101
|
Srivastava AC, Dasgupta K, Ajieren E, Costilla G, McGarry RC, Ayre BG. Arabidopsis plants harbouring a mutation in AtSUC2, encoding the predominant sucrose/proton symporter necessary for efficient phloem transport, are able to complete their life cycle and produce viable seed. ANNALS OF BOTANY 2009; 104:1121-8. [PMID: 19789176 PMCID: PMC2766205 DOI: 10.1093/aob/mcp215] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/21/2009] [Accepted: 07/23/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS AtSUC2 encodes a sucrose/proton symporter that localizes throughout the collection and transport phloem and is necessary for efficient transport of sucrose from source to sink tissues in Arabidopsis thaliana. Plants harbouring homozygous AtSUC2 null alleles accumulate sugar, starch, and anthocyanin in mature leaves, have severely delayed development and stunted growth and, in previous studies, failed to complete their life cycle by producing viable seed. METHODS An AtSUC2 allele with a T-DNA insertion in the second intron was analysed. Full-length transcript from this allele is not produced, and a truncated protein translated from sequences upstream of the insertion site did not catalyse sucrose uptake into yeast, supporting the contention that this is a null allele. Mutant plants were grown in a growth chamber with a diurnal light/dark cycle, and growth patterns recorded. KEY RESULTS This allele (SALK_038124, designated AtSUC2-4) has the hallmarks of previously described null alleles but, despite compromised carbon partitioning and growth, produces viable seeds. The onset of flowering was chronologically delayed but occurred at the same point in the plastochron index as wild type. CONCLUSIONS AtSUC2 is important for phloem loading and is therefore fundamental to phloem transport and plant productivity, but plants can complete their life cycle and produce viable seed in its absence. Arabidopsis appears to have mechanisms for mobilizing reduced carbon from the phloem into developing seeds independent of AtSUC2.
Collapse
Affiliation(s)
| | | | | | | | | | - Brian G. Ayre
- University of North Texas, Department of Biological Sciences, 1155 Union Circle #305220, Denton TX 76203-5017, USA
| |
Collapse
|
102
|
Melkus G, Rolletschek H, Radchuk R, Fuchs J, Rutten T, Wobus U, Altmann T, Jakob P, Borisjuk L. The metabolic role of the legume endosperm: a noninvasive imaging study. PLANT PHYSIOLOGY 2009; 151:1139-54. [PMID: 19748915 PMCID: PMC2773074 DOI: 10.1104/pp.109.143974] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/08/2009] [Indexed: 05/18/2023]
Abstract
Although essential for normal seed development in the legumes, the metabolic role of the endosperm remains uncertain. We designed noninvasive nuclear magnetic resonance tools for the in vivo study of key metabolites in the transient liquid endosperm of intact pea (Pisum sativum) seeds. The steady-state levels of sucrose, glutamine, and alanine could be monitored and their distribution within the embryo sac visualized. Seed structure was digitalized as a three-dimensional model, providing volume information for distinct seed organs. The nuclear magnetic resonance method, combined with laser microdissection, isotope labeling, in situ hybridization, and electron microscopy, was used to contrast the wild-type endosperm with that of a mutant in which embryo growth is retarded. Expression of sequences encoding amino acid and sucrose transporters was up-regulated earlier in the endosperm than in the embryo, and this activity led to the accumulation of soluble metabolites in the endosperm vacuole. The endosperm provides a temporary source of nutrition, permits space for embryo growth, and acts as a buffer between the maternal organism and its offspring. The concentration of sucrose in the endosperm vacuole is developmentally controlled, while the total amount accumulated depends on the growth of the embryo. The endosperm concentration of glutamine is a limiting factor for protein storage. The properties of the endosperm ensure that the young embryo develops within a homeostatic environment, necessary to sustain embryogenesis. We argue for a degree of metabolite-mediated control exerted by the endosperm on the growth of, and assimilate storage by, the embryo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ljudmilla Borisjuk
- University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany (G.M., J.F., P.J.); and Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (H.R., R.R., T.R., U.W., T.A., L.B.)
| |
Collapse
|
103
|
Pickard WF, Abraham-Shrauner B. A simplest steady-state Munch-like model of phloem translocation, with source and pathway and sink. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:629-644. [PMID: 32688676 DOI: 10.1071/fp08278] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 03/26/2009] [Indexed: 06/11/2023]
Abstract
In the 80 years since its introduction by Münch, the pressure-driven mass-flow model of phloem translocation has become hegemonic, and has been mathematically modelled in many different fashions but not, to our knowledge, by one that incorporated the equations of hydrodynamics with those of osmosis and slice-source and slice-sink boundary conditions to yield a system that admits of an analytical steady-state solution for the sap velocity in a single sieve tube. To overcome this situation, we drastically simplified the problem by: (i) justifying a low Peclet number idealisation in which transverse variations could be neglected; (ii) justifying a low viscosity idealisation in which axial pressure drops could be neglected; and (iii) assuming a sink of strength sufficient to lower the photosynthate concentration at the extreme distal end of the sieve tube to levels at which it became unimportant. The resulting ordinary nonlinear second-order differential equation in sap velocity and axial position was of a generalised Liénard form with a single forcing parameter; and this is reason enough for the lack of a known analytic solution. However, since the forcing parameter was very large, it was possible to deduce approximate second-order solutions for behavior in the source, sink and transport regions: the sap velocity is zero at the slice-source, climbs with exponential rapidity to a plateau, maintains this plateau over most of the sieve tube, and then drops with exponential rapidity to zero at the slice-sink.
Collapse
Affiliation(s)
- William F Pickard
- Department of Electrical and Systems Engineering, Washington University, St Louis, MO 63130, USA
| | - Barbara Abraham-Shrauner
- Department of Electrical and Systems Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
104
|
Thiel J, Weier D, Sreenivasulu N, Strickert M, Weichert N, Melzer M, Czauderna T, Wobus U, Weber H, Weschke W. Different hormonal regulation of cellular differentiation and function in nucellar projection and endosperm transfer cells: a microdissection-based transcriptome study of young barley grains. PLANT PHYSIOLOGY 2008; 148:1436-52. [PMID: 18784282 PMCID: PMC2577268 DOI: 10.1104/pp.108.127001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 09/05/2008] [Indexed: 05/17/2023]
Abstract
Nucellar projection (NP) and endosperm transfer cells (ETC) are essential tissues in growing barley (Hordeum vulgare) grains, responsible for nutrient transfer from maternal to filial tissues, endosperm/embryo nutrition, and grain development. A laser microdissection pressure catapulting-based transcriptome analysis was established to study NP and ETC separately using a barley 12K macroarray. A major challenge was to isolate high-quality mRNA from preembedded, fixed tissue while maintaining tissue integrity. We show that probes generated from fixed and embedded tissue sections represent largely the transcriptome (>70%) of nonchemically treated and nonamplified references. In NP, the top-down gradient of cellular differentiation is reflected by the expression of C3HC4-type ubiquitin ligases and different histone genes, cell wall biosynthesis and expansin/extensin genes, as well as genes involved in programmed cell death-related proteolysis coupled to nitrogen remobilization, indicating distinct areas simultaneously undergoing mitosis, cell elongation, and disintegration. Activated gene expression related to gibberellin synthesis and function suggests a regulatory role for gibberellins in establishment of the differentiation gradient. Up-regulation of plasmalemma-intrinsic protein and tonoplast-intrinsic protein genes indicates involvement in nutrient transfer and/or unloading. In ETC, AP2/EREBP-like transcription factors and ethylene functions are transcriptionally activated, a response possibly coupled to activated defense mechanisms. Transcriptional activation of nucleotide sugar metabolism may be attributed to ascorbate synthesis and/or cell wall biosynthesis. These processes are potentially controlled by trehalose-6-P synthase/phosphatase, as suggested by expression of their respective genes. Up-regulation of amino acid permeases in ETC indicates important roles in active nutrient uptake from the apoplastic space into the endosperm.
Collapse
Affiliation(s)
- Johannes Thiel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Zhou Y, Chan K, Wang TL, Hedley CL, Offler CE, Patrick JW. Intracellular sucrose communicates metabolic demand to sucrose transporters in developing pea cotyledons. JOURNAL OF EXPERIMENTAL BOTANY 2008; 60:71-85. [PMID: 18931350 PMCID: PMC3071760 DOI: 10.1093/jxb/ern254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/05/2008] [Accepted: 09/09/2008] [Indexed: 05/18/2023]
Abstract
Mechanistic inter-relationships in sinks between sucrose compartmentation/metabolism and phloem unloading/translocation are poorly understood. Developing grain legume seeds provide tractable experimental systems to explore this question. Metabolic demand by cotyledons is communicated to phloem unloading and ultimately import by sucrose withdrawal from the seed apoplasmic space via a turgor-homeostat mechanism. What is unknown is how metabolic demand is communicated to cotyledon sucrose transporters responsible for withdrawing sucrose from the apoplasmic space. This question was explored here using a pea rugosus mutant (rrRbRb) compromised in starch biosynthesis compared with its wild-type counterpart (RRRbRb). Sucrose influx into cotyledons was found to account for 90% of developmental variations in their absolute growth and hence starch biosynthetic rates. Furthermore, rr and RR cotyledons shared identical response surfaces, indicating that control of transporter activity was likely to be similar for both lines. In this context, sucrose influx was correlated positively with expression of a sucrose/H(+) symporter (PsSUT1) and negatively with two sucrose facilitators (PsSUF1 and PsSUF4). Sucrose influx exhibited a negative curvilinear relationship with cotyledon concentrations of sucrose and hexoses. In contrast, the impact of intracellular sugars on transporter expression was transporter dependent, with expression of PsSUT1 inhibited, PsSUF1 unaffected, and PsSUF4 enhanced by sugars. Sugar supply to, and sugar concentrations of, RR cotyledons were manipulated using in vitro pod and cotyledon culture. Collectively the results obtained showed that intracellular sucrose was the physiologically active sugar signal that communicated metabolic demand to sucrose influx and this transport function was primarily determined by PsSUT1 regulated at the transcriptional level.
Collapse
Affiliation(s)
- Yuchan Zhou
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Katie Chan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Trevor L. Wang
- Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Cliff L. Hedley
- Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Christina E. Offler
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - John W. Patrick
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
106
|
Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D. Zinc biofortification of cereals: problems and solutions. TRENDS IN PLANT SCIENCE 2008; 13:464-73. [PMID: 18701340 DOI: 10.1016/j.tplants.2008.06.005] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/12/2008] [Accepted: 06/17/2008] [Indexed: 05/20/2023]
Abstract
The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc and other essential nutrients. Major bottlenecks in plant biofortification appear to be the root-shoot barrier and--in cereals--the process of grain filling. New findings demonstrate that the root-shoot distribution of zinc is controlled mainly by heavy metal transporting P1B-ATPases and the metal tolerance protein (MTP) family. A greater understanding of zinc transport is important to improve crop quality and also to help alleviate accumulation of any toxic metals.
Collapse
Affiliation(s)
- Michael G Palmgren
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
107
|
Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M. Leaf nitrogen remobilisation for plant development and grain filling. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10 Suppl 1:23-36. [PMID: 18721309 DOI: 10.1111/j.1438-8677.2008.00097.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A major challenge of modern agriculture is to reduce the excessive input of fertilisers and, at the same time, to improve grain quality without affecting yield. One way to achieve this goal is to improve plant nitrogen economy through manipulating nitrogen recycling, and especially nitrogen remobilisation, from senescing plant organs. In this review, the contribution of nitrogen remobilisation efficiency (NRE) to global nitrogen use efficiency (NUE), and tools dedicated to the determination of NRE are described. An overall examination of the physiological, metabolic and genetic aspects of nitrogen remobilisation is presented.
Collapse
Affiliation(s)
- C Masclaux-Daubresse
- Unité de Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, Route de Saint Cyr, Versailles, France.
| | | | | |
Collapse
|
108
|
Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L. Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. THE ARABIDOPSIS BOOK 2008; 6:e0113. [PMID: 22303238 PMCID: PMC3243342 DOI: 10.1199/tab.0113] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the life cycle of higher plants, seed development is a key process connecting two distinct sporophytic generations. Seed development can be divided into embryo morphogenesis and seed maturation. An essential metabolic function of maturing seeds is the deposition of storage compounds that are mobilised to fuel post-germinative seedling growth. Given the importance of seeds for food and animal feed and considering the tremendous interest in using seed storage products as sustainable industrial feedstocks to replace diminishing fossil reserves, understanding the metabolic and developmental control of seed filling constitutes a major focus of plant research. Arabidopsis thaliana is an oilseed species closely related to the agronomically important Brassica oilseed crops. The main storage compounds accumulated in seeds of A. thaliana consist of oil stored as triacylglycerols (TAGs) and seed storage proteins (SSPs). Extensive tools developed for the molecular dissection of A. thaliana development and metabolism together with analytical and cytological procedures adapted for very small seeds have led to a good description of the biochemical pathways producing storage compounds. In recent years, studies using these tools have shed new light on the intricate regulatory network controlling the seed maturation process. This network involves sugar and hormone signalling together with a set of developmentally regulated transcription factors. Although much remains to be elucidated, the framework of the regulatory system controlling seed filling is coming into focus.
Collapse
Affiliation(s)
- Sébastien Baud
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Bertrand Dubreucq
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Martine Miquel
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Christine Rochat
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Loïc Lepiniec
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| |
Collapse
|
109
|
Ruan YL, Llewellyn DJ, Liu Q, Xu SM, Wu LM, Wang L, Furbank RT. Expression of sucrose synthase in the developing endosperm is essential for early seed development in cotton. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:382-393. [PMID: 32688795 DOI: 10.1071/fp08017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 05/01/2008] [Indexed: 06/11/2023]
Abstract
Successful seed development requires coordinated interaction of the endosperm and embryo. In most dicotyledonous seeds, the endosperm is crushed and absorbed by the expanding embryo in the later stages of seed development. Little is known about the metabolic interaction between the two filial tissues early in seed development. We examined the potential role of sucrose synthase (Sus) in the endosperm development of cotton. Sus was immunologically localised in the cellularising endosperm, but not in the heart-stage embryo at 10 days after anthesis. The activities of Sus and acid invertase were significantly higher in the endosperm than in the young embryos, which corresponded to a steep concentration difference in hexoses between the endosperm and the embryo. This observation indicates a role for the endosperm in generating hexoses for the development of the two filial tissues. Interestingly, Sus expression and starch deposition were spatially separated in the seeds. Silencing the expression of Sus in the endosperm using an RNAi approach led to the arrest of early seed development. Histochemical analyses revealed a significant reduction in cellulose and callose in the deformed endosperm cells of the Sus-suppressed seed. The data indicate a critical role of Sus in early seed development through regulation of endosperm formation.
Collapse
Affiliation(s)
- Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | | | - Qing Liu
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Shou-Min Xu
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Li-Min Wu
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Lu Wang
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Robert T Furbank
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
110
|
Katsuhara M, Hanba YT, Shiratake K, Maeshima M. Expanding roles of plant aquaporins in plasma membranes and cell organelles. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1-14. [PMID: 32688752 DOI: 10.1071/fp07130] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/04/2007] [Indexed: 06/11/2023]
Abstract
Aquaporins facilitate water transport across biomembranes in a manner dependent on osmotic pressure and water-potential gradient. The discovery of aquaporins has facilitated research on intracellular and whole-plant water transport at the molecular level. Aquaporins belong to a ubiquitous family of membrane intrinsic proteins (MIP). Plants have four subfamilies: plasma-membrane intrinsic protein (PIP), tonoplast intrinsic protein (TIP), nodulin 26-like intrinsic protein (NIP), and small basic intrinsic protein (SIP). Recent research has revealed a diversity of plant aquaporins, especially their physiological functions and intracellular localisation. A few PIP members have been reported to be involved in carbon dioxide permeability of cells. Newly identified transport substrates for NIP members of rice and Arabidopsis thaliana have been demonstrated to transport silicon and boron, respectively. Ammonia, glycerol, and hydrogen peroxide have been identified as substrates for plant aquaporins. The intracellular localisation of plant aquaporins is diverse; for example, SIP members are localised on the ER membrane. There has been much progress in the research on the functional regulation of water channel activity of PIP members including phosphorylation, formation of hetero-oligomer, and protonation of histidine residues under acidic condition. This review provides a broad overview of the range of potential aquaporins, which are now believed to participate in the transport of several small molecules in various membrane systems in model plants, crops, flowers and fruits.
Collapse
Affiliation(s)
- Maki Katsuhara
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Yuko T Hanba
- Centre for Bioresource Field Science, Kyoto Institute of Technology, Kyoto 616-8354, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masayoshi Maeshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
111
|
Waters BM, Grusak MA. Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. THE NEW PHYTOLOGIST 2008; 179:1033-1047. [PMID: 18631293 DOI: 10.1111/j.1469-8137.2008.02544.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Biofortification of foods, achieved by increasing the concentrations of minerals such as iron (Fe) and zinc (Zn), is a goal of plant scientists. Understanding genes that influence seed mineral concentration in a model plant such as Arabidopsis could help in the development of nutritionally enhanced crop cultivars. Quantitative trait locus (QTL) mapping for seed concentrations of calcium (Ca), copper (Cu), Fe, potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and Zn was performed using two recombinant inbred line (RIL) populations, Columbia (Col) x Landsberg erecta (Ler) and Cape Verde Islands (Cvi) x Ler, grown on multiple occasions. QTL mapping was also performed using data from silique hulls and the ratio of seed:hull mineral concentration of the Cvi x Ler population. Over 100 QTLs that affected seed mineral concentration were identified. Twenty-nine seed QTLs were found in more than one experiment, and several QTLs were found for both seed and hull mineral traits. A number of candidate genes affecting seed mineral concentration are discussed. These results indicate that A. thaliana is a suitable and convenient model for discovery of genes that affect seed mineral concentration. Some strong QTLs had no obvious candidate genes, offering the possibility of identifying unknown genes that affect mineral uptake and translocation to seeds.
Collapse
Affiliation(s)
- Brian M Waters
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Michael A Grusak
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| |
Collapse
|
112
|
Waters BM, Grusak MA. Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. THE NEW PHYTOLOGIST 2008; 177:389-405. [PMID: 18042200 DOI: 10.1111/j.1469-8137.2007.02288.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Minimal information exists on whole-plant dynamics of mineral flow through Arabidopsis thaliana or on the source tissues responsible for mineral export to developing seeds. Understanding these phenomena in a model plant could help in the development of nutritionally enhanced crop cultivars. A whole-plant partitioning study, using sequential harvests, was conducted to characterize growth and mineral concentrations and contents of rosettes, cauline leaves, stems, immature fruit, mature fruit hulls, and seeds of three WT lines (Col-0, Ler, and Cvi) and one mutant line (Col-0::ysl1ysl3). Shoot mineral content increased throughout the life cycle for all minerals, although tissue-specific mineral partitioning differed between genotypes. In particular, iron (Fe), zinc (Zn), and copper (Cu) were aberrantly distributed in ysl1ysl3. Remobilization was observed for several minerals from various tissues, including cauline leaves and silique hulls, but the amounts were generally far below the total mineral accretion observed in seeds. When YSL1 and YSL3 are nonfunctional, Cu, Fe, and Zn are not effectively remobilized from, or do not effectively pass through, leaf and maternal fruit tissues. With respect to seed mineral accretion in Arabidopsis, continued uptake and translocation of minerals to source tissues during seed fill are as important, if not more important, than remobilization of previously stored minerals.
Collapse
Affiliation(s)
- Brian M Waters
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Michael A Grusak
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| |
Collapse
|
113
|
Zhou Y, Setz N, Niemietz C, Qu H, Offler CE, Tyerman SD, Patrick JW. Aquaporins and unloading of phloem-imported water in coats of developing bean seeds. PLANT, CELL & ENVIRONMENT 2007; 30:1566-77. [PMID: 17927694 DOI: 10.1111/j.1365-3040.2007.01732.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nutrients are imported into developing legume seeds by mass flow through the phloem, and reach developing embryos following secretion from their symplasmically isolated coats. To sustain homeostasis of seed coat water relations, phloem-delivered nutrients and water must exit seed coats at rates commensurate with those of import through the phloem. In this context, coats of developing French bean seeds were screened for expression of aquaporin genes resulting in cloning PvPIP1;1, PvPIP2;2 and PvPIP2;3. These genes were differentially expressed in all vegetative organs, but exhibited their strongest expression in seed coats. In seed coats, expression was localized to cells of the nutrient-unloading pathway. Transport properties of the PvPIPs were characterized by expression in Xenopus oocytes. Only PvPIP2;3 showed significant water channel activity (Pos = 150-200 microm s(-1)) even when the plasma membrane intrinsic proteins (PIPs) were co-expressed in various combinations. Permeability increases to glycerol, methylamine and urea were not detected in oocytes expressing PvPIPs. Transport active aquaporins in native plasma membranes of seed coats were demonstrated by measuring rates of osmotic shrinkage of membrane vesicles in the presence and absence of mercuric chloride and silver nitrate. The functional significance of aquaporins in nutrient and water transport in developing seeds is discussed.
Collapse
Affiliation(s)
- Yuchan Zhou
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | | | | | |
Collapse
|