101
|
Machado D, Rodrigues LR, Rocha I. A kinetic model for curcumin production in Escherichia coli. Biosystems 2014; 125:16-21. [PMID: 25218090 DOI: 10.1016/j.biosystems.2014.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/01/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Curcumin is a natural compound obtained from turmeric, and is well known for its pharmacological effects. In this work, we design a heterologous pathway for industrial production of curcumin in Escherichia coli. A kinetic model of the pathway is then developed and connected to a kinetic model of the central carbon metabolism of E. coli. This model is used for optimization of the mutant strain through a rational design approach, and two manipulation targets are identified for overexpression. Dynamic simulations are then performed to compare the curcumin production profiles of the different mutant strains. Our results show that it is possible to obtain a significant improvement in the curcumin production rates with the proposed mutants. The kinetic model here developed can be an important framework to optimize curcumin production at an industrial scale and add value to its biomedical potential.
Collapse
Affiliation(s)
- Daniel Machado
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Lígia R Rodrigues
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Isabel Rocha
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
102
|
Chen HY, Babst BA, Nyamdari B, Hu H, Sykes R, Davis MF, Harding SA, Tsai CJ. Ectopic expression of a loblolly pine class II 4-coumarate:CoA ligase alters soluble phenylpropanoid metabolism but not lignin biosynthesis in Populus. PLANT & CELL PHYSIOLOGY 2014; 55:1669-78. [PMID: 25016610 DOI: 10.1093/pcp/pcu098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
4-Coumarate:CoA ligase (4CL) catalyzes the formation of hydroxycinnamoyl-CoA esters for phenylpropanoid biosynthesis. Phylogenetically distinct Class I and Class II 4CL isoforms occur in angiosperms, and support lignin and non-lignin phenylpropanoid biosynthesis, respectively. In contrast, the few experimentally characterized gymnosperm 4CLs are associated with lignin biosynthesis and belong to the conifer-specific Class III. Here we report a new Pinus taeda isoform Pinta4CL3 that is phylogenetically more closely related to Class II angiosperm 4CLs than to Class III Pinta4CL1. Like angiosperm Class II 4CLs, Pinta4CL3 transcript levels were detected in foliar and root tissues but were absent in xylem, and recombinant Pinta4CL3 exhibited a substrate preference for 4-coumaric acid. Constitutive expression of Pinta4CL3 in transgenic Populus led to significant increases of hydroxycinnamoyl-quinate esters at the expense of hydroxycinnamoyl-glucose esters in green tissues. In particular, large increases of cinnamoyl-quinate in transgenic leaves suggested in vivo utilization of cinnamic acid by Pinta4CL3. Lignin was unaffected in transgenic Populus, consistent with Pinta4CL3 involvement in biosynthesis of non-structural phenylpropanoids. We discuss the in vivo cinnamic acid utilization activity of Pinta4CL3 and its adaptive significance in conifer defense. Together with phylogenetic inference, our data support an ancient origin of Class II 4CLs that pre-dates the angiosperm-gymnosperm split.
Collapse
Affiliation(s)
- Han-Yi Chen
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Benjamin A Babst
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Present address: Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Batbayar Nyamdari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Hao Hu
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert Sykes
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Mark F Davis
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Scott A Harding
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
103
|
Guerriero G, Sergeant K, Hausman JF. Wood biosynthesis and typologies: a molecular rhapsody. TREE PHYSIOLOGY 2014; 34:839-55. [PMID: 24876292 DOI: 10.1093/treephys/tpu031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wood represents one of the most important renewable commodities for humanity and plays a crucial role in terrestrial ecosystem carbon-cycling. Wood formation is the result of a multitude of events that require the concerted action of endogenous and exogenous factors under the influence of photoperiod, for instance genes and plant growth regulators. Beyond providing mechanical support and being responsible for the increase in stem radial diameter, woody tissues constitute the vascular system of trees and are capable of reacting to environmental stimuli, and as such are therefore quite plastic and responsive. Despite the ecological and economic importance of wood, not all aspects of its formation have been unveiled. Many gaps in our knowledge are still present, which hinder the maximal exploitation of this precious bioresource. This review aims at surveying the current knowledge of wood formation and the available molecular data addressing the relationship between wood production and environmental factors, which have crucial influences on the rhythmic regulation of cambial activity and exert profound effects on tree stem growth, wood yield and properties. We will here go beyond wood sensu stricto, i.e., secondary xylem, and extend our survey to other tissues, namely vascular cambium, phloem and fibres. The purpose is to provide the reader with an overview of the complexity of the topic and to highlight the importance of progressing in the future towards an integrated knowledge on the subject.
Collapse
Affiliation(s)
- Gea Guerriero
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Kjell Sergeant
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Jean-Francois Hausman
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg;
| |
Collapse
|
104
|
Kim YS, Kim YB, Kim Y, Lee MY, Park SU. Overexpression of Cinnamate 4-Hydroxylase and 4-Coumaroyl CoA Ligase Prompted Flavone Accumulation in Scutellaria baicalensisHairy Roots. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Scutellaria baicalensis Georgi, a species of the Lamiaceae family, is considered as one of the 50 fundamental herbs used in traditional Chinese medicine. In order to enhance flavone (baicalein, baicalin, and wogonin) content in S. baicalensis roots, we overexpressed a single gene of cinnamate 4-hydroxylase (C4H) and 4-coumaroyl coenzyme A ligase (4CL) using an Agrobacterium rhizogenes-mediated system. SbC4H- and Sb4CL-overexpressed hairy root lines enhanced the transcript levels of SbC4H and Sb4CL compared with those in the control and also increased flavones contents by approximately 3- and 2.5-fold, respectively. We successfully engineered the flavone biosynthesis pathway for the production of beneficial flavones in S. baicalensis hairy roots. The importance of upstream gene C4H and 4CL in flavone biosynthesis and the efficiency of metabolic engineering in promoting flavone biosynthesis in S. baicalensis hairy roots have been indicated in this study.
Collapse
Affiliation(s)
- Young Seon Kim
- KM-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine, Daejeon 305–811, Korea
| | - Yeon Bok Kim
- Department of Crop Science, Chungnam National University, Daejeon 305–764, Korea
| | - YeJi Kim
- Department of Crop Science, Chungnam National University, Daejeon 305–764, Korea
| | - Mi Young Lee
- KM-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine, Daejeon 305–811, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, Daejeon 305–764, Korea
| |
Collapse
|
105
|
Sullivan ML. Perennial peanut (Arachis glabrata Benth.) leaves contain hydroxycinnamoyl-CoA:tartaric acid hydroxycinnamoyl transferase activity and accumulate hydroxycinnamoyl-tartaric acid esters. PLANTA 2014; 239:1091-100. [PMID: 24556732 DOI: 10.1007/s00425-014-2038-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/30/2014] [Indexed: 05/04/2023]
Abstract
Many plants accumulate hydroxycinnamoyl esters to protect against abiotic and biotic stresses. Caffeoyl esters in particular can be substrates for endogenous polyphenol oxidases (PPOs). Recently, we showed that perennial peanut (Arachis glabrata Benth.) leaves contain PPO and identified one PPO substrate, caftaric acid (trans-caffeoyl-tartaric acid). Additional compounds were believed to be cis- and trans-p-coumaroyl tartaric acid and cis- and trans-feruloyl-tartaric acid, but lack of standards prevented definitive identifications. Here we characterize enzymatic activities in peanut leaves to understand how caftaric acid and related hydroxycinnamoyl esters are made in this species. We show that peanut leaves contain a hydroxycinnamoyl-CoA:tartaric acid hydroxycinnamoyl transferase (HTT) activity capable of transferring p-coumaroyl, caffeoyl, and feruloyl moieties from CoA to tartaric acid (specific activities of 11 ± 2.8, 8 ± 1.8, 4 ± 0.8 pkat mg(-1) crude protein, respectively). The HTT activity was used to make cis- and trans-p-coumaroyl- and -feruloyl-tartaric acid in vitro. These products allowed definitive identification of the corresponding cis- and trans-hydroxycinnamoyl esters extracted from leaves. We tentatively identified sinapoyl-tartaric acid as another major phenolic compound in peanut leaves that likely participates in secondary reactions with PPO-generated quinones. These results suggest hydroxycinnamoyl-tartaric acid esters are made by an acyltransferase, possibly a BAHD family member, in perennial peanut. Identification of a gene encoding HTT and further characterization of the enzyme will aid in identifying determinants of donor and acceptor substrate specificity for this important class of biosynthetic enzymes. An HTT gene could also provide a means by genetic engineering for producing caffeoyl- and other hydroxycinnamoyl-tartaric acid esters in forage crops that lack them.
Collapse
Affiliation(s)
- Michael L Sullivan
- US Dairy Forage Research Center, US Department of Agriculture, Agricultural Research Service, 1925 Linden Drive, Madison, WI, 53705, USA,
| |
Collapse
|
106
|
Block A, Widhalm JR, Fatihi A, Cahoon RE, Wamboldt Y, Elowsky C, Mackenzie SA, Cahoon EB, Chapple C, Dudareva N, Basset GJ. The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in Arabidopsis. THE PLANT CELL 2014; 26:1938-1948. [PMID: 24838974 PMCID: PMC4079360 DOI: 10.1105/tpc.114.125807] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 05/18/2023]
Abstract
It is not known how plants make the benzenoid ring of ubiquinone, a vital respiratory cofactor. Here, we demonstrate that Arabidopsis thaliana uses for that purpose two separate biosynthetic branches stemming from phenylalanine and tyrosine. Gene network modeling and characterization of T-DNA mutants indicated that acyl-activating enzyme encoded by At4g19010 contributes to the biosynthesis of ubiquinone specifically from phenylalanine. CoA ligase assays verified that At4g19010 prefers para-coumarate, ferulate, and caffeate as substrates. Feeding experiments demonstrated that the at4g19010 knockout cannot use para-coumarate for ubiquinone biosynthesis and that the supply of 4-hydroxybenzoate, the side-chain shortened version of para-coumarate, can bypass this blockage. Furthermore, a trans-cinnamate 4-hydroxylase mutant, which is impaired in the conversion of trans-cinnamate into para-coumarate, displayed similar defects in ubiquinone biosynthesis to that of the at4g19010 knockout. Green fluorescent protein fusion experiments demonstrated that At4g19010 occurs in peroxisomes, resulting in an elaborate biosynthetic architecture where phenylpropanoid intermediates have to be transported from the cytosol to peroxisomes and then to mitochondria where ubiquinone is assembled. Collectively, these results demonstrate that At4g19010 activates the propyl side chain of para-coumarate for its subsequent β-oxidative shortening. Evidence is shown that the peroxisomal ABCD transporter (PXA1) plays a critical role in this branch.
Collapse
Affiliation(s)
- Anna Block
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Joshua R Widhalm
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Abdelhak Fatihi
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Rebecca E Cahoon
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Yashitola Wamboldt
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Christian Elowsky
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Sally A Mackenzie
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Edgar B Cahoon
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Gilles J Basset
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
107
|
Chen HC, Song J, Wang JP, Lin YC, Ducoste J, Shuford CM, Liu J, Li Q, Shi R, Nepomuceno A, Isik F, Muddiman DC, Williams C, Sederoff RR, Chiang VL. Systems biology of lignin biosynthesis in Populus trichocarpa: heteromeric 4-coumaric acid:coenzyme A ligase protein complex formation, regulation, and numerical modeling. THE PLANT CELL 2014; 26:876-93. [PMID: 24619612 PMCID: PMC4001399 DOI: 10.1105/tpc.113.119685] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/28/2014] [Accepted: 02/12/2014] [Indexed: 05/17/2023]
Abstract
As a step toward predictive modeling of flux through the pathway of monolignol biosynthesis in stem differentiating xylem of Populus trichocarpa, we discovered that the two 4-coumaric acid:CoA ligase (4CL) isoforms, 4CL3 and 4CL5, interact in vivo and in vitro to form a heterotetrameric protein complex. This conclusion is based on laser microdissection, coimmunoprecipitation, chemical cross-linking, bimolecular fluorescence complementation, and mass spectrometry. The tetramer is composed of three subunits of 4CL3 and one of 4CL5. 4CL5 appears to have a regulatory role. This protein-protein interaction affects the direction and rate of metabolic flux for monolignol biosynthesis in P. trichocarpa. A mathematical model was developed for the behavior of 4CL3 and 4CL5 individually and in mixtures that form the enzyme complex. The model incorporates effects of mixtures of multiple hydroxycinnamic acid substrates, competitive inhibition, uncompetitive inhibition, and self-inhibition, along with characteristic of the substrates, the enzyme isoforms, and the tetrameric complex. Kinetic analysis of different ratios of the enzyme isoforms shows both inhibition and activation components, which are explained by the mathematical model and provide insight into the regulation of metabolic flux for monolignol biosynthesis by protein complex formation.
Collapse
Affiliation(s)
- Hsi-Chuan Chen
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Jina Song
- Department of Electrical and Computer Engineering, North
Carolina State University, Raleigh, North Carolina 27695
| | - Jack P. Wang
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Ying-Chung Lin
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Joel Ducoste
- Department of Civil, Construction, and Environmental
Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - Christopher M. Shuford
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Jie Liu
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
- College of Forestry, Shandong Agricultural University,
Shandong 271018, China
| | - Rui Shi
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
| | - Angelito Nepomuceno
- W.M. Keck Mass Spectrometry Laboratory, Department of
Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Fikret Isik
- NCSU Cooperative Tree Improvement Program, Department of
Forestry and Environmental Resources, North Carolina State University, Raleigh, North
Carolina 27695
| | - David C. Muddiman
- W.M. Keck Mass Spectrometry Laboratory, Department of
Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Cranos Williams
- Department of Electrical and Computer Engineering, North
Carolina State University, Raleigh, North Carolina 27695
- Address correspondence to
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
- Address correspondence to
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding,
Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and
Environmental Resources, North Carolina State University, Raleigh, North Carolina
27695
- Department of Forest Biomaterials, North Carolina State
University, Raleigh, North Carolina 27695
- Address correspondence to
| |
Collapse
|
108
|
Yuan Y, Yu S, Yu J, Zhan Z, Li M, Liu G, Wang X, Huang L. Predicting the function of 4-coumarate:CoA ligase (LJ4CL1) in Lonicera japonica. Int J Mol Sci 2014; 15:2386-99. [PMID: 24518682 PMCID: PMC3958857 DOI: 10.3390/ijms15022386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 11/17/2022] Open
Abstract
4-Coumarate:CoA ligases (4CLs) are a group of essential enzymes involved in the pathway of phenylpropanoid-derived compound metabolisms; however it is still difficult to identify orthologs and paralogs of these important enzymes just based on sequence similarity of the conserved domains. Using sequence data of 20 plant species from the public databases and sequences from Lonicera japonica, we define 1252 adenosine monophosphate (AMP)-dependent synthetase/ligase sequences and classify them into three phylogenetic clades. 4CLs are in one of the four subgroups, according to their partitioning, with known proteins characterized in A. thaliana and Oryza sativa. We also defined 184 non-redundant sequences that encode proteins containing the GEICIRG motif and the taxonomic distribution of these GEICIRG-containing proteins suggests unique catalytic activities in plants. We further analyzed their transcription levels in L. japonica and L. japonica. var. chinensis flowers and chose the highest expressed genes representing the subgroups for structure and binding site predictions. Coupled with liquid chromatography-mass spectrometry (LC-MS) analysis of the L. japonica flowers, the structural study on putative substrate binding amino acid residues, ferulate, and 4-coumaric acid of the conserved binding-site of LJ4CL1 leads to a conclusion that this highly expressed protein group in the flowers may process 4-coumarate that represents 90% of the known phenylpropanoid-derived compounds. The activity of purified crude LJ4CL1 protein was analyzed using 4-coumarate as template and high activity indicating that 4-coumarate is one of the substrates of LJ4CL1.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Shulin Yu
- Pharmacy College, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing 100029, China.
| | - Zhilai Zhan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Minhui Li
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Guiming Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing 100029, China.
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing 100029, China.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
109
|
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:21-34. [PMID: 23473981 DOI: 10.1016/j.plaphy.2013.02.001] [Citation(s) in RCA: 478] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/01/2013] [Indexed: 05/19/2023]
Abstract
Flavonoids are representative plant secondary products. In the model plant Arabidopsis thaliana, at least 54 flavonoid molecules (35 flavonols, 11 anthocyanins and 8 proanthocyanidins) are found. Scaffold structures of flavonoids in Arabidopsis are relatively simple. These include kaempferol, quercetin and isorhamnetin for flavonols, cyanidin for anthocyanins and epicatechin for proanthocyanidins. The chemical diversity of flavonoids increases enormously by tailoring reactions which modify these scaffolds, including glycosylation, methylation and acylation. Genes responsible for the formation of flavonoid aglycone structures and their subsequent modification reactions have been extensively characterized by functional genomic efforts - mostly the integration of transcriptomics and metabolic profiling followed by reverse genetic experimentation. This review describes the state-of-art of flavonoid biosynthetic pathway in Arabidopsis regarding both structural and genetic diversity, focusing on the genes encoding enzymes for the biosynthetic reactions and vacuole translocation.
Collapse
Affiliation(s)
- Kazuki Saito
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba 260-8675, Japan.
| | | | | | | | | | | | | |
Collapse
|
110
|
Li ZB, Li CF, Li J, Zhang YS. Molecular cloning and functional characterization of two divergent 4-coumarate : coenzyme A ligases from Kudzu (Pueraria lobata). Biol Pharm Bull 2013; 37:113-22. [PMID: 24141262 DOI: 10.1248/bpb.b13-00633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As part of the efforts to understand isoflavonoid metabolism in Pueraria lobata at the molecular level, the cDNAs encoding two divergent 4-coumarate : coenzyme A ligases (4CLs, designated Pl4CL1 and Pl4CL2, respectively) were isolated from P. lobata roots. Sequence analysis revealed that Pl4CL1 had an N-terminal extension of twenty-one amino acid residues compared to Pl4CL2. Phylogenetic analysis showed that Pl4CL1 and Pl4CL2 fell into angiosperm Class II and Class I, respectively. Through in vitro biochemical assays, both Pl4CLs were found to have the capacity to utilize 4-coumarate and trans-cinnamate as substrates, while neither of them could convert sinapate. Pl4CL2 had a broader substrate specificity than Pl4CL1. The affinity of Pl4CL1 for 4-coumarate was 2.6-fold higher than that of Pl4CL2 (with the Km values of 3.5 µM and 9.1 µM, respectively). Combining the dataset including gene expression profiles, metabolites measurements, and biochemical properties, our results indicated that Pl4CL1, just as other angiosperm Class II 4CLs, might play a role in isoflavone biosynthesis in P. lobata, while Pl4CL2 belongs to angiosperm Class I, and may function as a housekeeping enzyme concerning lignification.
Collapse
Affiliation(s)
- Zhao-Bo Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences
| | | | | | | |
Collapse
|
111
|
Rastogi S, Kumar R, Chanotiya CS, Shanker K, Gupta MM, Nagegowda DA, Shasany AK. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis. PLANT & CELL PHYSIOLOGY 2013; 54:1238-52. [PMID: 23677922 DOI: 10.1093/pcp/pct073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biosynthesis of eugenol shares its initial steps with that of lignin, involving conversion of hydroxycinnamic acids to their corresponding coenzyme A (CoA) esters by 4-coumarate:CoA ligases (4CLs). In this investigation, a 4CL (OS4CL) was identified from glandular trichome-rich tissue of Ocimum sanctum with high sequence similarity to an isoform (OB4CL_ctg4) from Ocimum basilicum. The levels of OS4CL and OB4CL_ctg4-like transcripts were highest in O. sanctum trichome, followed by leaf, stem and root. The eugenol content in leaf essential oil was positively correlated with the expression of OS4CL in the leaf at different developmental stages. Recombinant OS4CL showed the highest activity with p-coumaric acid, followed by ferulic, caffeic and trans-cinnamic acids. Transient RNA interference (RNAi) suppression of OS4CL in O. sanctum leaves caused a reduction in leaf eugenol content and trichome transcript level, with a considerable increase in endogenous p-coumaric, ferulic, trans-cinnamic and caffeic acids. A significant reduction in the expression levels was observed for OB4CL_ctg4-related transcripts in suppressed trichome compared with transcripts similar to the other four isoforms (OB4CL_ctg1, 2, 3 and 5). Sinapic acid and lignin content were also unaffected in RNAi suppressed leaf samples. Transient expression of OS4CL-green fluorescent protein fusion protein in Arabidopsis protoplasts was associated with the cytosol. These results indicate metabolite channeling of intermediates towards eugenol by a specific 4CL and is the first report demonstrating the involvement of 4CL in creation of virtual compartments through substrate utilization and committing metabolites for eugenol biosynthesis at an early stage of the pathway.
Collapse
Affiliation(s)
- Shubhra Rastogi
- Biotechnology Division, Central Institute of Medicinal and Aromatic Plants-CSIR, PO CIMAP, Lucknow-226015, UP, India
| | | | | | | | | | | | | |
Collapse
|
112
|
Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microb Cell Fact 2013; 12:62. [PMID: 23806124 PMCID: PMC3716870 DOI: 10.1186/1475-2859-12-62] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 06/18/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Oats contain hydroxycinnamoyl anthranilates, also named avenanthramides (Avn), which have beneficial health properties because of their antioxidant, anti-inflammatory, and antiproliferative effects. The microbial production of hydroxycinnamoyl anthranilates is an eco-friendly alternative to chemical synthesis or purification from plant sources. We recently demonstrated in yeast (Saccharomyces cerevisiae) that coexpression of 4-coumarate: CoA ligase (4CL) from Arabidopsis thaliana and hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT) from Dianthus caryophyllusenabled the biological production of several cinnamoyl anthranilates upon feeding with anthranilate and various cinnamates. Using engineering strategies to overproduce anthranilate and hydroxycinnamates, we describe here an entire pathway for the microbial synthesis of two Avns from glucose in Escherichia coli. RESULTS We first showed that coexpression of HCBT and Nt4CL1 from tobacco in the E. coli anthranilate-accumulating strain W3110 trpD9923 allowed the production of Avn D [N-(4'-hydroxycinnamoyl)-anthranilic acid] and Avn F [N-(3',4'-dihydroxycinnamoyl)-anthranilic acid] upon feeding with p-coumarate and caffeate, respectively. Moreover, additional expression in this strain of a tyrosine ammonia-lyase from Rhodotorula glutinis (RgTAL) led to the conversion of endogenous tyrosine into p-coumarate and resulted in the production of Avn D from glucose. Second, a 135-fold improvement in Avn D titer was achieved by boosting tyrosine production using two plasmids that express the eleven genes necessary for tyrosine synthesis from erythrose 4-phosphate and phosphoenolpyruvate. Finally, expression of either the p-coumarate 3-hydroxylase Sam5 from Saccharothrix espanensis or the hydroxylase complex HpaBC from E. coli resulted in the endogenous production of caffeate and biosynthesis of Avn F. CONCLUSION We established a biosynthetic pathway for the microbial production of valuable hydroxycinnamoyl anthranilates from an inexpensive carbon source. The proposed pathway will serve as a platform for further engineering toward economical and sustainable bioproduction of these pharmaceuticals and other related aromatic compounds.
Collapse
|
113
|
Gea G, Kjell S, Jean-François H. Integrated -omics: a powerful approach to understanding the heterogeneous lignification of fibre crops. Int J Mol Sci 2013; 14:10958-78. [PMID: 23708098 PMCID: PMC3709712 DOI: 10.3390/ijms140610958] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022] Open
Abstract
Lignin and cellulose represent the two main components of plant secondary walls and the most abundant polymers on Earth. Quantitatively one of the principal products of the phenylpropanoid pathway, lignin confers high mechanical strength and hydrophobicity to plant walls, thus enabling erect growth and high-pressure water transport in the vessels. Lignin is characterized by a high natural heterogeneity in its composition and abundance in plant secondary cell walls, even in the different tissues of the same plant. A typical example is the stem of fibre crops, which shows a lignified core enveloped by a cellulosic, lignin-poor cortex. Despite the great value of fibre crops for humanity, however, still little is known on the mechanisms controlling their cell wall biogenesis, and particularly, what regulates their spatially-defined lignification pattern. Given the chemical complexity and the heterogeneous composition of fibre crops' secondary walls, only the use of multidisciplinary approaches can convey an integrated picture and provide exhaustive information covering different levels of biological complexity. The present review highlights the importance of combining high throughput -omics approaches to get a complete understanding of the factors regulating the lignification heterogeneity typical of fibre crops.
Collapse
Affiliation(s)
- Guerriero Gea
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| | - Sergeant Kjell
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| | - Hausman Jean-François
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| |
Collapse
|
114
|
Vanholme B, Cesarino I, Goeminne G, Kim H, Marroni F, Van Acker R, Vanholme R, Morreel K, Ivens B, Pinosio S, Morgante M, Ralph J, Bastien C, Boerjan W. Breeding with rare defective alleles (BRDA): a natural Populus nigra HCT mutant with modified lignin as a case study. THE NEW PHYTOLOGIST 2013; 198:765-776. [PMID: 23432219 DOI: 10.1111/nph.12179] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/02/2013] [Indexed: 05/18/2023]
Abstract
Next-generation (NG) sequencing in a natural population of Populus nigra revealed a mutant with a premature stop codon in the gene encoding hydroxycinnamoyl-CoA : shikimate hydroxycinnamoyl transferase1 (HCT1), an essential enzyme in lignin biosynthesis. The lignin composition of P. nigra trees homozygous for the defective allele was compared with that of heterozygous trees and trees without the defective allele. The lignin was characterized by phenolic profiling, lignin oligomer sequencing, thioacidolysis and NMR. In addition, HCT1 was heterologously expressed for activity assays and crosses were made to introduce the mutation in different genetic backgrounds. HCT1 converts p-coumaroyl-CoA into p-coumaroyl shikimate. The mutant allele, PnHCT1-Δ73, encodes a truncated protein, and trees homozygous for this recessive allele have a modified lignin composition characterized by a 17-fold increase in p-hydroxyphenyl units. Using the lignin pathway as proof of concept, we illustrated that the capture of rare defective alleles is a straightforward approach to initiate reverse genetics and accelerate tree breeding. The proposed breeding strategy, called 'breeding with rare defective alleles' (BRDA), should be widely applicable, independent of the target gene or the species.
Collapse
Affiliation(s)
- Bartel Vanholme
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Igor Cesarino
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Geert Goeminne
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Hoon Kim
- Department of Biochemistry, and the DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Rebecca Van Acker
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Ruben Vanholme
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Kris Morreel
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Bart Ivens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Sara Pinosio
- Istituto di Genomica Applicata, 33100, Udine, Italy
| | - Michele Morgante
- Istituto di Genomica Applicata, 33100, Udine, Italy
- Dipartimento di Scienze Agrarie e Ambientali, Università di Udine, 33100, Udine, Italy
| | - John Ralph
- Department of Biochemistry, and the DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, 53706, USA
| | - Catherine Bastien
- INRA - Unité Amélioration, Génétique et Physiologie forestières, Olivet, France
| | - Wout Boerjan
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| |
Collapse
|
115
|
Tian X, Xie J, Zhao Y, Lu H, Liu S, Qu L, Li J, Gai Y, Jiang X. Sense-, antisense- and RNAi-4CL1 regulate soluble phenolic acids, cell wall components and growth in transgenic Populus tomentosa Carr. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 65:111-119. [PMID: 23434928 DOI: 10.1016/j.plaphy.2013.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/22/2013] [Indexed: 06/01/2023]
Abstract
Regulation of lignin biosynthesis affects plant growth and wood properties. Transgenic downregulation of 4-coumarate:coenzyme A ligase (4CL, EC 6.2.1.12) may reduce lignin content in cell walls, which could improve the qualities of pulp in papermaking and increase the efficiency of bioenergy applications. To determine the effects of Ptc4CL1 on lignin biosynthesis and plant growth, Populus tomentosa Carr. was transformed using sense-, antisense-, and RNAi-4CL1 genes. The growth properties, gene expression, enzyme activity, lignin content and composition and content of soluble phenolic acids were investigated in 1-year-old field-grown transgenic poplar trees. Transgenic up- and down-regulation of 4CL1 altered lignin content and composition in transgenic poplars, but there were no negative effects on the growth of transgenic plants. In addition, the severe changes in auxin observed in transgenic lines led to significantly enhanced growth performance. Furthermore, lignin content was tightly correlated with the alteration of 4CL1 enzymatic activity, which was correlated with 4CL1 gene expression. A significant increase in S units in lignin with a slight increase in sinapic acid was observed in 4CL1 down-regulated transgenic poplars. These results suggest that 4CL1 is a traffic control gene in monolignol biosynthesis and confirm that 4CL1 activity has been implicated with sinapoyl activation. Finally, our data demonstrate that there is cross-correlation among 4CL1 gene expression, 4CL1 enzyme activity, soluble phenolic acid, lignin monomer biosynthesis, and lignin content.
Collapse
Affiliation(s)
- Xiaoming Tian
- College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Tohge T, Watanabe M, Hoefgen R, Fernie AR. Shikimate and phenylalanine biosynthesis in the green lineage. FRONTIERS IN PLANT SCIENCE 2013; 4:62. [PMID: 23543266 PMCID: PMC3608921 DOI: 10.3389/fpls.2013.00062] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/04/2013] [Indexed: 05/18/2023]
Abstract
The shikimate pathway provides carbon skeletons for the aromatic amino acids l-tryptophan, l-phenylalanine, and l-tyrosine. It is a high flux bearing pathway and it has been estimated that greater than 30% of all fixed carbon is directed through this pathway. These combined pathways have been subjected to considerable research attention due to the fact that mammals are unable to synthesize these amino acids and the fact that one of the enzymes of the shikimate pathway is a very effective herbicide target. However, in addition to these characteristics these pathways additionally provide important precursors for a wide range of important secondary metabolites including chlorogenic acid, alkaloids, glucosinolates, auxin, tannins, suberin, lignin and lignan, tocopherols, and betalains. Here we review the shikimate pathway of the green lineage and compare and contrast its evolution and ubiquity with that of the more specialized phenylpropanoid metabolism which this essential pathway fuels.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Rainer Hoefgen
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | | |
Collapse
|
117
|
Pan X, Li H, Wei H, Su W, Jiang X, Lu H. Analysis of the spatial and temporal expression pattern directed by the Populus tomentosa 4-coumarate:CoA ligase Pto4CL2 promoter in transgenic tobacco. Mol Biol Rep 2013; 40:2309-17. [PMID: 23184048 DOI: 10.1007/s11033-012-2312-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/19/2012] [Indexed: 12/31/2022]
Abstract
4-Coumarate:CoA ligase (4CL) is a key enzyme in the phenylpropanoid synthesis pathway. The Pto4CL2 promoter was cloned from Populus tomentosa Carr. and fused to the reporter gene encoding β-glucuronidase (GUS); the complex expression patterns directed by the Pto4CL2 promoter were then characterized in Nicotiana tabacum Xanthi by histochemical assays. The promoter 5'-deletion and histochemical assay conducted on transformants indicated that the -317 to -292 nt region supports Pto4CL2 expression in the epidermis and petals and the deletion of the -266 to -252 nt region resulted in the loss of tissue specificity and a dramatic reduction in GUS activity. Furthermore, electrophoretic mobility shift assays testified that an adenine and cytosine-rich element (-264 to -255 nt) and an abscisic acid-responsive element (-242 to -235 nt) in the Pto4CL2 promoter would have functions for the complex expression profiling and efficient basal expression, respectively. These results further clarify the mode of the regulatory expression of class II 4CL promoters in higher plants.
Collapse
Affiliation(s)
- Xiang Pan
- College of Life Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No. 35, Haidian District, Beijing, 100083, China
| | | | | | | | | | | |
Collapse
|
118
|
Tohge T, Watanabe M, Hoefgen R, Fernie AR. The evolution of phenylpropanoid metabolism in the green lineage. Crit Rev Biochem Mol Biol 2013; 48:123-52. [PMID: 23350798 DOI: 10.3109/10409238.2012.758083] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phenolic secondary metabolites are only produced by plants wherein they play important roles in both biotic and abiotic defense in seed plants as well as being potentially important bioactive compounds with both nutritional and medicinal benefits reported for animals and humans as a consequence of their potent antioxidant activity. During the long evolutionary period in which plants have adapted to the environmental niches in which they exist (and especially during the evolution of land plants from their aquatic algal ancestors), several strategies such as gene duplication and convergent evolution have contributed to the evolution of this pathway. In this respect, diversity and redundancy of several key genes of phenolic secondary metabolism such as polyketide synthases, cytochrome P450s, Fe(2+)/2-oxoglutarate-dependent dioxygenases and UDP-glycosyltransferases have played an essential role. Recent technical developments allowing affordable whole genome sequencing as well as a better inventory of species-by-species chemical diversity have resulted in a dramatic increase in the number of tools we have to assess how these pathways evolved. In parallel, reverse genetics combined with detailed molecular phenotyping is allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. In this review, phenolic metabolite-related gene sequences (for a total of 65 gene families including shikimate biosynthetic genes) are compared across 23 independent species, and the phenolic metabolic complement of various plant species are compared with one another, in attempt to better understand the evolution of diversity in this crucial pathway.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
119
|
Sun H, Li Y, Feng S, Zou W, Guo K, Fan C, Si S, Peng L. Analysis of five rice 4-coumarate:coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochem Biophys Res Commun 2013; 430:1151-6. [DOI: 10.1016/j.bbrc.2012.12.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022]
|
120
|
Rawat N, Sehgal SK, Joshi A, Rothe N, Wilson DL, McGraw N, Vadlani PV, Li W, Gill BS. A diploid wheat TILLING resource for wheat functional genomics. BMC PLANT BIOLOGY 2012; 12:205. [PMID: 23134614 PMCID: PMC3541219 DOI: 10.1186/1471-2229-12-205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/29/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND Triticum monococcum L., an A genome diploid einkorn wheat, was the first domesticated crop. As a diploid, it is attractive genetic model for the study of gene structure and function of wheat-specific traits. Diploid wheat is currently not amenable to reverse genetics approaches such as insertion mutagenesis and post-transcriptional gene silencing strategies. However, TILLING offers a powerful functional genetics approach for wheat gene analysis. RESULTS We developed a TILLING population of 1,532 M2 families using EMS as a mutagen. A total of 67 mutants were obtained for the four genes studied. Waxy gene mutation frequencies are known to be 1/17.6 - 34.4 kb DNA in polyploid wheat TILLING populations. The T. monococcum diploid wheat TILLING population had a mutation frequency of 1/90 kb for the same gene. Lignin biosynthesis pathway genes- COMT1, HCT2, and 4CL1 had mutation frequencies of 1/86 kb, 1/92 kb and 1/100 kb, respectively. The overall mutation frequency of the diploid wheat TILLING population was 1/92 kb. CONCLUSION The mutation frequency of a diploid wheat TILLING population was found to be higher than that reported for other diploid grasses. The rate, however, is lower than tetraploid and hexaploid wheat TILLING populations because of the higher tolerance of polyploids to mutations. Unlike polyploid wheat, most mutants in diploid wheat have a phenotype amenable to forward and reverse genetic analysis and establish diploid wheat as an attractive model to study gene function in wheat. We estimate that a TILLING population of 5, 520 will be needed to get a non-sense mutation for every wheat gene of interest with 95% probability.
Collapse
Affiliation(s)
- Nidhi Rawat
- Wheat Genetic and Genomic Resources Center, Throckmorton Hall, Kansas State University, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Wheat Genetic and Genomic Resources Center, Throckmorton Hall, Kansas State University, Manhattan, KS, 66506, USA
| | - Anupama Joshi
- Wheat Genetic and Genomic Resources Center, Throckmorton Hall, Kansas State University, Manhattan, KS, 66506, USA
| | - Nolan Rothe
- Wheat Genetic and Genomic Resources Center, Throckmorton Hall, Kansas State University, Manhattan, KS, 66506, USA
| | - Duane L Wilson
- Wheat Genetic and Genomic Resources Center, Throckmorton Hall, Kansas State University, Manhattan, KS, 66506, USA
| | - Nathan McGraw
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Praveen V Vadlani
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Bikram S Gill
- Wheat Genetic and Genomic Resources Center, Throckmorton Hall, Kansas State University, Manhattan, KS, 66506, USA
- Faculty of Science, Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
121
|
Bassard JE, Richert L, Geerinck J, Renault H, Duval F, Ullmann P, Schmitt M, Meyer E, Mutterer J, Boerjan W, De Jaeger G, Mely Y, Goossens A, Werck-Reichhart D. Protein-protein and protein-membrane associations in the lignin pathway. THE PLANT CELL 2012; 24:4465-82. [PMID: 23175744 PMCID: PMC3531846 DOI: 10.1105/tpc.112.102566] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/20/2012] [Accepted: 10/30/2012] [Indexed: 05/18/2023]
Abstract
Supramolecular organization of enzymes is proposed to orchestrate metabolic complexity and help channel intermediates in different pathways. Phenylpropanoid metabolism has to direct up to 30% of the carbon fixed by plants to the biosynthesis of lignin precursors. Effective coupling of the enzymes in the pathway thus seems to be required. Subcellular localization, mobility, protein-protein, and protein-membrane interactions of four consecutive enzymes around the main branch point leading to lignin precursors was investigated in leaf tissues of Nicotiana benthamiana and cells of Arabidopsis thaliana. CYP73A5 and CYP98A3, the two Arabidopsis cytochrome P450s (P450s) catalyzing para- and meta-hydroxylations of the phenolic ring of monolignols were found to colocalize in the endoplasmic reticulum (ER) and to form homo- and heteromers. They moved along with the fast remodeling plant ER, but their lateral diffusion on the ER surface was restricted, likely due to association with other ER proteins. The connecting soluble enzyme hydroxycinnamoyltransferase (HCT), was found partially associated with the ER. Both HCT and the 4-coumaroyl-CoA ligase relocalized closer to the membrane upon P450 expression. Fluorescence lifetime imaging microscopy supports P450 colocalization and interaction with the soluble proteins, enhanced by the expression of the partner proteins. Protein relocalization was further enhanced in tissues undergoing wound repair. CYP98A3 was the most effective in driving protein association.
Collapse
Affiliation(s)
- Jean-Etienne Bassard
- Institute of Plant Molecular Biology of Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| | - Ludovic Richert
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7213, University of Strasbourg, F-67401 Illkirch, France
| | - Jan Geerinck
- Department of Plant Systems Biology, Vlaams Interuniversitair Instituut Voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Hugues Renault
- Institute of Plant Molecular Biology of Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| | - Frédéric Duval
- Institute of Plant Molecular Biology of Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| | - Pascaline Ullmann
- Institute of Plant Molecular Biology of Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| | - Martine Schmitt
- Laboratoire d’Innovation Thérapeutique, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique–University of Strasbourg, F-67401 Illkirch, France
| | - Etienne Meyer
- Institute of Plant Molecular Biology of Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| | - Jerôme Mutterer
- Institute of Plant Molecular Biology of Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| | - Wout Boerjan
- Department of Plant Systems Biology, Vlaams Interuniversitair Instituut Voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, Vlaams Interuniversitair Instituut Voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Yves Mely
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7213, University of Strasbourg, F-67401 Illkirch, France
| | - Alain Goossens
- Department of Plant Systems Biology, Vlaams Interuniversitair Instituut Voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology of Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, University of Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
122
|
Tsutsui T, Yamaji N, Huang CF, Motoyama R, Nagamura Y, Ma JF. Comparative genome-wide transcriptional analysis of Al-responsive genes reveals novel Al tolerance mechanisms in rice. PLoS One 2012; 7:e48197. [PMID: 23110212 PMCID: PMC3482186 DOI: 10.1371/journal.pone.0048197] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Rice (Oryza sativa) is the most aluminum (Al)-tolerant crop among small-grain cereals, but the mechanism underlying its high Al resistance is still not well understood. To understand the mechanisms underlying high Al-tolerance, we performed a comparative genome-wide transcriptional analysis by comparing expression profiling between the Al-tolerance cultivar (Koshihikari) and an Al-sensitive mutant star1 (SENSITIVE TO AL RHIZOTOXICITY 1) in both the root tips and the basal roots. Exposure to 20 µM AlCl(3) for 6 h resulted in up-regulation (higher than 3-fold) of 213 and 2015 genes including 185 common genes in the root tips of wild-type and the mutant, respectively. On the other hand, in the basal root, genes up-regulated by Al were 126 and 2419 including 76 common genes in the wild-type and the mutant, respectively. These results indicate that Al-response genes are not only restricted to the root tips, but also in the basal root region. Analysis with genes up- or down-regulated only in the wild-type reveals that there are other mechanisms for Al-tolerance except for a known transcription factor ART1-regulated one in rice. These mechanisms are related to nitrogen assimilation, secondary metabolite synthesis, cell-wall synthesis and ethylene synthesis. Although the exact roles of these putative tolerance genes remain to be examined, our data provide a platform for further work on Al-tolerance in rice.
Collapse
Affiliation(s)
- Tomokazu Tsutsui
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Chao Feng Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ritsuko Motoyama
- Genome Resource Center, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Nagamura
- Genome Resource Center, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- * E-mail:
| |
Collapse
|
123
|
Saballos A, Sattler SE, Sanchez E, Foster TP, Xin Z, Kang C, Pedersen JF, Vermerris W. Brown midrib2 (Bmr2) encodes the major 4-coumarate:coenzyme A ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:818-30. [PMID: 22313236 DOI: 10.1111/j.1365-313x.2012.04933.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Successful modification of plant cell-wall composition without compromising plant integrity is dependent on being able to modify the expression of specific genes, but this can be very challenging when the target genes are members of multigene families. 4-coumarate:CoA ligase (4CL) catalyzes the formation of 4-coumaroyl CoA, a precursor of both flavonoids and monolignols, and is an attractive target for transgenic down-regulation aimed at improving agro-industrial properties. Inconsistent phenotypes of transgenic plants have been attributed to variable levels of down-regulation of multiple 4CL genes. Phylogenetic analysis of the sorghum genome revealed 24 4CL(-like) proteins, five of which cluster with bona fide 4CLs from other species. Using a map-based cloning approach and analysis of two independent mutant alleles, the sorghum brown midrib2 (bmr2) locus was shown to encode 4CL. In vitro enzyme assays indicated that its preferred substrate is 4-coumarate. Missense mutations in the two bmr2 alleles result in loss of 4CL activity, probably as a result of improper folding as indicated by molecular modeling. Bmr2 is the most highly expressed 4CL in sorghum stems, leaves and roots, both at the seedling stage and in pre-flowering plants, but the products of several paralogs also display 4CL activity and compensate for some of the lost activity. The contribution of the paralogs varies between developmental stages and tissues. Gene expression assays indicated that Bmr2 is under auto-regulatory control, as reduced 4CL activity results in over-expression of the defective gene. Several 4CL paralogs are also up-regulated in response to the mutation.
Collapse
Affiliation(s)
- Ana Saballos
- Agronomy Department and Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Klempien A, Kaminaga Y, Qualley A, Nagegowda DA, Widhalm JR, Orlova I, Shasany AK, Taguchi G, Kish CM, Cooper BR, D’Auria JC, Rhodes D, Pichersky E, Dudareva N. Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers. THE PLANT CELL 2012; 24:2015-30. [PMID: 22649270 PMCID: PMC3442584 DOI: 10.1105/tpc.112.097519] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/25/2012] [Accepted: 05/10/2012] [Indexed: 05/18/2023]
Abstract
Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway.
Collapse
Affiliation(s)
- Antje Klempien
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Yasuhisa Kaminaga
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Anthony Qualley
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Dinesh A. Nagegowda
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
- Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Joshua R. Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Irina Orlova
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Ajit Kumar Shasany
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
- Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Goro Taguchi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Christine M. Kish
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Bruce R. Cooper
- Bindley Bioscience Center–Metabolite Profiling Facility, Purdue University, West Lafayette, Indiana 47907
| | - John C. D’Auria
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - David Rhodes
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
- Address correspondence to
| |
Collapse
|
125
|
Soengas P, Cartea ME, Francisco M, Sotelo T, Velasco P. New insights into antioxidant activity of Brassica crops. Food Chem 2012; 134:725-33. [PMID: 23107684 DOI: 10.1016/j.foodchem.2012.02.169] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/16/2012] [Accepted: 02/23/2012] [Indexed: 11/16/2022]
Abstract
Antioxidant activity of six Brassica crops-broccoli, cabbage, cauliflower, kale, nabicol and tronchuda cabbage-was measured at four plant stages with DPPH and FRAP assays. Samples taken three months after sowing showed the highest antioxidant activity. Kale crop possessed the highest antioxidant activity at this plant stage and also at the adult plant stage, while cauliflower showed the highest antioxidant activity in sprouts and in leaves taken two months after sowing. Brassica by-products could be used as sources of products with high content of antioxidants. Phenolic content and composition varied, depending on the crop under study and on the plant stage; sprout samples were much higher in hydroxycinnamic acids than the rest of samples. Differences in antioxidant activity of Brassica crops were related to differences in total phenolic content but also to differences in phenolic composition for most samples.
Collapse
Affiliation(s)
- P Soengas
- Department of Plant Genetics, Misión Biológica de Galicia (MBG-CSIC), P.O. Box 28, E-36080 Pontevedra, Spain.
| | | | | | | | | |
Collapse
|
126
|
Alberstein M, Eisenstein M, Abeliovich H. Removing allosteric feedback inhibition of tomato 4-coumarate:CoA ligase by directed evolution. THE PLANT JOURNAL 2012; 69:57-69. [PMID: 21883557 DOI: 10.1111/j.1365-313x.2011.04770.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
127
|
Gui J, Shen J, Li L. Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice. PLANT PHYSIOLOGY 2011; 157:574-586. [PMID: 21807887 DOI: 10.1104/pp.111.17830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
4-Coumarate:coenzyme A ligase (4CL; EC 6.2.1.12) is a key enzyme in the phenylpropanoid metabolic pathways for monolignol and flavonoid biosynthesis. 4CL has been much studied in dicotyledons, but its function is not completely understood in monocotyledons, which display a different monolignol composition and phenylpropanoid profile. In this study, five members of the 4CL gene family in the rice (Oryza sativa) genome were cloned and analyzed. Biochemical characterization of the 4CL recombinant proteins revealed that the rice 4CL isoforms displayed different substrate specificities and catalytic turnover rates. Among them, Os4CL3 exhibited the highest turnover rate. No apparent tissue-specific expression of the five 4CLs was observed, but significant differences in their expression levels were detected. The rank in order of transcript abundance was Os4CL3 > Os4CL5 > Os4CL1 > Os4CL4 > Os4CL2. Suppression of Os4CL3 expression resulted in significant lignin reduction, shorter plant growth, and other morphological changes. The 4CL-suppressed transgenics also displayed decreased panicle fertility, which may be attributed to abnormal anther development as a result of disrupted lignin synthesis. This study demonstrates that the rice 4CLs exhibit different in vitro catalytic properties from those in dicots and that 4CL-mediated metabolism in vivo may play important roles in regulating a broad range of biological events over the course of rice growth and development.
Collapse
Affiliation(s)
- Jinshan Gui
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
128
|
Gui J, Shen J, Li L. Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice. PLANT PHYSIOLOGY 2011; 157:574-86. [PMID: 21807887 PMCID: PMC3192572 DOI: 10.1104/pp.111.178301] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
4-Coumarate:coenzyme A ligase (4CL; EC 6.2.1.12) is a key enzyme in the phenylpropanoid metabolic pathways for monolignol and flavonoid biosynthesis. 4CL has been much studied in dicotyledons, but its function is not completely understood in monocotyledons, which display a different monolignol composition and phenylpropanoid profile. In this study, five members of the 4CL gene family in the rice (Oryza sativa) genome were cloned and analyzed. Biochemical characterization of the 4CL recombinant proteins revealed that the rice 4CL isoforms displayed different substrate specificities and catalytic turnover rates. Among them, Os4CL3 exhibited the highest turnover rate. No apparent tissue-specific expression of the five 4CLs was observed, but significant differences in their expression levels were detected. The rank in order of transcript abundance was Os4CL3 > Os4CL5 > Os4CL1 > Os4CL4 > Os4CL2. Suppression of Os4CL3 expression resulted in significant lignin reduction, shorter plant growth, and other morphological changes. The 4CL-suppressed transgenics also displayed decreased panicle fertility, which may be attributed to abnormal anther development as a result of disrupted lignin synthesis. This study demonstrates that the rice 4CLs exhibit different in vitro catalytic properties from those in dicots and that 4CL-mediated metabolism in vivo may play important roles in regulating a broad range of biological events over the course of rice growth and development.
Collapse
Affiliation(s)
- Jinshan Gui
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
129
|
Shockey J, Browse J. Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:143-60. [PMID: 21443629 DOI: 10.1111/j.1365-313x.2011.04512.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In higher plants, the superfamily of carboxyl-CoA ligases and related proteins, collectively called acyl activating enzymes (AAEs), has evolved to provide enzymes for many pathways of primary and secondary metabolism and for the conjugation of hormones to amino acids. Across the superfamily there is only limited sequence similarity, but a series of highly conserved motifs, including the AMP-binding domain, make it easy to identify members. These conserved motifs are best understood in terms of the unique domain-rotation architecture that allows AAE enzymes to catalyze the two distinct steps of the CoA ligase reaction. Arabidopsis AAE sequences were used to identify the AAE gene families in the sequenced genomes of green algae, mosses, and trees; the size of the respective families increased with increasing degree of organismal cellular complexity, size, and generation time. Large-scale genome duplications and small-scale tandem gene duplications have contributed to AAE gene family complexity to differing extents in each of the multicellular species analyzed. Gene duplication and evolution of novel functions in Arabidopsis appears to have occurred rapidly, because acquisition of new substrate specificity is relatively easy in this class of proteins. Convergent evolution has also occurred between members of distantly related clades. These features of the AAE superfamily make it difficult to use homology searches and other genomics tools to predict enzyme function.
Collapse
Affiliation(s)
- Jay Shockey
- USDA-ARS, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, LA 70124, USA.
| | | |
Collapse
|
130
|
Voelker SL, Lachenbruch B, Meinzer FC, Kitin P, Strauss SH. Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival. PLANT, CELL & ENVIRONMENT 2011; 34:655-68. [PMID: 21309794 DOI: 10.1111/j.1365-3040.2010.02270.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We studied xylem anatomy and hydraulic architecture in 14 transgenic insertion events and a control line of hybrid poplar (Populus spp.) that varied in lignin content. Transgenic events had different levels of down-regulation of two genes encoding 4-coumarate:coenzyme A ligase (4CL). Two-year-old trees were characterized after growing either as free-standing trees in the field or as supported by stakes in a greenhouse. In free-standing trees, a 20 to 40% reduction in lignin content was associated with increased xylem vulnerability to embolism, shoot dieback and mortality. In staked trees, the decreased biomechanical demands on the xylem was associated with increases in the leaf area to sapwood area ratio and wood specific conductivity (k(s)), and with decreased leaf-specific conductivity (k(l)). These shifts in hydraulic architecture suggest that the bending stresses perceived during growth can affect traits important for xylem water transport. Severe 4CL-downregulation resulted in the patchy formation of discoloured, brown wood with irregular vessels in which water transport was strongly impeded. These severely 4CL-downregulated trees had significantly lower growth efficiency (biomass/leaf area). These results underscore the necessity of adequate lignification for mechanical support of the stem, water transport, tree growth and survival.
Collapse
Affiliation(s)
- Steven L Voelker
- Department of Wood Science and Engineering Department of Forest Ecosystems and Society, Oregon State University U.S.D.A. Forest Service, Forest Sciences Laboratory, 3200 Jefferson Way, Corvallis, OR 97330, USA.
| | | | | | | | | |
Collapse
|
131
|
Fraser CM, Chapple C. The phenylpropanoid pathway in Arabidopsis. THE ARABIDOPSIS BOOK 2011. [PMID: 22303276 DOI: 10.1093/mp/ssp10610.1199/tab.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The phenylpropanoid pathway serves as a rich source of metabolites in plants, being required for the biosynthesis of lignin, and serving as a starting point for the production of many other important compounds, such as the flavonoids, coumarins, and lignans. In spite of the fact that the phenylpropanoids and their derivatives are sometimes classified as secondary metabolites, their relevance to plant survival has been made clear via the study of Arabidopsis and other plant species. As a model system, Arabidopsis has helped to elucidate many details of the phenylpropanoid pathway, its enzymes and intermediates, and the interconnectedness of the pathway with plant metabolism as a whole. These advances in our understanding have been made possible in large part by the relative ease with which mutations can be generated, identified, and studied in Arabidopsis. Herein, we provide an overview of the research progress that has been made in recent years, emphasizing both the genes (and gene families) associated with the phenylpropanoid pathway in Arabidopsis, and the end products that have contributed to the identification of many mutants deficient in the phenylpropanoid metabolism: the sinapate esters.
Collapse
|
132
|
Fraser CM, Chapple C. The phenylpropanoid pathway in Arabidopsis. THE ARABIDOPSIS BOOK 2011; 9:e0152. [PMID: 22303276 PMCID: PMC3268504 DOI: 10.1199/tab.0152] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The phenylpropanoid pathway serves as a rich source of metabolites in plants, being required for the biosynthesis of lignin, and serving as a starting point for the production of many other important compounds, such as the flavonoids, coumarins, and lignans. In spite of the fact that the phenylpropanoids and their derivatives are sometimes classified as secondary metabolites, their relevance to plant survival has been made clear via the study of Arabidopsis and other plant species. As a model system, Arabidopsis has helped to elucidate many details of the phenylpropanoid pathway, its enzymes and intermediates, and the interconnectedness of the pathway with plant metabolism as a whole. These advances in our understanding have been made possible in large part by the relative ease with which mutations can be generated, identified, and studied in Arabidopsis. Herein, we provide an overview of the research progress that has been made in recent years, emphasizing both the genes (and gene families) associated with the phenylpropanoid pathway in Arabidopsis, and the end products that have contributed to the identification of many mutants deficient in the phenylpropanoid metabolism: the sinapate esters.
Collapse
Affiliation(s)
- Christopher M. Fraser
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Bioanalytical Computing, LLC, www.bioanalyticalcomputing.com
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Address correspondence to
| |
Collapse
|
133
|
Eudes A, Baidoo EEK, Yang F, Burd H, Hadi MZ, Collins FW, Keasling JD, Loqué D. Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 89:989-1000. [DOI: 10.1007/s00253-010-2939-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
134
|
Hu Y, Gai Y, Yin L, Wang X, Feng C, Feng L, Li D, Jiang XN, Wang DC. Crystal structures of a Populus tomentosa 4-coumarate:CoA ligase shed light on its enzymatic mechanisms. THE PLANT CELL 2010; 22:3093-104. [PMID: 20841425 PMCID: PMC2965553 DOI: 10.1105/tpc.109.072652] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
4-Coumaric acid:CoA ligase (4CL) is the central enzyme of the plant-specific phenylpropanoid pathway. It catalyzes the synthesis of hydroxycinnamate-CoA thioesters, the precursors of lignin and other important phenylpropanoids, in two-step reactions involving the formation of hydroxycinnamate-AMP anhydride and then the nucleophilic substitution of AMP by CoA. In this study, we determined the crystal structures of Populus tomentosa 4CL1 in the unmodified (apo) form and in forms complexed with AMP and adenosine 5'-(3-(4-hydroxyphenyl)propyl)phosphate (APP), an intermediate analog, at 2.4, 2.5, and 1.9 Å resolution, respectively. 4CL1 consists of two globular domains connected by a flexible linker region. The larger N-domain contains a substrate binding pocket, while the C-domain contains catalytic residues. Upon binding of APP, the C-domain rotates 81° relative to the N-domain. The crystal structure of 4CL1-APP reveals its substrate binding pocket. We identified residues essential for catalytic activities (Lys-438, Gln-443, and Lys-523) and substrate binding (Tyr-236, Gly-306, Gly-331, Pro-337, and Val-338) based on their crystal structures and by means of mutagenesis and enzymatic activity studies. We also demonstrated that the size of the binding pocket is the most important factor in determining the substrate specificities of 4CL1. These findings shed light on the enzymatic mechanisms of 4CLs and provide a solid foundation for the bioengineering of these enzymes.
Collapse
Affiliation(s)
- Yonglin Hu
- National Lab of Biomacromoleucles, Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Ying Gai
- National Engineering Laboratory of Tree Breedings, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Lei Yin
- National Lab of Biomacromoleucles, Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xiaoxue Wang
- National Engineering Laboratory of Tree Breedings, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Chunyan Feng
- National Engineering Laboratory of Tree Breedings, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Lei Feng
- National Lab of Biomacromoleucles, Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Defeng Li
- National Lab of Biomacromoleucles, Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xiang-Ning Jiang
- National Engineering Laboratory of Tree Breedings, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Da-Cheng Wang
- National Lab of Biomacromoleucles, Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Address correspondence to
| |
Collapse
|
135
|
Guillaumie S, Mzid R, Méchin V, Léon C, Hichri I, Destrac-Irvine A, Trossat-Magnin C, Delrot S, Lauvergeat V. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. PLANT MOLECULAR BIOLOGY 2010; 72:215-34. [PMID: 19902151 DOI: 10.1007/s11103-009-9563-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 10/12/2009] [Indexed: 05/21/2023]
Abstract
Previous work has shown that transgenic tobacco plants constitutively over-expressing the Vitis vinifera L. transcription factor VvWRKY2 exhibit reduced susceptibility to necrotrophic fungal pathogens, suggesting that this transcription factor plays a role in grapevine response to phytopathogens. The work presented here characterizes the modifications in cell wall structure observed in the stems and petioles of these transgenic plants. Histochemical stainings of stem and petiole cross-sections using phloroglucinol or Maüle reagents revealed a delay in xylem formation, particularly in the petioles, and differences in lignin composition. Evaluation of lignin quantity and quality showed a decrease in the syringyl/guaiacyl ratio in both stem and petioles. Expression analysis using RT-PCR and potato microarrays showed that tobacco plants over-expressing VvWRKY2 exhibited altered expression of genes involved in lignin biosynthesis pathway and cell wall formation. The ability of VvWRKY2 to activate the promoter of the VvC4H gene, which is involved in the lignin biosynthetic pathway, was confirmed by transient transcriptional activation assays in tobacco protoplasts. Moreover, in situ hybridization revealed that VvWRKY2 is specifically expressed in cells undergoing lignification in young grapevine stems. Together, these results confirm that VvWRKY2 plays a role in regulating lignification in grapevine, possibly in response to biotic or abiotic stresses.
Collapse
Affiliation(s)
- Sabine Guillaumie
- UMR 1287 Ecophysiologie et Génomique, Université de Bordeaux, INRA, Institut des Sciences de la Vigne et du Vin, 210 Chemin de Leysotte, 33882, Villenave d'Ornon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
de Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, Haughn GW, Kombrink E, Douglas CJ. A novel fatty Acyl-CoA Synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. THE PLANT CELL 2009; 21:507-25. [PMID: 19218397 PMCID: PMC2660628 DOI: 10.1105/tpc.108.062513] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/04/2008] [Accepted: 01/27/2009] [Indexed: 05/18/2023]
Abstract
Acyl-CoA Synthetase (ACOS) genes are related to 4-coumarate:CoA ligase (4CL) but have distinct functions. The Arabidopsis thaliana ACOS5 protein is in clade A of Arabidopsis ACOS proteins, the clade most closely related to 4CL proteins. This clade contains putative nonperoxisomal ACOS enzymes conserved in several angiosperm lineages and in the moss Physcomitrella patens. Although its function is unknown, ACOS5 is preferentially expressed in the flowers of all angiosperms examined. Here, we show that an acos5 mutant produced no pollen in mature anthers and no seeds by self-fertilization and was severely compromised in pollen wall formation apparently lacking sporopollenin or exine. The phenotype was first evident at stage 8 of anther development and correlated with maximum ACOS5 mRNA accumulation in tapetal cells at stages 7 to 8. Green fluorescent protein-ACOS5 fusions showed that ACOS5 is located in the cytoplasm. Recombinant ACOS5 enzyme was active against oleic acid, allowing kinetic constants for ACOS5 substrates to be established. Substrate competition assays indicated broad in vitro preference of the enzyme for medium-chain fatty acids. We propose that ACOS5 encodes an enzyme that participates in a conserved and ancient biochemical pathway required for sporopollenin monomer biosynthesis that may also include the Arabidopsis CYP703A2 and MS2 enzymes.
Collapse
|
137
|
Minic Z, Jamet E, San-Clemente H, Pelletier S, Renou JP, Rihouey C, Okinyo DPO, Proux C, Lerouge P, Jouanin L. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes. BMC PLANT BIOLOGY 2009; 9:6. [PMID: 19149885 PMCID: PMC2649120 DOI: 10.1186/1471-2229-9-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 01/16/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. RESULTS Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. CONCLUSION Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins.
Collapse
Affiliation(s)
- Zoran Minic
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique (INRA), Route de St-Cyr, 78026 Versailles Cedex, France
| | - Elisabeth Jamet
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-UPS, Université de Toulouse, 24 Chemin de Borde Rouge, BP42617, 31326-Castanet-Tolosan, France
| | - Hélène San-Clemente
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-UPS, Université de Toulouse, 24 Chemin de Borde Rouge, BP42617, 31326-Castanet-Tolosan, France
| | - Sandra Pelletier
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Christophe Rihouey
- Faculté des Sciences, FRE CNRS 3090, IFRMP23, Université de Rouen, F-76821 Mont Saint Aignan Cedex, France
| | - Denis PO Okinyo
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Patrice Lerouge
- Faculté des Sciences, FRE CNRS 3090, IFRMP23, Université de Rouen, F-76821 Mont Saint Aignan Cedex, France
| | - Lise Jouanin
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique (INRA), Route de St-Cyr, 78026 Versailles Cedex, France
| |
Collapse
|
138
|
Abstract
Enzymatic activation of PAA (phenylacetic acid) to phenylacetyl-CoA is an important step in the biosynthesis of the beta-lactam antibiotic penicillin G by the fungus Penicillium chrysogenum. CoA esters of PAA and POA (phenoxyacetic acid) act as acyl donors in the exchange of the aminoadipyl side chain of isopenicillin N to produce penicillin G or penicillin V. The phl gene, encoding a PCL (phenylacetate-CoA ligase), was cloned in Escherichia coli as a maltose-binding protein fusion and the biochemical properties of the enzyme were characterized. The recombinant fusion protein converted PAA into phenylacetyl-CoA in an ATP- and magnesium-dependent reaction. PCL could also activate POA, but the catalytic efficiency of the enzyme was rather low with k(cat)/K(m) values of 0.23+/-0.06 and 7.8+/-1.2 mM(-1).s(-1) for PAA and POA respectively. Surprisingly, PCL was very efficient in catalysing the conversion of trans-cinnamic acids to the corresponding CoA thioesters [k(cat)/K(m)=(3.1+/-0.4)x10(2) mM(-1).s(-1) for trans-cinnamic acid]. Of all the substrates screened, medium-chain fatty acids, which also occur as the side chains of the natural penicillins F, DF, H and K, were the best substrates for PCL. The high preference for fatty acids could be explained by a homology model of PCL that was constructed on the basis of sequence similarity with the Japanese firefly luciferase. The results suggest that PCL has evolved from a fatty-acid-activating ancestral enzyme that may have been involved in the beta-oxidation of fatty acids.
Collapse
|
139
|
Silber MV, Meimberg H, Ebel J. Identification of a 4-coumarate:CoA ligase gene family in the moss, Physcomitrella patens. PHYTOCHEMISTRY 2008; 69:2449-56. [PMID: 18722632 DOI: 10.1016/j.phytochem.2008.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 05/07/2008] [Accepted: 06/19/2008] [Indexed: 05/08/2023]
Abstract
Since the early evolution of land plants from primitive green algae, phenylpropanoid compounds have played an important role. In the biosynthesis of phenylpropanoids, 4-coumarate:CoA ligase (4CL; EC 6.2.1.12) has a pivotal role at the divergence point from general phenylpropanoid metabolism to several major branch pathways. Although higher plant 4CLs have been extensively studied, little information is available on the enzymes from bryophytes. In Physcomitrella patens, we have identified a 4CL gene family consisting of four members, taking advantage of the available EST sequences and a draft sequence of the P. patens genome. The encoded proteins of three of the genes display similar substrate utilization profiles with highest catalytic efficiency towards 4-coumarate. Interestingly, the efficiency with cinnamate as substrate is in the same range as with caffeate and ferulate. The deduced proteins of the four genes share sequence identities between 78% and 86%. The intron/exon structures are pair wise similar. Pp4CL2 and Pp4CL3 each consists of four exons and three introns, whereas Pp4CL1 and Pp4CL4 are characterized each by five exons and four introns. Pp4CL1, Pp4CL2 and Pp4CL3 are expressed in both gametophore and protonema tissue of P. patens, unlike Pp4CL4 whose expression could not be demonstrated under the conditions employed. Phylogenetic analysis suggests an early evolutionary divergence of Pp4CL gene family members. Using Streptomyces coelicolor cinnamate:CoA ligase (ScCCL) as an outgroup, the P. patens 4CLs are clearly separated from the spermatophyte proteins, but are intercalated between the angiosperm 4CL class I and class II. A comparison of three P. patens subspecies from diverse geographical locations shows high sequence identities for the four 4CL isoforms.
Collapse
Affiliation(s)
- Martina V Silber
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, D-80638 München, Germany
| | | | | |
Collapse
|
140
|
Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. PLANT MOLECULAR BIOLOGY 2008; 68:81-92. [PMID: 18523729 PMCID: PMC2493524 DOI: 10.1007/s11103-008-9353-1] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 05/21/2008] [Indexed: 05/17/2023]
Abstract
WRKY transcription factors have been shown to play a major role in regulating, both positively and negatively, the plant defense transcriptome. Nearly all studied WRKY factors appear to have a stereotypic binding preference to one DNA element termed the W-box. How specificity for certain promoters is accomplished therefore remains completely unknown. In this study, we tested five distinct Arabidopsis WRKY transcription factor subfamily members for their DNA binding selectivity towards variants of the W-box embedded in neighboring DNA sequences. These studies revealed for the first time differences in their binding site preferences, which are partly dependent on additional adjacent DNA sequences outside of the TTGACY-core motif. A consensus WRKY binding site derived from these studies was used for in silico analysis to identify potential target genes within the Arabidopsis genome. Furthermore, we show that even subtle amino acid substitutions within the DNA binding region of AtWRKY11 strongly impinge on its binding activity. Additionally, all five factors were found localized exclusively to the plant cell nucleus and to be capable of trans-activating expression of a reporter gene construct in vivo.
Collapse
Affiliation(s)
- Ingo Ciolkowski
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Koln, Germany
- Present Address: Justus-Liebig-Universität Giessen, IPAZ, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Dierk Wanke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Koln, Germany
- Present Address: ZMBP – Pflanzenphysiologie, Auf der Morgenstelle 1, 72076 Tubingen, Germany
| | - Rainer P. Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Koln, Germany
| | - Imre E. Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Koln, Germany
| |
Collapse
|
141
|
Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, Yamaguchi H, Sakata K, Shimizu BI. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:989-99. [PMID: 18547395 DOI: 10.1111/j.1365-313x.2008.03568.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Coumarins are derived via the phenylpropanoid pathway in plants. The 2H-1-benzopyran-2-one core structure of coumarins is formed via the ortho-hydroxylation of cinnamates, trans/cis isomerization of the side chain, and lactonization. Ortho-hydroxylation is a key step in coumarin biosynthesis as a branch point from lignin biosynthesis; however, ortho-hydroxylation of cinnamates is not yet fully understood. In this study, scopoletin biosynthesis was explored using Arabidopsis thaliana, which accumulates scopoletin and its beta-glucopyranoside scopolin in its roots. T-DNA insertion mutants of caffeoyl CoA O-methyltransferase 1 (CCoAOMT1) showed significant reduction in scopoletin and scopolin levels in the roots, and recombinant CCoAOMT1 exhibited 3'-O-methyltransferase activity on caffeoyl CoA to feruloyl CoA. These results suggest that feruloyl CoA is a key precursor in scopoletin biosynthesis. Ortho-hydroxylases of cinnamates were explored in the oxygenase families in A. thaliana, and one of the candidate genes in the Fe(II)- and 2-oxoglutarate-dependent dioxygenase (2OGD) family was designated as F6'H1. T-DNA insertion mutants of F6'H1 showed severe reductions in scopoletin and scopolin levels in the roots. The pattern of F6'H1 expression is consistent with the patterns of scopoletin and scopolin accumulation. The recombinant F6'H1 protein exhibited ortho-hydroxylase activity for feruloyl CoA (K(m) = 36.0 +/- 4.27 microM; k(cat) = 11.0 +/- 0.45 sec(-1)) to form 6'-hydroxyferuloyl CoA, but did not hydroxylate ferulic acid. These results indicate that Fe(II)- and 2-oxoglutarate-dependent dioxygenase is the pivotal enzyme in the ortho-hydroxylation of feruloyl CoA in scopoletin biosynthesis.
Collapse
Affiliation(s)
- Kosuke Kai
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Endler A, Martens S, Wellmann F, Matern U. Unusually divergent 4-coumarate:CoA-ligases from Ruta graveolens L. PLANT MOLECULAR BIOLOGY 2008; 67:335-346. [PMID: 18379886 DOI: 10.1007/s11103-008-9323-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 03/19/2008] [Indexed: 05/26/2023]
Abstract
Most angiosperms encode a small family of 4-coumarate:CoA-ligases (4CLs) activating hydroxycinnamic acids for lignin and flavonoid pathways. The common rue, Ruta graveolens L., additionally produces coumarins by cyclization of the 4-coumaroyl moiety, possibly involving the CoA-ester, as well as acridone and furoquinoline alkaloids relying on (N-methyl)anthraniloyl-CoA as the starter substrate for polyketide synthase condensation. The accumulation of alkaloids and coumarins, but not flavonoids, was enhanced in Ruta graveolens suspension cultures upon the addition of fungal elicitor. Total RNA of elicitor-treated Ruta cells was used as template for RT-PCR amplification with degenerate oligonucleotide primers inferred from conserved motifs in AMP-binding proteins, and two full-size cDNAs were generated through RACE and identified as 4-coumarate:CoA-ligases, Rg4CL1 and Rg4CL2, by functional expression in yeast cells. The recombinant enzymes differed considerably in their preferential affinities to cinnamate (Rg4CL1) or ferulate (RgCL2) besides 4-coumarate, but did not activate hydroxybenzoic or (N-methyl)anthranilic acid. Most notably, the Rg4CL1 polypeptide included an N-terminal extension suggesting a chloroplast transit peptide. The genes were cloned and revealed four exons, separated by 1056, 94 and 54 bp introns for RgCL1, while Rg4CL2 was composed of five exons interupted by four introns from 113 to 350 bp, and the divergent heritage of these genes was substantiated by phylogenetic analysis. Both genes were expressed in shoot, leaf and flower tissues of adult Ruta plants with preference in shoot and flower, whereas negligible expression occurred in the root. However, Rg4CL1 was expressed much stronger in the flower, while Rg4CL2 was expressed mostly in the shoot. Furthermore, considerable transient induction of only Rg4CL1 was observed upon elicitation of Ruta cells, which seems to support a role of Rg4CL1 in coumarin biosynthesis.
Collapse
Affiliation(s)
- Alexander Endler
- Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
143
|
Zhang J, Ma H, Feng J, Zeng L, Wang Z, Chen S. Grape berry plasma membrane proteome analysis and its differential expression during ripening. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2979-90. [PMID: 18550598 DOI: 10.1093/jxb/ern156] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
High purity berry plasma membranes (PMs) of Vitis vinifera L. cv. Cabernet Sauvignon were isolated by two-phase partitioning of microsome fractions at different stages of berry ripening. PM proteins resolvable by the detergent cocktail of CHAPS and ASB-14 were separated by two-dimensional electrophoresis. A total of 119 protein spots from pre-véraison berry PMs on 2-D gels detected with silver staining were subjected to MALDI-TOF mass spectrometry analysis. Sixty-two spots were identified as putative PM proteins, with 1-6 predicted transmembrane helices, including true PM proteins such as ATP synthase, ABC transporters, and GTP-binding proteins reported in plants. They were then grouped into eight functional categories, mainly involved in transport, metabolism, signal transduction, and protein synthesis. Another 11 spots were identified as proteins of unknown function. The véraison and post-véraison samples stained 98 and 86 spots on the gels, respectively. During the berry ripening process, total PM protein content gradually decreased. Among all identified proteins, 12 showed significant differences in terms of their relative abundance. Increasing ubiquitin proteolysis and cytoskeleton proteins were observed from pre-véraison to post-véraison. Zeatin O-glucosyltransferase peaked at véraison, while ubiquitin-conjugating enzyme E2-21 was down-regulated at this stage. This proteome research provides the first information on PM protein characterization during the grape berry ripening process.
Collapse
Affiliation(s)
- Jiangwei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
144
|
Reticulate evolution in Thuja inferred from multiple gene sequences: Implications for the study of biogeographical disjunction between eastern Asia and North America. Mol Phylogenet Evol 2008; 47:1190-202. [DOI: 10.1016/j.ympev.2008.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/02/2008] [Accepted: 02/05/2008] [Indexed: 11/18/2022]
|
145
|
Production of phenylpropanoid compounds by recombinant microorganisms expressing plant-specific biosynthesis genes. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
146
|
Kienow L, Schneider K, Bartsch M, Stuible HP, Weng H, Miersch O, Wasternack C, Kombrink E. Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:403-19. [PMID: 18267944 DOI: 10.1093/jxb/erm325] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana contains a large number of genes encoding carboxylic acid-activating enzymes, including long-chain fatty acyl-CoA synthetase (LACS), 4-coumarate:CoA ligases (4CL), and proteins closely related to 4CLs with unknown activities. The function of these 4CL-like proteins was systematically explored by applying an extensive substrate screen, and it was uncovered that activation of fatty acids is the common feature of all active members of this protein family, thereby defining a new group of fatty acyl-CoA synthetase, which is distinct from the known LACS family. Significantly, four family members also displayed activity towards different biosynthetic precursors of jasmonic acid (JA), including 12-oxo-phytodienoic acid (OPDA), dinor-OPDA, 3-oxo-2(2'-[Z]-pentenyl)cyclopentane-1-octanoic acid (OPC-8), and OPC-6. Detailed analysis of in vitro properties uncovered significant differences in substrate specificity for individual enzymes, but only one protein (At1g20510) showed OPC-8:CoA ligase activity. Its in vivo function was analysed by transcript and jasmonate profiling of Arabidopsis insertion mutants for the gene. OPC-8:CoA ligase expression was activated in response to wounding or infection in the wild type but was undetectable in the mutants, which also exhibited OPC-8 accumulation and reduced levels of JA. In addition, the developmental, tissue- and cell-type specific expression pattern of the gene, and regulatory properties of its promoter were monitored by analysing promoter::GUS reporter lines. Collectively, the results demonstrate that OPC-8:CoA ligase catalyses an essential step in JA biosynthesis by initiating the beta-oxidative chain shortening of the carboxylic acid side chain of its precursors, and, in accordance with this function, the protein is localized in peroxisomes.
Collapse
Affiliation(s)
- Lucie Kienow
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
147
|
De Azevedo Souza C, Barbazuk B, Ralph SG, Bohlmann J, Hamberger B, Douglas CJ. Genome-wide analysis of a land plant-specific acyl:coenzyme A synthetase (ACS) gene family in Arabidopsis, poplar, rice and Physcomitrella. THE NEW PHYTOLOGIST 2008; 179:987-1003. [PMID: 18627494 DOI: 10.1111/j.1469-8137.2008.02534.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The plant enzyme 4-coumarate:coenzyme A ligase (4CL) is part of a family of adenylate-forming enzymes present in all organisms. Analysis of genome sequences shows the presence of '4CL-like' enzymes in plants and other organisms, but their evolutionary relationships and functions remain largely unknown. 4CL and 4CL-like genes were identified by BLAST searches in Arabidopsis, Populus, rice, Physcomitrella, Chlamydomonas and microbial genomes. Evolutionary relationships were inferred by phylogenetic analysis of aligned amino acid sequences. Expression patterns of a conserved set of Arabidopsis and poplar 4CL-like acyl-CoA synthetase (ACS) genes were assayed. The conserved ACS genes form a land plant-specific class. Angiosperm ACS genes grouped into five clades, each of which contained representatives in three fully sequenced genomes. Expression analysis revealed conserved developmental and stress-induced expression patterns of Arabidopsis and poplar genes in some clades. Evolution of plant ACS enzymes occurred early in land plants. Differential gene expansion of angiosperm ACS clades has occurred in some lineages. Evolutionary and gene expression data, combined with in vitro and limited in vivo protein function data, suggest that angiosperm ACS enzymes play conserved roles in octadecanoid and fatty acid metabolism, and play roles in organ development, for example in anthers.
Collapse
Affiliation(s)
| | - Brad Barbazuk
- Donald Danforth Plant Science Center, St Louis MO 63132, USA
| | - Steven G Ralph
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bjoern Hamberger
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
148
|
Hamberger B, Ellis M, Friedmann M, de Azevedo Souza C, Barbazuk B, Douglas CJ. Genome-wide analyses of phenylpropanoid-related genes in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa: the Populus lignin toolbox and conservation and diversification of angiosperm gene familiesThis article is one of a selection of papers published in the Special Issue on Poplar Research in Canada. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-098] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The completion of the Populus trichocarpa (Torr. & A. Gray) (poplar) genome sequence offers an opportunity to study complete genome families in a third fully sequenced angiosperm (after Arabidopsis and rice) and to conduct comparative genomics studies of angiosperm gene family evolution. We focussed on gene families encoding phenylpropanoid and phenylpropanoid-like enzymes, and identified and annotated the full set of genes encoding these and related enzymes in the poplar genome. We used a similar approach to identify an analogous set of genes from the rice genome and generated phylogenetic trees for nine phenylpropanoid gene families from aligned poplar, Arabidopsis, and rice predicted protein sequences. This enabled us to identify the likely full set of bona fide poplar lignin-related phenylpropanoid genes (poplar “lignification toolbox”) apparent within well-defined clades in all phylogenetic trees. Analysis of expression data for poplar genes confirmed and refined annotations of lignin-related genes, which generally showed high expression in wood-forming tissues. Expression data from both poplar and Arabidopsis were used to make inferences regarding biochemical and biological functions of phenylpropanoid-like genes with unknown functions. The comparative approach also provided insights into the evolution of angiosperm phenylpropanoid-like gene families, illustrating lineage-specific clades as well as ancient clades containing genes with apparent conserved function.
Collapse
Affiliation(s)
- Björn Hamberger
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Margaret Ellis
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Michael Friedmann
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Clarice de Azevedo Souza
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Brad Barbazuk
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Carl J. Douglas
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| |
Collapse
|
149
|
Fraser CM, Thompson MG, Shirley AM, Ralph J, Schoenherr JA, Sinlapadech T, Hall MC, Chapple C. Related Arabidopsis serine carboxypeptidase-like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities. PLANT PHYSIOLOGY 2007; 144:1986-99. [PMID: 17600138 PMCID: PMC1949888 DOI: 10.1104/pp.107.098970] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) genome encodes 51 proteins annotated as serine carboxypeptidase-like (SCPL) enzymes. Nineteen of these SCPL proteins are highly similar to one another, and represent a clade that appears to be unique to plants. Two of the most divergent proteins within this group have been characterized to date, sinapoyl-glucose (Glc):malate sinapoyltransferase and sinapoyl-Glc:choline sinapoyltransferase. The fact that two of the least related proteins within this clade are acyltransferases rather than true serine carboxypeptidases suggests that some or all of the remaining members of this group may have similar activities. The gene that encodes sinapoyl-Glc:malate sinapoyltransferase (sinapoyl-Glc accumulator1 [SNG1]: At2g22990) is one of five SCPL genes arranged in a cluster on chromosome 2. In this study, an analysis of deletion mutant lines lacking one or more genes in this SCPL gene cluster reveals that three of these genes also encode sinapoyl-Glc-dependent acyltransferases. At2g23000 encodes sinapoyl-Glc:anthocyanin acyltransferase, an enzyme that is required for the synthesis of the sinapoylated anthocyanins in Arabidopsis. At2g23010 encodes an enzyme capable of synthesizing 1,2-disinapoyl-Glc from two molecules of sinapoyl-Glc, an activity shared by SNG1 and At2g22980. Sequence analysis of these SCPL proteins reveals pairwise percent identities that range from 71% to 78%, suggesting that their differing specificities for acyl acceptor substrates are due to changes in a relatively small subset of amino acids. The study of these SCPL proteins provides an opportunity to examine enzyme structure-function relationships and may shed light on the role of evolution of hydroxycinnamate ester metabolism and the SCPL gene family in Arabidopsis and other flowering plants.
Collapse
Affiliation(s)
- Christopher M Fraser
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Sakakibara N, Nakatsubo T, Suzuki S, Shibata D, Shimada M, Umezawa T. Metabolic analysis of the cinnamate/monolignol pathway in Carthamus tinctorius seeds by a stable-isotope-dilution method. Org Biomol Chem 2007. [PMID: 17315067 DOI: 10.1007/s11101-009-9155-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The present study established a system for comprehensive metabolic analysis of the cinnamate/monolignol and lignan pathways by the use of a stable-isotope-dilution method. The system was successfully applied to characterization of the pathways in Carthamus tinctorius cv. Round-leaved White maturing seeds in combination with administration of stable-isotope-labelled precursors. Experimental results obtained using this technique strongly suggested the intermediacy of ferulic acid in lignan biosynthesis in the plant.
Collapse
Affiliation(s)
- Norikazu Sakakibara
- Research Institute for Sustainable Humanosphare, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|