DOI: 10.1007/s00018-015-1868-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
Tropomyosin receptor kinase C (TrkC) is involved in cell survival, apoptosis induction and tumorigenesis. We hypothesized that, similar to p75(NTR) receptor, some of the diverse functions of TrkC could be mediated by a microRNA (miRNA) embedded within the gene. Here, we experimentally verified the expression and processing of two bioinformatically predicted miRNAs named TrkC-miR1-5p and TrkC-miR1-3p. Transfecting a DNA fragment corresponding to the TrkC-premir1 sequence in HEK293t cells caused ~300-fold elevation in the level of mature TrkC-miR1 and also a significant downregulation of its predicted target genes. Furthermore, endogenous TrkC-miR1 was detected in several cell lines and brain tumors confirming its endogenous generation. Furthermore, its orthologous miRNA was detected in developing rat brain. Accordingly, TrkC-miR1 expression was increased during the course of neural differentiation of NT2 cell, whereas its suppression attenuated NT2 differentiation. Consistent with opposite functions of TrkC, TrkC-miR1 overexpression promoted survival and apoptosis in U87 and HEK293t cell lines, respectively. In conclusion, our data report the discovery of a new miRNA with overlapping function to TrkC.
Collapse
Affiliation(s)
- Sadat Dokanehiifard
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M. Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Parsi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fahimeh Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
123
|
Tembe V, Schramm SJ, Stark MS, Patrick E, Jayaswal V, Tang YH, Barbour A, Hayward NK, Thompson JF, Scolyer RA, Yang YH, Mann GJ. MicroRNA and mRNA expression profiling in metastatic melanoma reveal associations with BRAF mutation and patient prognosis. Pigment Cell Melanoma Res 2015; 28:254-66. [PMID: 25490969 DOI: 10.1111/pcmr.12343] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/01/2014] [Indexed: 01/25/2023]
Abstract
The role of microRNAs (miRNAs) in melanoma is unclear. We examined global miRNA expression profiles in fresh-frozen metastatic melanomas in relation to clinical outcome and BRAF mutation, with validation in independent cohorts of tumours and sera. We integrated miRNA and mRNA information from the same samples and elucidated networks associated with outcome and mutation. Associations with prognosis were replicated for miR-150-5p, miR-142-3p and miR-142-5p. Co-analysis of miRNA and mRNA uncovered a network associated with poor prognosis (PP) that paradoxically favoured expression of miRNAs opposing tumorigenesis. These miRNAs are likely part of an autoregulatory response to oncogenic drivers, rather than drivers themselves. Robust association of miR-150-5p and the miR-142 duplex with good prognosis and earlier stage metastatic melanoma supports their potential as biomarkers. miRNAs overexpressed in association with PP in an autoregulatory fashion will not be suitable therapeutic targets.
Collapse
Affiliation(s)
- Varsha Tembe
- Westmead Millennium Institute, The University of Sydney, Sydney, NSW, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Biggar KK, Storey KB. Insight into post-transcriptional gene regulation: stress-responsive microRNAs and their role in the environmental stress survival of tolerant animals. J Exp Biol 2015; 218:1281-9. [DOI: 10.1242/jeb.104828] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT
Living animals are constantly faced with various environmental stresses that challenge normal life, including: oxygen limitation, very low or high temperature, as well as restriction of water and food. It has been well established that in response to these stresses, tolerant organisms regularly respond with a distinct suite of cellular modifications that involve transcriptional, translational and post-translational modification. In recent years, a new mechanism of rapid and reversible transcriptome regulation, via the action of non-coding RNA molecules, has emerged into post-transcriptional regulation and has since been shown to be part of the survival response. However, these RNA-based mechanisms by which tolerant organisms respond to stressed conditions are not well understood. Recent studies have begun to show that non-coding RNAs control gene expression and translation of mRNA to protein, and can also have regulatory influence over major cellular processes. For example, select microRNAs have been shown to have regulatory influence over the cell cycle, apoptosis, signal transduction, muscle atrophy and fatty acid metabolism during periods of environmental stress. As we are on the verge of dissecting the roles of non-coding RNA in environmental stress adaptation, this Commentary summarizes the hallmark alterations in microRNA expression that facilitate stress survival.
Collapse
Affiliation(s)
- Kyle K. Biggar
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5C1
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
125
|
Li F, Gao B, Dong H, Shi J, Fang D. Icariin induces synoviolin expression through NFE2L1 to protect neurons from ER stress-induced apoptosis. PLoS One 2015; 10:e0119955. [PMID: 25806530 PMCID: PMC4373914 DOI: 10.1371/journal.pone.0119955] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/26/2014] [Indexed: 11/19/2022] Open
Abstract
By suppressing neuronal apoptosis, Icariin is a potential therapeutic drug for neuronal degenerative diseases. The molecular mechanisms of Icariin anti-apoptotic functions are still largely unclear. In this report, we found that Icariin induces the expression of Synoviolin, an endoplasmic reticulum (ER)-anchoring E3 ubiquitin ligase that functions as a suppressor of ER stress-induced apoptosis. The nuclear factor erythroid 2-related factor 1 (NFE2L1) is responsible for Icariin-mediated Synoviolin gene expression. Mutation of the NFE2L1-binding sites in a distal region of the Synoviolin promoter abolished Icariin-induced Synoviolin promoter activity, and knockdown of NFE2L1 expression prevented Icariin-stimulated Synoviolin expression. More importantly, Icariin protected ER stress-induced apoptosis of PC12 cells in a Synoviolin-dependent manner. Therefore, our study reveals Icariin-induced Synoviolin expression through NFE2L1 as a previously unappreciated molecular mechanism underlying the neuronal protective function of Icariin.
Collapse
Affiliation(s)
- Fei Li
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
- * E-mail: (FL); (DF)
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| |
Collapse
|
126
|
WU LEI, HUI HUI, WANG LIJUAN, WANG HAO, LIU QIUFANG, HAN SUXIA. MicroRNA-326 functions as a tumor suppressor in colorectal cancer by targeting the nin one binding protein. Oncol Rep 2015; 33:2309-18. [DOI: 10.3892/or.2015.3840] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/27/2015] [Indexed: 11/05/2022] Open
|
127
|
Differential expression of miRNAs and their relation to active tuberculosis. Tuberculosis (Edinb) 2015; 95:395-403. [PMID: 25936536 DOI: 10.1016/j.tube.2015.02.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/19/2015] [Indexed: 01/10/2023]
Abstract
The aim of this work was to screen miRNA signatures dysregulated in tuberculosis to improve our understanding of the biological role of miRNAs involved in the disease. Datasets deposited in publically available databases from microarray studies on infectious diseases and malignancies were retrieved, screened, and subjected to further analysis. Effect sizes were combined using the inverse-variance model and between-study heterogeneity was evaluated by the random effects model. 35 miRNAs were differentially expressed (12 up-regulated, 23 down-regulated; p < 0.05) by combining 15 datasets of tuberculosis and other infectious diseases. 15 miRNAs were found to be significantly differentially regulated (7 up-regulated, 8 down-regulated; p < 0.05) by combining 53 datasets of tuberculosis and malignancies. Most of the miRNA signatures identified in this study were found to be involved in immune responses and metabolism. Expression of these miRNA signatures in serum samples from TB subjects (n = 11) as well as healthy controls (n = 10) was examined by TaqMan miRNA array. Taken together, the results revealed differential expression of miRNAs in TB, but available datasets are limited and these miRNA signatures should be validated in future studies.
Collapse
|
128
|
Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A 2015; 112:E1106-15. [PMID: 25713380 DOI: 10.1073/pnas.1420955112] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two decades after the discovery of the first animal microRNA (miRNA), the number of miRNAs in animal genomes remains a vexing question. Here, we report findings from analyzing 1,323 short RNA sequencing samples (RNA-seq) from 13 different human tissue types. Using stringent thresholding criteria, we identified 3,707 statistically significant novel mature miRNAs at a false discovery rate of ≤ 0.05 arising from 3,494 novel precursors; 91.5% of these novel miRNAs were identified independently in 10 or more of the processed samples. Analysis of these novel miRNAs revealed tissue-specific dependencies and a commensurate low Jaccard similarity index in intertissue comparisons. Of these novel miRNAs, 1,657 (45%) were identified in 43 datasets that were generated by cross-linking followed by Argonaute immunoprecipitation and sequencing (Ago CLIP-seq) and represented 3 of the 13 tissues, indicating that these miRNAs are active in the RNA interference pathway. Moreover, experimental investigation through stem-loop PCR of a random collection of newly discovered miRNAs in 12 cell lines representing 5 tissues confirmed their presence and tissue dependence. Among the newly identified miRNAs are many novel miRNA clusters, new members of known miRNA clusters, previously unreported products from uncharacterized arms of miRNA precursors, and previously unrecognized paralogues of functionally important miRNA families (e.g., miR-15/107). Examination of the sequence conservation across vertebrate and invertebrate organisms showed 56.7% of the newly discovered miRNAs to be human-specific whereas the majority (94.4%) are primate lineage-specific. Our findings suggest that the repertoire of human miRNAs is far more extensive than currently represented by public repositories and that there is a significant number of lineage- and/or tissue-specific miRNAs that are uncharacterized.
Collapse
|
129
|
Wang C, Hu J, Lu M, Gu H, Zhou X, Chen X, Zen K, Zhang CY, Zhang T, Ge J, Wang J, Zhang C. A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci Rep 2015; 5:7610. [PMID: 25556603 PMCID: PMC5154588 DOI: 10.1038/srep07610] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/20/2014] [Indexed: 12/27/2022] Open
Abstract
Circulating microRNAs (miRNAs) are emerging as clinically useful tools for cancer detection; however, little is known about their early diagnostic impact on RCC. The levels of 754 serum miRNAs were initially determined using a TaqMan Low Density Array in two pooled samples from 25 RCC and 25 noncancer controls. Markedly dysregulated miRNAs in RCC cases were subsequently validated individually by qRT-PCR in another 107 patients and 107 controls arranged in two sets. The serum levels of miR-193a-3p, miR-362 and miR-572 were significantly increased whereas the levels of miR-28-5p and miR-378 were markedly decreased in patients with RCC, even in those with stage I disease, compared with the noncancer controls (P < 0.01). The areas under the ROC curve (AUCs) for the 5 combined miRNAs were 0.807 (95% CI, 0.687-0.928) and 0.796 (95% CI, 0.724-0.867) for the training set and the validation set, respectively. Furthermore, the panel enabled the differentiation of stage I RCC from controls with AUC of 0.807 (95% CI, 0.731-0.871), a sensitivity of 80% and a specificity of 71%. This panel of 5 serum miRNA may have the potential to be used clinically as an auxiliary diagnostic tool for the early detection of RCC.
Collapse
Affiliation(s)
- Cheng Wang
- 1] Department of Clinical Laboratory, Jinling Hospital, School of Life Sciences, Nanjing University, Nanjing 210002, China [2] Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jicheng Hu
- Department of Urology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Meiling Lu
- Department of Clinical Laboratory, Jinling Hospital, School of Life Sciences, Nanjing University, Nanjing 210002, China
| | - Hongwei Gu
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaojun Zhou
- Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Xi Chen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ke Zen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tiehui Zhang
- Department of Urology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Junjun Wang
- Department of Clinical Laboratory, Jinling Hospital, School of Life Sciences, Nanjing University, Nanjing 210002, China
| | - Chunni Zhang
- 1] Department of Clinical Laboratory, Jinling Hospital, School of Life Sciences, Nanjing University, Nanjing 210002, China [2] Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
130
|
Shi Y, Wang J, Xin Z, Duan Z, Wang G, Li F. Transcription factors and microRNA-co-regulated genes in gastric cancer invasion in ex vivo. PLoS One 2015; 10:e0122882. [PMID: 25860484 PMCID: PMC4393113 DOI: 10.1371/journal.pone.0122882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/24/2015] [Indexed: 01/09/2023] Open
Abstract
Aberrant miRNA expression abnormally modulates gene expression in cells and can contribute to tumorigenesis in humans. This study identified functionally relevant differentially expressed genes using the transcription factors and miRNA-co-regulated network analysis for gastric cancer. The TF-miRNA co-regulatory network was constructed based on data obtained from cDNA microarray and miRNA expression profiling of gastric cancer tissues. The network along with their co-regulated genes was analyzed using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Transcriptional Regulatory Element Database (TRED). We found eighteen (17 up-regulated and 1 down-regulated) differentially expressed genes that were co-regulated by transcription factors and miRNAs. KEGG pathway analysis revealed that these genes were part of the extracellular matrix-receptor interaction and focal adhesion signaling pathways. In addition, qRT- PCR and Western blot data showed an increase in COL1A1 and decrease in NCAM1 mRNA and protein levels in gastric cancer tissues. Thus, these data provided the first evidence to illustrate that altered gene network was associated with gastric cancer invasion. Further study with a large sample size and more functional experiments is needed to confirm these data and contribute to diagnostic and treatment strategies for gastric cancer.
Collapse
Affiliation(s)
- Yue Shi
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Jihan Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Zhuoyuan Xin
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Zipeng Duan
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Guoqing Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
- The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, China
- * E-mail: (GQW); (FL)
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
- The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, China
- * E-mail: (GQW); (FL)
| |
Collapse
|
131
|
|
132
|
Nazari-Jahantigh M, Egea V, Schober A, Weber C. MicroRNA-specific regulatory mechanisms in atherosclerosis. J Mol Cell Cardiol 2014; 89:35-41. [PMID: 25450610 DOI: 10.1016/j.yjmcc.2014.10.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
During the past decade, the crucial role of microRNAs (miRs) controlling tissue homeostasis and disease in the cardiovascular system has become widely recognized. By controlling the expression levels of their targets, several miRs have been shown to modulate the function of endothelial cells, vascular smooth muscle cells, and macrophages, thereby regulating the development and progression of atherosclerosis. For instance, miR-155 can exacerbate early stages of atherosclerosis by increasing the inflammatory activation and disturbing efficient lipid handling in macrophages. Conversely, miRs can exert atheroprotective roles, as has been established for the complementary miR-126 strand pair, which forms a dual system sustaining the endothelial proliferative reserve and promoting endothelial regeneration to counteract atherogenic effects of disturbed flow and hyperlipidemia. Under some conditions, miRs are released from cells and are transported by microvesicles, ribonucleoprotein complexes, and lipoproteins, being remarkably stable in circulation. Conferred by such delivery modules, miRs can regulate target mRNAs in recipient cells, representing a new tool for cell-cell communication in the context of atherosclerotic disease. Here, we will discuss novel aspects of miR-mediated regulatory mechanisms, namely the regulation by competing RNA targets, miRNA tandems, or complementary miR strand pairs, as well as their potential diagnostic and therapeutic value in atherosclerosis. This article is part of a Special Issue entitled 'Non-coding RNAs'.
Collapse
Affiliation(s)
| | - Virginia Egea
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
133
|
Choo KB, Soon YL, Nguyen PNN, Hiew MSY, Huang CJ. MicroRNA-5p and -3p co-expression and cross-targeting in colon cancer cells. J Biomed Sci 2014; 21:95. [PMID: 25287248 PMCID: PMC4195866 DOI: 10.1186/s12929-014-0095-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 09/26/2014] [Indexed: 12/11/2022] Open
Abstract
Background Two mature miRNA species may be generated from the 5’ and 3’ arms of a pre-miRNA precursor. In most cases, only one species remains while the complementary species is degraded. However, co-existence of miRNA-5p and -3p species is increasingly being reported. In this work, we aimed to systematically investigate co-expression of miRNA-5p/3p in colon cancer cells in a genome-wide analysis, and to examine cross-targeting of the dysregulated miRNAs and 5p/3p species. Results Four colon cancer cell lines were examined relative to two normal colon tissues. Of the 1,190 miRNAs analyzed, 92 and 36 were found to be up- or down-regulated, respectively, in cancer cells. Nineteen co-expressed miRNA-5p/3p pairs were further identified suggesting frequent 5p/3p co-accumulation in colon cancer cells. Of these, 14 pairs were co-up-regulated and 3 pairs were co-down-regulated indicating concerted 5p/3p dysregulation. Nine dysregulated miRNA pairs fell into three miRNA gene families, namely let-7, mir-8/200 and mir-17, which showed frequent cross-targeting in the metastasis process. Focusing on the let-7d-5p/3p pair, the respectively targeted IGF1R and KRAS were shown to be in a reverse relationship with expression of the respective miRNA, which was confirmed in transient transfection assays using let-7d mimic or inhibitor. Targeting of KRAS by let-7d was previous reported; targeting of IGF1R by let-7d-5p was confirmed in luciferase assays in this study. The findings of let-7d-5p/3p and multiple other miRNAs targeting IGF1R, KRAS and other metastasis-related factors suggest that 5p/3p miRNAs contribute to cross-targeting of multiple cancer-associated factors and processes possibly to evade functional abolishment when any one of the crucial factors are inactivated. Conclusions miRNA-5p/3p species are frequently co-expressed and are coordinately regulated in colon cancer cells. In cancer cells, multiple cross-targeting by the miRNAs, including the co-existing 5p/3p species, frequently occurs in an apparent safe-proof scheme of miRNA regulation of important tumorigenesis processes. Further systematic analysis of co-existing miRNA-5p/3p pairs in clinical tissues is important in elucidating 5p/3p contributions to cancer pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0095-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Chiu-Jung Huang
- Department of Animal Science, Graduate Institute of Biotechnology, School of Agriculture, Chinese Culture University, 55, Hwa-Kang Road, Yang Ming Shan 111, Taipei, Taiwan.
| |
Collapse
|
134
|
Ress AL, Stiegelbauer V, Winter E, Schwarzenbacher D, Kiesslich T, Lax S, Jahn S, Deutsch A, Bauernhofer T, Ling H, Samonigg H, Gerger A, Hoefler G, Pichler M. MiR-96-5p influences cellular growth and is associated with poor survival in colorectal cancer patients. Mol Carcinog 2014; 54:1442-50. [PMID: 25256312 DOI: 10.1002/mc.22218] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 12/11/2022]
Abstract
Expression of miR-96-5p is frequently altered in various types of cancer and the KRAS oncogene has been identified as one of its potential targets. However, the biological role of miR-96-5p expression in colorectal cancer (CRC) and its ability to predict the clinical course of patients have not been investigated yet. In this study, we explored miR-96-5p expression in 80 CRC patients and evaluated the impact on clinical outcome by Kaplan-Meier curves and multivariate Cox proportional models. In vitro miR-96-5p inhibition and overexpression were performed in CRC cells and the effects on cellular growth, anchorage-independent growth, apoptosis, and epithelial-mesenchymal transition (EMT)-related gene expression were explored. Low miR-96-5p expression levels in tumor tissue were associated with distant metastasis (P = 0.025) and multivariate Cox regression analysis identified low levels of miR-96-5p as an independent prognostic factor with respect to cancer-specific survival (hazard ratio = 1.78, 95%CI = 1.03-3.03, P < 0.038). In vitro overexpression of miR-96-5p led to a reduced cellular growth rate (P < 0.05), reduced colonies in soft agar (P < 0.05), corroborated by a decreased cyclin D1 and increased p27-CDKN1A expression (P < 0.05). Forced expression of miR-96-5p in CRC cells entailed no effects on apoptosis or EMT-related genes but decreased the expression levels of the KRAS oncogene (P < 0.05). Despite regulating KRAS expression, there was no significant association in miR-96-5p expression levels and response rates to EGFR-targeting agents. In conclusion, our data suggest that miR-96-5p influences cellular growth of CRC cells and low expression of miR-96-5p seems to be associated with poor clinical outcome in CRC patients.
Collapse
Affiliation(s)
- Anna Lena Ress
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Verena Stiegelbauer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Elke Winter
- Institute of Pathology, Medical University of Graz (MUG), Graz, Austria
| | - Daniela Schwarzenbacher
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Tobias Kiesslich
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Sigurd Lax
- Department of Pathology, General Hospital Graz West, Graz, Austria
| | - Stefan Jahn
- Institute of Pathology, Medical University of Graz (MUG), Graz, Austria
| | - Alexander Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz (MUG), Austria
| | - Thomas Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hellmut Samonigg
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz (MUG), Graz, Austria
| | - Martin Pichler
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
135
|
Sun HB, Chen X, Ji H, Wu T, Lu HW, Zhang Y, Li H, Li YM. miR‑494 is an independent prognostic factor and promotes cell migration and invasion in colorectal cancer by directly targeting PTEN. Int J Oncol 2014; 45:2486-94. [PMID: 25270723 DOI: 10.3892/ijo.2014.2665] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/05/2014] [Indexed: 01/11/2023] Open
Abstract
Accumulating evidence has shown that micro-RNAs (miRNAs) are involved in multiple processes in cancer development and progression. Upregulation of miRNA-494 (miR-494) has been identified as an oncogenic miRNA and is associated with poor prognosis in several types of human cancer. However, the specific function of miR-494 in colorectal cancer remains unclear. In this study we found that the expression of miR-494 in colorectal cancer tissues and cell lines was much higher than in normal control tissues and cells, respectively. In addition, upregulation of miR-494 more frequently occurred in tissue specimens with adverse clinical stage and the presence of distant metastasis. Moreover, multivariate survival analyses demonstrated that overexpression of miR-494 is an independent prognostic factor for both progression-free and overall survival. In addition miR-494 promoted invasion and migration in colorectal cancer cells, and miR-494 directly inhibited the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression by targeting its 3'-untranslated region (3'-UTR). Moreover, PTEN is down regulated and inversely correlated with miR-494 expression in tissues. Thus, for the first time, we provided convincing evidence that upregulation of miR-494 was associated with tumor aggressiveness and tumor metastasis and promoted cell migration and invasion by targeting PTEN gene in colorectal cancer, and miR-494 is an independent prognostic marker for colorectal cancer patients.
Collapse
Affiliation(s)
- Hai-Bing Sun
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hong Ji
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tao Wu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hong-Wei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hua Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yi-Ming Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
136
|
Shen K, Mao R, Ma L, Li Y, Qiu Y, Cui D, Le V, Yin P, Ni L, Liu J. Post-transcriptional regulation of the tumor suppressor miR-139-5p and a network of miR-139-5p-mediated mRNA interactions in colorectal cancer. FEBS J 2014; 281:3609-24. [PMID: 24942287 DOI: 10.1111/febs.12880] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/04/2014] [Accepted: 06/10/2014] [Indexed: 01/02/2023]
Abstract
MicroRNAs play key roles in many biological processes, and are frequently dysregulated in tumor cells. However, there are few studies on how microRNAs are dysregulated. miR-139-5p, an important tumor suppressor, is often underexpressed in gastrointestinal cancer cells. Here, we describe post-transcriptional regulation of this intronic microRNA in human colorectal cancer. miR-139-5p is expressed independently of its overexpressed host gene PDE2A in colorectal cancer tissues and cell lines. The miR-139-5p target genes IGF1R, ROCK2 and RAP1B exert regulatory effects on the miR-139-5p expression level, relying on their ability to compete for miR-139-5p binding. These overexpressed target genes also regulate each others' protein levels through 3'-UTRs, thus regulating tumor cell growth and motility properties. Our study provides a mechanistic, experimentally validated rationale for intronic microRNA dysregulation in colorectal cancer, revealing novel oncogenic roles of IGF1R, ROCK2 and RAP1B 3'-UTRs.
Collapse
Affiliation(s)
- Ke Shen
- Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Zheng YB, Luo HP, Shi Q, Hao ZN, Ding Y, Wang QS, Li SB, Xiao GC, Tong SL. miR-132 inhibits colorectal cancer invasion and metastasis via directly targeting ZEB2. World J Gastroenterol 2014; 20:6515-6522. [PMID: 24914372 PMCID: PMC4047336 DOI: 10.3748/wjg.v20.i21.6515] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/04/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the biological role and underlying mechanism of miR-132 in colorectal cancer (CRC) progression and invasion.
METHODS: Quantitative RT-PCR analysis was used to examine the expression levels of miR-132 in five CRC cell lines (SW480, SW620, HCT116, HT29 and LoVo) and a normal colonic cell line NCM460, as well as in tumor tissues with or without metastases. The Kaplan-Meier method was used to analyze the prognostic significance of miR-132 in CRC patients. The biological effects of miR-132 were assessed in CRC cell lines using the transwell assay. Quantitative RT-PCR and western blot analyses were employed to evaluate the expression of miR-132 targets. The regulation of ZEB2 by miR-132 was confirmed using the luciferase activity assay.
RESULTS: miR-132 was significantly down-regulated in the CRC cell lines compared with the normal colonic cell line (P < 0.05), as well as in the CRC tissues with distant metastases compared with the tissues without metastases (10.52 ± 4.69 vs 23.11 ± 7.84) (P < 0.001). Down-regulation of miR-132 was associated with tumor size (P = 0.016), distant metastasis (P = 0.002), and TNM stage (P = 0.020) in CRC patients. Kaplan-Meier survival curve analysis indicated that patients with low expression of miR-132 tended to have worse disease-free survival than patients with high expression of miR-132 (P < 0.001). Moreover, ectopic expression of miR-132 markedly inhibited cell invasion (P < 0.05) and the epithelial-mesenchymal transition (EMT) in CRC cell lines. Further investigation revealed ZEB2, an EMT regulator, was a downstream target of miR-132.
CONCLUSION: Our study indicated that miR-132 plays an important role in the invasion and metastasis of CRC.
Collapse
|
138
|
MicroRNA 28 controls cell proliferation and is down-regulated in B-cell lymphomas. Proc Natl Acad Sci U S A 2014; 111:8185-90. [PMID: 24843176 DOI: 10.1073/pnas.1322466111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Burkitt lymphoma (BL) is a highly aggressive B-cell non-Hodgkin lymphoma (B-NHL), which originates from germinal center (GC) B cells and harbors translocations deregulating v-myc avian myelocytomatosis viral oncogene homolog (MYC). A comparative analysis of microRNAs expressed in normal and malignant GC B cells identified microRNA 28 (miR-28) as significantly down-regulated in BL, as well as in other GC-derived B-NHL. We show that reexpression of miR-28 impairs cell proliferation and clonogenic properties of BL cells by modulating several targets including MAD2 mitotic arrest deficient-like 1, MAD2L1, a component of the spindle checkpoint whose down-regulation is essential in mediating miR-28-induced proliferation arrest, and BCL2-associated athanogene, BAG1, an activator of the ERK pathway. We identify the oncogene MYC as a negative regulator of miR-28 expression, suggesting that its deregulation by chromosomal translocation in BL leads to miR-28 suppression. In addition, we show that miR-28 can inhibit MYC-induced transformation by directly targeting genes up-regulated by MYC. Overall, our data suggest that miR-28 acts as a tumor suppressor in BL and that its repression by MYC contributes to B-cell lymphomagenesis.
Collapse
|
139
|
Salas-Huetos A, Blanco J, Vidal F, Mercader JM, Garrido N, Anton E. New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril 2014; 102:213-222.e4. [PMID: 24794309 DOI: 10.1016/j.fertnstert.2014.03.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To characterize the microRNA (miRNA) expression profile in spermatozoa from human fertile individuals and their implications in human fertility. DESIGN The expression levels of 736 miRNAs were evaluated using TaqMan arrays. Ontologic analyses were performed to determine the presence of enriched biological processes among their targets. SETTING University research and clinical institutes. PATIENT(S) Ten individuals with normal seminogram, standard karyotype, and proven fertility. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Expression levels of 736 miRNAs, presence of enriched metabolic routes among their targets, homogeneity of the population, influence of demographic features in the results, presence of miRNA stable pairs, and best miRNA normalizing candidates. RESULT(S) A total of 221 miRNAs were consistently present in all individuals, 452 were only detected in some individuals, and 63 did not appear in any sample. The ontologic analysis of the 2,356 potential targets of the ubiquitous miRNAs showed an enrichment of processes related to cell differentiation, development, morphogenesis, and embryogenesis. None of the miRNAs were significantly correlated with age, semen volume, sperm concentration, motility, or morphology. Correlations between samples were statistically significant, indicating a high homogeneity of the population. A set of 48 miRNA pairs displayed a stable expression, a particular behavior that is discussed in relationship to their usefulness as fertility biomarkers. Hsa-miR-532-5p, hsa-miR-374b-5p, and hsa-miR-564 seemed to be the best normalizing miRNA candidates. CONCLUSION(S) Human sperm contain a stable population of miRNAs potentially related to embryogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Albert Salas-Huetos
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Joan Blanco
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Francesca Vidal
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Josep M Mercader
- Joint Institution for Research in Biomedicine-Barcelona Supercomputing Center Program on Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Nicolás Garrido
- Laboratorio de Andrología y Banco de Semen, Instituto Valenciano de Infertilidad Valencia, Valencia, Spain
| | - Ester Anton
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.
| |
Collapse
|
140
|
Song Q, Xu Y, Yang C, Chen Z, Jia C, Chen J, Zhang Y, Lai P, Fan X, Zhou X, Lin J, Li M, Ma W, Luo S, Bai X. miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM. Cancer Res 2014; 74:3031-42. [PMID: 24710410 DOI: 10.1158/0008-5472.can-13-2193] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nodal regulatory properties of microRNAs (miRNA) in metastatic cancer may offer new targets for therapeutic control. Here, we report that upregulation of miR-483-5p is correlated with the progression of human lung adenocarcinoma. miR-483-5p promotes the epithelial-mesenchymal transition (EMT) accompanied by invasive and metastatic properties of lung adenocarcinoma. Mechanistically, miR-483-5p is activated by the WNT/β-catenin signaling pathway and exerts its prometastatic function by directly targeting the Rho GDP dissociation inhibitor alpha (RhoGDI1) and activated leukocyte cell adhesion molecule (ALCAM), two putative metastasis suppressors. Furthermore, we found that downregulation of RhoGDI1 enhances expression of Snail, thereby promoting EMT. Importantly, miR-483-5p levels are positively correlated with β-catenin expression, but are negatively correlated with the levels of RhoGDI1 and ALCAM in human lung adenocarcinoma. Our findings reveal that miR-483-5p is a critical β-catenin-activated prometastatic miRNA and a negative regulator of the metastasis suppressors RhoGDI1 and ALCAM.
Collapse
Affiliation(s)
- Qiancheng Song
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Yuanfei Xu
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Cuilan Yang
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Zhenguo Chen
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Chunhong Jia
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Juan Chen
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Pinglin Lai
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Xiaorong Fan
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Jun Lin
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Ming Li
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Wenli Ma
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Shenqiu Luo
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Authors' Affiliations: Department of Cell Biology, School of Basic Medical Sciences; and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
141
|
Klein S, Lee H, Ghahremani S, Kempert P, Ischander M, Teitell MA, Nelson SF, Martinez-Agosto JA. Expanding the phenotype of mutations in DICER1: mosaic missense mutations in the RNase IIIb domain of DICER1 cause GLOW syndrome. J Med Genet 2014; 51:294-302. [PMID: 24676357 DOI: 10.1136/jmedgenet-2013-101943] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Constitutional DICER1 mutations have been associated with pleuropulmonary blastoma, cystic nephroma, Sertoli-Leydig tumours and multinodular goitres, while somatic DICER1 mutations have been reported in additional tumour types. Here we report a novel syndrome termed GLOW, an acronym for its core phenotypic findings, which include Global developmental delay, Lung cysts, Overgrowth and Wilms tumour caused by mutations in the RNase IIIb domain of DICER1. METHODS AND RESULTS We performed whole exome sequencing on peripheral mononuclear blood cells of an affected proband and identified a de novo missense mutation in the RNase IIIb domain of DICER1. We confirmed an additional de novo missense mutation in the same domain of an unrelated case by Sanger sequencing. These missense mutations in the RNase IIIb domain of DICER1 are suspected to affect one of four metal binding sites located within this domain. Pyrosequencing was used to determine the relative abundance of mutant alleles in various tissue types. The relative mutation abundance is highest in Wilms tumour and unaffected kidney samples when compared with blood, confirming that the mutation is mosaic. Finally, we performed bioinformatic analysis of microRNAs expressed in murine cells carrying specific Dicer1 RNase IIIb domain metal binding site-associated mutations. We have identified a subset of 3p microRNAs that are overexpressed whose target genes are over-represented in mTOR, MAPK and TGF-β signalling pathways. CONCLUSIONS We propose that mutations affecting the metal binding sites of the DICER1 RNase IIIb domain alter the balance of 3p and 5p microRNAs leading to deregulation of these growth signalling pathways, causing a novel human overgrowth syndrome.
Collapse
Affiliation(s)
- Steven Klein
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Palanichamy JK, Rao DS. miRNA dysregulation in cancer: towards a mechanistic understanding. Front Genet 2014; 5:54. [PMID: 24672539 PMCID: PMC3957189 DOI: 10.3389/fgene.2014.00054] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/02/2014] [Indexed: 12/17/2022] Open
Abstract
It is now well known that gene expression is intricately regulated inside each cell especially in mammals. There are multiple layers of gene regulation active inside a cell at a given point of time. Gene expression is regulated post-transcriptionally by microRNAs and other factors. Mechanistically, microRNAs are known to bind to the 3’ UTR of mRNAs and cause repression of gene expression and the number of known microRNAs continues to increase every day. Dysregulated microRNA signatures in different types of cancer are being uncovered consistently implying their importance in cellular homeostasis. However when studied in isolation in mouse models, clear-cut cellular and molecular mechanisms have been described only for a select few microRNAs. What is the reason behind this discrepancy? Are microRNAs small players in gene regulation helping only to fine tune gene expression? Or are their roles tissue and cell type-specific with single-cell level effects on mRNA expression and microRNA threshold levels? Or does it all come down to the technical limitations of high-throughput techniques, resulting in false positive results? In this review, we will assess the challenges facing the field and potential avenues for resolving the cellular and molecular mechanisms of these small but important regulators of gene expression.
Collapse
Affiliation(s)
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, CA, USA ; Jonsson Comprehensive Cancer Center, University of California Los Angeles, CA, USA ; Broad Stem Cell Research Center, University of California Los Angeles, CA, USA ; Division of Biology, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
143
|
MiR-200a regulates epithelial to mesenchymal transition-related gene expression and determines prognosis in colorectal cancer patients. Br J Cancer 2014; 110:1614-21. [PMID: 24504363 PMCID: PMC3960623 DOI: 10.1038/bjc.2014.51] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 02/07/2023] Open
Abstract
Background: MicroRNAs (miRNAs) regulate the biological properties of colorectal cancer (CRC) cells and might serve as potential prognostic factors and therapeutic targets. In this study, we therefore globally profiled miRNAs associated with E-cadherin expression in CRC cells in an attempt to identify miRNAs that are associated with aggressive clinical course in CRC patients. Methods: Two CRC cell lines (Caco-2 and HRT-18) with different E-cadherin expression pattern were profiled for differences in abundance for more than 1000 human miRNAs using microarray technology. One of the most differentially expressed miRNAs, miR-200a was evaluated for its prognostic role in a cohort of 111 patients and independently validated in 217 patients of the Cancer Genome Atlas data set. To further characterise the biological role of miR-200a expression in CRC, in vitro miR-200a inhibition and overexpression were performed and the effects on cellular growth, apoptosis and epithelial–mesenchymal transition (EMT)-related gene expression were explored. Results: In situ hybridisation specifically localised miR-200a in CRC cells. In both cohorts, a low miR-200a expression was associated with poor survival (P<0.05). Multivariate Cox regression analysis identified low levels of miR-200a expression as an independent prognostic factor with respect to cancer-specific survival (HR=2.04, CI=1.28–3.25, P<0.002). Gain and loss of function assays for miR-200a in vitro led to a significantly differential and converse expression of EMT-related genes (P<0.001.) A low expression of miR-200a was also observed in cancer stem cell-enriched spheroid growth conditions (P<0.05). Conclusions: In conclusion, our data suggest that low miR-200a expression is associated with poor prognosis in CRC patients. MiR-200a has a regulatory effect on EMT and is associated with cancer stem cell properties in CRC.
Collapse
|
144
|
Hell MP, Thoma CR, Fankhauser N, Christinat Y, Weber TC, Krek W. miR-28-5p Promotes Chromosomal Instability in VHL-Associated Cancers by Inhibiting Mad2 Translation. Cancer Res 2014; 74:2432-43. [DOI: 10.1158/0008-5472.can-13-2041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
145
|
Yu T, Li J, Yan M, Liu L, Lin H, Zhao F, Sun L, Zhang Y, Cui Y, Zhang F, Li J, He X, Yao M. MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene 2014; 34:413-23. [PMID: 24469061 DOI: 10.1038/onc.2013.574] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022]
Abstract
The metastatic cascade is a complex and multistep process with many potential barriers. Recent evidence has shown that microRNAs (miRNAs) are involved in carcinogenesis and tumor progression in non-small-cell lung cancer (NSCLC). In this study, by comparing the miRNA expression profiles of SPC-A-1sci (high metastatic) and SPC-A-1 (weakly metastatic) cells, we demonstrated that the downregulation and function of miR-193a-3p and miR-193a-5p in NSCLC metastasis and the expression of these miRNAs was suppressed in NSCLC compared with corresponding non-tumorous tissues. Decreased miR-193a-3p/5p expression was significantly associated with tumor node metastasis (TNM) and lymph node metastasis. Furthermore, functional assays showed that the overexpression of miR-193a-3p/5p inhibited NSCLC cell migration, invasion and epithelial-mesenchymal transition (EMT) in vitro and lung metastasis formation in vivo. In addition, we discovered that ERBB4 and S6K2 were the direct targets of miR-193a-3p and that PIK3R3 and mTOR were the direct targets of miR-193a-5p in NSCLC. We also observed that miR-193a-3p/5p could inactivate the AKT/mTOR signaling pathway. Thus, miR-193a-3p/5p functions as a tumor suppressor and has an important role in NSCLC metastasis through ERBB signaling pathway.
Collapse
Affiliation(s)
- T Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - M Yan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - H Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - F Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Cui
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - F Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - M Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
146
|
Leung CM, Li SC, Chen TW, Ho MR, Hu LY, Liu WS, Wu TT, Hsu PC, Chang HT, Tsai KW. Comprehensive microRNA profiling of prostate cancer cells after ionizing radiation treatment. Oncol Rep 2014; 31:1067-78. [PMID: 24452514 PMCID: PMC3926670 DOI: 10.3892/or.2014.2988] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/23/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression and have emerged as potential biomarkers in radiation response to human cancer. Only a few miRNAs have been identified in radiation response to prostate cancer and the involvement of the radiation-associated miRNA machinery in the response of prostate cancer cells to radiation is not thoroughly understood. Therefore, the purpose of the present study was to comprehensively investigate the expression levels, arm selection preference and isomiRs of radiation-response miRNAs in radiation-treated PC3 cells using a next-generation sequencing (NGS) approach. Our data revealed that the arm selection preference and 3′ modification of miRNAs may be altered in prostate cancer after radiation exposure. In addition, the proportion of AA dinucleotide modifications at the end of the read gradually increased in a time-dependent manner after PC3 radiation treatment. We also identified 6 miRNAs whose expression increased and 16 miRNAs whose expression decreased after exposure to 10 Gy of radiation. A pathway enrichment analysis revealed that the target genes of these radiation-induced miRNAs significantly co-modulated the radiation response pathway, including the mitogen-activated protein kinase (MAPK), Wnt, transforming growth factor-β (TGF-β) and ErbB signaling pathways. Furthermore, analysis of The Cancer Genome Atlas (TCGA) database revealed that the expression of these radiation-induced miRNAs was frequently dysregulated in prostate cancer. Our study identified radiation-induced miRNA candidates which may contribute to radiosensitivity and can be used as biomarkers for radiotherapy.
Collapse
Affiliation(s)
- Chung-Man Leung
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, R.O.C
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, R.O.C
| | - Meng-Ru Ho
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Ling-Yueh Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Wen-Shan Liu
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Tony T Wu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan, R.O.C
| | - Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| |
Collapse
|
147
|
Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2014; 12:847-65. [PMID: 24172333 DOI: 10.1038/nrd4140] [Citation(s) in RCA: 1155] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first cancer-targeted microRNA (miRNA) drug - MRX34, a liposome-based miR-34 mimic - entered Phase I clinical trials in patients with advanced hepatocellular carcinoma in April 2013, and miRNA therapeutics are attracting special attention from both academia and biotechnology companies. Although miRNAs are the most studied non-coding RNAs (ncRNAs) to date, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognized. Here, we summarize the roles of miRNAs and lncRNAs in cancer, with a focus on the recently identified novel mechanisms of action, and discuss the current strategies in designing ncRNA-targeting therapeutics, as well as the associated challenges.
Collapse
Affiliation(s)
- Hui Ling
- 1] Experimental Therapeutics and Leukemia Department, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA. [2]
| | | | | |
Collapse
|
148
|
Huang CJ, Nguyen PNN, Choo KB, Sugii S, Wee K, Cheong SK, Kamarul T. Frequent co-expression of miRNA-5p and -3p species and cross-targeting in induced pluripotent stem cells. Int J Med Sci 2014; 11:824-33. [PMID: 24936146 PMCID: PMC4057479 DOI: 10.7150/ijms.8358] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 05/14/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A miRNA precursor generally gives rise to one major miRNA species derived from the 5' arm, and are called miRNA-5p. However, more recent studies have shown co-expression of miRNA-5p and -3p, albeit in different concentrations, in cancer cells targeting different sets of transcripts. Co-expression and regulation of the -5p and -3p miRNA species in stem cells, particularly in the reprogramming process, have not been studied. METHODS In this work, we investigated co-expression and regulation of miRNA-5p and -3p species in human induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs) and embryonic stem cells (ESC) using a nanoliter-scale real-time PCR microarray platform that included 1,036 miRNAs. RESULTS In comparing iPSC and ESC, only 32 miRNAs were found to be differentially expressed, in agreement of the ESC-like nature of iPSC. In the analysis of reprogramming process in iPSCs, 261 miRNAs were found to be differentially expressed compared with the parental MSC and pre-adipose tissue, indicating significant miRNA alternations in the reprogramming process. In iPSC reprogrammed from MSC, there were 88 miRNAs (33.7%), or 44 co-expressed 5p/3p pairs, clearly indicating frequent co-expression of both miRNA species on reprogramming. Of these, 40 pairs were either co-up- or co-downregulated indicating concerted 5p/3p regulation. The 5p/3p species of only 4 pairs were regulated in reverse directions. Furthermore, some 5p/3p species of the same miRNAs were found to target the same transcript and the same miRNA may cross-target different transcripts of proteins of the G1/S transition of the cell cycle; 5p/3p co-targeting was confirmed in stem-loop RT-PCR. CONCLUSION The observed cross- and co-regulation by paired miRNA species suggests a fail-proof scheme of miRNA regulation in iPSC, which may be important to iPSC pluripotency.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- 1. Department of Animal Science & Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Phan Nguyen Nhi Nguyen
- 2. Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Faculty of Medicine and Health Sciences, Kajang, Selangor, Malaysia
| | - Kong Bung Choo
- 2. Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Faculty of Medicine and Health Sciences, Kajang, Selangor, Malaysia; ; 3. Department of Preclinical Sciences, Universiti Tunku Abdul Rahman, Faculty of Medicine and Health Sciences, Kajang, Selangor, Malaysia
| | - Shigeki Sugii
- 4. Singapore BioImaging Consortium, Singapore; ; 5. Duke-NUS Graduate Medical School, Singapore
| | - Kenneth Wee
- 4. Singapore BioImaging Consortium, Singapore
| | - Soon Keng Cheong
- 2. Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Faculty of Medicine and Health Sciences, Kajang, Selangor, Malaysia; ; 6. Dean's Office, Universiti Tunku Abdul Rahman, Faculty of Medicine and Health Sciences, Kajang, Selangor, Malaysia
| | - Tunku Kamarul
- 7. Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
149
|
Guennewig B, Roos M, Dogar AM, Gebert LF, Zagalak JA, Vongrad V, Metzner KJ, Hall J. Synthetic pre-microRNAs reveal dual-strand activity of miR-34a on TNF-α. RNA (NEW YORK, N.Y.) 2014; 20:61-75. [PMID: 24249224 PMCID: PMC3866645 DOI: 10.1261/rna.038968.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
Functional microRNAs (miRNAs) are produced from both arms of their precursors (pre-miRNAs). Their abundances vary in context-dependent fashion spatiotemporarily and there is mounting evidence of regulatory interplay between them. Here, we introduce chemically synthesized pre-miRNAs (syn-pre-miRNAs) as a general class of accessible, easily transfectable mimics of pre-miRNAs. These are RNA hairpins, identical in sequence to natural pre-miRNAs. They differ from commercially available miRNA mimics through their complete hairpin structure, including any regulatory elements in their terminal-loop regions and their potential to introduce both strands into RISC. They are distinguished from transcribed pre-miRNAs by their terminal 5' hydroxyl groups and their precisely defined terminal nucleotides. We demonstrate with several examples how they fully recapitulate the properties of pre-miRNAs, including their processing by Dicer into functionally active 5p; and 3p-derived mature miRNAs. We use syn-pre-miRNAs to show that miR-34a uses its 5p and 3p miRNAs in two pathways: apoptosis during TGF-β signaling, where SIRT1 and SP4 are suppressed by miR-34a-5p and miR-34a-3p, respectively; and the lipopolysaccharide (LPS)-activation of primary human monocyte-derived macrophages, where TNF (TNFα) is suppressed by miR-34a-5p indirectly and miR-34a-3p directly. Our results add to growing evidence that the use of both arms of a miRNA may be a widely used mechanism. We further suggest that syn-pre-miRNAs are ideal and affordable tools to investigate these mechanisms.
Collapse
Affiliation(s)
- Boris Guennewig
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Martina Roos
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Afzal M. Dogar
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Luca F.R. Gebert
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Julian A. Zagalak
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Valentina Vongrad
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
150
|
Yan S, Wang J, Zhang W, Dai J. Circulating microRNA profiles altered in mice after 28d exposure to perfluorooctanoic acid. Toxicol Lett 2014; 224:24-31. [DOI: 10.1016/j.toxlet.2013.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|