101
|
Lacotte S, Berney T, Shapiro AJ, Toso C. Immune monitoring of pancreatic islet graft: towards a better understanding, detection and treatment of harmful events. Expert Opin Biol Ther 2010; 11:55-66. [PMID: 21073277 DOI: 10.1517/14712598.2011.536530] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Long-term clinical outcomes of islet transplantation are hampered by rejection and recurrence of autoimmunity, which lead to a gradual decrease in islet function usually taking place over the first five years after transplantation. An accurate monitoring strategy could allow for the detection and treatment of harmful immune events, potentially resulting in higher rates of insulin-independence. AREAS COVERED IN THIS REVIEW This article provides a critical review of the various assays currently available for the assessment of allo- and autoimmunity both prior to and after islet transplantation. The accuracy in predicting clinical outcome is specifically addressed. WHAT THE READER WILL GAIN Most current tests based on the assessment of allo- and auto-immune antibody are of minimal help in clinical practice. Cell-based tests (including the assessment of cytotoxic T lymphocyte precursors, proliferation tests, enzyme-linked immunospot) have the potential to allow earlier and more accurate detection of harmful events. TAKE HOME MESSAGE A specific and accurate immune monitoring has the potential to significantly improve islet transplant outcomes. The development and use of such tests (favouring cell-based tests) should be promoted.
Collapse
Affiliation(s)
- Stéphanie Lacotte
- University of Geneva, Department of Surgery, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
102
|
Anton G, Peltecu G, Socolov D, Cornitescu F, Bleotu C, Sgarbura Z, Teleman S, Iliescu D, Botezatu A, Goia CD, Huica I, Anton AC. Type-specific human papillomavirus detection in cervical smears in Romania. APMIS 2010:1-19. [PMID: 21143521 PMCID: PMC3132448 DOI: 10.1111/j.1600-0463.2011.02765.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To study type 1 diabetes (T1D), excellent animal models exist, both spontaneously diabetic and virus-induced. Based on knowledge from these, this review focuses on the environmental factors leading to T1D, concentrated into four areas which are: (1) The thymus-dependent immune system: T1D is a T cell driven disease and the beta cells are destroyed in an inflammatory insulitis process. Autoimmunity is breakdown of self-tolerance and the balance between regulator T cells and aggressive effector T cells is disturbed. Inhibition of the T cells (by e.g. anti-CD3 antibody or cyclosporine) will stop the T1D process, even if initiated by virus. Theoretically, the risk from immunotherapy elicits a higher frequency of malignancy. (2) The activity of the beta cells: Resting beta cells display less antigenicity and are less sensitive to immune destruction. Beta-cell rest can be induced by giving insulin externally in metabolic doses or by administering potassium-channel openers. Both procedures prevent T1D in animal models, whereas no good human data exist due to the risk of hypoglycemia. (3) NKT cells: According to the hygiene hypothesis, stimulation of NKT cells by non-pathogen microbes gives rise to less T cell reaction and less autoimmunity. Glycolipids presented by CD1 molecules are central in this stimulation. (4) Importance of the intestine and gliadin intake: Gluten-free diet dramatically inhibits T1D in animal models, and epidemiological data are supportive of such an effect in humans. The mechanisms include less subclinical intestinal inflammation and permeability, and changed composition of bacterial flora, which can also be obtained by intake of probiotics. Gluten-free diet is difficult to implement, and short-term intake has no effect. Regarding the onset of the T1D disease process, slow-acting enterovirus and gliadin deposits are speculated to be etiological in genetically susceptible individuals, followed by the mentioned four pathogenetic factors acting in concert. Neutralization of any one of these factors is capable of stopping T1D development, as lessons are learned from the animal models.
Collapse
Affiliation(s)
- Gabriela Anton
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Ryan GA, Wang CJ, Chamberlain JL, Attridge K, Schmidt EM, Kenefeck R, Clough LE, Dunussi-Joannopoulos K, Toellner KM, Walker LSK. B1 cells promote pancreas infiltration by autoreactive T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2800-7. [PMID: 20675587 PMCID: PMC3983558 DOI: 10.4049/jimmunol.1000856] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The entry of autoreactive T cells into the pancreas is a critical checkpoint in the development of autoimmune diabetes. In this study, we identify a role for B1 cells in this process using the DO11 x RIP-mOVA mouse model. In transgenic mice with islet-specific T cells, but no B cells, T cells are primed in the pancreatic lymph node but fail to enter the pancreas. Reconstitution of the B1 cell population by adoptive transfer permits extensive T cell pancreas infiltration. Reconstituted B1 cells traffic to the pancreas and modify expression of adhesion molecules on pancreatic vasculature, notably VCAM-1. Despite substantial pancreas infiltration, islet destruction is minimal unless regulatory T cells are depleted. These data identify a role for B1 cells in permitting circulating islet-specific T cells to access their Ag-bearing tissue and emphasize the existence of multiple checkpoints to regulate autoimmune disease.
Collapse
Affiliation(s)
- Gemma A. Ryan
- Medical Research Council Center for Immune Regulation, University of Birmingham Medical School, Birmingham, United Kingdom
| | - Chun Jing Wang
- Medical Research Council Center for Immune Regulation, University of Birmingham Medical School, Birmingham, United Kingdom
| | - Jayne L. Chamberlain
- Medical Research Council Center for Immune Regulation, University of Birmingham Medical School, Birmingham, United Kingdom
| | - Kesley Attridge
- Medical Research Council Center for Immune Regulation, University of Birmingham Medical School, Birmingham, United Kingdom
| | - Emily M. Schmidt
- Medical Research Council Center for Immune Regulation, University of Birmingham Medical School, Birmingham, United Kingdom
| | - Rupert Kenefeck
- Medical Research Council Center for Immune Regulation, University of Birmingham Medical School, Birmingham, United Kingdom
| | - Louise E. Clough
- Medical Research Council Center for Immune Regulation, University of Birmingham Medical School, Birmingham, United Kingdom
| | | | - Kai-Michael Toellner
- Medical Research Council Center for Immune Regulation, University of Birmingham Medical School, Birmingham, United Kingdom
| | - Lucy S. K. Walker
- Medical Research Council Center for Immune Regulation, University of Birmingham Medical School, Birmingham, United Kingdom
| |
Collapse
|
104
|
Abstract
The development of type 1 diabetes involves a complex interaction between pancreatic beta-cells and cells of both the innate and adaptive immune systems. Analyses of the interactions between natural killer (NK) cells, NKT cells, different dendritic cell populations and T cells have highlighted how these different cell populations can influence the onset of autoimmunity. There is evidence that infection can have either a potentiating or inhibitory role in the development of type 1 diabetes. Interactions between pathogens and cells of the innate immune system, and how this can influence whether T cell activation or tolerance occurs, have been under close scrutiny in recent years. This Review focuses on the nature of this crosstalk between the innate and the adaptive immune responses and how pathogens influence the process.
Collapse
Affiliation(s)
- Agnès Lehuen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U986, Hôpital Saint Vincent de Paul, Bâtiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France.
| | | | | | | |
Collapse
|
105
|
Cox SL, Silveira PA. Emerging roles for B lymphocytes in Type 1 diabetes. Expert Rev Clin Immunol 2010; 5:311-24. [PMID: 20477009 DOI: 10.1586/eci.09.4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Self-reactive B lymphocytes play two main pathological roles in autoimmune diseases: as secretors of autoantibodies and as specialized antigen-presenting cells that present self-components to autoreactive T lymphocytes. In recognition of these roles, recent clinical trials have utilized B-lymphocyte-depleting monoclonal antibodies to treat various autoimmune diseases, with encouraging results in those where humoral autoimmunity is clearly important. Surprisingly, recent results in animal models suggest that B-lymphocyte depletion may also be effective in the treatment of T-lymphocyte-mediated autoimmune diseases, such as Type 1 diabetes (T1D). This article reviews the experimental evidence that has uncovered pathogenic as well as regulatory roles for B lymphocytes in the prodrome of T1D and how this information is being used to develop novel therapeutic strategies to treat the disease.
Collapse
Affiliation(s)
- S Lewis Cox
- Immunology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|
106
|
Mannering SI, Brodnicki TC. Recent insights into CD4+ T-cell specificity and function in type 1 diabetes. Expert Rev Clin Immunol 2010; 3:557-64. [PMID: 20477160 DOI: 10.1586/1744666x.3.4.557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes (T1D) is caused by T-cell-mediated destruction of the insulin-producing beta-cells in the pancreas. Genetic and immunological evidence from humans and mouse models indicates that CD4(+) T cells play a crucial role in the development and prevention of T1D. The dichotomy between CD4(+) T regulatory and effector T cells has encouraged research into the role of these cell subsets in T1D. New antigens and epitopes recognized by CD4(+) T cells in affected individuals have been identified. Growing knowledge of T-cell specificity and function is helping to develop new assays for analyzing islet antigen-specific CD4(+) T cells from human blood. Here we discuss, with particular reference to human studies, advances in our understanding of CD4(+) T-cell responses in T1D.
Collapse
Affiliation(s)
- Stuart I Mannering
- Autoimmunity & Transplantation Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
107
|
Abstract
IMPORTANCE OF THE FIELD Type 1 diabetes mellitus (T1D) is a T-cell mediated autoimmune disease with selective destruction of beta cells. Immunological interventions are directed at arresting the loss of beta-cell function with the promise that this will make it easier for patients to control their glucose levels. AREAS COVERED IN THIS REVIEW This review provides a summary of the preclinical and clinical research published between 1992 and 2009 using teplizumab and other anti-CD3 antibodies to arrest the loss of beta-cell function in new onset T1D. Data from animal and human studies on the probable mechanism of action of teplizumab are also reviewed. WHAT THE READER WILL GAIN A broad perspective on the use of teplizumab in inducing disease specific tolerance. TAKE HOME MESSAGE In Phase I/II randomized control trials, in patients with new onset T1D, teplizumab slowed the rate of loss of beta-cell function over 2 years of follow-up. Treated patients had better glycemic control and lower insulin requirements. Adverse events so far are mild and of limited duration. Phase III clinical trials are underway to confirm these results and to determine if two courses of drug have greater efficacy in arresting loss of beta-cell function.
Collapse
Affiliation(s)
- Umesh B Masharani
- Division of Endocrinology and Metabolism, Department of Medicine, University of California-San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143, USA.
| | | |
Collapse
|
108
|
Surrogate end points in the design of immunotherapy trials: emerging lessons from type 1 diabetes. Nat Rev Immunol 2010; 10:145-52. [DOI: 10.1038/nri2705] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
109
|
Roep BO, Kleijwegt FS, van Halteren AGS, Bonato V, Boggi U, Vendrame F, Marchetti P, Dotta F. Islet inflammation and CXCL10 in recent-onset type 1 diabetes. Clin Exp Immunol 2010; 159:338-43. [PMID: 20059481 DOI: 10.1111/j.1365-2249.2009.04087.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Type 1 diabetes results from a T cell-mediated destruction of insulin-producing pancreatic beta cells. Little is known on local factors contributing to migration of T cells to pancreatic tissue. We recently demonstrated evidence of viral infection in beta cells in several recent-onset type 1 diabetes patients. Islet inflammation was analysed in a series of new- or recent-onset type 1 diabetic patients and non-diabetic control subjects. Autoimmune T cell reactivity was studied in lymphocytes derived from pancreas-draining lymph nodes of one recent-onset type 1 diabetes patient in partial clinical remission. Insulitic lesions were characterized by presence of beta cells, elevated levels of the chemokine CXCL10 and infiltration of lymphocytes expressing the corresponding chemokine receptor CXCR3 in all pancreatic lesions of type 1 diabetes patients, regardless of enterovirus infection of beta cells. CXCR3 and CXCL10 were undetectable in pancreata of non-diabetic control subjects. T cells isolated from draining lymph nodes of a recent-onset patient with virally infected beta cells and in clinical remission reacted with multiple islet autoantigens and displayed a mixed interferon (IFN)-gamma/interleukin (IL)-10 cytokine pattern. Our data point to CXCL10 as an important cytokine in distressed islets that may contribute to inflammation leading to insulitis and beta cell destruction, regardless of local viral infection. We demonstrate further pro- and anti-inflammatory islet autoreactivity, indicating that different adaptive and innate immune responses may contribute to insulitis and beta cell destruction.
Collapse
Affiliation(s)
- B O Roep
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
110
|
La Torre D, Lernmark A. Immunology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:537-83. [PMID: 20217514 DOI: 10.1007/978-90-481-3271-3_24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreatic islet beta-cells are the target for an autoimmune process that eventually results in an inability to control blood glucose due to the lack of insulin. The different steps that eventually lead to the complete loss of the beta-cells are reviewed to include the very first step of a triggering event that initiates the development of beta-cell autoimmunity to the last step of appearance of islet-cell autoantibodies, which may mark that insulitis is about to form. The observations that the initial beta-cell destruction by virus or other environmental factors triggers islet autoimmunity not in the islets but in the draining pancreatic lymph nodes are reviewed along with possible basic mechanisms of loss of tolerance to islet autoantigens. Once islet autoimmunity is established the question is how beta-cells are progressively killed by autoreactive lymphocytes which eventually results in chronic insulitis. Many of these series of events have been dissected in spontaneously diabetic mice or rats, but controlled clinical trials have shown that rodent observations are not always translated into mechanisms in humans. Attempts are therefore needed to clarify the step 1 triggering mechanisms and the step to chronic autoimmune insulitis to develop evidence-based treatment approaches to prevent type 1 diabetes.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, CRC, Department of Clinical Sciences, University Hospital MAS, SE-205 02, Malmö, Sweden.
| | | |
Collapse
|
111
|
Dib SA, Gomes MB. Etiopathogenesis of type 1 diabetes mellitus: prognostic factors for the evolution of residual beta cell function. Diabetol Metab Syndr 2009; 1:25. [PMID: 19961609 PMCID: PMC2797766 DOI: 10.1186/1758-5996-1-25] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 12/04/2009] [Indexed: 01/07/2023] Open
Abstract
Type 1A diabetes mellitus (T1ADM) is a progressive autoimmune disease mediated by T lymphocytes with destruction of beta cells. Up to now, we do not have precise methods to assess the beta cell mass, "in vivo" or "ex-vivo". The studies about its genetic susceptibility show strong association with class II antigens of the HLA system (particularly DQ). Others genetics associations are weaker and depend on the population studied. A combination of precipitating events may occur at the beginning of the disease. There is a silent loss of immune-mediated beta cells mass which velocity has an inverse relation with the age, but it is influenced by genetic and metabolic factors. We can predict the development of the disease primarily through the determination of four biochemically islet auto antibodies against antigens like insulin, GAD65, IA2 and Znt8. Beta cell destruction is chronically progressive but at clinical diagnosis of the disease a reserve of these cells still functioning. The goal of secondary disease prevention is halt the autoimmune attack on beta cells by redirecting or dampening the immune system. It is remains one of the foremost therapeutic goals in the T1ADM. Glycemic intensive control and immunotherapeutic agents may preserve beta-cell function in newly diagnosed patients with T1ADM. It may be assessed through C-peptide values, which are important for glycemic stability and for the prevention of chronic complications of this disease. This article will summarize the etiopathogenesis mechanisms of this disease and the factors can influence on residual C-peptide and the strategies to it preservation.
Collapse
Affiliation(s)
- Sergio A Dib
- Endocrinology Division, Department of Medicine of Federal University of São Paulo, SP, Brazil
| | - Marilia B Gomes
- Diabetes Division, Department of Medicine of State University of Rio de Janeiro, GB, Brazil
| |
Collapse
|
112
|
Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, Becker DJ, Gitelman SE, Goland R, Gottlieb PA, Marks JB, McGee PF, Moran AM, Raskin P, Rodriguez H, Schatz DA, Wherrett D, Wilson DM, Lachin JM, Skyler JS. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 2009; 361:2143-52. [PMID: 19940299 PMCID: PMC6410357 DOI: 10.1056/nejmoa0904452] [Citation(s) in RCA: 789] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The immunopathogenesis of type 1 diabetes mellitus is associated with T-lymphocyte autoimmunity. However, there is growing evidence that B lymphocytes play a role in many T-lymphocyte-mediated diseases. It is possible to achieve selective depletion of B lymphocytes with rituximab, an anti-CD20 monoclonal antibody. This phase 2 study evaluated the role of B-lymphocyte depletion in patients with type 1 diabetes. METHODS We conducted a randomized, double-blind study in which 87 patients between 8 and 40 years of age who had newly diagnosed type 1 diabetes were assigned to receive infusions of rituximab or placebo on days 1, 8, 15, and 22 of the study. The primary outcome, assessed 1 year after the first infusion, was the geometric mean area under the curve (AUC) for the serum C-peptide level during the first 2 hours of a mixed-meal tolerance test. Secondary outcomes included safety and changes in the glycated hemoglobin level and insulin dose. RESULTS At 1 year, the mean AUC for the level of C peptide was significantly higher in the rituximab group than in the placebo group. The rituximab group also had significantly lower levels of glycated hemoglobin and required less insulin. Between 3 months and 12 months, the rate of decline in C-peptide levels in the rituximab group was significantly less than that in the placebo group. CD19+ B lymphocytes were depleted in patients in the rituximab group, but levels increased to 69% of baseline values at 12 months. More patients in the rituximab group than in the placebo group had adverse events, mostly grade 1 or grade 2, after the first infusion. The reactions appeared to be minimal with subsequent infusions. There was no increase in infections or neutropenia with rituximab. CONCLUSIONS A four-dose course of rituximab partially preserved beta-cell function over a period of 1 year in patients with type 1 diabetes. The finding that B lymphocytes contribute to the pathogenesis of type 1 diabetes may open a new pathway for exploration in the treatment of patients with this condition. (ClinicalTrials.gov number, NCT00279305.)
Collapse
|
113
|
Bresson D, von Herrath M. Immunotherapy for the prevention and treatment of type 1 diabetes: optimizing the path from bench to bedside. Diabetes Care 2009; 32:1753-68. [PMID: 19794001 PMCID: PMC2752914 DOI: 10.2337/dc09-0373] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Damien Bresson
- From the Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Matthias von Herrath
- From the Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
114
|
Hilbrands R, Huurman VA, Gillard P, Velthuis JH, De Waele M, Mathieu C, Kaufman L, Pipeleers-Marichal M, Ling Z, Movahedi B, Jacobs-Tulleneers-Thevissen D, Monbaliu D, Ysebaert D, Gorus FK, Roep BO, Pipeleers DG, Keymeulen B. Differences in baseline lymphocyte counts and autoreactivity are associated with differences in outcome of islet cell transplantation in type 1 diabetic patients. Diabetes 2009; 58:2267-76. [PMID: 19602536 PMCID: PMC2750206 DOI: 10.2337/db09-0160] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
OBJECTIVE The metabolic outcome of islet cell transplants in type 1 diabetic patients is variable. This retrospective analysis examines whether differences in recipient characteristics at the time of transplantation are correlated with inadequate graft function. RESEARCH DESIGN AND METHODS Thirty nonuremic C-peptide-negative type 1 diabetic patients had received an intraportal islet cell graft of comparable size under an ATG-tacrolimus-mycophenolate mofetil regimen. Baseline patient characteristics were compared with outcome parameters during the first 6 posttransplant months (i.e., plasma C-peptide, glycemic variability, and gain of insulin independence). Correlations in univariate analysis were further examined in a multivariate model. RESULTS Patients that did not become insulin independent exhibited significantly higher counts of B-cells as well as a T-cell autoreactivity against insulinoma-associated protein 2 (IA2) and/or GAD. In one of them, a liver biopsy during posttransplant year 2 showed B-cell accumulations near insulin-positive beta-cell aggregates. Higher baseline total lymphocytes and T-cell autoreactivity were also correlated with lower plasma C-peptide levels and higher glycemic variability. CONCLUSIONS Higher total and B-cell counts and presence of T-cell autoreactivity at baseline are independently associated with lower graft function in type 1 diabetic patients receiving intraportal islet cells under ATG-tacrolimus-mycophenolate mofetil therapy. Prospective studies are needed to assess whether control of these characteristics can help increase the function of islet cell grafts during the first year posttransplantation.
Collapse
Affiliation(s)
- Robert Hilbrands
- Diabetes Research Center and Universitair Ziekenhuis Brussels, Brussels Free University-Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Juvenile Diabetes Research Foundation Center for β-Cell Therapy in Diabetes, Brussels, Belgium
| | - Volkert A.L. Huurman
- Juvenile Diabetes Research Foundation Center for β-Cell Therapy in Diabetes, Brussels, Belgium
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Pieter Gillard
- Diabetes Research Center and Universitair Ziekenhuis Brussels, Brussels Free University-Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Juvenile Diabetes Research Foundation Center for β-Cell Therapy in Diabetes, Brussels, Belgium
- Department of Endocrinology, Universitair Ziekenhuis Gasthuisberg, Catholic University of Leuven, Leuven, Belgium
| | - Jurjen H.L. Velthuis
- Juvenile Diabetes Research Foundation Center for β-Cell Therapy in Diabetes, Brussels, Belgium
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Marc De Waele
- Diabetes Research Center and Universitair Ziekenhuis Brussels, Brussels Free University-Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Chantal Mathieu
- Juvenile Diabetes Research Foundation Center for β-Cell Therapy in Diabetes, Brussels, Belgium
- Department of Endocrinology, Universitair Ziekenhuis Gasthuisberg, Catholic University of Leuven, Leuven, Belgium
| | - Leonard Kaufman
- Department of Biostatistics, Brussels Free University-VUB, Brussels, Belgium
| | - Miriam Pipeleers-Marichal
- Diabetes Research Center and Universitair Ziekenhuis Brussels, Brussels Free University-Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center and Universitair Ziekenhuis Brussels, Brussels Free University-Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Juvenile Diabetes Research Foundation Center for β-Cell Therapy in Diabetes, Brussels, Belgium
| | - Babak Movahedi
- Diabetes Research Center and Universitair Ziekenhuis Brussels, Brussels Free University-Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Juvenile Diabetes Research Foundation Center for β-Cell Therapy in Diabetes, Brussels, Belgium
| | - Daniel Jacobs-Tulleneers-Thevissen
- Diabetes Research Center and Universitair Ziekenhuis Brussels, Brussels Free University-Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Juvenile Diabetes Research Foundation Center for β-Cell Therapy in Diabetes, Brussels, Belgium
| | - Diethard Monbaliu
- Department of Surgery, Universitair Ziekenhuis Gasthuisberg, Catholic University of Leuven, Leuven, Belgium
| | - Dirk Ysebaert
- Department of Surgery, Universitair Ziekenhuis Antwerpen, University of Antwerp, Antwerp, Belgium
| | - Frans K. Gorus
- Diabetes Research Center and Universitair Ziekenhuis Brussels, Brussels Free University-Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Juvenile Diabetes Research Foundation Center for β-Cell Therapy in Diabetes, Brussels, Belgium
| | - Bart O. Roep
- Juvenile Diabetes Research Foundation Center for β-Cell Therapy in Diabetes, Brussels, Belgium
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Daniel G. Pipeleers
- Diabetes Research Center and Universitair Ziekenhuis Brussels, Brussels Free University-Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Juvenile Diabetes Research Foundation Center for β-Cell Therapy in Diabetes, Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center and Universitair Ziekenhuis Brussels, Brussels Free University-Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Juvenile Diabetes Research Foundation Center for β-Cell Therapy in Diabetes, Brussels, Belgium
- Corresponding author: Bart Keymeulen,
| |
Collapse
|
115
|
von Herrath M, Nepom GT. Remodeling rodent models to mimic human type 1 diabetes. Eur J Immunol 2009; 39:2049-54. [DOI: 10.1002/eji.200939429] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
116
|
Vandemeulebroucke E, Gorus FK, Decochez K, Weets I, Keymeulen B, De Block C, Tits J, Pipeleers DG, Mathieu C. Insulin treatment in IA-2A-positive relatives of type 1 diabetic patients. DIABETES & METABOLISM 2009; 35:319-27. [PMID: 19647467 DOI: 10.1016/j.diabet.2009.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 02/05/2009] [Accepted: 02/08/2009] [Indexed: 12/27/2022]
Abstract
AIMS We examined whether parenteral regular insulin can prevent diabetes in IA-2 antibody-positive (IA-2A+) relatives of type 1 diabetic patients, using a trial protocol that differed substantially from that of the Diabetes Prevention Trial-1. METHODS Twenty-five IA-2A+ relatives received regular human insulin twice a day for 36 months, during which time they were followed (median [interquartile range; IQR]: 47 [19-66] months) for glucose tolerance, HbA(1c) and islet autoantibodies, together with 25 IA-2A+ relatives (observation/control group) who fulfilled the same inclusion criteria, but were observed for 52 [27-67] months (P=0.58). RESULTS Twelve (48%) insulin-treated relatives and 15 (60%) relatives in the control group developed diabetes. There was no difference in diabetes-free survival between the two groups (P=0.97). Five-year progression (95% confidence interval) was 44% (25-69) in the insulin-treated group and 49% (29-70) in the observation group. At inclusion, progressors tended to have a higher pro-insulin/C-peptide ratio than non-progressors when measured 2 hours after a standardized glucose load (median [IQR]: 2.7% [1.8-4.3] vs. 1.6% [1.1-2.1]; P=0.01). No major hypoglycaemic episodes or significant increases in body mass index or diabetes autoantibodies were observed. CONCLUSION Prophylactic injections of regular human insulin were well tolerated, but failed to prevent type 1 diabetes onset in IA-2A+ relatives.
Collapse
|
117
|
Kumar N, Kaur G, Mehra N. Genetic determinants of Type 1 diabetes: immune response genes. Biomark Med 2009; 3:153-73. [DOI: 10.2217/bmm.09.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Type 1 diabetes (T1D) is a polygenic autoimmune disease. Susceptibility to T1D is strongly linked to a major genetic locus that is the MHC, and several other minor loci including insulin, cytotoxic T-lymphocyte-associated antigen-4, PTPN22 and others that contribute to diabetes risk in an epistatic way. We have observed that there are three sets of DR3-positive autoimmunity-favoring haplotypes in the north-Indian population, including B50-DR3, B58-DR3 and B8-DR3. The classical Caucasian autoimmunity favoring AH8.1 (HLA-A1-B8-DR3) is rare in the Indian population, and has been replaced by a variant AH8.1v, which differs from the Caucasian AH8.1 at several gene loci. Similarly, there are additional HLA-DR3 haplotypes, A26-B8-DR3 (AH8.2), A24-B8-DR3 (AH8.3), A3-B8-DR3 (AH8.4) and A31-B8-DR3 (AH8.5), of which AH8.2 is the most common. The fact that disease-associated DR3-positive haplotypes show heterogeneity in different populations suggests that these might possess certain shared components that are involved in the development of autoimmunity.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Gurvinder Kaur
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Narinder Mehra
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
118
|
Spencer J, Peakman M. Post-mortem analysis of islet pathology in type 1 diabetes illuminates the life and death of the beta cell. Clin Exp Immunol 2009; 155:125-7. [PMID: 19128357 DOI: 10.1111/j.1365-2249.2008.03864.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
119
|
Wenzlau JM, Moua O, Sarkar SA, Yu L, Rewers M, Eisenbarth GS, Davidson HW, Hutton JC. SlC30A8 is a major target of humoral autoimmunity in type 1 diabetes and a predictive marker in prediabetes. Ann N Y Acad Sci 2009; 1150:256-9. [PMID: 19120307 DOI: 10.1196/annals.1447.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type 1A diabetes (T1D) results from autoimmunity targeted at a limited number of molecules that are expressed in the pancreatic beta cell. Putative novel autoantigen candidates were identified from microarray expression profiling of human and rodent islet cells. The highest ranking candidate was Slc30A8 (zinc transporter 8; ZnT8), which was screened by radioimmunoprecipitation assays against new-onset T1D and prediabetic sera. Such assays detected 63% of subjects with new-onset diabetes, but fewer than 2% of controls, 3% of those with type 2 diabetes, and 10% of patients with other autoimmune disorders. ZnT8 autoantibodies were found, however, in 26% of T1D subjects previously classified as autoantibody-negative on the basis of existing markers (GADA, IA2 A, IAA, and ICA). We conclude that SLC30A8 provides an important additional and independent predictive marker for T1D.
Collapse
Affiliation(s)
- Janet M Wenzlau
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Toma A, Laïka T, Haddouk S, Luce S, Briand JP, Camoin L, Connan F, Lambert M, Caillat-Zucman S, Carel JC, Muller S, Choppin J, Lemonnier F, Boitard C. Recognition of human proinsulin leader sequence by class I-restricted T-cells in HLA-A*0201 transgenic mice and in human type 1 diabetes. Diabetes 2009; 58:394-402. [PMID: 19011169 PMCID: PMC2628613 DOI: 10.2337/db08-0599] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE A restricted region of proinsulin located in the B chain and adjacent region of C-peptide has been shown to contain numerous candidate epitopes recognized by CD8(+) T-cells. Our objective is to characterize HLA class I-restricted epitopes located within the preproinsulin leader sequence. RESEARCH DESIGN AND METHODS Seven 8- to 11-mer preproinsulin peptides carrying anchoring residues for HLA-A1, -A2, -A24, and -B8 were selected from databases. HLA-A2-restricted peptides were tested for immunogenicity in transgenic mice expressing a chimeric HLA-A*0201/beta2-microglobulin molecule. The peptides were studied for binding to purified HLA class I molecules, selected for carrying COOH-terminal residues generated by proteasome digestion in vitro and tested for recognition by human lymphocytes using an ex vivo interferon-gamma (IFN-gamma) ELISpot assay. RESULTS Five HLA-A2-restricted peptides were immunogenic in transgenic mice. Murine T-cell clones specific for these peptides were cytotoxic against cells transfected with the preproinsulin gene. They were recognized by peripheral blood mononuclear cells (PBMCs) from 17 of 21 HLA-A2 type 1 diabetic patients. PBMCs from 25 of 38 HLA-A1, -A2, -A24, or -B8 patients produced IFN-gamma in response to six preproinsulin peptides covering residues 2-25 within the preproinsulin region. In most patients, the response was against several class I-restricted peptides. T-cells recognizing preproinsulin peptide were characterized as CD8(+) T-cells by staining with peptide/HLA-A2 tetramers. CONCLUSIONS We defined class I-restricted epitopes located within the leader sequence of human preproinsulin through in vivo (transgenic mice) and ex vivo (diabetic patients) assays, illustrating the possible role of preproinsulin-specific CD8(+) T-cells in human type 1 diabetes.
Collapse
Affiliation(s)
- Andréa Toma
- Institut National de Santé et de Recherche Médicale U561 et Université Paris N, Hôpital Cochin-Saint Vincent de Paul, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Kahara T, Takamura T, Otoda T, Ishikura K, Matsushita E. Transient anti-GAD antibody positivity and acute pancreatitis with pancreas tail swelling in a patient with susceptible haplotype for type 1 diabetes mellitus. Intern Med 2009; 48:1897-9. [PMID: 19881242 DOI: 10.2169/internalmedicine.48.2393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 57-year-old man was admitted to our hospital complaining of poor appetite. He had been diagnosed with diabetes mellitus and was anti-GAD antibody (GAD-Ab) negative 1 year previously, at the age of 56 years old. Abdominal CT revealed pancreas tail swelling; elastase-I level was elevated and he was diagnosed with pancreatitis. The level of GAD-Ab was increased and HLA haplotype was DRB1*0901-DQB1*0303, which is seen frequently in type 1 diabetic Japanese patients. However, his endogenous insulin secretion ability was not deteriorated. After elastase-I level and pancreas swelling improved, GAD-Ab returned to a normal range. One year after the onset of pancreas swelling, he was still not in an insulin-dependent state. In this case, transient GAD-Ab positivity with susceptible haplotype for type 1 diabetes mellitus might have been induced by a GAD antigen discharged from the destroyed islet due to pancreatitis.
Collapse
Affiliation(s)
- Toshio Kahara
- Department of Internal Medicine, Kahoku Central Hospital, Ishikawa, Japan.
| | | | | | | | | |
Collapse
|
122
|
Mariño E, Grey ST. A new role for an old player: Do B cells unleash the self-reactive CD8+ T cell storm necessary for the development of type 1 diabetes? J Autoimmun 2008; 31:301-5. [DOI: 10.1016/j.jaut.2008.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
123
|
Huurman VAL, Hilbrands R, Pinkse GGM, Gillard P, Duinkerken G, van de Linde P, van der Meer-Prins PMW, Versteeg-van der Voort Maarschalk MFJ, Verbeeck K, Alizadeh BZ, Mathieu C, Gorus FK, Roelen DL, Claas FHJ, Keymeulen B, Pipeleers DG, Roep BO. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation. PLoS One 2008; 3:e2435. [PMID: 18560516 PMCID: PMC2426735 DOI: 10.1371/journal.pone.0002435] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 04/22/2008] [Indexed: 02/04/2023] Open
Abstract
Background Islet cell transplantation can cure type 1 diabetes (T1D), but only a minority of recipients remains insulin–independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function. Methodology/Principal Findings Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG) induction and tacrolimus plus mycophenolate mofetil (MMF) maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters - including time until insulin independence, insulin independence at one year, and C-peptide levels over one year- remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively) and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively). Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome. Conclusions/Significance In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG-tacrolimus-MMF immunosuppression. Tailored immunotherapy targeting cellular islet autoreactivity may be required. Monitoring cellular immune reactivity can be useful to identify factors influencing graft survival and to assess efficacy of immunosuppression. Trial Registration Clinicaltrials.gov NCT00623610
Collapse
Affiliation(s)
- Volkert A. L. Huurman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Robert Hilbrands
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Gabriëlle G. M. Pinkse
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Pieter Gillard
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
- Laboratory for Experimental Medicine & Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven-KUL, Leuven, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Gaby Duinkerken
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Pieter van de Linde
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Petronella M. W. van der Meer-Prins
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | | | - Koen Verbeeck
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Behrooz Z. Alizadeh
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Chantal Mathieu
- Laboratory for Experimental Medicine & Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven-KUL, Leuven, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Frans K. Gorus
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Dave L. Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Frans H. J. Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Daniel G. Pipeleers
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
| | - Bart O. Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium
- * E-mail:
| |
Collapse
|
124
|
Abstract
T lymphocytes' crucial role in the autoimmune process leading to insulin-dependent type 1 diabetes is now universally recognized. Research focuses on identifying pathogenic and nonpathogenic T cells, understanding how they are primed and expanded, characterizing their antigen specificity, and ultimately on devising strategies to blunt their autoaggressive action. In this review, we focus on recent progress identified in three different areas. Results obtained with transgenic mice acknowledge proinsulin's unique role in triggering autoimmunity and suggest that other beta-cell proteins are recognized as a result of epitope spreading, at least in the nonobese diabetic mouse. Progress has also been achieved by developing and validating reliable CD4+ and CD8+ T-cell tests that may prove valuable for diagnostic and prognostic purposes in the near future. Finally, recent results provide novel and important guidance for manipulating autoreactive T-cell responses against beta-cell antigens.
Collapse
|
125
|
Brodie GM, Wallberg M, Santamaria P, Wong FS, Green EA. B-cells promote intra-islet CD8+ cytotoxic T-cell survival to enhance type 1 diabetes. Diabetes 2008; 57:909-17. [PMID: 18184927 DOI: 10.2337/db07-1256] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine the role of B-cells in promoting CD8(+) T-cell-mediated beta cell destruction in chronically inflamed islets. RESEARCH DESIGN AND METHODS-RIP: TNFalpha-NOD mice were crossed to B-cell-deficient NOD mice, and diabetes development was monitored. We used in vitro antigen presentation assays and in vivo administration of bromodeoxyuridine coupled to flow cytometry assays to assess intra-islet T-cell activation in the absence or presence of B-cells. CD4(+)Foxp3(+) activity in the absence or presence of B-cells was tested using in vivo depletion techniques. Cytokine production and apoptosis assays determined the capacity of CD8(+) T-cells transform to cytotoxic T-lymphocytes (CTLs) and survive within inflamed islets in the absence or presence of B-cells. RESULTS B-cell deficiency significantly delayed diabetes development in chronically inflamed islets. Reintroduction of B-cells incapable of secreting immunoglobulin restored diabetes development. Both CD4(+) and CD8(+) T-cell activation was unimpaired by B-cell deficiency, and delayed disease was not due to CD4(+)Foxp3(+) T-cell suppression of T-cell responses. Instead, at the CTL transition stage, B-cell deficiency resulted in apoptosis of intra-islet CTLs. CONCLUSIONS In inflamed islets, B-cells are central for the efficient intra-islet survival of CTLs, thereby promoting type 1 diabetes development.
Collapse
Affiliation(s)
- Gillian M Brodie
- Department of Pathology, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | |
Collapse
|
126
|
The lack of anti-idiotypic antibodies, not the presence of the corresponding autoantibodies to glutamate decarboxylase, defines type 1 diabetes. Proc Natl Acad Sci U S A 2008; 105:5471-6. [PMID: 18367670 DOI: 10.1073/pnas.0800578105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autoantibodies to glutamate decarboxylase 65 (GAD65Ab) are commonly believed to be a major characteristic for type 1 diabetes (T1D). We investigated the presence of GAD65Ab in healthy individuals (n = 238) and first-degree relatives (FDRs) of T1D patients (n = 27) who tested negative for GAD65Ab in conventional RIAs. Sera were applied to affinity columns coated with GAD65-specific mAbs to absorb anti-idiotypic antibodies (anti-Ids). The absorbed sera were analyzed for binding to GAD65 by RIAs. Both healthy individuals and FDRs present GAD65Ab that are inhibited by anti-Id, masking them in conventional detection methods. The presence of GAD65Ab-specific anti-Ids was confirmed by competitive ELISA. Remarkably, T1D patients (n = 54) and Stiff Person Syndrome patients (n = 8) show a specific lack of anti-Ids to disease-associated GAD65Ab epitopes. Purified anti-Ids from healthy individuals and FDRs inhibited the binding of GAD65Ab from T1D patients to GAD65. We conclude that masked GAD65Ab are present in the healthy population and that a lack of particular anti-Ids, rather than GAD65Ab per se, is a characteristic of T1D. The lack of these inhibitory antibodies may contribute to T cell activation by GAD65Ab.
Collapse
|
127
|
Abstract
Diabetes mellitus is a disorder characterized by hyperglycemia in both the fasting and post-prandial states. The two most common forms of diabetes mellitus, type 1 and type 2 (previously called juvenile-onset and adult-onset, respectively), comprise the vast majority of cases. Type 1 diabetes (T1DM) has been shown to be a disease characterized by immune-mediated destruction of the insulin-secreting cells of the pancreas; it comprises the majority of cases of diabetes seen in childhood and approximately, 5-10% of all cases of diabetes mellitus in the USA and perhaps accounts for an even higher percentage in those nations with lower rates of obesity. The process of beta-cell destruction, marked by the production of autoantibodies to the beta-cell, occurs over many years and ultimately results in metabolic abnormalities first manifested as impaired glucose tolerance and then progressing to symptomatic hyperglycemia. It has been reported that approximately 50% of the genetic risk for T1DM can be attributed to the HLA region. The highest risk HLA-DR3/4 DQ8 genotype has been shown to be highly associated with beta-cell autoimmunity. The first antibodies described in association with the development of T1DM were islet cell autoantibodies (ICA). Subsequently, antibodies to insulin (IAA), glutamic acid decarboxylase (GAA or GAD) and protein tyrosine phosphatase (IA2 or ICA512) have all been defined. The number of antibodies, rather than the individual antibody, is thought to be most predictive of progression to overt diabetes.
Collapse
Affiliation(s)
- Craig E Taplin
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Aurora, CO 80045-6511, USA
| | | |
Collapse
|
128
|
The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 2007; 104:17040-5. [PMID: 17942684 DOI: 10.1073/pnas.0705894104] [Citation(s) in RCA: 709] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) results from progressive loss of pancreatic islet mass through autoimmunity targeted at a diverse, yet limited, series of molecules that are expressed in the pancreatic beta cell. Identification of these molecular targets provides insight into the pathogenic process, diagnostic assays, and potential therapeutic agents. Autoantigen candidates were identified from microarray expression profiling of human and rodent pancreas and islet cells and screened with radioimmunoprecipitation assays using new-onset T1D and prediabetic sera. A high-ranking candidate, the zinc transporter ZnT8 (Slc30A8), was targeted by autoantibodies in 60-80% of new-onset T1D compared with <2% of controls and <3% type 2 diabetic and in up to 30% of patients with other autoimmune disorders with a T1D association. ZnT8 antibodies (ZnTA) were found in 26% of T1D subjects classified as autoantibody-negative on the basis of existing markers [glutamate decarboxylase (GADA), protein tyrosine phosphatase IA2 (IA2A), antibodies to insulin (IAA), and islet cytoplasmic autoantibodies (ICA)]. Individuals followed from birth to T1D showed ZnT8A as early as 2 years of age and increasing levels and prevalence persisting to disease onset. ZnT8A generally emerged later than GADA and IAA in prediabetes, although not in a strict order. The combined measurement of ZnT8A, GADA, IA2A, and IAA raised autoimmunity detection rates to 98% at disease onset, a level that approaches that needed to detect prediabetes in a general pediatric population. The combination of bioinformatics and molecular engineering used here will potentially generate other diabetes autoimmunity markers and is also broadly applicable to other autoimmune disorders.
Collapse
|
129
|
Blancou P, Mallone R, Martinuzzi E, Sévère S, Pogu S, Novelli G, Bruno G, Charbonnel B, Dolz M, Chaillous L, van Endert P, Bach JM. Immunization of HLA Class I Transgenic Mice Identifies Autoantigenic Epitopes Eliciting Dominant Responses in Type 1 Diabetes Patients. THE JOURNAL OF IMMUNOLOGY 2007; 178:7458-66. [PMID: 17513797 DOI: 10.4049/jimmunol.178.11.7458] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of pancreatic beta cells. CD8(+) T cells have recently been assigned a major role in beta cell injury. Consequently, the identification of autoreactive CD8(+) T cells in humans remains essential for development of therapeutic strategies and of assays to identify aggressive cells. However, this identification is laborious and limited by quantities of human blood samples available. We propose a rapid and reliable method to identify autoantigen-derived epitopes recognized by human CD8(+) T lymphocytes in T1D patients. Human histocompatibility leukocyte Ags-A*0201 (HLA-A*0201) transgenic mice were immunized with plasmids encoding the T1D-associated autoantigens: 65 kDa glutamic acid decarboxylase (GAD) or insulinoma-associated protein 2 (IA-2). Candidate epitopes for T1D were selected from peptide libraries by testing the CD8(+) reactivity of vaccinated mice. All of the nine-candidate epitopes (five for GAD and four for IA-2) identified by our experimental approach were specifically recognized by CD8(+) T cells from newly diagnosed T1D patients (n = 19) but not from CD8(+) T cells of healthy controls (n = 20). Among these, GAD(114-123), GAD(536-545) and IA-2(805-813) were recognized by 53%, 25%, and 42% of T1D patients, respectively.
Collapse
Affiliation(s)
- Philippe Blancou
- Immuno-Endocrinology Unité Mixte de Recherche 707, Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire de Nantes/Université, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Roep BO. Are insights gained from NOD mice sufficient to guide clinical translation? Another inconvenient truth. Ann N Y Acad Sci 2007; 1103:1-10. [PMID: 17376838 DOI: 10.1196/annals.1394.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite decades of research using various animal models for type 1 diabetes, we are still struggling to define the initiating autoantigens, the precise mechanisms of beta cell destruction, and suitable immune-based interventions to prevent or treat human diabetes. Animal models, such as the non-obese diabetic (NOD) mouse and the biobreeding (BB) rat, develop immune-mediated diseases with features resembling type 1 diabetes in humans. Although these animal models of autoimmune diabetes have proved to be valuable tools to study certain aspects of the disease process, they have also led to misconceptions and erroneous extrapolations, as well as false expectations with regard to the efficacy of immunotherapy. It is therefore time to ask ourselves whether we are making major strategic mistakes when employing rodent models for the study of type 1 diabetes. This review will describe where rodent models have provided us with proper guidance and where they have misled us, concluding that each model only offers partial information with undefined clinical value. Therefore, a more critical attitude and repetition of crucial observations in different model settings will be necessary in the future. I will argue that animal models have limited but evident value when it comes to teaching us about type 1 diabetes in humans, and we can take advantage of this value more efficiently.
Collapse
Affiliation(s)
- Bart O Roep
- Department of Immunohaematology and Blood Transfusion, E3-Q, LUMC, P.O. Box 9600, NL-2300 RC Leiden, the Netherlands.
| |
Collapse
|
131
|
Filippi CM, von Herrath MG. Strategies to treat autoimmune diabetes. Expert Rev Endocrinol Metab 2007; 2:185-194. [PMID: 30754177 DOI: 10.1586/17446651.2.2.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type 1 diabetes results from autoimmune destruction of insulin-producing β cells in the pancreatic islets, leading to deficiency in glucose uptake by the cells of the body. The resulting complications and mortality call into attention the need for therapeutic strategies to treat this disease. While general immunosuppressive treatment and antigen-based therapy have both proven effective in aborting the autoimmune attack on β cells, cellular therapy and synergistic combination of agents probably represent the most promising approaches for efficient targeting of autoreactive cells. The underlying challenge is fine tuning of immune therapy to avoid harmful side effects on the immune system or other host-defense functions. This should be rendered possible by identifying the optimal regimen and underlying mechanisms of action.
Collapse
Affiliation(s)
- Christophe M Filippi
- a La Jolla Institute for Allergy & Immunology, Division of Immune Regulation DI-3, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | - Matthias G von Herrath
- b La Jolla Institute for Allergy & Immunology, Division of Immune Regulation DI-3, 9420 Athena Circle, La Jolla, CA 92037, USA.
| |
Collapse
|
132
|
Mallone R, Martinuzzi E, Blancou P, Novelli G, Afonso G, Dolz M, Bruno G, Chaillous L, Chatenoud L, Bach JM, van Endert P. CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes 2007; 56:613-21. [PMID: 17327428 DOI: 10.2337/db06-1419] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the understanding that type 1 diabetes pathogenesis is mediated by T-cells, detection of these rare lymphocytes remains largely elusive. Suitable T-cell assays are highly needed, since they could offer preclinical diagnoses and immune surrogate end points for clinical trials. Although CD4+ T-cell assays have met with limited success, CD8+ T-cells are increasingly recognized as key actors in the diabetes of the NOD mouse. CD8+ T-cells are likely to play a role also in humans and may provide new markers of beta-cell autoimmunity. Taking advantage of a panel of HLA-A2-restricted beta-cell epitopes derived from preproinsulin, GAD, and islet glucose-6-phosphatase catalytic subunit-related protein (IGRP), we have implemented an islet-specific CD8+ T-cell interferon-gamma enzyme-linked immunospot (ISL8Spot) assay. The ISL8Spot assay is capable of detecting and quantifying beta-cell-reactive CD8+ T-cells directly ex vivo, without any preliminary expansion, using either fresh or frozen samples. Positive ISL8Spot responses separate new-onset diabetic and healthy samples with high accuracy (86% sensitivity, 91% specificity), using as few as five immunodominant epitopes. Moreover, sensitivity reaches 100% when the ISL8Spot assay is complemented by antibody determinations. Combination of CD8+ T-cell measurements with immune intervention strategies may open new avenues toward type 1 diabetes prediction and prevention.
Collapse
Affiliation(s)
- Roberto Mallone
- INSERM U580, Hôpital Necker, 161 rue de Sèvres, 75743 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
van der Werf N, Kroese FGM, Rozing J, Hillebrands JL. Viral infections as potential triggers of type 1 diabetes. Diabetes Metab Res Rev 2007; 23:169-83. [PMID: 17103489 DOI: 10.1002/dmrr.695] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During the last decades, the incidence of type 1 diabetes (T1D) has increased significantly, reaching percentages of 3% annually worldwide. This increase suggests that besides genetical factors environmental perturbations (including viral infections) are also involved in the pathogenesis of T1D. T1D has been associated with viral infections including enteroviruses, rubella, mumps, rotavirus, parvovirus and cytomegalovirus (CMV). Although correlations between clinical presentation with T1D and the occurrence of a viral infection that precedes the development of overt disease have been recognized, causalities between viruses and the diabetogenic process are still elusive and difficult to prove in humans. The use of experimental animal models is therefore indispensable, and indeed more insight in the mechanism by which viruses can modulate diabetogenesis has been provided by studies in rodent models for T1D such as the biobreeding (BB) rat, nonobese diabetic (NOD) mouse or specific transgenic mouse strains. Data from experimental animals as well as in vitro studies indicate that various viruses are clearly able to modulate the development of T1D via different mechanisms, including direct beta-cell lysis, bystander activation of autoreactive T cells, loss of regulatory T cells and molecular mimicry. Data obtained in rodents and in vitro systems have improved our insight in the possible role of viral infections in the pathogenesis of human T1D. Future studies will hopefully reveal which human viruses are causally involved in the induction of T1D and this knowledge may provide directions on how to deal with viral infections in diabetes-susceptible individuals in order to delay or even prevent the diabetogenic process.
Collapse
Affiliation(s)
- Nienke van der Werf
- Department of Cell Biology, Immunology Section, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
134
|
Silveira PA, Chapman HD, Stolp J, Johnson E, Cox SL, Hunter K, Wicker LS, Serreze DV. Genes within the Idd5 and Idd9/11 diabetes susceptibility loci affect the pathogenic activity of B cells in nonobese diabetic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:7033-41. [PMID: 17082619 PMCID: PMC2886968 DOI: 10.4049/jimmunol.177.10.7033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Autoreactive T cells clearly mediate the pancreatic beta cell destruction causing type 1 diabetes (T1D). However, studies in NOD mice indicate that B cells also contribute to pathogenesis because their ablation by introduction of an Igmunull mutation elicits T1D resistance. T1D susceptibility is restored in NOD.Igmunull mice that are irradiated and reconstituted with syngeneic bone marrow plus NOD B cells, but not syngeneic bone marrow alone. Thus, we hypothesized some non-MHC T1D susceptibility (Idd) genes contribute to disease by allowing development of pathogenic B cells. Supporting this hypothesis was the finding that unlike those from NOD donors, engraftment with B cells from H2g7 MHC-matched, but T1D-resistant, nonobese-resistant (NOR) mice failed to restore full disease susceptibility in NOD.Igmunull recipients. T1D resistance in NOR mice is mainly encoded within the Idd13, Idd5.2, and Idd9/11 loci. B cells from NOD congenic stocks containing Idd9/11 or Idd5.1/5.2-resistance loci, respectively, derived from the NOR or C57BL/10 strains were characterized by suppressed diabetogenic activity. Immature autoreactive B cells in NOD mice have an impaired ability to be rendered anergic upon Ag engagement. Interestingly, both Idd5.1/5.2 and Idd9/11-resistance loci were found to normalize this B cell tolerogenic process, which may represent a mechanism contributing to the inhibition of T1D.
Collapse
Affiliation(s)
- Pablo A. Silveira
- Garvan Institute of Medical Research, Immunology and Inflammation Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | | - Jessica Stolp
- Garvan Institute of Medical Research, Immunology and Inflammation Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | | - S. Lewis Cox
- Garvan Institute of Medical Research, Immunology and Inflammation Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | - Kara Hunter
- Juvenile Diabetes Research Foundation/Wellcome Trust (JDRF/WT) Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke’s Hospital, Cambridge, U.K
| | - Linda S. Wicker
- Juvenile Diabetes Research Foundation/Wellcome Trust (JDRF/WT) Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke’s Hospital, Cambridge, U.K
| | | |
Collapse
|
135
|
Abstract
Diabetes is a disease of metabolism resulting from impaired insulin secretion, varying degrees of insulin resistance, or both. Management of the diabetic dental patients must take into consideration the impact of dental disease and dental treatment on the management of diabetes as well as an appreciation for the comorbidities that accompany long-standing diabetes. Those comorbidities include obesity, hypertension, and dyslipidemia. Central to the management of diabetes is the intensive regulation of plasma glucose along with management of comorbidities comprising the "metabolic syndrome." Management of the diabetic dental patient should focus on periodontal health and the delivery of comprehensive dental care with minimal disruption of metabolic homeostasis and recognition of diabetic comorbidities.
Collapse
Affiliation(s)
- Samuel J McKenna
- Oral and Maxillofacial Surgery, Vanderbilt University School of Medicine, 1623 The Vanderbilt Clinic, Nashville, TN 37232-5225, USA.
| |
Collapse
|
136
|
Abstract
Human diabetes mellitus comprises two main clinical entities: type 1 and type 2 diabetes. While type 1 diabetes is autoimmune in origin, type 2 diabetes is due to a decreased sensitivity to insulin action (so-called insulin resistance) associated with impaired beta cell function. However, it is becoming increasingly clear that there is a certain overlap between these two diseases. While some degree of insulin resistance is present in type 1 diabetic patients, markers of beta cell autoimmunity (either primary or secondary) can frequently be detected in type 2 diabetic subjects. In this scenario, anti-CD38 autoantibodies (aAbs) have been described in both type 1 and type 2 diabetic patients. Contrary to the other known islet aAbs, anti-CD38 autoantibodies are more prevalent in long-standing than in new-onset type 1 diabetes, and more prevalent in type 2 than in type 1 diabetes. Moreover, anti-CD38 aAbs are endowed with unique stimulatory properties on Ca(2+) mobilization and insulin secretion. These observations suggest that autoimmunity may be both the cause and consequence of beta cell dysfunction, in either case imposing a further toll for the control of glucose homeostasis.
Collapse
Affiliation(s)
- Roberto Mallone
- INSERM U580, Institut Necker, U580-Batiment Sevres, 161 rue de Sèvres, 75015 Paris, France.
| | | |
Collapse
|
137
|
Ballotti S, Chiarelli F, de Martino M. Autoimmunity: basic mechanisms and implications in endocrine diseases. Part II. HORMONE RESEARCH 2006; 66:142-52. [PMID: 16807509 DOI: 10.1159/000094252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Regulation of the immune response to self-antigens is a complex process that involves maintaining self-tolerance while preserving the capacity to exert an effective immune response. The primary mechanism that leads to self-tolerance is central tolerance. However, potential pathogenic autoreactive lymphocytes are normally present in the periphery of all individuals. This suggests the existence of mechanisms of peripheral tolerance that prevent the initiation of autoimmune diseases by limiting the activation of autoreactive lymphocytes. If these mechanisms of peripheral tolerance are impaired, the autoreactive lymphocytes may be activated and autoimmune diseases can develop. Several processes are involved in the maintenance of peripheral tolerance: the active suppression mediated by regulatory T cell populations, the different maturation state of antigen-presenting cells presenting the autoantigen to autoreactive lymphocytes, inducing tolerance instead of cell activation, the characteristics of B cell populations. A deeper comprehension of these mechanisms may lead to important therapeutic applications, such as the development of cellular vaccines for organ-specific autoimmune diseases. In addition, autoimmunity does not always have pathological consequences, but may exert a protective function, as suggested by several observations on the beneficial role of autoreactive T cells in central nervous system injury.
Collapse
Affiliation(s)
- S Ballotti
- Department of Paediatrics, Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | | | | |
Collapse
|
138
|
Silveira PA, Grey ST. B cells in the spotlight: innocent bystanders or major players in the pathogenesis of type 1 diabetes. Trends Endocrinol Metab 2006; 17:128-35. [PMID: 16580840 DOI: 10.1016/j.tem.2006.03.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 03/06/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
It has long been established that type 1 diabetes (T1D) is a T cell-mediated autoimmune disease, with CD4+ and CD8+ T cells being largely responsible for the destruction of beta cells within the pancreatic islets of Langerhans. Although autoantibodies specific for islet cell proteins are regularly detected in individuals with T1D and can be utilized as effective markers for predicting the onset of disease, they are not believed to be directly pathogenic to beta cells. Thus, activation of autoantibody-secreting B cells has long been regarded as a secondary consequence of the ongoing self-reactive T cell response. However, recently, studies in the nonobese diabetic mouse model of disease have demonstrated that B cells are an important component in the development of T1D by virtue of their ability to act as the preferential antigen presenting cell population required for efficient expansion of diabetogenic CD4+ T cells. Furthermore, autoantibodies might also be responsible for mediating early beta cell pathogenesis in this model.
Collapse
Affiliation(s)
- Pablo A Silveira
- Immunology and Inflammation Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|
139
|
Ivakine EA, Gulban OM, Mortin-Toth SM, Wankiewicz E, Scott C, Spurrell D, Canty A, Danska JS. Molecular Genetic Analysis of the Idd4 Locus Implicates the IFN Response in Type 1 Diabetes Susceptibility in Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:2976-90. [PMID: 16493056 DOI: 10.4049/jimmunol.176.5.2976] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-resolution mapping and identification of the genes responsible for type 1 diabetes (T1D) has proved difficult because of the multigenic etiology and low penetrance of the disease phenotype in linkage studies. Mouse congenic strains have been useful in refining Idd susceptibility loci in the NOD mouse model and providing a framework for identification of genes underlying complex autoimmune syndromes. Previously, we used NOD and a nonobese diabetes-resistant strain to map the susceptibility to T1D to the Idd4 locus on chromosome 11. Here, we report high-resolution mapping of this locus to 1.4 megabases. The NOD Idd4 locus was fully sequenced, permitting a detailed comparison with C57BL/6 and DBA/2J strains, the progenitors of T1D resistance alleles found in the nonobese diabetes-resistant strain. Gene expression arrays and quantitative real-time PCR were used to prioritize Idd4 candidate genes by comparing macrophages/dendritic cells from congenic strains where allelic variation was confined to the Idd4 interval. The differentially expressed genes either were mapped to Idd4 or were components of the IFN response pathway regulated in trans by Idd4. Reflecting central roles of Idd4 genes in Ag presentation, arachidonic acid metabolism and inflammation, phagocytosis, and lymphocyte trafficking, our combined analyses identified Alox15, Alox12e, Psmb6, Pld2, and Cxcl16 as excellent candidate genes for the effects of the Idd4 locus.
Collapse
Affiliation(s)
- Evgueni A Ivakine
- Program in Developmental Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Hanifi-Moghaddam P, Kappler S, Seissler J, Müller-Scholze S, Martin S, Roep BO, Strassburger K, Kolb H, Schloot NC. Altered chemokine levels in individuals at risk of Type 1 diabetes mellitus. Diabet Med 2006; 23:156-63. [PMID: 16433713 DOI: 10.1111/j.1464-5491.2005.01743.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The hypothesis was tested in an exploratory study that individuals at high risk of developing Type 1 diabetes mellitus have altered systemic levels of cytokines and chemokines. SUBJECTS AND METHODS Forty-two non-diabetic first-degree relatives of patients with Type 1 diabetes mellitus were recruited. Of these, 18 had multiple islet autoantibodies (islet cell antibody, glutamic acid decarboxylase antibody, IA-2 antibody). Follow-up for 9-11 years confirmed high vs. moderate diabetes risk in islet autoantibody-positive vs. -negative relatives. Cytokines and chemokines were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Serum concentrations of classic Th1-associated cytokines (IFN-gamma, IL-12, IL-18) or Th2/Treg-associated cytokines (IL-5, IL-10, IL-13) did not significantly differ in high vs. moderate diabetes risk group. However, of six chemokines analysed, levels of CCL3 and CCL4 were increased (P = 0.0442 and P = 0.0334) while CCL2 was decreased (P = 0.0318) in the multiple islet autoantibody-positive group. No significant differences were seen for CCL5, CCL11, CXCL10. There was a significant correlation between the two closely related chemokines CCL3 and CCL4 in individuals at risk (r = 0.84, P = 0.00005), but not in the autoantibody-negative group. CONCLUSION Relatives at high risk of developing Type 1 diabetes mellitus have abnormal cellular immune regulation at the level of systemic chemokines. The up-regulation of CCL3 and CCL4 vs. down-regulation of CCL2 suggests opposed functions of these chemokines in the disease process. These findings need to be confirmed by independent studies.
Collapse
Affiliation(s)
- P Hanifi-Moghaddam
- German Diabetes Clinic, German Diabetes Center, Leibniz Institute at the Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
Type 1A diabetes mellitus is caused by specific and progressive autoimmune destruction of the beta cells in the islets of Langerhans whereas the other cell types in the islet (alpha, delta, and PP) are spared. The autoantigens of Type 1A diabetes may be divided into subgroups based on their tissue distributions: Beta-cell-specific antigens like insulin, insulin derivatives, and IGRP (Islet-specific Glucose-6-phosphatase catalytic subunit Related Peptide); neurendocrine antigens such as carboxypeptidase H, insulinoma-associated antigen (IA-2), glutamic acid decarboxylase (GAD65), and carboxypeptidase E; and those expressed ubiquitously like heat shock protein 60 (a putative autoantigen for type 1 diabetes). This review will focus specifically on insulin as a primary autoantigen, an essential target for disease, in type 1A diabetes mellitus. In particular, immunization with insulin peptide B:9-23 can be used to induce insulin autoantibodies and diabetes in animal models or used to prevent diabetes. Genetic manipulation of the insulin 1 and 2 genes reciprocally alters development of diabetes in the NOD mouse, and insulin gene polymorphisms are important determinants of childhood diabetes. We are pursuing the hypothesis that insulin is a primary autoantigen for type 1 diabetes, and thus the pathogenesis of the disease relates to specific recognition of one or more peptides.
Collapse
Affiliation(s)
- J M Jasinski
- Human Medical Genetics Program, Aurora, CO 80010, USA.
| | | |
Collapse
|
142
|
Abstract
Autoantibodies have been used as good markers for the prediction of future development of type 1 diabetes mellitus (T1DM), but are not thought to be pathogenic in this disease. The role of B cells that produce autoantibodies in the pathogenesis of human T1DM is largely unknown. In the non-obese diabetic (NOD) mouse model of autoimmune diabetes, it has been shown that B cells may contribute multifariously to the pathogenesis of the disease. Some aspects of deficiencies of B cell tolerance may lead to the circulation of autoreactive B cells. In addition, the antigen-presenting function of autoantigen specific B cells is likely to be particularly important, and autoantibodies are also considered to play a critical role. This review discusses the possible aspects of B cells involved in the development of autoimmune diabetes.
Collapse
Affiliation(s)
- F Susan Wong
- Department of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | | |
Collapse
|
143
|
van de Linde P, Roep BO. T-Cell Assays to Determine Disease Activity and Clinical Efficacy of Immune Therapy in Type 1 Diabetes. Am J Ther 2005; 12:573-9. [PMID: 16280651 DOI: 10.1097/01.mjt.0000178768.44987.cb] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Type 1 (insulin-dependent) diabetes mellitus results from a T cell-mediated autoimmune destruction of the pancreatic beta cells in genetically predisposed individuals. Therapies directed against T cells have been demonstrated to halt the disease process and prevent recurrent beta-cell destruction after islet transplantation. Less is known about the nature and function of these T cells, the cause of the loss of tolerance to islet autoantigens, why the immune system apparently fails to suppress autoreactivity, and whether (or which) autoantigen(s) are critically involved in the initiation or progression of disease. Autoreactive T cells have proven to be valuable targets to study pathogenic or diabetes-related processes. Measuring T-cell autoreactivity also provided critical information to determine the fate of islet allografts transplanted to type 1 diabetic patients. Furthermore, these studies have provided proof of operational immunologic tolerance to islet allografts as well as valuable information to improve and customize immunosuppressive therapy. Currently, technologies to detect T-cell auto- and alloreactivity in type 1 diabetic recipients of islet allografts are applied to monitor islet allograft survival in relation with various immunosuppressive therapies and to guide tapering of these therapies after successful restoration of insulin production. Although it is generally appreciated that studies on cellular auto- and alloimmunity are hampered by the complex nature of such immune responses and the required technical and physical skills, it has been a worthwhile quest to unravel the role of T cells in the pathogenesis of type 1 diabetes and islet allograft destruction.
Collapse
Affiliation(s)
- Pieter van de Linde
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
144
|
Preda I, McEvoy RC, Lin M, Bona CA, Rapaport R, Brumeanu TD, Casares S. Soluble, dimeric HLA DR4-peptide chimeras: an approach for detection and immunoregulation of human type-1 diabetes. Eur J Immunol 2005; 35:2762-75. [PMID: 16106371 DOI: 10.1002/eji.200526158] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Still there are no effective methods to predict or cure type 1 diabetes (T1D) in humans. Soluble, dimeric MHC class II-peptide (DEF) chimeras have potential for both early diagnosis and immunospecific therapy. DEF chimeras prevent and reverse diabetes in mice by stimulating antigen-specific type 1 T regulatory cell (Tr1)-like cells. We also showed that diabetes could be predicted by changes in the phenotype of autoreactive CD4 T cells in peripheral blood. Herein, we demonstrated that human DEF (HLA-DR*0401/Fcgamma1) chimeras expressing peptides of beta-cell antigens stimulate Tr1-like cells in blood of patients with T1D, non-diabetic relatives, and controls. Furthermore, the specific and stable binding of DEF chimeras to cognate TCR and CD4 coreceptor allowed quantification and phenotyping of autoreactive CD4 T cells in non-stimulated blood by FACS. Our results indicate that (1) autoreactive CD4 T cells to GAD65 autoantigen are commonly present in humans expressing diabetes-susceptible HLA-DR*0401 molecules; (2) these autoreactive T cells undergo avidity maturation upon encountering the self antigen early in life; (3) the disease is associated with an imbalance between autoreactive CD4+CD25+ and CD4+CD69+ T cells specific for GAD65. Based on this, we propose a model to explain the kinetics of autoreactive CD4 T cells in blood during the natural history of T1D.
Collapse
Affiliation(s)
- Ioana Preda
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
The T-cell mediated autoimmune process that destroys pancreatic beta cells in type 1 diabetes (T1D) is a complex phenotype influenced by multiple genetic and environmental factors. Human leukocyte antigen (HLA) accounts for about half of the genetic susceptibility, through a large variety of protective and predisposing haplotypes. Other important loci associated with T1D, with much smaller effects than HLA, include the insulin variable number of tandem repeats, PTPN22, and CTLA-4. Detecting the association and confirming it beyond doubt is only the first step. Identifying the functional variant from among a block of polymorphisms in tight linkage disequilibrium and determining its biological consequences can be an even more challenging task. It is hoped that the identification of additional loci and functional analysis of known ones, no matter how small each individual effect is, will provide: (1) pathophysiological insights necessary for the development of preventive interventions; (2) risk prediction to identify individuals that can benefit from them, and (3) potentially, identification of distinct subgenotypes, with different immune dysregulation pathways leading to the common disease phenotype that may respond to different preventive interventions.
Collapse
Affiliation(s)
- Mimi S Kim
- Division of Pediatric Endocrinology, McGill University Health Center, Montreal, Canada
| | | |
Collapse
|
146
|
Lernmark A, Agardh CD. Immunomodulation with human recombinant autoantigens. Trends Immunol 2005; 26:608-12. [PMID: 16153889 DOI: 10.1016/j.it.2005.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2005] [Revised: 08/10/2005] [Accepted: 08/31/2005] [Indexed: 11/19/2022]
Abstract
The loss of beta cells in type 1 diabetes is the consequence of a T cell-dependent autoimmune attack. Autoantibodies against GAD65 (Mr 65.000 isoform of glutamic acid decarboxylase), IA-2 (insulinoma-associated protein IA-2) or insulin, alone or in combination, predict disease. Preclinical studies in spontaneously diabetic rodents suggest that immunomodulation with autoantigens might alter the course of autoimmune diabetes. Oral insulin reduces the development of diabetes in risk subjects with high insulin autoantibody levels. Giving alum-formulated GAD65 to patients classified with latent autoimmune diabetes of the adult (LADA) is safe and suggests possible immunomodulating effects of GAD65. Future immunomodulation trials might better ascertain subjects based on HLA genetic risk factors, the level of insulin that is still produced or by combining autoantigens with, for example, anti-CD3 antibodies, to induce antigen-specific tolerance and thereby a long-lasting protection for beta cells.
Collapse
Affiliation(s)
- Ake Lernmark
- The University of Washington, Department of Medicine, Seattle, WA 981905, USA.
| | | |
Collapse
|
147
|
Toma A, Haddouk S, Briand JP, Camoin L, Gahery H, Connan F, Dubois-Laforgue D, Caillat-Zucman S, Guillet JG, Carel JC, Muller S, Choppin J, Boitard C. Recognition of a subregion of human proinsulin by class I-restricted T cells in type 1 diabetic patients. Proc Natl Acad Sci U S A 2005; 102:10581-6. [PMID: 16030147 PMCID: PMC1180789 DOI: 10.1073/pnas.0504230102] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Indexed: 11/18/2022] Open
Abstract
Proinsulin is a key autoantigen in type 1 diabetes. Evidence in the mouse has underscored the importance of the insulin B chain region in autoimmunity to pancreatic beta cells. In man, a majority of proteasome cleavage sites are predicted by proteasome cleavage algorithms within this region. To study CD8+ T cell responses to the insulin B chain and adjacent C peptide, we selected 8- to 11-mer peptides according to proteasome cleavage patterns obtained by digestion of two peptides covering proinsulin residues 28 to 64. We studied their binding to purified HLA class I molecules and their recognition by T cells from diabetic patients. Peripheral blood mononuclear cells from 17 of 19 recent-onset and 12 of 13 long-standing type 1 diabetic patients produced IFN-gamma in response to proinsulin peptides as shown by using an ELISPOT assay. In most patients, the response was against several class I-restricted peptides. Nine peptides were recognized within the proinsulin region covering residues 34 to 61. Four yielded a high frequency of recognition in HLA-A1 and -B8 patients. Three peptides located in the proinsulin region 41-51 were shown to bind several HLA molecules and to be recognized in a high percentage of diabetic patients.
Collapse
Affiliation(s)
- Andréa Toma
- Institut National de la Santé et de la Recherche Médicale U561, Hôpital Cochin-Saint Vincent de Paul, Université Paris V, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Moore DJ, Noorchashm H, Lin TH, Greeley SA, Naji A. NOD B-cells are insufficient to incite T-cell-mediated anti-islet autoimmunity. Diabetes 2005; 54:2019-25. [PMID: 15983202 DOI: 10.2337/diabetes.54.7.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although it is well established that B-cells are required for the development of diabetes in the nonobese diabetic (NOD) mouse, the nature of their role remains unknown. Herein, we investigate the hypothesis that B-cells in this autoimmune background actively disrupt the tolerant state of those T-cells with which they interact. We demonstrate that NOD B-cells express elevated levels of crucial molecules involved in antigen presentation (including CD21/35, major histocompatibility complex class II, and CD40), alterations that invite the possibility of inappropriate T-cell activation. However, when chimeric animals are generated in which all B-cells are NOD-derived, a tolerant state is maintained. These data demonstrate that although B-cells are required for the development of autoimmunity, they are not sufficient to disrupt established tolerance. Moreover, non-B-cell antigen-presenting cells may be the critical actors in the establishment of the tolerant state; this function may be absent in NOD mice as they are characterized by deficient professional antigen-presenting cell function.
Collapse
Affiliation(s)
- Daniel J Moore
- Department of Pediatrics, Vanderbilt Children's Hospital, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
149
|
Abstract
Autoimmunity is a complex process that likely results from the summation of multiple defective tolerance mechanisms. The NOD mouse strain is an excellent model of autoimmune disease and an important tool for dissecting tolerance mechanisms. The strength of this mouse strain is that it develops spontaneous autoimmune diabetes, which shares many similarities to autoimmune or type 1a diabetes (T1D) in human subjects, including the presence of pancreas-specific autoantibodies, autoreactive CD4+ and CD8+ T cells, and genetic linkage to disease syntenic to that found in humans. During the past ten years, investigators have used a wide variety of tools to study these mice, including immunological reagents and transgenic and knockout strains; these tools have tremendously enhanced the study of the fundamental disease mechanisms. In addition, investigators have recently developed a number of therapeutic interventions in this animal model that have now been translated into human therapies. In this review, we summarize many of the important features of disease development and progression in the NOD strain, emphasizing the role of central and peripheral tolerance mechanisms that affect diabetes in these mice. The information gained from this highly relevant model of human disease will lead to potential therapies that may alter the development of the disease and its progression in patients with T1D.
Collapse
Affiliation(s)
- Mark S Anderson
- Diabetes Center, University of California, San Francisco, California 94143, USA.
| | | |
Collapse
|
150
|
Abstract
This brief review is focused on the unwanted clinical effects mediated by antibodies against genetechnologically produced drugs. While many antibodies binding biotech-drugs may not be harmful, others may have deleterious clinical effects exposing patients to high risks. These antibodies can cause either lack of efficacy or hypersensitivity reactions. Examples for antibody-mediated lack of efficacy are inhibitors in hemophiliacs treated with Factor VIII, evidence of decreasing therapeutic efficacy of beta-interferons in MS-patients and pure red cell aplasia (PRCA) in patients with chronic renal failure treated with erythropoietin. Antibody-mediated hypersensitivity reactions have to be expected with all recombinant proteins. The mechanisms and causes of antibody production against biotech-drugs in patients are discussed.
Collapse
Affiliation(s)
- Heiner Frost
- Division of Biotechnology Medicines, Swiss Agency for Therapeutic Products, Swissmedic, CH-3000 Bern 9, Switzerland.
| |
Collapse
|