101
|
McLaughlin HM, Kelly MA, Hawley PP, Darras BT, Funke B, Picker J. Compound heterozygosity of predicted loss-of-function DES variants in a family with recessive desminopathy. BMC MEDICAL GENETICS 2013; 14:68. [PMID: 23815709 PMCID: PMC3711885 DOI: 10.1186/1471-2350-14-68] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 06/24/2013] [Indexed: 11/29/2022]
Abstract
Background Variants in the desmin gene (DES) are associated with desminopathy; a myofibrillar myopathy mainly characterized by muscle weakness, conduction block, and dilated cardiomyopathy. To date, only ~50 disease-associated variants have been described, and the majority of these lead to dominant-negative effects. However, the complete genotypic spectrum of desminopathy is not well established. Case presentation Next-generation sequencing was performed on 51 cardiac disease genes in a proband with profound skeletal myopathy, dilated cardiomyopathy, and respiratory dysfunction. Our analyses revealed compound heterozygous DES variants, both of which are predicted to lead to a loss-of-function. Consistent with recessive inheritance, each variant was identified in an unaffected parent. Conclusions This case report serves to broaden the variant spectrum of desminopathies and provides insight into the molecular mechanisms of desminopathy, supporting distinct dominant-negative and loss-of-function etiologies.
Collapse
Affiliation(s)
- Heather M McLaughlin
- Laboratory for Molecular Medicine, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
102
|
Recessive desmin-null muscular dystrophy with central nuclei and mitochondrial abnormalities. Acta Neuropathol 2013; 125:917-9. [PMID: 23575897 DOI: 10.1007/s00401-013-1113-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 01/23/2023]
|
103
|
Cetin N, Balci-Hayta B, Gundesli H, Korkusuz P, Purali N, Talim B, Tan E, Selcen D, Erdem-Ozdamar S, Dincer P. A novel desmin mutation leading to autosomal recessive limb-girdle muscular dystrophy: distinct histopathological outcomes compared with desminopathies. J Med Genet 2013; 50:437-43. [DOI: 10.1136/jmedgenet-2012-101487] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
104
|
Joanne P, Chourbagi O, Hourdé C, Ferry A, Butler-Browne G, Vicart P, Dumonceaux J, Agbulut O. Viral-mediated expression of desmin mutants to create mouse models of myofibrillar myopathy. Skelet Muscle 2013; 3:4. [PMID: 23425003 PMCID: PMC3599656 DOI: 10.1186/2044-5040-3-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/28/2013] [Indexed: 12/26/2022] Open
Abstract
Background The clinical features of myofibrillar myopathies display a wide phenotypic heterogeneity. To this date, no studies have evaluated this parameter due to the absence of pertinent animal models. By studying two mutants of desmin, which induce subtle phenotypic differences in patients, we address this issue using an animal model based on the use of adeno-associated virus (AAV) vectors carrying mutated desmin cDNA. Methods After preparation of the vectors, they were injected directly into the tibialis anterior muscles of C57BL/6 mice to allow expression of wild-type (WT) or mutated (R406W or E413K) desmin. Measurements of maximal force were carried out on the muscle in situ and then the injected muscles were analyzed to determine the structural consequences of the desmin mutations on muscle structure (microscopic observations, histology and immunohistochemistry). Results Injection of AAV carrying WT desmin results in the expression of exogenous desmin in 98% of the muscle fibers without any pathological or functional perturbations. Exogenous WT and endogenous desmin are co-localized and no differences were observed compared to non-injected muscle. Expression of desmin mutants in mouse muscles induce morphological changes of muscle fibers (irregular shape and size) and the appearance of desmin accumulations around the nuclei (for R406W) or in subsarcolemmal regions of fibers (for E413K). These accumulations seem to occur and disrupt the Z-line, and a strong regeneration was observed in muscle expressing the R406W desmin, which is not the case for E413K. Moreover, both mutants of desmin studied here induce a decrease in muscle force generation capacity. Conclusions In this study we show that AAV-mediated expression of desmin mutants in mouse muscles recapitulate the aggregation features, the decrease in contractile function and the morphological changes observed in patients with myofibrillar myopathy. More importantly, our results suggest that the R406W desmin mutant induces a robust muscle regeneration, which is not the case for the E413K mutant. This difference could help to explain the phenotypic differences observed in patients. Our results highlight the heterogeneous pathogenic mechanisms between different desmin mutants and open the way for new advances in the study of myofibrillar myopathies.
Collapse
Affiliation(s)
- Pierre Joanne
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, 75013, Paris, France
| | - Oussama Chourbagi
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, 75013, Paris, France
| | - Christophe Hourdé
- Department of Aging, Stress and Inflammation, Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, 75005, Paris, France
| | - Arnaud Ferry
- Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, 75013, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Gillian Butler-Browne
- Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, 75013, Paris, France
| | - Patrick Vicart
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, 75013, Paris, France
| | - Julie Dumonceaux
- Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, 75013, Paris, France
| | - Onnik Agbulut
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, 75013, Paris, France
| |
Collapse
|
105
|
Lakdawala NK, Winterfield JR, Funke BH. Dilated cardiomyopathy. Circ Arrhythm Electrophysiol 2013; 6:228-37. [PMID: 23022708 PMCID: PMC3603701 DOI: 10.1161/circep.111.962050] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 06/22/2012] [Indexed: 12/18/2022]
MESH Headings
- Animals
- Cardiomyopathy, Dilated/diagnosis
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Cardiomyopathy, Dilated/therapy
- Death, Sudden, Cardiac/pathology
- Death, Sudden, Cardiac/prevention & control
- Defibrillators, Implantable
- Electric Countershock/instrumentation
- Genetic Predisposition to Disease
- Genetic Testing
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Failure/physiopathology
- Heart Failure/therapy
- Humans
- Phenotype
- Treatment Outcome
Collapse
Affiliation(s)
- Neal K Lakdawala
- Brigham and Women's Hospital & Boston VA Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
106
|
Lorenzon A, Beffagna G, Bauce B, De Bortoli M, Li Mura IE, Calore M, Dazzo E, Basso C, Nava A, Thiene G, Rampazzo A. Desmin mutations and arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol 2013; 111:400-5. [PMID: 23168288 PMCID: PMC3554957 DOI: 10.1016/j.amjcard.2012.10.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 01/28/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease characterized by fibrofatty replacement of the myocardium and ventricular arrhythmias, associated with mutations in the desmosomal genes. Only a missense mutation in the DES gene coding for desmin, the intermediate filament protein expressed by cardiac and skeletal muscle cells, has been recently associated with ARVC. We screened 91 ARVC index cases (53 negative for mutations in desmosomal genes and an additional 38 carrying desmosomal gene mutations) for DES mutations. Two rare missense variants were identified. The heterozygous p.K241E substitution was detected in 1 patient affected with a severe form of ARVC who also carried the p.T816RfsX10 mutation in plakophilin-2 gene. This DES substitution, showing an allele frequency of <0.01 in the control population, is predicted to cause an intolerant amino acid change in a highly conserved protein domain. Thus, it can be considered a rare variant with a possible modifier effect on the phenotypic expression of the concomitant mutation. The previously known p.A213V substitution was identified in 1 patient with ARVC who was negative for mutations in the desmosomal genes. Because a greater prevalence of p.A213V has been reported in patients with heart dilation than in control subjects, the hypothesis that this rare variant could have an unfavorable effect on cardiac remodeling cannot be ruled out. In conclusion, our data help to establish that, in the absence of skeletal muscle involvement suggestive of a desminopathy, the probability of DES mutations in ARVC is very low. These findings have important implications in the mutation screening strategy for patients with ARVC.
Collapse
Affiliation(s)
| | | | - Barbara Bauce
- Department of Cardiothoracic-Vascular Sciences, University of Padua, Padua, Italy
| | | | | | - Martina Calore
- Department of Biology, University of Padua, Padua, Italy
| | - Emanuela Dazzo
- Department of Biology, University of Padua, Padua, Italy
| | - Cristina Basso
- Department of Cardiothoracic-Vascular Sciences, University of Padua, Padua, Italy
| | - Andrea Nava
- Department of Cardiothoracic-Vascular Sciences, University of Padua, Padua, Italy
| | - Gaetano Thiene
- Department of Cardiothoracic-Vascular Sciences, University of Padua, Padua, Italy
| | | |
Collapse
|
107
|
Tse HF, Ho JCY, Choi SW, Lee YK, Butler AW, Ng KM, Siu CW, Simpson MA, Lai WH, Chan YC, Au KW, Zhang J, Lay KWJ, Esteban MA, Nicholls JM, Colman A, Sham PC. Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Hum Mol Genet 2013; 22:1395-403. [PMID: 23300193 DOI: 10.1093/hmg/dds556] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this paper, we report a novel heterozygous mutation of A285V codon conversion on exon 4 of the desmin (DES), using whole exome sequencing (WES) in an isolated proband with documented dilated cardiomyopathy (DCM). This mutation is predicted to cause three-dimensional structure changes of DES. Immunohistological and electron microscopy studies demonstrated diffuse abnormal DES aggregations in DCM-induced-pluripotent stem cell (iPSC)-derived cardiomyocytes, and control-iPSC-derived cardiomyocytes transduced with A285V-DES. DCM-iPSC-derived cardiomyocytes also exhibited functional abnormalities in vitro. This is the first demonstration that patient-specific iPSC-derived cardiomyocytes can be used to provide histological and functional confirmation of a suspected genetic basis for DCM identified by WES.
Collapse
Affiliation(s)
- Hung-Fat Tse
- Cardiology Division, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Desminopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:47-75. [PMID: 23143191 PMCID: PMC3535371 DOI: 10.1007/s00401-012-1057-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 12/22/2022]
Abstract
The intermediate filament protein desmin is an essential component of the extra-sarcomeric cytoskeleton in muscle cells. This three-dimensional filamentous framework exerts central roles in the structural and functional alignment and anchorage of myofibrils, the positioning of cell organelles and signaling events. Mutations of the human desmin gene on chromosome 2q35 cause autosomal dominant, autosomal recessive, and sporadic myopathies and/or cardiomyopathies with marked phenotypic variability. The disease onset ranges from childhood to late adulthood. The clinical course is progressive and no specific treatment is currently available for this severely disabling disease. The muscle pathology is characterized by desmin-positive protein aggregates and degenerative changes of the myofibrillar apparatus. The molecular pathophysiology of desminopathies is a complex, multilevel issue. In addition to direct effects on the formation and maintenance of the extra-sarcomeric intermediate filament network, mutant desmin affects essential protein interactions, cell signaling cascades, mitochondrial functions, and protein quality control mechanisms. This review summarizes the currently available data on the epidemiology, clinical phenotypes, myopathology, and genetics of desminopathies. In addition, this work provides an overview on the expression, filament formation processes, biomechanical properties, post-translational modifications, interaction partners, subcellular localization, and functions of wild-type and mutant desmin as well as desmin-related cell and animal models.
Collapse
|
109
|
Abstract
Myofibrillar myopathies (MFMs) are rare, inherited or sporadic, progressive neuromuscular disorders with considerable clinical and genetic heterogeneity. MFMs are defined morphologically by foci of myofibril dissolution that begins at the Z-disk, accumulation of myofibrillar degradation products, and ectopic expression of a large number of proteins including desmin. To date, mutations in six genes are known to cause MFMs, accounting for approximately half of the MFM patients identified. The causative genes encode mainly sarcomeric Z-disk(-related) proteins: desmin, αB-crystallin, myotilin, Z-band alternatively spliced PDZ motif containing protein (ZASP), filamin C and the antiapoptotic BCL2-associated athanogene 3 (Bag3). Although in most MFM patients the disease presents in adulthood and evolves slowly, some patients with desminopathy, αB-crystallinopathy or Bag3opathies have an infantile or juvenile disease onset. Cardiac involvement is very common in desminopathies and can sometimes be the initial or only symptom of the disease. Respiratory symptoms are noted during childhood in αB-crystallinopathies. Early severe cardiac and respiratory involvement is seen in Bag3opathies. Optical microscopic and immunohistochemical features are similar in MFMs; however, ultrastructural findings can be useful to differentiate between the distinct MFM subtypes. No curative treatment for MFMs is currently available. Careful follow-up, especially of cardiac and respiratory function, is important.
Collapse
|
110
|
McDonald KK, Stajich J, Blach C, Ashley-Koch AE, Hauser MA. Exome analysis of two limb-girdle muscular dystrophy families: mutations identified and challenges encountered. PLoS One 2012; 7:e48864. [PMID: 23155419 PMCID: PMC3498247 DOI: 10.1371/journal.pone.0048864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/04/2012] [Indexed: 12/17/2022] Open
Abstract
The molecular diagnosis of muscle disorders is challenging: genetic heterogeneity (>100 causal genes for skeletal and cardiac muscle disease) precludes exhaustive clinical testing, prioritizing sequencing of specific genes is difficult due to the similarity of clinical presentation, and the number of variants returned through exome sequencing can make the identification of the disease-causing variant difficult. We have filtered variants found through exome sequencing by prioritizing variants in genes known to be involved in muscle disease while examining the quality and depth of coverage of those genes. We ascertained two families with autosomal dominant limb-girdle muscular dystrophy of unknown etiology. To identify the causal mutations in these families, we performed exome sequencing on five affected individuals using the Agilent SureSelect Human All Exon 50 Mb kit and the Illumina HiSeq 2000 (2×100 bp). We identified causative mutations in desmin (IVS3+3A>G) and filamin C (p.W2710X), and augmented the phenotype data for individuals with muscular dystrophy due to these mutations. We also discuss challenges encountered due to depth of coverage variability at specific sites and the annotation of a functionally proven splice site variant as an intronic variant.
Collapse
Affiliation(s)
- Kristin K. McDonald
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
| | - Jeffrey Stajich
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
| | - Colette Blach
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
| | - Allison E. Ashley-Koch
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Michael A. Hauser
- Center for Human Genetics, Duke University, Durham, North Carolina, United States
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
- * E-mail:
| |
Collapse
|
111
|
Maddison P, Damian MS, Sewry C, McGorrian C, Winer JB, Odgerel Z, Shatunov A, Lee HS, Goldfarb LG. Clinical and myopathological characteristics of desminopathy caused by a mutation in desmin tail domain. Eur Neurol 2012; 68:279-86. [PMID: 23051780 DOI: 10.1159/000341617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/01/2012] [Indexed: 01/04/2023]
Abstract
BACKGROUND Most of the previously described pathogenic mutations in desmin are located in highly conserved α-helical domains that play an important role in intermediate filament assembly. The role of the C-terminus non-α-helical 'tail' domain is much less investigated and until recently mutations in this domain have been implicated in only a few patients. The majority of reported desminopathy cases caused by the tail mutations were sporadic, creating a representation bias regarding the disease frequency and phenotypic characteristics. METHODS We performed detailed genotype-phenotype analysis of autosomal dominant desminopathy associated with tail domain mutations in a four-generation autosomal dominant family with 16 members affected by a progressive cardiac and/or skeletal myopathy caused by a c.1346A>C (p.Lys449Thr) mutation located in the tail domain of desmin. RESULTS Phenotypic features in patients with tail domain mutations are similar to those in patients with mutations localized in the 1B and 2B α-helical domains. CONCLUSION We recommend that the tail domain is searched for mutations as intensely as desmin coil domains which until recently were considered to be more 'functional'.
Collapse
Affiliation(s)
- Paul Maddison
- Department of Neurology, Nottingham University Hospitals, Queens Medical Centre, Nottingham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
van Spaendonck-Zwarts KY, van der Kooi AJ, van den Berg MP, Ippel EF, Boven LG, Yee WC, van den Wijngaard A, Brusse E, Hoogendijk JE, Doevendans PA, de Visser M, Jongbloed JDH, van Tintelen JP. Recurrent and founder mutations in the Netherlands: the cardiac phenotype of DES founder mutations p.S13F and p.N342D. Neth Heart J 2012; 20:219-28. [PMID: 22215463 PMCID: PMC3346870 DOI: 10.1007/s12471-011-0233-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Desmin-related myopathy (DRM) is an autosomally inherited skeletal and cardiac myopathy, mainly caused by dominant mutations in the desmin gene (DES). We describe new families carrying the p.S13F or p.N342D DES mutations, the cardiac phenotype of all carriers, and the founder effects. Methods We collected the clinical details of all carriers of p.S13F or p.N342D. The founder effects were studied using genealogy and haplotype analysis. Results We identified three new index patients carrying the p.S13F mutation and two new families carrying the p.N342D mutation. In total, we summarised the clinical details of 39 p.S13F carriers (eight index patients) and of 21 p.N342D carriers (three index patients). The cardiac phenotype of p.S13F carriers is fully penetrant and severe, characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement. Although muscle weakness is a prominent and presenting symptom in p.N342D carriers, their cardiac phenotype is similar to that of p.S13F carriers. The founder effects of p.S13F and p.N342D were demonstrated by genealogy and haplotype analysis. Conclusion DRM may occur as an apparently isolated cardiological disorder. The cardiac phenotypes of the DES founder mutations p.S13F and p.N342D are characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement. Electronic supplementary material The online version of this article (doi:10.1007/s12471-011-0233-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- K Y van Spaendonck-Zwarts
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, the Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Maladies musculaires en réanimation. Quand les évoquer ? Comment orienter la recherche diagnostique ? MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-012-0515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
114
|
Webber SA, Lipshultz SE, Sleeper LA, Lu M, Wilkinson JD, Addonizio LJ, Canter CE, Colan SD, Everitt MD, Jefferies JL, Kantor PF, Lamour JM, Margossian R, Pahl E, Rusconi PG, Towbin JA. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the Pediatric Cardiomyopathy Registry. Circulation 2012; 126:1237-44. [PMID: 22843787 DOI: 10.1161/circulationaha.112.104638] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Restrictive cardiomyopathy (RCM) has been associated with poor prognosis in childhood. The goal of the present analysis was to use the Pediatric Cardiomyopathy Registry to analyze outcomes of childhood RCM, with a focus on the impact of phenotype comparing pure RCM with cases that have additional features of hypertrophic cardiomyopathy (HCM). METHODS AND RESULTS We analyzed the Pediatric Cardiomyopathy Registry database (1990-2008; N=3375) for cases of RCM. Cases were defined as pure when RCM was the only assigned diagnosis. Additional documentation of HCM at any time was used as the criterion for RCM/HCM phenotype. RCM accounted for 4.5% of cases of cardiomyopathy. In 101 (66%), pure RCM was diagnosed; in 51 (34%), there was a mixed phenotype. Age at diagnosis was not different between groups, but 10% of the pure RCM group was diagnosed in infancy versus 24% of the RCM/HCM group. Freedom from death was comparable between groups with 1-, 2-, and 5-year survival of RCM 82%, 80%, and 68% versus RCM/HCM 77%, 74%, and 68%. Transplant-free survival was 48%, 34%, and 22% and 65%, 53%, and 43%, respectively (P=0.011). Independent risk factors at diagnosis for lower transplant-free survival were heart failure (hazard ratio 2.20, P=0.005), lower fractional shortening z score (hazard ratio 1.12 per 1 SD decrease in z score, P=0.014), and higher posterior wall thickness in the RCM/HCM group only (hazard ratio 1.32, P<0.001). Overall, outcomes were worse than for all other forms of cardiomyopathy. CONCLUSIONS Transplant-free survival is poor for RCM in childhood. Survival is independent of phenotype; however, the RCM/HCM phenotype has significantly better transplant-free survival. CLINICAL TRIALS REGISTRATION URL: http://www.clinicaltrials.gov. Unique Identifier: NCT00005391.
Collapse
Affiliation(s)
- Steven A Webber
- Division of Cardiology, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Ruparelia AA, Zhao M, Currie PD, Bryson-Richardson RJ. Characterization and investigation of zebrafish models of filamin-related myofibrillar myopathy. Hum Mol Genet 2012; 21:4073-83. [PMID: 22706277 DOI: 10.1093/hmg/dds231] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Myofibrillar myopathies are a group of muscle disorders characterized by the disintegration of skeletal muscle fibers and formation of sarcomeric protein aggregates. All the proteins known to be involved in myofibrillar myopathies localize to a region of the sarcomere known as the Z-disk, the site at which defects are first observed. Given the common cellular phenotype observed in this group of disorders, it is thought that there is a common mechanism of pathology. Mutations in filamin C, which has several proposed roles in the development and function of skeletal muscle, can result in filamin-related myofibrillar myopathy. The lack of a suitable animal model system has limited investigation into the mechanism of pathology in this disease and the role of filamin C in muscle development. Here, we characterize stretched out (sot), a zebrafish filamin Cb mutant, together with targeted knockdown of zebrafish filamin Ca, revealing fiber dissolution and formation of protein aggregates strikingly similar to those seen in filamin-related myofibrillar myopathies. Through knockdown of both zebrafish filamin C homologues, we demonstrate that filamin C is not required for fiber specification and that fiber damage is a consequence of muscle activity. The remarkable similarities in the myopathology between our models and filamin-related myofibrillar myopathy makes them suitable for the study of these diseases and provides unique opportunities for the investigation of the function of filamin C in muscle and development of therapies.
Collapse
Affiliation(s)
- Avnika A Ruparelia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | | | | | | |
Collapse
|
116
|
High cardiovascular morbidity and mortality in myofibrillar myopathies due to DES gene mutations: a 10-year longitudinal study. Neuromuscul Disord 2012; 22:211-8. [DOI: 10.1016/j.nmd.2011.10.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/29/2011] [Accepted: 10/26/2011] [Indexed: 11/21/2022]
|
117
|
Dias C, Sincan M, Cherukuri PF, Rupps R, Huang Y, Briemberg H, Selby K, Mullikin JC, Markello TC, Adams DR, Gahl WA, Boerkoel CF. An analysis of exome sequencing for diagnostic testing of the genes associated with muscle disease and spastic paraplegia. Hum Mutat 2012; 33:614-26. [PMID: 22311686 DOI: 10.1002/humu.22032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/10/2012] [Indexed: 12/12/2022]
Abstract
In this study, we assess exome sequencing (ES) as a diagnostic alternative for genetically heterogeneous disorders. Because ES readily identified a previously reported homozygous mutation in the CAPN3 gene for an individual with an undiagnosed limb girdle muscular dystrophy, we evaluated ES as a generalizable clinical diagnostic tool by assessing the targeting efficiency and sequencing coverage of 88 genes associated with muscle disease (MD) and spastic paraplegia (SPG). We used three exome-capture kits on 125 individuals. Exons constituting each gene were defined using the UCSC and CCDS databases. The three exome-capture kits targeted 47-92% of bases within the UCSC-defined exons and 97-99% of bases within the CCDS-defined exons. An average of 61.2-99.5% and 19.1-99.5% of targeted bases per gene were sequenced to 20X coverage within the CCDS-defined MD and SPG coding exons, respectively. Greater than 95-99% of targeted known mutation positions were sequenced to ≥1X coverage and 55-87% to ≥20X coverage in every exome. We conclude, therefore, that ES is a rapid and efficient first-tier method to screen for mutations, particularly within the CCDS annotated exons, although its application requires disclosure of the extent of coverage for each targeted gene and supplementation with second-tier Sanger sequencing for full coverage.
Collapse
Affiliation(s)
- Cristina Dias
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Walsh MA, Grenier MA, Jefferies JL, Towbin JA, Lorts A, Czosek RJ. Conduction abnormalities in pediatric patients with restrictive cardiomyopathy. Circ Heart Fail 2012; 5:267-73. [PMID: 22260945 DOI: 10.1161/circheartfailure.111.964395] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pediatric restrictive cardiomyopathy carries a poor prognosis secondary to a high risk of sudden death previously attributed to ventricular tachyarrhythmias. The extent of conduction abnormalities in this population and their relationship to life-threatening events has not been previously reported. METHODS AND RESULTS A retrospective study of pediatric patients with restrictive cardiomyopathy diagnosed between April 1994 and May 2011 was performed. Demographic, cardiac, and ECG characteristics and the mechanisms of serious arrhythmic events (death or episode of acute hemodynamic compromise thought to be secondary to arrhythmia) were evaluated. Sixteen patients (1-17 years of age) were reviewed, with 5 sudden cardiac events noted, including 4 deaths. Two deaths were caused by development of acute heart block; another patient with syncope had intermittent heart block and survived as the result of pacing features of an implanted defibrillator system. The median PR interval (222 versus 144 ms; P<0.01) and the QRS duration (111 versus 74; P=0.01) were significantly longer in those who had an acute cardiac event. Older age at presentation was associated with sudden cardiac events (P<0.01). No other functional or echocardiographic variables were associated with a sudden cardiac event. CONCLUSIONS Pediatric patients with restrictive cardiomyopathy are at risk for acute high-grade heart block, and, in this cohort, bradycardic events represented a significant portion of all arrhythmic events. Aggressive ECG monitoring strategies looking for conduction system disease should be ongoing in all patients with restrictive cardiomyopathy. Implantation of a defibrillator/pacemaker should be considered as prophylactic management.
Collapse
Affiliation(s)
- Mark A Walsh
- Heart Institute, Division of Pediatric Cardiology, Cincinnati Children's Hospital; Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
119
|
Ng R, Banks GB, Hall JK, Muir LA, Ramos JN, Wicki J, Odom GL, Konieczny P, Seto J, Chamberlain JR, Chamberlain JS. Animal models of muscular dystrophy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:83-111. [PMID: 22137430 DOI: 10.1016/b978-0-12-394596-9.00004-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The muscular dystrophies (MDs) represent a diverse collection of inherited human disorders, which affect to varying degrees skeletal, cardiac, and sometimes smooth muscle (Emery, 2002). To date, more than 50 different genes have been implicated as causing one or more types of MD (Bansal et al., 2003). In many cases, invaluable insights into disease mechanisms, structure and function of gene products, and approaches for therapeutic interventions have benefited from the study of animal models of the different MDs (Arnett et al., 2009). The large number of genes that are associated with MD and the tremendous number of animal models that have been developed preclude a complete discussion of each in the context of this review. However, we summarize here a number of the more commonly used models together with a mixture of different types of gene and MD, which serves to give a general overview of the value of animal models of MD for research and therapeutic development.
Collapse
Affiliation(s)
- Rainer Ng
- Division of Medical Genetics, Department of Neurology, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Leone O, Veinot JP, Angelini A, Baandrup UT, Basso C, Berry G, Bruneval P, Burke M, Butany J, Calabrese F, d'Amati G, Edwards WD, Fallon JT, Fishbein MC, Gallagher PJ, Halushka MK, McManus B, Pucci A, Rodriguez ER, Saffitz JE, Sheppard MN, Steenbergen C, Stone JR, Tan C, Thiene G, van der Wal AC, Winters GL. 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc Pathol 2011; 21:245-74. [PMID: 22137237 DOI: 10.1016/j.carpath.2011.10.001] [Citation(s) in RCA: 387] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 01/04/2023] Open
Abstract
The Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology have produced this position paper concerning the current role of endomyocardial biopsy (EMB) for the diagnosis of cardiac diseases and its contribution to patient management, focusing on pathological issues, with these aims: • Determining appropriate EMB use in the context of current diagnostic strategies for cardiac diseases and providing recommendations for its rational utilization • Providing standard criteria and guidance for appropriate tissue triage and pathological analysis • Promoting a team approach to EMB use, integrating the competences of pathologists, clinicians, and imagers.
Collapse
Affiliation(s)
- Ornella Leone
- U.O. di Anatomia ed Istologia Patologica, Azienda Ospedaliero-Universitaria S.Orsola-Malpighi, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion 2011; 12:294-304. [PMID: 22119795 DOI: 10.1016/j.mito.2011.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 11/07/2011] [Accepted: 11/11/2011] [Indexed: 12/26/2022]
Abstract
Subunit 7a of mouse cytochrome c oxidase (Cox) displays a contractile muscle-specific isoform, Cox7a1, that is the major cardiac form. To gain insight into the role of this isoform, we have produced a new knockout mouse line that lacks Cox7a1. We show that homozygous and heterozygous Cox7a1 knockout mice, although viable, have reduced Cox activity and develop a dilated cardiomyopathy at 6 weeks of age. Surprisingly, the cardiomyopathy improves and stabilizes by 6 months of age. Cox7a1 knockout mice incorporate more of the "liver-type" isoform Cox7a2 into the cardiac Cox holoenzyme and, also surprisingly, have higher tissue ATP levels.
Collapse
|
122
|
The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011; 2011:569628. [PMID: 22028589 PMCID: PMC3199094 DOI: 10.1155/2011/569628] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/12/2011] [Indexed: 02/06/2023] Open
Abstract
The sarcomeric Z-disc defines the lateral borders of the sarcomere and has primarily been seen as a structure important for mechanical stability. This view has changed dramatically within the last one or two decades. A multitude of novel Z-disc proteins and their interacting partners have been identified, which has led to the identification of additional functions and which have now been assigned to this structure. This includes its importance for intracellular signalling, for mechanosensation and mechanotransduction in particular, an emerging importance for protein turnover and autophagy, as well as its molecular links to the t-tubular system and the sarcoplasmic reticulum. Moreover, the discovery of mutations in a wide variety of Z-disc proteins, which lead to perturbations of several of the above-mentioned systems, gives rise to a diverse group of diseases which can be termed Z-discopathies. This paper provides a brief overview of these novel aspects as well as points to future research directions.
Collapse
|
123
|
Olivé M, Odgerel Z, Martínez A, Poza JJ, Bragado FG, Zabalza RJ, Jericó I, Gonzalez-Mera L, Shatunov A, Lee HS, Armstrong J, Maraví E, Arroyo MR, Pascual-Calvet J, Navarro C, Paradas C, Huerta M, Marquez F, Rivas EG, Pou A, Ferrer I, Goldfarb LG. Clinical and myopathological evaluation of early- and late-onset subtypes of myofibrillar myopathy. Neuromuscul Disord 2011; 21:533-42. [PMID: 21676617 PMCID: PMC5148150 DOI: 10.1016/j.nmd.2011.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Myofibrillar myopathies (MFM) are a group of disorders associated with mutations in DES, CRYAB, MYOT, ZASP, FLNC, or BAG3 genes and characterized by disintegration of myofibrils and accumulation of degradation products into intracellular inclusions. We retrospectively evaluated 53 MFM patients from 35 Spanish families. Studies included neurologic exam, muscle imaging, light and electron microscopic analysis of muscle biopsy, respiratory function testing and cardiologic work-up. Search for pathogenic mutations was accomplished by sequencing of coding regions of the six genes known to cause MFM. Mutations in MYOT were the predominant cause of MFM in Spain affecting 18 of 35 families, followed by DES in 11 and ZASP in 3; in 3 families the cause of MFM remains undetermined. Comparative analysis of DES, MYOT and ZASP associated phenotypes demonstrates substantial phenotypic distinctions that should be considered in studies of disease pathogenesis, for optimization of subtype-specific treatments and management, and directing molecular analysis.
Collapse
Affiliation(s)
- Montse Olivé
- Institute of Neuropathology, Department of Pathology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
The intermediate filament protein desmin is an integral component of the cardiomyocyte and serves to maintain the overall structure and cytoskeletal organization within striated muscle cells. Desmin-related myopathy can be caused by mutations in desmin or associated proteins, which leads to intracellular accumulation of misfolded protein and production of soluble pre-amyloid oligomers, which leads to weakened skeletal and cardiac muscle. In this review, we examine the cellular phenotypes in relevant animal models of desmin-related cardiomyopathy. These models display characteristic sarcoplasmic protein aggregates. Aberrant protein aggregation leads to mitochondrial dysfunction, abnormal metabolism, and altered cardiomyocyte structure. These deficits to cardiomyocyte function may stem from impaired cellular proteolytic mechanisms. The data obtained from these models allow a more complete picture of the pathology in desmin-related cardiomyopathy to be described. Moreover, these studies highlight the importance of desmin in maintaining cardiomyocyte structure and illustrate how disrupting this network can be deleterious to the heart. We emphasize the similarities observed between desmin-related cardiomyopathy and other protein conformational disorders and speculate that therapies to treat this disease may be broadly applicable to diverse protein aggregation-based disorders.
Collapse
Affiliation(s)
- Patrick M McLendon
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | |
Collapse
|
125
|
Abstract
Distal muscular dystrophies are a group of inherited primary muscle disorders showing progressive weakness and atrophy preferentially in the hands, forearm, lower legs, or feet. Extensive progress in understanding the molecular genetic background has changed the classification and extended the list of confirmed entities to almost 20 different disorders, making the differential diagnostic procedure both easier and more difficult. Distal phenotypes first have to be differentiated from neurogenic disorders. The axonal form of Charcot-Marie-Tooth disease with late-onset distal weakness and distal forms of chronic spinal muscular atrophy may mimic those of the distal dystrophies. Increasing numbers of reports suggest increasing awareness of distal phenotypes in muscular dystrophy. Some disorders regularly progress eventually to involve proximal muscle, whereas others, such as tibial muscular dystrophy titinopathy (Udd), Welander distal myopathy, and distal myosinopathy (Laing), remain distal throughout the patient's lifetime. Pathologically there is a gradual degeneration and loss of muscle fibers with replacement by fibrous and fatty connective tissue, similar to the proximal forms of muscular dystrophy, frequently, but not always with rimmed vacuolar degenerative change. Strikingly, many of the genes involved in distal dystrophies code for sarcomeric proteins. However, the genetic programs leading to preferential involvement of distal muscles have remained unknown.
Collapse
Affiliation(s)
- Bjarne Udd
- Department of Neurology, Tampere University and University Hospital, Tampere, Finland.
| |
Collapse
|
126
|
Abstract
Neuromuscular diseases (NMD) constitute a group of phenotypically and genetically heterogeneous disorders, characterized by (progressive) weakness and atrophy of proximal and/or distal muscles. The objective of molecular testing is to confirm the pathogenicity of a relevant sequence variation by correlating an individual's phenotype with what is expected in a given condition. Within the last two decades the application of molecular genetic strategies has led to a delineation of subgroups of clinically indistinguishable NMDs and has disclosed marked disease overlap. The expanding number of molecular defined NMDs requires new strategies to classify overlapping and clinical indistinguishable phenotypes.
Collapse
Affiliation(s)
- Andrew Gomez-Vargas
- Department of Medicine, McMaster University, 1200 Main Street West, HSC 2H22, Hamilton, ON, Canada L8 N 3Z5
| | | |
Collapse
|
127
|
Van Sligtenhorst I, Ding ZM, Shi ZZ, Read RW, Hansen G, Vogel P. Cardiomyopathy in α-Kinase 3 (ALPK3)–Deficient Mice. Vet Pathol 2011; 49:131-41. [DOI: 10.1177/0300985811402841] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiomyopathy developed in mice deficient for α-kinase 3 (ALPK3), a nuclear kinase previously implicated in the differentiation of cardiomyocytes. Alpk3–/– mice were produced according to normal Mendelian ratios and appeared normal except for a nonprogressive cardiomyopathy that had features of both hypertrophic and dilated forms of cardiomyopathy. Cardiac hypertrophy in Alpk3–/– mice was characterized by increased thickness of both left and right ventricular (LV and RV) walls and by markedly increased heart weight and increased heart weight/body weight and heart weight/tibia length ratios. Magnetic resonance imaging studies confirmed the increased thickness in both septal and LV free walls at end-diastole, although there was no significant change in LV wall thickness at end-systole. Myocardial hypertrophy was the predominant feature in Alpk3–/– mice, but several changes more typically associated with dilated cardiomyopathy included a marked increase in end-diastolic and end-systolic LV volume, as well as reduced cardiac output, stroke volume, and ejection fractions, suggesting LV chamber dilation. Magnetic resonance imaging showed a 50% reduction in both septal and free wall LV contractility in Alpk3–/– mice. Interstitial fibrosis and inflammation were notably absent in Alpk3–/– mice; however, light and electron microscopy revealed altered cardiomyocyte architecture, characterized by reduced numbers of abnormal intercalated discs being associated with mild disarray of myofibrils. These lesions could account for the impaired contractility of the myofibrillar apparatus and contribute to the pathogenesis of cardiomyopathy in Alpk3–/– mice.
Collapse
Affiliation(s)
| | - Z-M. Ding
- Department of Cardiology, Lexicon Pharmaceuticals Inc, The Woodlands, TX
| | - Z-Z. Shi
- Department of Cardiology, Lexicon Pharmaceuticals Inc, The Woodlands, TX
| | - R. W. Read
- Department of Pathology, Lexicon Pharmaceuticals Inc, The Woodlands, TX
| | - G. Hansen
- Department of Molecular Genetics, Lexicon Pharmaceuticals Inc, The Woodlands, TX
| | - P. Vogel
- Department of Pathology, Lexicon Pharmaceuticals Inc, The Woodlands, TX
| |
Collapse
|
128
|
Abstract
The heart is a highly plastic organ. In response to the physiological stress of normal life, as well as the pathological stress of disease, the myocardium manifests robust and rapid changes in mass. In the context of disease-associated stress, this myocardial remodeling response can culminate in ventricular thinning, mechanical dysfunction, and a clinical syndrome of heart failure. Recently, autophagy, a process of cellular cannibalization, has been implicated in many of these remodeling reactions. In some settings, the autophagic response is beneficial and pro-survival; in other contexts, it is maladaptive and promotes disease progression. Together, these observations raise the intriguing prospect of targeting maladaptive autophagy and advancing cell survival-promoting, adaptive autophagy to benefit patients with heart disease.
Collapse
Affiliation(s)
- Joseph A Hill
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, NB11.200, 6000 Harry Hines Blvd, Dallas, TX 75390-8573, USA.
| |
Collapse
|
129
|
Hong D, Wang Z, Zhang W, Xi J, Lu J, Luan X, Yuan Y. A series of Chinese patients with desminopathy associated with six novel and one reported mutations in the desmin gene. Neuropathol Appl Neurobiol 2011; 37:257-70. [DOI: 10.1111/j.1365-2990.2010.01112.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
130
|
Abstract
Depending on the part of the world one lives in, restrictive cardiomyopathy is either one of the rarest forms of cardiomyopathy in childhood, with no cause usually identified, or it is secondary to a poorly understood disease, endomyocardial fibrosis, that is endemic in some populations. Regardless of the underlying cause, the outcome is poor once symptoms develop. This article reviews the definitions, epidemiology, etiologies, genetics, "overlap" phenotypes, clinical presentation, diagnostic evaluation, outcome, and management of pediatric patients with restrictive cardiomyopathy.
Collapse
Affiliation(s)
- Susan W Denfield
- Lillie Frank Abercrombie Division of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, 6621 Fannin MC-19345C, Houston, TX 77030, USA.
| | | |
Collapse
|
131
|
Mizuno Y, Fujita Y, Takatama M, Okamoto K. Peripherin partially localizes in Bunina bodies in amyotrophic lateral sclerosis. J Neurol Sci 2011; 302:14-8. [PMID: 21241994 DOI: 10.1016/j.jns.2010.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 12/13/2022]
Abstract
Peripherin is a type III intermediate filament protein expressed with low levels in spinal motor neurons. Amyotrophic lateral sclerosis (ALS) is characterized by the presence of Bunina bodies, skein-like inclusions, and Lewy body-like inclusions (LBLIs) in the remaining anterior horn cells, where the first and third structures are detected by Hematoxylin-Eosin (H & E) staining. We examined paraffin sections of lumbar spinal cords from six ALS patients, using H & E staining and immunostaining for human peripherin. The results demonstrated that there were a total of 73 anterior horn cells containing one or more Bunina bodies, and that twelve of these cells (approximately 16.4%) demonstrated peripherin-positive Bunina bodies. In fact, some part of chain-like Bunina bodies showed peripherin-positive reaction, although there were a much higher number of non-immunoreacitive Bunina bodies in each neuron. LBLIs were clearly immunostained for peripherin corresponding to the core, while some of them showed different types of immunoreactivities due to oblique cutting of inclusions. Our findings suggest that although the mechanisms underlying peripherin co-localization in Bunina bodies are unknown, peripherin could be involved in forming these inclusions. Furthermore, following cystatin C and transferrin, peripherin is the third most prevalent protein that partially localizes in Bunina bodies.
Collapse
Affiliation(s)
- Yuji Mizuno
- Department of Neurology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | | | |
Collapse
|
132
|
LMNA E82K mutation activates FAS and mitochondrial pathways of apoptosis in heart tissue specific transgenic mice. PLoS One 2010; 5:e15167. [PMID: 21151901 PMCID: PMC2997782 DOI: 10.1371/journal.pone.0015167] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/27/2010] [Indexed: 12/11/2022] Open
Abstract
The lamin A/C (LMNA), nuclear intermediate filament proteins, is a basic component of the nuclear lamina. Mutations in LMNA are associated with a broad range of laminopathies, congenital diseases affecting tissue regeneration and homeostasis. Heart tissue specific transgenic mice of human LMNA E82K, a mutation causing dilated cardiomyopathy, were generated. Lmna(E82K) transgenic mouse lines exhibited thin-walled, dilated left and right ventricles, a progressive decrease of contractile function assessed by echocardiography. Abnormalities of the conduction system, myocytes disarray, collagen accumulation and increased levels of B-type natriuretic peptide (BNP), procollagen type III α1 (Col3α1) and skeletal muscle actin α1 (Actα1) were detected in the hearts of Lmna(E82K) transgenic mice. The LMNA E82K mutation caused mislocation of LMNA in the nucleus and swollen mitochondria with loss of critae, together with the loss of nuclear envelope integrity. Most interestingly, we found that the level of apoptosis was 8.5-fold higher in the Lmna(E82K) transgenic mice than that of non-transgenic (NTG) mice. In the presence of the LMNA E82K, both of FAS and mitochondrial pathways of apoptosis were activated consistent with the increase of FAS expression, the release of cytochrome c from mitochondria to cytosol and activation of caspase-8, -9 and -3. Our results suggested that the apoptosis, at least for the LMNA E82K or the mutations in the rod region of Lamin A/C, might be an important mechanism causing continuous loss of myocytes and lead to myocardial dysfunction. It could be a potential therapeutic means to suppress and/or prevent inappropriate cardiac cell death in patients carrying LMNA mutation.
Collapse
|
133
|
He Y, Zhang Z, Hong D, Dai Q, Jiang T. Myocardial fibrosis in desmin-related hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 2010; 12:68. [PMID: 21083940 PMCID: PMC3000398 DOI: 10.1186/1532-429x-12-68] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/18/2010] [Indexed: 11/10/2022] Open
Abstract
Desmin-related myopathy (DRM) is known to cause different types of cardiomyopathy. Late gadolinium enhancement cardiovascular magnetic resonance (CMR) has been shown to identify fibrosis in ischemic and non-ischemic cardiomyopathies. We present a rare case of desmin-related hypertrophic cardiomyopathy, CMR revealed fibrosis in the lateral wall of the left ventricle. CMR is superior to conventional echocardiography for the detection of myocardial fibrosis in desmin-related cardiomyopathy, which may be useful to detect early cardiac involvement and predict the patient prognosis.
Collapse
Affiliation(s)
- Yi He
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen road, Chaoyang district, Beijing, China
| | - Zhaoqi Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen road, Chaoyang district, Beijing, China
| | - Daojun Hong
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing,100034, China
| | - Qinyi Dai
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen road, Chaoyang district, Beijing, China
| | - Tengyong Jiang
- Department of Cadiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen road, Chaoyang district, Beijing, China
| |
Collapse
|
134
|
Katzberg H, Karamchandani J, So YT, Vogel H, Wang CH. End-stage cardiac disease as an initial presentation of systemic myopathies: case series and literature review. J Child Neurol 2010; 25:1382-8. [PMID: 20445193 DOI: 10.1177/0883073810367683] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Life-threatening cardiomyopathy is associated with certain systemic myopathies and usually presents as an end-stage progression of the disease. However, cardiac symptoms can sometimes precede muscle weakness. The authors reviewed medical records from 2003 to 2008 on patients attending their neuromuscular clinic and identified patients who initially presented with an end-stage cardiomyopathy and were later diagnosed with a specific muscle disease through muscle biopsy. They report 5 cases of children who initially presented with cardiomyopathies without neuromuscular symptoms. The cardiac symptoms were so severe that 4 of them required cardiac transplantation and 1 died prior to transplantation. Review of muscle pathology confirmed the diagnoses of Becker muscular dystrophy, myofibrillar myopathy, mitochondrial myopathy with cytochrome oxidase deficiency, Danon disease, and glycogen storage disease. The authors conclude that cardiomyopathy can be the initial presentation of a wide spectrum of systemic myopathies. Careful evaluation of neuromuscular systems should be carried out in patients presenting with end-stage cardiomyopathies.
Collapse
Affiliation(s)
- Hans Katzberg
- Department of Neurology, Stanford University Medical Center, Stanford, California 94305-5235, USA
| | | | | | | | | |
Collapse
|
135
|
Rodríguez JE, Willis MS. The therapeutic potential of heat shock proteins in cardiomyopathies due to mutations in cardiac structural proteins. J Mol Cell Cardiol 2010; 49:904-7. [PMID: 20920511 DOI: 10.1016/j.yjmcc.2010.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 11/29/2022]
|
136
|
Klauke B, Kossmann S, Gaertner A, Brand K, Stork I, Brodehl A, Dieding M, Walhorn V, Anselmetti D, Gerdes D, Bohms B, Schulz U, Zu Knyphausen E, Vorgerd M, Gummert J, Milting H. De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy. Hum Mol Genet 2010; 19:4595-607. [PMID: 20829228 DOI: 10.1093/hmg/ddq387] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease, frequently accompanied by sudden cardiac death and terminal heart failure. Genotyping of ARVC patients might be used for palliative treatment of the affected family. We genotyped a cohort of 22 ARVC patients referred to molecular genetic screening in our heart center for mutations in the desmosomal candidate genes JUP, DSG2, DSC2, DSP and PKP2 known to be associated with ARVC. In 43% of the cohort, we found disease-associated sequence variants. In addition, we screened for desmin mutations and found a novel desmin-mutation p.N116S in a patient with ARVC and terminal heart failure, which is located in segment 1A of the desmin rod domain. The mutation leads to the aggresome formation in cardiac and skeletal muscle without signs of an overt clinical myopathy. Cardiac aggresomes appear to be prominent, especially in the right ventricle of the heart. Viscosimetry and atomic force microscopy of the desmin wild-type and N116S mutant isolated from recombinant Escherichia coli revealed severe impairment of the filament formation, which was supported by transfections in SW13 cells. Thus, the gene coding for desmin appears to be a novel ARVC gene, which should be included in molecular genetic screening of ARVC patients.
Collapse
Affiliation(s)
- Baerbel Klauke
- Herz- & Diabeteszentrum NRW, Klinik f. Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institutfür Kardiovaskulaere Forschung und Entwicklung/Klinik fuer angeborene Herzfehler, Georgstrasse 11, Bad Oeynhausen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Otten E, Asimaki A, Maass A, van Langen IM, van der Wal A, de Jonge N, van den Berg MP, Saffitz JE, Wilde AA, Jongbloed JD, van Tintelen JP. Desmin mutations as a cause of right ventricular heart failure affect the intercalated disks. Heart Rhythm 2010; 7:1058-64. [DOI: 10.1016/j.hrthm.2010.04.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 04/20/2010] [Indexed: 11/25/2022]
|
138
|
van Spaendonck-Zwarts KY, van Hessem L, Jongbloed JDH, de Walle HEK, Capetanaki Y, van der Kooi AJ, van Langen IM, van den Berg MP, van Tintelen JP. Desmin-related myopathy. Clin Genet 2010; 80:354-66. [PMID: 20718792 DOI: 10.1111/j.1399-0004.2010.01512.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Desmin-related myopathy (DRM) is an autosomally inherited skeletal and cardiac myopathy, mainly caused by dominant mutations in the desmin gene (DES). We provide (i) a literature review on DRM, including clinical manifestations, inheritance, molecular genetics, myopathology and management and (ii) a meta-analysis of reported DES mutation carriers, focusing on their clinical characteristics and potential genotype-phenotype correlations. Meta-analysis: DES mutation carriers (n = 159) with 40 different mutations were included. Neurological signs were present in 74% and cardiological signs in 74% of carriers (both neurological and cardiological signs in 49%, isolated neurological signs in 22%, and isolated cardiological signs in 22%). More than 70% of carriers exhibited myopathy or muscular weakness, with normal creatine kinase levels present in one third of them. Up to 50% of carriers had cardiomyopathy and around 60% had cardiac conduction disease or arrhythmias, with atrioventricular block as an important hallmark. Symptoms generally started during the 30s; a quarter of carriers died at a mean age of 49 years. Sudden cardiac death occurred in two patients with a pacemaker, suggesting a ventricular tachyarrhythmia as cause of death. The majority of DES mutations were missense mutations, mostly located in the 2B domain. Mutations in the 2B domain were predominant in patients with an isolated neurological phenotype, whereas head and tail domain mutations were predominant in patients with an isolated cardiological phenotype.
Collapse
Affiliation(s)
- K Y van Spaendonck-Zwarts
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Tang M, Li J, Huang W, Su H, Liang Q, Tian Z, Horak KM, Molkentin JD, Wang X. Proteasome functional insufficiency activates the calcineurin-NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts. Cardiovasc Res 2010; 88:424-33. [PMID: 20601385 DOI: 10.1093/cvr/cvq217] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Proteasome functional insufficiency (PFI) may play an important role in the progression of congestive heart failure but the underlying molecular mechanism is poorly understood. Calcineurin and nuclear factor of activated T-cells (NFAT) are degraded by the proteasome, and the calcineurin-NFAT pathway mediates cardiac remodelling. The present study examined the hypothesis that PFI activates the calcineurin-NFAT pathway and promotes maladaptive remodelling of the heart. METHODS AND RESULTS Using a reporter gene assay, we found that pharmacological inhibition of 20S proteasomes stimulated NFAT transactivation in both mouse hearts and cultured adult mouse cardiomyocytes. Proteasome inhibition stimulated NFAT nuclear translocation in a calcineurin-dependent manner and led to a maladaptive cell shape change in cultured neonatal rat ventricular myocytes. Proteasome inhibition facilitated left ventricular dilatation and functional decompensation and increased fatality in mice with aortic constriction while causing cardiac hypertrophy in the sham surgery group. It was further revealed that both calcineurin protein levels and NFAT transactivation were markedly increased in the mouse hearts with desmin-related cardiomyopathy and severe PFI. Expression of an aggregation-prone mutant desmin also directly increased calcineurin protein levels in cultured cardiomyocytes. CONCLUSIONS The calcineurin-NFAT pathway in the heart can be activated by proteasome inhibition and is activated in the heart of a mouse model of desmin-related cardiomyopathy that is characterized by severe PFI. The interplay between PFI and the calcineurin-NFAT pathway may contribute to the pathological remodelling of cardiomyocytes characteristic of congestive heart failure.
Collapse
Affiliation(s)
- Mingxin Tang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Maass K. Arrhythmogenic Right Ventricular Cardiomyopathy and Desmin: another gene fits the shoe. Heart Rhythm 2010; 7:1065-6. [PMID: 20470905 DOI: 10.1016/j.hrthm.2010.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Indexed: 10/19/2022]
|
141
|
Abstract
PURPOSE OF REVIEW More than 40 different individual genes have been implicated in the inheritance of dilated cardiomyopathy. For a subset of these genes, mutations can lead to a spectrum of cardiomyopathy that extends to hypertrophic cardiomyopathy and left ventricular noncompaction. In nearly all cases, there is an increased risk of arrhythmias. With some genetic mutations, extracardiac manifestations are likely to be present. The precise genetic cause can usually not be discerned from the cardiac and/or extracardiac manifestations and requires molecular genetic diagnosis for prognostic determination and cardiac care. RECENT FINDINGS Newer technologies are influencing genetic testing, especially cardiomyopathy genetic testing, wherein an increased number of genes are now routinely being tested simultaneously. Although this approach to testing multiple genes is increasing the diagnostic yield, the analysis of multiple genes in one test is also resulting in a large amount of genetic information of unclear significance. SUMMARY Genetic testing is highly useful in the care of patients and families, as it guides diagnosis, influences care and aids in prognosis. However, the large amount of benign human genetic variation may complicate genetic results and often requires a skilled team to accurately interpret the findings.
Collapse
Affiliation(s)
- Lisa Dellefave
- Department of Medicine and Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
142
|
Desmin myopathy with severe cardiomyopathy in a Uruguayan family due to a codon deletion in a new location within the desmin 1A rod domain. Neuromuscul Disord 2010; 20:178-87. [DOI: 10.1016/j.nmd.2010.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/17/2009] [Accepted: 01/05/2010] [Indexed: 11/17/2022]
|
143
|
Kottlors M, Moske-Eick O, Huebner A, Krause S, Mueller K, Kress W, Schwarzwald R, Bornemann A, Haug V, Heitzer M, Kirschner J. Late-onset autosomal dominant limb girdle muscular dystrophy and Paget's disease of bone unlinked to the VCP gene locus. J Neurol Sci 2010; 291:79-85. [PMID: 20116073 DOI: 10.1016/j.jns.2009.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 12/08/2009] [Indexed: 11/30/2022]
Abstract
The broadwide spectrum of differential diagnoses of autosomal dominant muscular dystrophies in adults can be specified by additional features. The combination of late-onset muscular dystrophy, rimmed vacuoles and inclusion bodies in the muscle biopsy, and Paget's disease of bone suggests a mutation in the Valosin-containing protein gene (VCP, p97 or CDC48) even without dementia. We report on a German family with late-onset autosomal dominant muscular dystrophy starting in the pelvic girdle about age 40years, a subsequent rapidly-progressing course, high alkaline phosphatase and Paget's disease of bone. Clinical examination revealed no cognitive impairment. Histology showed myopathic changes with rimmed vacuoles and inclusion bodies on muscle biopsy. Mutations in VCP, filamin C, desmin, alphaB-crystallin, ZASP and myosin heavy chains 2 and 7 as well as the genes for facioscapulohumeral muscular dystrophy, Myotonic Dystrophy I and II, and LGMD1A-G were excluded by a combination of linkage analysis and direct sequencing. The family presented here suggests that a yet-unknown genetic defect can give rise to an autosomal dominant myopathy with Paget's disease but without dementia.
Collapse
Affiliation(s)
- Michael Kottlors
- Division of Neuropediatrics and Muscle Disorders, University Children's Hospital Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Kim JY, Jeong EH, Park KD, Koo H. Myofibrillar Myopathy - A Case Report -. KOREAN JOURNAL OF PATHOLOGY 2010. [DOI: 10.4132/koreanjpathol.2010.44.4.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jee Young Kim
- Department of Neurology, Ewha Medical Research Institute, Ewha Womans University School of Medicine, Seoul, Korea
| | - Eun Hae Jeong
- Department of Neurology, Ewha Medical Research Institute, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kee Duk Park
- Department of Neurology, Ewha Medical Research Institute, Ewha Womans University School of Medicine, Seoul, Korea
| | - Heasoo Koo
- Department of Pathology, Ewha Medical Research Institute, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
145
|
van Tintelen JP, Van Gelder IC, Asimaki A, Suurmeijer AJ, Wiesfeld AC, Jongbloed JD, van den Wijngaard A, Kuks JB, van Spaendonck-Zwarts KY, Notermans N, Boven L, van den Heuvel F, Veenstra-Knol HE, Saffitz JE, Hofstra RM, van den Berg MP. Severe cardiac phenotype with right ventricular predominance in a large cohort of patients with a single missense mutation in the DES gene. Heart Rhythm 2009; 6:1574-83. [DOI: 10.1016/j.hrthm.2009.07.041] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 07/23/2009] [Indexed: 11/29/2022]
|
146
|
Abstract
Unfolded and misfolded proteins are inherently toxic to cells and have to be quickly and efficiently eliminated before they intoxicate the intracellular environment. This is of particular importance during proteotoxic stress when, as a consequence of intrinsic or extrinsic factors, the levels of misfolded proteins are transiently or persistently elevated. To meet this demand, metazoan cells have developed specific protein quality control mechanisms that allow the identification and proper handling of non-native proteins. An important defence mechanism is the specific destruction of these proteins by the ubiquitin-proteasome system (UPS). A number of studies have shown that various proteotoxic stress conditions can cause functional impairment of the UPS resulting in cellular dysfunction and apoptosis. In this review, we will summarize our current understanding of proteotoxic stress-induced dysfunction of the UPS and some of its implications for human pathologies.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3 S-17177, Stockholm, Sweden.
| | | |
Collapse
|
147
|
Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest 2009; 119:1806-13. [PMID: 19587455 PMCID: PMC2701871 DOI: 10.1172/jci38027] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Muscle fiber deterioration resulting in progressive skeletal muscle weakness, heart failure, and respiratory distress occurs in more than 20 inherited myopathies. As discussed in this Review, one of the newly identified myopathies is desminopathy, a disease caused by dysfunctional mutations in desmin, a type III intermediate filament protein, or alphaB-crystallin, a chaperone for desmin. The range of clinical manifestations in patients with desminopathy is wide and may overlap with those observed in individuals with other myopathies. Awareness of this disease needs to be heightened, diagnostic criteria reliably outlined, and molecular testing readily available; this would ensure prevention of sudden death from cardiac arrhythmias and other complications.
Collapse
Affiliation(s)
- Lev G. Goldfarb
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA.
Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Marinos C. Dalakas
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA.
Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
148
|
Shatunov A, Olivé M, Odgerel Z, Stadelmann-Nessler C, Irlbacher K, van Landeghem F, Bayarsaikhan M, Lee HS, Goudeau B, Chinnery PF, Straub V, Hilton-Jones D, Damian MS, Kaminska A, Vicart P, Bushby K, Dalakas MC, Sambuughin N, Ferrer I, Goebel HH, Goldfarb LG. In-frame deletion in the seventh immunoglobulin-like repeat of filamin C in a family with myofibrillar myopathy. Eur J Hum Genet 2009; 17:656-63. [PMID: 19050726 PMCID: PMC2672961 DOI: 10.1038/ejhg.2008.226] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 10/20/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022] Open
Abstract
Myofibrillar myopathies (MFMs) are an expanding and increasingly recognized group of neuromuscular disorders caused by mutations in DES, CRYAB, MYOT, and ZASP. The latest gene to be associated with MFM was FLNC; a p.W2710X mutation in the 24th immunoglobulin-like repeat of filamin C was shown to be the cause of a distinct type of MFM in several German families. We studied an International cohort of 46 patients from 39 families with clinically and myopathologically confirmed MFM, in which DES, CRYAB, MYOT, and ZASP mutations have been excluded. In patients from an unrelated family a 12-nucleotide deletion (c.2997_3008del) in FLNC resulting in a predicted in-frame four-residue deletion (p.Val930_Thr933del) in the seventh repeat of filamin C was identified. Both affected family members, mother and daughter, but not unrelated control individuals, carried the p.Val930_Thr933del mutation. The mutation is transcribed and, based on myopathological features and immunoblot analysis, it leads to an accumulation of dysfunctional filamin C in the myocytes. The study results suggest that the novel p.Val930_Thr933del mutation in filamin C is the cause of MFM but also indicate that filamin C mutations are a comparatively rare cause of MFM.
Collapse
Affiliation(s)
- Alexey Shatunov
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Montse Olivé
- Institut de Neuropatologia, Ciutat Sanitària i Universitària de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Zagaa Odgerel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Hee-Suk Lee
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Bertrand Goudeau
- UFR de Biochimie, Université Paris, Denis Diderot, Paris, France
| | | | - Volker Straub
- Institute of Human Genetics, Newcastle upon Tyne, UK
| | | | | | | | - Patrick Vicart
- UFR de Biochimie, Université Paris, Denis Diderot, Paris, France
| | - Kate Bushby
- Institute of Human Genetics, Newcastle upon Tyne, UK
| | | | | | - Isidro Ferrer
- Institut de Neuropatologia, Ciutat Sanitària i Universitària de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | | | - Lev G Goldfarb
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
149
|
Rigoard P, Bauche S, Buffenoir K, Giot JP, Faure JP, Scepi M, Richer JP, Lapierre F, Wager M. Le support anatomique de la contraction musculaire. Neurochirurgie 2009; 55 Suppl 1:S69-82. [DOI: 10.1016/j.neuchi.2008.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/09/2008] [Indexed: 11/24/2022]
|
150
|
Mobine HR, Engelmayr GC, Moussazadeh N, Anwar TR, Freed LE, Edelman ER. Encapsulated pheochromocytoma cells secrete potent noncatecholamine factors. Tissue Eng Part A 2009; 15:1719-28. [PMID: 19125641 DOI: 10.1089/ten.tea.2008.0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pheochromocytomas are widely believed to induce cardiomyopathy via hypersecretion of catecholamines, including norepinephrine (NE). NE can have direct cardiomyocyte toxicity and/or can stimulate myocardial remodeling secondary to the induction of hypertension. Yet, the development of cardiomyopathy is not entirely related to catecholamine dose or the extent of hypertension. To explore these effects, we engineered a polymeric encapsulation system to control PC12 cell kinetics and NE release in vitro and in vivo. Primary neonatal rat cardiomyocytes incubated with pheochromocytoma-conditioned media exhibited greater cytoskeletal changes than myocytes cultured with identical doses of NE alone, including more profound dose-dependent decreases in desmin, beta-tubulin, and vinculin and upregulation of dystrophin. Cardiomyocyte contractility was 29 +/- 6% greater at given levels of NE release. Agarose-encapsulated PC12 cells retain cell viability and structural integrity in vivo. These implants induce a 30% greater degree of cardiac enlargement as compared to pumps releasing equivalent doses of NE. Protein level alterations observed in vitro were mirrored in vivo after implantation of encapsulated cells or NE pumps for 28 days. Together, these data suggest that pheochromocytoma-induced cardiomyopathy is not solely a catecholamine-mediated event; rather, the pathogenesis of this dilated cardiomyopathy appears to be dependent upon secondary factors unexamined to date.
Collapse
Affiliation(s)
- Hector R Mobine
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|