101
|
Fabarius A, Willer A, Yerganian G, Hehlmann R, Duesberg P. Specific aneusomies in Chinese hamster cells at different stages of neoplastic transformation, initiated by nitrosomethylurea. Proc Natl Acad Sci U S A 2002; 99:6778-83. [PMID: 11997480 PMCID: PMC124479 DOI: 10.1073/pnas.251670699] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2001] [Indexed: 11/18/2022] Open
Abstract
Aneuploidy is ubiquitous in cancer, and its phenotypes are inevitably dominant and abnormal. In view of these facts we recently proposed that aneuploidy is sufficient for carcinogenesis generating cancer-specific aneusomies via a chain reaction of autocatalytic aneuploidizations. According to this hypothesis a carcinogen initiates carcinogenesis via a random aneuploidy. Aneuploidy then generates transformation stage-specific aneusomies and further random aneusomies autocatalytically, because it renders chromosome segregation and repair mechanisms error-prone. The hypothesis predicts that several specific aneusomies can cause the same cancers, because several chromosomes also cooperate in normal differentiation. Here we describe experiments on the Chinese hamster (CH) that confirm this hypothesis. (i) Random aneuploidy was detected before transformation in up to 90% of CH embryo cells treated with the carcinogen nitrosomethylurea (NMU). (ii) Several specific aneusomies were found in 70-100% of the aneuploid cells from colonies transformed with NMU in vitro and from tumors generated by NMU-transformed cells in syngeneic animals. Among the aneuploid in vitro transformed cells, 79% were trisomic for chromosome 3, and 59% were monosomic for chromosome 10, compared with 8% expected for random distribution of any aneusomy among the 12 CH chromosomes. Moreover, 52% shared both trisomy 3 and monosomy 10 compared with 0.6% expected for random distribution of any two aneusomies. Among the tumor cells, 65% were trisomic for chromosome 3, 51% were trisomic for chromosome 5, and 30% shared both trisomies. Aneuploid cells without these specific aneusomies may contain minor transformation-specific aneusomies or may be untransformed. (iii) Random aneusomies and structurally altered chromosomes increased with the generations of transformed cells to the point where their origins became unidentifiable in tumors. We conclude that specific aneusomies are necessary for carcinogenesis.
Collapse
Affiliation(s)
- Alice Fabarius
- III Medizinische Klinik Mannheim, University of Heidelberg, Wiesbadener Strasse 7-11, 68305 Mannheim, Germany
| | | | | | | | | |
Collapse
|
102
|
Thiagalingam S, Foy RL, Cheng KH, Lee HJ, Thiagalingam A, Ponte JF. Loss of heterozygosity as a predictor to map tumor suppressor genes in cancer: molecular basis of its occurrence. Curr Opin Oncol 2002; 14:65-72. [PMID: 11790983 DOI: 10.1097/00001622-200201000-00012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
High frequency of chromosomal deletions elicited as losses of heterozygosity is a hallmark of genomic instability in cancer. Functional losses of tumor suppressor genes caused by loss of heterozygosity at defined regions during clonal selection for growth advantage define the minimally lost regions as their likely locations on chromosomes. Loss of heterozygosity is elicited at the molecular or cytogenetic level as a deletion, a gene conversion, single or double homologous and nonhomologous mitotic recombinations, a translocation, chromosome breakage and loss, chromosomal fusion or telomeric end-to-end fusions, or whole chromosome loss with or without accompanying duplication of the retained chromosome. Because of the high level of specificity, loss of heterozygosity has recently become invaluable as a marker for diagnosis and prognosis of cancer. The molecular defects for the occurrence of loss of heterozygosity are derived from disabled caretaker genes, which protect the integrity of DNA, or chromosome segregator genes, which mediate faithful chromosome disjunction.
Collapse
Affiliation(s)
- Sam Thiagalingam
- Genetics & Molecular Medicine Programs and Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Duesberg P, Stindl R, Hehlmann R. Origin of multidrug resistance in cells with and without multidrug resistance genes: chromosome reassortments catalyzed by aneuploidy. Proc Natl Acad Sci U S A 2001; 98:11283-8. [PMID: 11553793 PMCID: PMC58721 DOI: 10.1073/pnas.201398998] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2001] [Indexed: 11/18/2022] Open
Abstract
Cancer cells and aneuploid cell lines can acquire resistance against multiple unrelated chemotherapeutic drugs that are over 3,000-fold those of normal levels and display spontaneous resistances up to 20-fold of normal levels. Two different mechanisms were proposed for this phenotype: (i) classical mutation of drug metabolizing genes or (ii) chromosome reassortments, catalyzed by cancer- and cell line-specific aneuploidy, which generate, via new gene dosage combinations, a plethora of cancer phenotypes, including drug resistance. To distinguish between these mechanisms, we have asked whether three mouse cell lines can become drug resistant, from which two or three genes have been deleted, and on which multidrug resistance is thought to depend: Mdr1a, Mdr1b, and Mrp1. Because all three lines could acquire multidrug resistance and were aneuploid, whereas diploid mouse cells could not, we conclude that aneuploid cells become drug resistant via specific chromosome assortments, independent of putative resistance genes. We have asked further whether aneuploid drug-resistant Chinese hamster cells revert spontaneously to drug sensitivity in the absence of cytotoxic drugs at the high rates that are typical of chromosome reassortments catalyzed by aneuploidy or at the very low or zero rates (i.e., deletion) of gene mutation. We found that four drug-resistant hamster cell lines reverted to drug sensitivity at rates of about 2-3% per generation, whereas two closely related lines remained resistant under our conditions. Thus, the karyotypic instability generated by aneuploidy emerges as the common source of the various levels of drug resistance of cancer cells: minor spontaneous resistances reflect accidental chromosome assortments, the high selected resistances reflect complex specific assortments, and multidrug resistance reflects new combinations of unselected genes located on the same chromosomes as selected genes.
Collapse
Affiliation(s)
- P Duesberg
- Department of Molecular and Cell Biology, Stanley Hall, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
104
|
Abstract
Cancer cells commonly exhibit various forms of genetic instability, such as changes in chromosome copy number, translocations and point mutations in particular genes. Although transmissible change seems to be an essential part of the neoplastic process, the extent to which DNA instability is a cause rather than a consequence of cancer is unclear. Chromosomal fragile sites have been proposed to be not only susceptible to DNA instability in cancer cells, but also associated with genes that contribute to the neoplastic process. Mutation at fragile site loci might therefore have a causative role in cancer. Recent studies on one class of human chromosomal fragile sites show that instability at fragile site loci can functionally contribute to tumor cell biology.
Collapse
Affiliation(s)
- R I Richards
- Centre for Medical Genetics, Women's and Children's Hospital, North Adelaide SA 5006, Australia.
| |
Collapse
|
105
|
Tighe A, Johnson VL, Albertella M, Taylor SS. Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep 2001; 2:609-14. [PMID: 11454737 PMCID: PMC1083941 DOI: 10.1093/embo-reports/kve127] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Colon cancer cells frequently display minisatellite instability (MIN) or chromosome instability (CIN). While MIN is caused by mismatch repair defects, the lesions responsible for CIN are unknown. The observation that CIN cells fail to undergo mitotic arrest following spindle damage suggested that mutations in spindle checkpoint genes may account for CIN. However, here we show that CIN cells do undergo mitotic arrest in response to spindle damage. Although the maximum mitotic index achieved by CIN lines is diminished relative to MIN lines, CIN cells clearly have a robust spindle checkpoint. Consistently, mutations in spindle checkpoint genes are rare in human tumours. In contrast, the adenomatous polyposis coli (APC) gene is frequently mutated in CIN cells. Significantly, we show here that expression of an APC mutant in MIN cells reduces the mitotic index following spindle damage to a level observed in CIN cells, suggesting that APC dysfunction may contribute to CIN.
Collapse
Affiliation(s)
- A Tighe
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
106
|
Abstract
Pituitary tumors constitute 10% of intracranial neoplasms and are mostly benign, monoclonal adenomas derived from single mutant cells. Pituitary oncogenes have been intensively studied and three of them, gsp, ccnd1, and PTTG are abundant in significant numbers of cases. gsp is present in approximately 40% of Caucasian patients with GH-secreting tumors and results from a mutated, constitutively active alpha subunit of Gs protein. Persistent activation of the cAMP-PKA-CREB pathway may lead to uncontrolled cell proliferation and GH secretion. ccnd1 is overexpressed cyclin D1, and cyclin D1 gene is amplified in some pituitary tumors. PTTG is expressed in most pituitary tumors. PTTG is localized to both the nucleus and cytoplasm and interacts with several protein partners. At least three tumorigenesis mechanisms are proposed for human PTTG. 1) PTTG and FGF form a positive feedback loop and stimulate tumor vascularity. 2) PTTG transactivates c-myc or other pro-proliferation genes. 3) PTTG overexpression causes aneuploidy. PTTG expression activates p53 and causes p53-dependent and -independent apoptosis. Due to lack of functional human pituitary cell cultures and appropriate animal models for pituitary tumors, many of the results reviewed here are obtained from heterologous systems.
Collapse
Affiliation(s)
- Run Yu
- Cedars‐Sinai Research Institute‐UCLA School of Medicine, Los Angeles, CA 90048
| | - Shlomo Melmed
- Cedars‐Sinai Research Institute‐UCLA School of Medicine, Los Angeles, CA 90048
| |
Collapse
|
107
|
Abstract
Folic acid plays a critical role in the prevention of chromosome breakage and hypomethylation of DNA. This activity is compromised when Vitamin B12 (B12) concentration is low because methionine synthase activity is reduced, lowering the concentration of S-adenosyl methionine (SAM) which in turn may diminish DNA methylation and cause folate to become unavailable for the conversion of dUMP to dTMP. The most plausible explanation for the chromosome-breaking effect of low folate is excessive uracil misincorporation into DNA, a mutagenic lesion that leads to strand breaks in DNA during repair. Both in vitro and in vivo studies with human cells clearly show that folate deficiency causes expression of chromosomal fragile sites, chromosome breaks, excessive uracil in DNA, micronucleus formation and DNA hypomethylation. In vivo studies show that Vitamin B12 deficiency and elevated plasma homocysteine are significantly correlated with increased micronucleus formation. In vitro experiments indicate that genomic instability in human cells is minimised when folic acid concentration in culture medium is >227nmol/l. Intervention studies in humans show: (a) that DNA hypomethylation, chromosome breaks, uracil misincorporation and micronucleus formation are minimised when red cell folate concentration is >700nmol/l folate; and (b) micronucleus formation is minimised when plasma concentration of Vitamin B12 is >300pmol/l and plasma homocysteine is <7.5micromol/l. These concentrations are achievable at intake levels in excess of current RDIs i.e. more than 200-400microgram folic acid per day and more than 2microgram Vitamin B12 per day. A placebo-controlled study with a dose-response suggests that based on the micronucleus index in lymphocytes, an RDI level of 700microgram/day for folic acid and 7microgram/day for Vitamin B12 would be appropriate for genomic stability in young adults. Dietary intakes above the current RDI may be particularly important in those with extreme defects in the absorption and metabolism of these Vitamins, for which ageing is a contributing factor.
Collapse
Affiliation(s)
- M Fenech
- CSIRO Health Sciences and Nutrition, Adelaide, Australia.
| |
Collapse
|
108
|
Melcher R, von Golitschek R, Steinlein C, Schindler D, Neitzel H, Kainer K, Schmid M, Hoehn H. Spectral karyotyping of Werner syndrome fibroblast cultures. CYTOGENETICS AND CELL GENETICS 2001; 91:180-5. [PMID: 11173853 DOI: 10.1159/000056841] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fibroblast cultures from two Werner syndrome patients were analyzed by spectral karyotyping. There were multiple, pseudodiploid clones in both cultures, mostly marked by random balanced reciprocal translocations. One of the cultures contained a clone with three-way exchanges involving chromosomes 2, 3, and 16. Duplication-deficiencies were exceptional, as were completely normal metaphases. The most frequent breakpoint occurred at 16q22 which corresponds to FRA16B, possibly reflecting difficulties of WS cells in replicating AT-rich repetitive DNA structures. Both cultures ceased proliferation after eight in vitro passages, but a single clone with exceptional growth potential emerged in one of the senescing cultures. Due to its identical translocations, the derivation of this near tetraploid clone (with tetrasomy for all autosomes except chromosomes 4 and 6) could be traced to the most prevalent pseudodiploid clone of the parental mass culture. Our study confirms the existence of variegated translocation mosaicism as the cytogenetic hallmark of WS fibroblast cultures and suggests that tetraploidization in combination with certain chromosome rearrangements and selective chromosome dosage may overcome the severely limited in vitro lifespan of WS fibroblasts.
Collapse
Affiliation(s)
- R Melcher
- Department of Human Genetics, University of Würzburg, Würzburg , Germany
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Salisbury JL. The contribution of epigenetic changes to abnormal centrosomes and genomic instability in breast cancer. J Mammary Gland Biol Neoplasia 2001; 6:203-12. [PMID: 11501580 DOI: 10.1023/a:1011312808421] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The centrosome is the major microtubule organizing center of the cell and as such it plays an important role in cytoskeletal organization and in the formation of the bipolar mitotic spindle. Centrosome defects, characterized by abnormal size, number, and microtubule nucleation capacity, are distinguishing features of most high grade breast tumors and have been implicated as a possible cause for the loss of tissue architecture and the origin of mitotic abnormalities seen in solid tumors in general. Centrosome defects arise through uncoupling of centriole duplication and the cell cycle as a result of either genetic alterations or through physical or chemical perturbation of centrosome function. Centrosomes manifest unique epigenetic properties whereby positional or structural information can be propagated through somatic cell lineages by way of nongenetic pathways. Because aberrant centrosome function can result in chromosomal instability, these properties may have important implications for the origin of malignant breast tumors.
Collapse
Affiliation(s)
- J L Salisbury
- Tumor Biology Program, Mayo Clinic Foundation, Rochester, Minnesota 55905, USA.
| |
Collapse
|
110
|
Abstract
This article reviews a long-standing hypothesis that metastases might be initiated through the generation of hybrids between primary tumour cells and tumour-infiltrating leucocytes such as macrophages. In this concept the hybrids become metastatic through expression of the leucocyte motility phenotype. A history of the hybrid hypothesis is presented along with recent evidence on how macrophage x tumour cell hybridization could account for some of the most defining characteristics of metastatic cells: aneuploidy, enhanced motility, aberrant glycosylation and, particularly seen in melanoma, phenotypic diversity.
Collapse
Affiliation(s)
- J M Pawelek
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
111
|
Rasnick D. Auto-catalysed progression of aneuploidy explains the Hayflick limit of cultured cells, carcinogen-induced tumours in mice, and the age distribution of human cancer. Biochem J 2000; 348 Pt 3:497-506. [PMID: 10839979 PMCID: PMC1221090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Evidence continues to accumulate that aneuploidy, an imbalance in the number of chromosomes, is responsible for the characteristic phenotypes of cancer, including the abnormal cellular size and morphology of cancer cells, the appearance of tumour-associated antigens, as well as the high levels of membrane-bound and secreted proteins responsible for invasiveness and loss of contact inhibition. Aneuploidy has also been demonstrated to be the self-perpetuating source of the karyotypic instability of cancer cells. Here it is shown that the auto-catalysed progression of aneuploidy explains the kinetics of the finite lifetime of diploid cells in culture, the time course of the appearance of papillomas and carcinomas in benzo[a]pyrene-treated mice, and the age-dependence of human cancers. Modelling studies indicate that the ease of spontaneous transformation of mouse cells in culture may be due to a chaotic progression of aneuploidy. Conversely, the strong preference towards senescence and resistance to transformation of human cells in culture may be the result of a non-chaotic progression of aneuploidy. Finally, a method is proposed for quantifying the aneuploidogenic potencies of carcinogens.
Collapse
Affiliation(s)
- D Rasnick
- Department of Molecular and Cell Biology, 229 Stanley Hall, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
112
|
Duesberg P, Li R, Rasnick D, Rausch C, Willer A, Kraemer A, Yerganian G, Hehlmann R. Aneuploidy precedes and segregates with chemical carcinogenesis. CANCER GENETICS AND CYTOGENETICS 2000; 119:83-93. [PMID: 10867141 DOI: 10.1016/s0165-4608(99)00236-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A century ago, Boveri proposed that cancer is caused by aneuploidy, an abnormal balance of chromosomes, because aneuploidy correlates with cancer and because experimental aneuploidy generates "pathological" phenotypes. Half a century later, when cancers were found to be nonclonal for aneuploidy, but clonal for somatic gene mutations, this hypothesis was abandoned. As a result, aneuploidy is now generally viewed as a consequence, and mutated genes as a cause of cancer. However, we have recently proposed a two-stage mechanism of carcinogenesis that resolves the discrepancy between clonal mutation and nonclonal karyotypes. The proposal is as follows: in stage 1, a carcinogen "initiates" carcinogenesis by generating a preneoplastic aneuploidy; in stage 2, aneuploidy causes asymmetric mitosis because it biases balance-sensitive spindle and chromosomal proteins and alters centrosomes both numerically and structurally (in proportion to the degree of aneuploidy). Therefore, the karyotype of an initiated cell evolves autocatalytically, generating ever-new chromosome combinations, including neoplastic ones. Accordingly, the heterogeneous karyotypes of "clonal" cancers are an inevitable consequence of the karyotypic instability of aneuploid cells. The notorious long latent periods, of months to decades, from carcinogen to carcinogenesis, would reflect the low probability of evolving by chance karyotypes that compete favorably with normal cells, in principle analagous to natural evolution. Here, we have confirmed experimentally five predictions of the aneuploidy hypothesis: (1) the carcinogens dimethylbenzanthracene and cytosine arabinoside induced aneuploidy in a fraction of treated Chinese hamster embryo cells; (2) aneuploidy preceded malignant transformation; (3) transformation of carcinogen-treated cells occurred only months after carcinogen treatment, i.e., autocatalytically; (4) preneoplastic aneuploidy segregated with malignant transformation in vitro and with 14 of 14 tumors in animals; and (5) karyotypes of tumors were heterogeneous. We conclude that, with the carcinogens studied, aneuploidy precedes cancer and is necessary for carcinogenesis.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/pharmacology
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Aneuploidy
- Animals
- Carcinogens/pharmacology
- Carcinogens/toxicity
- Cell Line, Transformed
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured/drug effects
- Cells, Cultured/ultrastructure
- Cricetinae
- Cricetulus
- Cytarabine/pharmacology
- Cytarabine/toxicity
- DNA Mutational Analysis
- Humans
- Karyotyping
- Male
- Methylcholanthrene/pharmacology
- Methylcholanthrene/toxicity
- Models, Biological
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/genetics
- Precancerous Conditions/chemically induced
- Precancerous Conditions/genetics
- Time Factors
Collapse
Affiliation(s)
- P Duesberg
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|