101
|
Wang F, Beck-García K, Zorzin C, Schamel WWA, Davis MM. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat Immunol 2016; 17:844-50. [PMID: 27213689 PMCID: PMC4916016 DOI: 10.1038/ni.3462] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Most adaptive immune responses require the activation of specific T cells through the T cell antigen receptor (TCR)-CD3 complex. Here we show that cholesterol sulfate (CS), a naturally occurring analog of cholesterol, inhibits CD3 ITAM phosphorylation, a crucial first step in T cell activation. In biochemical studies, CS disrupted TCR multimers, apparently by displacing cholesterol, which is known to bind TCRβ. Moreover, CS-deficient mice showed heightened sensitivity to a self-antigen, whereas increasing CS content by intrathymic injection inhibited thymic selection, indicating that this molecule is an intrinsic regulator of thymocyte development. These results reveal a regulatory role for CS in TCR signaling and thymic selection, highlighting the importance of the membrane microenvironment in modulating cell surface receptor activation.
Collapse
Affiliation(s)
- Feng Wang
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Katharina Beck-García
- Center for Biological Signaling Studies (BIOSS) and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Carina Zorzin
- Center for Biological Signaling Studies (BIOSS) and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Wolfgang W A Schamel
- Center for Biological Signaling Studies (BIOSS) and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Mark M Davis
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
102
|
Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes. Nat Chem 2016; 8:881-9. [DOI: 10.1038/nchem.2537] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/27/2016] [Indexed: 11/09/2022]
|
103
|
Solution Asymmetry and Salt Expand Fluid-Fluid Coexistence Regions of Charged Membranes. Biophys J 2016; 110:2581-2584. [PMID: 27288275 PMCID: PMC4919722 DOI: 10.1016/j.bpj.2016.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/26/2016] [Accepted: 05/16/2016] [Indexed: 01/08/2023] Open
Abstract
Liquid-liquid phase separation in giant unilamellar vesicles (GUVs) leads to the formation of intramembrane domains. To mimic charged biological membranes, we studied phase separation and domain formation in GUVs of ternary lipid mixtures composed of egg sphingomyelin, cholesterol, and the negatively charged lipid dioleoylphosphatidylglycerol. The GUVs were exposed to solutions of sucrose and high-saline buffer. The phase diagram was determined using epifluorescence microscopy for vesicle populations with symmetric and asymmetric solution compositions across the membranes. Trans-membrane solution asymmetry was found to affect the membrane phase state. Furthermore, compared to the case of salt-free conditions, the phase diagram in the presence of high-saline buffer (both symmetrically or asymmetrically present across the membrane) was found to exhibit a significantly extended region of liquid-ordered and liquid-disordered coexistence. These observations were confirmed on single GUVs using microfluidics and confocal microscopy. Moreover, we found that the miscibility temperatures markedly increased for vesicles in the presence of symmetric and asymmetric salt solutions. Our results demonstrate a substantial effect of salt and solution asymmetry on the phase behavior of charged membranes, which has direct implications for protein adsorption onto these membranes and for the repartitioning of proteins within the membrane domains.
Collapse
|
104
|
Lira RB, Steinkühler J, Knorr RL, Dimova R, Riske KA. Posing for a picture: vesicle immobilization in agarose gel. Sci Rep 2016; 6:25254. [PMID: 27140695 PMCID: PMC4853705 DOI: 10.1038/srep25254] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/13/2016] [Indexed: 01/14/2023] Open
Abstract
Taking a photo typically requires the object of interest to stand still. In science, imaging is potentiated by optical and electron microscopy. However, living and soft matter are not still. Thus, biological preparations for microscopy usually include a fixation step. Similarly, immobilization strategies are required for or substantially facilitate imaging of cells or lipid vesicles, and even more so for acquiring high-quality data via fluorescence-based techniques. Here, we describe a simple yet efficient method to immobilize objects such as lipid vesicles with sizes between 0.1 and 100 μm using agarose gel. We show that while large and giant unilamellar vesicles (LUVs and GUVs) can be caged in the pockets of the gel meshwork, small molecules, proteins and micelles remain free to diffuse through the gel and interact with membranes as in agarose-free solutions, and complex biochemical reactions involving several proteins can proceed in the gel. At the same time, immobilization in agarose has no adverse effect on the GUV size and stability. By applying techniques such as FRAP and FCS, we show that the lateral diffusion of lipids is not affected by the gel. Finally, our immobilization strategy allows capturing high-resolution 3D images of GUVs.
Collapse
Affiliation(s)
- Rafael B. Lira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jan Steinkühler
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Roland L. Knorr
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Karin A. Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
105
|
Zhao L, Marciano AT, Rivet CR, Imperiale MJ. Caveolin- and clathrin-independent entry of BKPyV into primary human proximal tubule epithelial cells. Virology 2016; 492:66-72. [PMID: 26901486 DOI: 10.1016/j.virol.2016.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 01/23/2023]
Abstract
BK polyomavirus (BKPyV) is a human pathogen that causes polyomavirus-associated nephropathy and hemorrhagic cystitis in transplant patients. Gangliosides and caveolin proteins have previously been reported to be required for BKPyV infection in animal cell models. Recent studies from our lab and others, however, have indicated that the identity of the cells used for infection studies can greatly influence the behavior of the virus. We therefore wished to re-examine BKPyV entry in a physiologically relevant primary cell culture model, human renal proximal tubule epithelial cells. Using siRNA knockdowns, we interfered with expression of UDP-glucose ceramide glucosyltransferase (UGCG), and the endocytic vesicle coat proteins caveolin 1, caveolin 2, and clathrin heavy chain. The results demonstrate that while BKPyV does require gangliosides for efficient infection, it can enter its natural host cells via a caveolin- and clathrin-independent pathway. The results emphasize the importance of studying viruses in a relevant cell culture model.
Collapse
Affiliation(s)
- Linbo Zhao
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anthony T Marciano
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Courtney R Rivet
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Michael J Imperiale
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
106
|
Zhu C, Zhang Y, Wang Y, Li Q, Mu W, Han X. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes. Chemistry 2016; 22:2906-9. [PMID: 26756162 DOI: 10.1002/chem.201504389] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Chuntao Zhu
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Ying Zhang
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Yinan Wang
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Qingchuan Li
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| |
Collapse
|
107
|
Yamauchi Y, Yokoyama S, Chang TY. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis. J Lipid Res 2015; 57:77-88. [PMID: 26497474 DOI: 10.1194/jlr.m063784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 01/28/2023] Open
Abstract
Mammalian cells synthesize various sterol molecules, including the C30 sterol, lanosterol, as cholesterol precursors in the endoplasmic reticulum. The build-up of precursor sterols, including lanosterol, displays cellular toxicity. Precursor sterols are found in plasma HDL. How these structurally different sterols are released from cells is poorly understood. Here, we show that newly synthesized precursor sterols arriving at the plasma membrane (PM) are removed by extracellular apoA-I in a manner dependent on ABCA1, a key macromolecule for HDL biogenesis. Analysis of sterol molecules by GC-MS and tracing the fate of radiolabeled acetate-derived sterols in normal and mutant Niemann-Pick type C cells reveal that ABCA1 prefers newly synthesized sterols, especially lanosterol, as the substrates before they are internalized from the PM. We also show that ABCA1 resides in a cholesterol-rich membrane domain resistant to the mild detergent, Brij 98. Blocking ACAT activity increases the cholesterol contents of this domain. Newly synthesized C29/C30 sterols are transiently enriched within this domain, but rapidly disappear from this domain with a half-life of less than 1 h. Our work shows that substantial amounts of precursor sterols are transported to a certain PM domain and are removed by the ABCA1-dependent pathway.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Shinji Yokoyama
- Nutritional Health Science Research Center and Department of Food and Nutritional Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Ta-Yuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
108
|
Derivery E, Gautreau A. Quantitative analysis of endosome tubulation and microdomain organization mediated by the WASH complex. Methods Cell Biol 2015; 130:215-34. [PMID: 26360037 DOI: 10.1016/bs.mcb.2015.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sorting of cargoes in endosomes occurs through their concentration into sorting platforms, called microdomains, from which transport intermediates are formed. The WASH complex localizes to such endosomal microdomains and triggers localized branched actin nucleation by activating the Arp2/3 complex. These branched actin networks are required for both the lateral compartmentalization of endosome membranes into distinct microdomains and for the fission of transport intermediates from these sorting platforms. In this chapter, we provide experimental protocols to study these two aspects of WASH physiology. We first describe how to image the dynamic membrane tubules resulting from the defects of WASH-mediated fission. We then describe how to study quantitatively the microdomain localization of WASH in live and fixed cells. Since microdomains are below the resolution limit of conventional light-microscopy techniques, this required the development of specific image analysis pipelines, which are detailed. The guidelines presented in this chapter can apply to other endomembrane microdomains beyond WASH in order to increase our understanding of trafficking in molecular and quantitative terms.
Collapse
Affiliation(s)
- Emmanuel Derivery
- Department of Biochemistry, Sciences II, University of Geneva, Geneva, Switzerland
| | - Alexis Gautreau
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau Cedex, France
| |
Collapse
|
109
|
Werner S, Ebert H, Lechner BD, Lange F, Achilles A, Bärenwald R, Poppe S, Blume A, Saalwächter K, Tschierske C, Bacia K. Dendritic domains with hexagonal symmetry formed by x-shaped bolapolyphiles in lipid membranes. Chemistry 2015; 21:8840-50. [PMID: 25940233 PMCID: PMC4517157 DOI: 10.1002/chem.201405994] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 12/22/2022]
Abstract
A novel class of bolapolyphile (BP) molecules are shown to integrate into phospholipid bilayers and self-assemble into unique sixfold symmetric domains of snowflake-like dendritic shapes. The BPs comprise three philicities: a lipophilic, rigid, π-π stacking core; two flexible lipophilic side chains; and two hydrophilic, hydrogen-bonding head groups. Confocal microscopy, differential scanning calorimetry, XRD, and solid-state NMR spectroscopy confirm BP-rich domains with transmembrane-oriented BPs and three to four lipid molecules per BP. Both species remain well organized even above the main 1,2-dipalmitoyl-sn-glycero-3-phosphocholine transition. The BP molecules only dissolve in the fluid membrane above 70 °C. Structural variations of the BP demonstrate that head-group hydrogen bonding is a prerequisite for domain formation. Independent of the head group, the BPs reduce membrane corrugation. In conclusion, the BPs form nanofilaments by π stacking of aromatic cores, which reduce membrane corrugation and possibly fuse into a hexagonal network in the dendritic domains.
Collapse
Affiliation(s)
- Stefan Werner
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany) E-mail:
- ZIK HALOmem, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany)
| | - Helgard Ebert
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany) E-mail:
| | - Bob-Dan Lechner
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany) E-mail:
| | - Frank Lange
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany)
| | - Anja Achilles
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany)
| | - Ruth Bärenwald
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany)
| | - Silvio Poppe
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany) E-mail:
| | - Alfred Blume
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany) E-mail:
| | - Kay Saalwächter
- Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany)
| | - Carsten Tschierske
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany) E-mail:
| | - Kirsten Bacia
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany) E-mail:
- ZIK HALOmem, Martin-Luther-Universität Halle-Wittenberg06120 Halle (Saale) (Germany)
| |
Collapse
|
110
|
Georgieva R, Chachaty C, Hazarosova R, Tessier C, Nuss P, Momchilova A, Staneva G. Docosahexaenoic acid promotes micron scale liquid-ordered domains. A comparison study of docosahexaenoic versus oleic acid containing phosphatidylcholine in raft-like mixtures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1424-35. [PMID: 25767038 DOI: 10.1016/j.bbamem.2015.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 12/19/2022]
Abstract
The understanding of the functional role of the lipid diversity in biological membranes is a major challenge. Lipid models have been developed to address this issue by using lipid mixtures generating liquid-ordered (Lo)/liquid-disordered (Ld) immiscibility. The present study examined mixtures comprising Egg sphingomyelin (SM), cholesterol (chol) and phosphatidylcholine (PC) either containing docosahexaenoic (PDPC) or oleic acid (POPC). The mixtures were examined in terms of their capability to induce phase separation at the micron- and nano-scales. Fluorescence microscopy, electron spin resonance (ESR), X-ray diffraction (XRD) and calorimetry methods were used to analyze the lateral organization of the mixtures. Fluorescence microscopy of giant vesicles could show that the temperature of the micron-scale Lo/Ld miscibility is higher for PDPC than for POPC ternary mixtures. At 37°C, no micron-scale Lo/Ld phase separation could be identified in the POPC containing mixtures while it was evident for PDPC. In contrast, a phase separation was distinguished for both PC mixtures by ESR and XRD, indicative that PDPC and POPC mixtures differed in micron vs nano domain organization. Compared to POPC, the higher line tension of the Lo domains observed in PDPC mixtures is assumed to result from the higher difference in Lo/Ld order parameter rather than hydrophobic mismatch.
Collapse
Affiliation(s)
- R Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - C Chachaty
- Universite Pierre et Marie Curie-Paris 6, INSERM U893, CHU St. Antoine, 27 rue Chaligny, 75012 Paris, France
| | - R Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - C Tessier
- UMR 7203, INSERM ERL 1057 - Bioactive Molecules Laboratory, Pierre et Marie Curie University, Paris, France; Department of Psychiatry, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - P Nuss
- UMR 7203, INSERM ERL 1057 - Bioactive Molecules Laboratory, Pierre et Marie Curie University, Paris, France; Department of Psychiatry, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - A Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - G Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
| |
Collapse
|
111
|
Lorenz M, Vollmer B, Unsay JD, Klupp BG, García-Sáez AJ, Mettenleiter TC, Antonin W. A single herpesvirus protein can mediate vesicle formation in the nuclear envelope. J Biol Chem 2015; 290:6962-74. [PMID: 25605719 DOI: 10.1074/jbc.m114.627521] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Herpesviruses assemble capsids in the nucleus and egress by unconventional vesicle-mediated trafficking through the nuclear envelope. Capsids bud at the inner nuclear membrane into the nuclear envelope lumen. The resulting intralumenal vesicles fuse with the outer nuclear membrane, delivering the capsids to the cytoplasm. Two viral proteins are required for vesicle formation, the tail-anchored pUL34 and its soluble interactor, pUL31. Whether cellular proteins are involved is unclear. Using giant unilamellar vesicles, we show that pUL31 and pUL34 are sufficient for membrane budding and scission. pUL34 function can be bypassed by membrane tethering of pUL31, demonstrating that pUL34 is required for pUL31 membrane recruitment but not for membrane remodeling. pUL31 can inwardly deform membranes by oligomerizing on their inner surface to form buds that constrict to vesicles. Therefore, a single viral protein can mediate all events necessary for membrane budding and abscission.
Collapse
Affiliation(s)
- Michael Lorenz
- From the Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Benjamin Vollmer
- From the Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Joseph D Unsay
- the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany, and
| | - Barbara G Klupp
- the Friedrich Loeffler Institute, Federal Research Institute for Animal Health, 17493 Greifswald, Germany
| | - Ana J García-Sáez
- the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany, and
| | - Thomas C Mettenleiter
- the Friedrich Loeffler Institute, Federal Research Institute for Animal Health, 17493 Greifswald, Germany
| | - Wolfram Antonin
- From the Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany,
| |
Collapse
|
112
|
Xing P, Chen H, Bai L, Zhao Y. Photo-triggered transformation from vesicles to branched nanotubes fabricated by a cholesterol-appended cyanostilbene. Chem Commun (Camb) 2015; 51:9309-12. [DOI: 10.1039/c5cc02816g] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vesicles constructed from cholesteryl cyanostilbene could transform into nanotubes upon UV light irradiation, in which the photoluminescence could be fine-tuned.
Collapse
Affiliation(s)
- Pengyao Xing
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Linyi Bai
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| |
Collapse
|
113
|
Frolov VA, Escalada A, Akimov SA, Shnyrova AV. Geometry of membrane fission. Chem Phys Lipids 2015; 185:129-40. [DOI: 10.1016/j.chemphyslip.2014.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 11/24/2022]
|
114
|
Suetsugu S, Kurisu S, Takenawa T. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 2014; 94:1219-48. [PMID: 25287863 DOI: 10.1152/physrev.00040.2013] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Shusaku Kurisu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
115
|
Gutierrez MG, Malmstadt N. Human serotonin receptor 5-HT(1A) preferentially segregates to the liquid disordered phase in synthetic lipid bilayers. J Am Chem Soc 2014; 136:13530-3. [PMID: 25211019 PMCID: PMC4183657 DOI: 10.1021/ja507221m] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
We
demonstrate successful incorporation of the G protein coupled
receptor 5-HT1A into giant unilamellar vesicles using an
agarose rehydration method. With direct observation using fluorescence
techniques, we report preferential segregation of 5-HT1A into the cholesterol-poor liquid disordered phase of the membrane,
contradicting previous reports of lipid raft segregation. Furthermore,
altering the concentration of cholesterol and sphingomyelin
in ternary mixtures does not alter 5-HT1A segregation into
the liquid disordered phase.
Collapse
Affiliation(s)
- M Gertrude Gutierrez
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , 925 Bloom Walk, Los Angeles, California 90089, United States
| | | |
Collapse
|
116
|
Bacia K, Haustein E, Schwille P. Fluorescence correlation spectroscopy: principles and applications. Cold Spring Harb Protoc 2014; 2014:709-25. [PMID: 24987147 DOI: 10.1101/pdb.top081802] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) is used to study the movements and the interactions of biomolecules at extremely dilute concentrations, yielding results with good spatial and temporal resolutions. Using a number of technical developments, FCS has become a versatile technique that can be used to study a variety of sample types and can be advantageously combined with other methods. Unlike other fluorescence-based techniques, the analysis of FCS data is not based on the average intensity of the fluorescence emission but examines the minute intensity fluctuations caused by spontaneous deviations from the mean at thermal equilibrium. These fluctuations can result from variations in local concentrations owing to molecular mobility or from characteristic intermolecular or intramolecular reactions of fluorescently labeled biomolecules present at low concentrations. Here, we provide a basic introduction to FCS, including its technical development and theoretical basis, experimental setup of an FCS system, adjustment of a setup, data acquisition, and analysis of FCS measurements. Finally, the application of FCS to the study of lipid bilayer membranes and to living cells is discussed.
Collapse
|
117
|
Kinoshita M, Matsumori N, Murata M. Coexistence of two liquid crystalline phases in dihydrosphingomyelin and dioleoylphosphatidylcholine binary mixtures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1372-81. [DOI: 10.1016/j.bbamem.2014.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/18/2013] [Accepted: 01/14/2014] [Indexed: 11/30/2022]
|
118
|
Funkhouser CM, Solis FJ, Thornton K. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties. J Chem Phys 2014; 140:144908. [DOI: 10.1063/1.4870478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
119
|
Zheng H, Jiménez-Flores R, Gragson D, Everett DW. Phospholipid Architecture of the Bovine Milk Fat Globule Membrane Using Giant Unilamellar Vesicles as a Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3236-3243. [PMID: 24641452 DOI: 10.1021/jf500093p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Giant unilamellar vesicles (GUVs) were constructed using an electroformation technique to mimic the morphology of the native milk fat globule membrane (MFGM) for the purpose of structural investigation. Bovine milk derived phospholipids were selected to manufacture GUVs which were characterized by confocal laser scanning microscopy after fluorescent staining. Circular nonfluorescent dark regions were observed in a 3/7 (mol/mol) surface mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3 phosphoethanolamine. Linear shaped dark lipid domains were found in GUVs containing sphingomyelin (SM) in the absence of cholesterol. The dark regions were interpreted as a gel phase formed by a high gel-liquid phase transition temperature (Tm) of DPPC and SM. This study provides a strategy for investigating the lipid structural organization within the native MFGM using a model lipid bilayer system and reveals that a SM and cholesterol association network is not the only requirement for nonfluorescent lipid domain formation and that PE is preferably located in the inner leaflet of the phospholipid bilayer.
Collapse
Affiliation(s)
- Haotian Zheng
- Riddet Institute , Palmerston North, 4442 Manawatu, New Zealand
- Department of Food Science, University of Otago , Dunedin, 9054 Otago, New Zealand
- Dairy Products Technology Center, California Polytechnic State University , San Luis Obispo, 93407 California, United States
| | - Rafael Jiménez-Flores
- Dairy Products Technology Center, California Polytechnic State University , San Luis Obispo, 93407 California, United States
| | - Derek Gragson
- Department of Chemistry and Biochemistry, California Polytechnic State University , San Luis Obispo, 93407 California, United States
| | - David W Everett
- Riddet Institute , Palmerston North, 4442 Manawatu, New Zealand
- Department of Food Science, University of Otago , Dunedin, 9054 Otago, New Zealand
| |
Collapse
|
120
|
Brandão HB, Sangji H, Pandžić E, Bechstedt S, Brouhard GJ, Wiseman PW. Measuring ligand–receptor binding kinetics and dynamics using k-space image correlation spectroscopy. Methods 2014; 66:273-82. [DOI: 10.1016/j.ymeth.2013.07.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 10/26/2022] Open
|
121
|
Gautreau A, Oguievetskaia K, Ungermann C. Function and regulation of the endosomal fusion and fission machineries. Cold Spring Harb Perspect Biol 2014; 6:6/3/a016832. [PMID: 24591520 DOI: 10.1101/cshperspect.a016832] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Organelles within the endomembrane system are connected via vesicle flux. Along the endocytic pathway, endosomes are among the most versatile organelles. They sort cargo through tubular protrusions for recycling or through intraluminal vesicles for degradation. Sorting involves numerous machineries, which mediate fission of endosomal transport intermediates and fusion with other endosomes or eventually with lysosomes. Here we review the recent advances in our understanding of these processes with a particular focus on the Rab GTPases, tethering factors, and retromer. The cytoskeleton has also been recently recognized as a central player in membrane dynamics of endosomes, and this review covers the regulation of the machineries that govern the formation of branched actin networks through the WASH and Arp2/3 complexes in relation with cargo recycling and endosomal fission.
Collapse
Affiliation(s)
- Alexis Gautreau
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
122
|
Schulz M, Olubummo A, Bacia K, Binder WH. Lateral surface engineering of hybrid lipid-BCP vesicles and selective nanoparticle embedding. SOFT MATTER 2014; 10:831-839. [PMID: 24837370 DOI: 10.1039/c3sm52040d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bio-inspired recognition between macromolecules and antibodies can be used to reveal the location of amphiphilic block copolymers (BCPs) in model biomembranes and their subsequent scaffolding with nanoparticles (NPs). Potential applications of this novel class of lipid-BCP membranes require an understanding of their compositional heterogeneities with a variety of different molecules including natural proteins or synthetic NPs, whose selective incorporation into a specific part of phase separated membranes can serve as a model system for the targeted delivery of therapeutics. We demonstrate the selective incorporation of polymer-functionalized CdSe NPs into the polymer-rich domains in vesicular hybrid membranes using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, Tm = 41 °C) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, Tm = -20 °C) as the lipid component. Furthermore, we demonstrate a method to detect PIB-PEO based amphiphilic BCPs on liposomal surfaces by a PEO binding antibody (anti-PEO). As a result, hybrid membrane morphologies, which depend on the lipid/BCP composition, are selectively monitored and engineered.
Collapse
Affiliation(s)
- Matthias Schulz
- Martin-Luther University Halle-Wittenberg, Chair of Macromolecular Chemistry, Faculty of Natural Sciences II (Chemistry, Physics and Mathematics), Institute of Chemistry, D-06120 Halle (Saale), Germany.
| | | | | | | |
Collapse
|
123
|
Angelini MM, Neuman BW, Buchmeier MJ. Untangling membrane rearrangement in the nidovirales. DNA Cell Biol 2014; 33:122-7. [PMID: 24410069 DOI: 10.1089/dna.2013.2304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
All known positive sense single-stranded RNA viruses induce host cell membrane rearrangement for purposes of aiding viral genome replication and transcription. Members of the Nidovirales order are no exception, inducing intricate regions of double membrane vesicles and convoluted membranes crucial for the production of viral progeny. Although these structures have been well studied for some members of this order, much remains unclear regarding the biogenesis of these rearranged membranes. Here, we discuss what is known about these structures and their formation, compare some of the driving viral proteins behind this process across the nidovirus order, and examine possible routes of mechanism by which membrane rearrangement may occur.
Collapse
Affiliation(s)
- Megan Mary Angelini
- 1 Department of Molecular Biology and Biochemistry, University of California , Irvine, Irvine, California
| | | | | |
Collapse
|
124
|
Doughty DM, Dieterle M, Sessions AL, Fischer WW, Newman DK. Probing the subcellular localization of hopanoid lipids in bacteria using NanoSIMS. PLoS One 2014; 9:e84455. [PMID: 24409299 PMCID: PMC3883690 DOI: 10.1371/journal.pone.0084455] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/22/2013] [Indexed: 01/14/2023] Open
Abstract
The organization of lipids within biological membranes is poorly understood. Some studies have suggested lipids group into microdomains within cells, but the evidence remains controversial due to non-native imaging techniques. A recently developed NanoSIMS technique indicated that sphingolipids group into microdomains within membranes of human fibroblast cells. We extended this NanoSIMS approach to study the localization of hopanoid lipids in bacterial cells by developing a stable isotope labeling method to directly detect subcellular localization of specific lipids in bacteria with ca. 60 nm resolution. Because of the relatively small size of bacterial cells and the relative abundance of hopanoid lipids in membranes, we employed a primary 2H-label to maximize our limit of detection. This approach permitted the analysis of multiple stable isotope labels within the same sample, enabling visualization of subcellular lipid microdomains within different cell types using a secondary label to mark the growing end of the cell. Using this technique, we demonstrate subcellular localization of hopanoid lipids within alpha-proteobacterial and cyanobacterial cells. Further, we provide evidence of hopanoid lipid domains in between cells of the filamentous cyanobacterium Nostoc punctiforme. More broadly, our method provides a means to image lipid microdomains in a wide range of cell types and test hypotheses for their functions in membranes.
Collapse
Affiliation(s)
- David M. Doughty
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, Pasadena, California, United States of America
| | - Michael Dieterle
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Alex L. Sessions
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Woodward W. Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (WWF); (DKN)
| | - Dianne K. Newman
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, Pasadena, California, United States of America
- * E-mail: (WWF); (DKN)
| |
Collapse
|
125
|
Li ZL, Wang JJ, Ding HM, Ma YQ. Influence of different membrane environments on the behavior of cholesterol. RSC Adv 2014. [DOI: 10.1039/c4ra08201j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our results show the distribution of cholesterol between stress-free and stressed membranes or between the inner leaflet and the outer leaflet of curved membrane.
Collapse
Affiliation(s)
- Zhen-lu Li
- National Laboratory of Solid State Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093, China
| | - Jing-jing Wang
- National Laboratory of Solid State Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093, China
| | - Hong-ming Ding
- National Laboratory of Solid State Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093, China
| | - Yu-qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093, China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
| |
Collapse
|
126
|
Naulin PA, Alveal NA, Barrera NP. Toward atomic force microscopy and mass spectrometry to visualize and identify lipid rafts in plasmodesmata. FRONTIERS IN PLANT SCIENCE 2014; 5:234. [PMID: 24910637 PMCID: PMC4038920 DOI: 10.3389/fpls.2014.00234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 05/11/2014] [Indexed: 05/08/2023]
Abstract
Plant cell-to-cell communication is mediated by nanopores called plasmodesmata (PDs) which are complex structures comprising plasma membrane (PM), highly packed endoplasmic reticulum and numerous membrane proteins. Although recent advances on proteomics have led to insights into mechanisms of transport, there is still an inadequate characterization of the lipidic composition of the PM where membrane proteins are inserted. It has been postulated that PDs could be formed by lipid rafts, however no structural evidence has shown to visualize and analyse their lipid components. In this perspective article, we discuss proposed experiments to characterize lipid rafts and proteins in the PDs. By using atomic force microscopy (AFM) and mass spectrometry (MS) of purified PD vesicles it is possible to determine the presence of lipid rafts, specific bound proteins and the lipidomic profile of the PD under physiological conditions and after changing transport permeability. In addition, MS can determine the stoichiometry of intact membrane proteins inserted in lipid rafts. This will give novel insights into the role of membrane proteins and lipid rafts on the PD structure.
Collapse
Affiliation(s)
| | | | - Nelson P. Barrera
- *Correspondence: Nelson P. Barrera, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile e-mail:
| |
Collapse
|
127
|
Johannes L, Wunder C, Bassereau P. Bending "on the rocks"--a cocktail of biophysical modules to build endocytic pathways. Cold Spring Harb Perspect Biol 2014; 6:6/1/a016741. [PMID: 24384570 DOI: 10.1101/cshperspect.a016741] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous biological processes rely on endocytosis. The construction of endocytic pits is achieved by a bewildering complexity of biochemical factors that function in clathrin-dependent and -independent pathways. In this review, we argue that this complexity can be conceptualized by a deceptively small number of physical principles that fall into two broad categories: passive mechanisms, such as asymmetric transbilayer stress, scaffolding, line tension, and crowding, and active mechanisms driven by mechanochemical enzymes and/or cytoskeleton. We illustrate how the functional identity of biochemical modules depends on system parameters such as local protein density on membranes, thus explaining some of the controversy in the field. Different modules frequently operate in parallel in the same step and often are shared by apparently divergent uptake processes. The emergence of a novel endocytic classification system may thus be envisioned in which functional modules are the elementary bricks.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie-Centre de Recherche, Traffic, Signaling and Delivery Group, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
128
|
Phan HT, Hata T, Morita M, Yoda T, Hamada T, Vestergaard MC, Takagi M. The effect of oxysterols on the interaction of Alzheimer's amyloid beta with model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2487-95. [DOI: 10.1016/j.bbamem.2013.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 01/09/2023]
|
129
|
Fuerst JA, Sagulenko E. Towards understanding the molecular mechanism of the endocytosis-like process in the bacterium Gemmata obscuriglobus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1732-8. [PMID: 24144586 DOI: 10.1016/j.bbamcr.2013.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 12/22/2022]
Abstract
An endocytosis-like process of protein uptake in the planctomycete Gemmata obscuriglobus is a recently discovered process unprecedented in the bacterial world. The molecular mechanisms underlying this process are not yet characterized. A homolog of the MC (membrane-coating) proteins of eukaryotes has been proposed to be involved in the mechanism of this process, but its relationship to eukaryote proteins is controversial. However, a number of other proteins of G. obscuriglobus with domains homologous to those involved in endocytosis in eukaryotes can also be identified. Here we critically evaluate current bioinformatic knowledge, and suggest practical experimental steps to overcome the limits of bioinformatics in elucidating the molecular mechanism of endocytosis in bacteria. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- John A Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Evgeny Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
130
|
Molino D, Galli T. Biogenesis and transport of membrane domains-potential implications in brain pathologies. Biochimie 2013; 96:75-84. [PMID: 24075975 DOI: 10.1016/j.biochi.2013.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022]
Abstract
Lipids in biological membranes show astonishing chemical diversity, but they also show some key conserved structures in different organisms. In addition, some of their biophysical properties have been related to specific functions. In this review, we aim to discuss the role of sphingolipids- and cholesterol-rich micro- and nano-membrane domains (MD) and highlight their pivotal role in lipid-protein clustering processes, vesicle biogenesis and membrane fusion. We further review potential connections between human pathologies and defects in MD biosynthesis, recycling and homeostasis. Brain, which is second only to the adipose tissues in term of lipid abundance, is particularly affected by MD defects which are linked to neurodegenerative disorders. Finally we propose a potential connection between MD and several nutrient-related processes and envision how diet and autophagy could bring insights towards understanding the impact of global lipid homeostasis on human health and disease.
Collapse
Affiliation(s)
- Diana Molino
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; INSERM ERL U950, Membrane Traffic in Neuronal and Epithelial Morphogenesis, F-75013 Paris, France.
| | | |
Collapse
|
131
|
Ota K, Leonardi A, Mikelj M, Skočaj M, Wohlschlager T, Künzler M, Aebi M, Narat M, Križaj I, Anderluh G, Sepčić K, Maček P. Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B. Biochimie 2013; 95:1855-64. [DOI: 10.1016/j.biochi.2013.06.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/12/2013] [Indexed: 12/16/2022]
|
132
|
Phase diagram and tie-line determination for the ternary mixture DOPC/eSM/cholesterol. Biophys J 2013; 104:1456-64. [PMID: 23561522 DOI: 10.1016/j.bpj.2013.02.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/12/2013] [Accepted: 02/19/2013] [Indexed: 11/20/2022] Open
Abstract
We propose a novel, to our knowledge, method for the determination of tie lines in a phase diagram of ternary lipid mixtures. The method was applied to a system consisting of dioleoylphosphatidylcholine (DOPC), egg sphingomyelin (eSM), and cholesterol (Chol). The approach is based on electrofusion of single- or two-component homogeneous giant vesicles in the fluid phase and analyses of the domain areas of the fused vesicle. The electrofusion approach enables us to create three-component vesicles with precisely controlled composition, in contrast to conventional methods for giant vesicle formation. The tie lines determined in the two-liquid-phase coexistence region are found to be not parallel, suggesting that the dominant mechanism of lipid phase separation in this region changes with the membrane composition. We provide a phase diagram of the DOPC/eSM/Chol mixture and predict the location of the critical point. Finally, we evaluate the Gibbs free energy of transfer of individual lipid components from one phase to the other.
Collapse
|
133
|
Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V, Honigmann A, Belov VN, Eggeling C, Coskun U, Simons K, Schwille P. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1818:1777-84. [PMID: 22450237 DOI: 10.1016/j.bbamem.2012.03.007] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GMI exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact cellular plasma membranes consistently reveals a constant level of confined diffusion for raft lipid analogs that vary greatly in their partitioning behavior, suggesting different physicochemical bases for these phenomena.
Collapse
Affiliation(s)
- Erdinc Sezgin
- Biophysics/BIOTEC, TU Dresden. Tatzberg 47-51, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Mashaghi S, Jadidi T, Koenderink G, Mashaghi A. Lipid nanotechnology. Int J Mol Sci 2013; 14:4242-82. [PMID: 23429269 PMCID: PMC3588097 DOI: 10.3390/ijms14024242] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/14/2023] Open
Abstract
Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology.
Collapse
Affiliation(s)
- Samaneh Mashaghi
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, Nijenborgh 4, 9747 AG Groningen, The Netherlands; E-Mail:
| | - Tayebeh Jadidi
- Department of Physics, University of Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany; E-Mail:
| | - Gijsje Koenderink
- FOM Institute AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands; E-Mail:
| | - Alireza Mashaghi
- FOM Institute AMOLF, Science Park 104, 1098XG Amsterdam, The Netherlands; E-Mail:
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
135
|
Rouhiparkouhi T, Weikl TR, Discher DE, Lipowsky R. Adhesion-induced phase behavior of two-component membranes and vesicles. Int J Mol Sci 2013; 14:2203-29. [PMID: 23340655 PMCID: PMC3565373 DOI: 10.3390/ijms14012203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 11/17/2022] Open
Abstract
The interplay of adhesion and phase separation is studied theoretically for two-component membranes that can phase separate into two fluid phases such as liquid-ordered and liquid-disordered phases. Many adhesion geometries provide two different environments for these membranes and then partition the membranes into two segments that differ in their composition. Examples are provided by adhering vesicles, by hole- or pore-spanning membranes, and by membranes supported by chemically patterned surfaces. Generalizing a lattice model for binary mixtures to these adhesion geometries, we show that the phase behavior of the adhering membranes depends, apart from composition and temperature, on two additional parameters, the area fraction of one membrane segment and the affinity contrast between the two segments. For the generic case of non-vanishing affinity contrast, the adhering membranes undergo two distinct phase transitions and the phase diagrams in the composition/temperature plane have a generic topology that consists of two two-phase coexistence regions separated by an intermediate one-phase region. As a consequence, phase separation and domain formation is predicted to occur separately in each of the two membrane segments but not in both segments simultaneously. Furthermore, adhesion is also predicted to suppress the phase separation process for certain regions of the phase diagrams. These generic features of the adhesion-induced phase behavior are accessible to experiment.
Collapse
Affiliation(s)
- Tahereh Rouhiparkouhi
- Theory & Bio-Systems, Max Planck Insitute of Colloids and Interfaces, Potsdam 14424, Germany; E-Mails: (T.R.); (T.R.W.)
| | - Thomas R. Weikl
- Theory & Bio-Systems, Max Planck Insitute of Colloids and Interfaces, Potsdam 14424, Germany; E-Mails: (T.R.); (T.R.W.)
| | - Dennis E. Discher
- Biophysical Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
| | - Reinhard Lipowsky
- Theory & Bio-Systems, Max Planck Insitute of Colloids and Interfaces, Potsdam 14424, Germany; E-Mails: (T.R.); (T.R.W.)
| |
Collapse
|
136
|
Funkhouser CM, Mayer M, Solis FJ, Thornton K. Effects of interleaflet coupling on the morphologies of multicomponent lipid bilayer membranes. J Chem Phys 2013; 138:024909. [DOI: 10.1063/1.4773856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
137
|
Giustini M, Giuliani AM, Gennaro G. Natural or synthetic nucleic acids encapsulated in a closed cavity of amphiphiles. RSC Adv 2013. [DOI: 10.1039/c3ra23208e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
138
|
Jacquier N, Mishra S, Choudhary V, Schneiter R. Expression of oleosin and perilipins in yeast promote formation of lipid droplets from the endoplasmatic reticulum. J Cell Sci 2013; 126:5198-209. [DOI: 10.1242/jcs.131896] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most cells store neutral lipids in a dedicated compartment, the lipid droplet (LD). These LDs are structurally and functionally conserved across species. In higher eukaryotes, LDs are covered by abundant scaffolding proteins, such as the oleosins in plants and perilipins (PLINs) in animal cells. S. cerevisiae, however, has no homologues of these scaffolding proteins. To analyze a possible function of these proteins in the biogenesis of LDs, oleosin and perilipin family members (PLIN1, ADRP/PLIN2, and TIP47/PLIN3) were expressed in yeast cells and their targeting to LDs, membrane association and function in neutral lipid homeostasis and LD biogenesis were analyzed. When expressed in wild-type cells, these proteins were properly targeted to LDs. However, when expressed in cells lacking LDs, oleosin was localized to the ER bilayer and was rapidly degraded. PLINs, on the other hand, did not localize to the ER membrane in the absence of LDs and lost their membrane association. Photobleaching experiments revealed that PLIN2 and PLIN3 rapidly exchanged their LD association but PLINs did not move over the LD surface as quickly as did an integral membrane protein, such as oleosin. Interestingly, expression of these scaffolding LD proteins in mutant cells containing elevated levels of neutral lipids within the ER bilayer resulted in the formation of LDs. These results suggest that these LD scaffolding proteins promote the sequestration of neutral lipids from the ER bilayer and thereby induce LD formation. Consistent with this proposition, addition of a cell permeable diacylglycerol (DAG) was sufficient to promote LD formation in cells expressing the LD scaffolding proteins but lacking the capacity to synthesize storage lipids.
Collapse
|
139
|
Lipowsky R. Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss 2013; 161:305-31; discussion 419-59. [DOI: 10.1039/c2fd20105d] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
140
|
Schulz M, Werner S, Bacia K, Binder WH. Kontrolle molekularer Rezeptor-Protein-Erkennung durch laterale Phasenseparation in Lipid-Polymer-Hybridvesikeln. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
141
|
Schulz M, Werner S, Bacia K, Binder WH. Controlling Molecular Recognition with Lipid/Polymer Domains in Vesicle Membranes. Angew Chem Int Ed Engl 2012; 52:1829-33. [DOI: 10.1002/anie.201204959] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/13/2012] [Indexed: 01/26/2023]
|
142
|
Kuroiwa T, Fujita R, Kobayashi I, Uemura K, Nakajima M, Sato S, Walde P, Ichikawa S. Efficient Preparation of Giant Vesicles as Biomimetic Compartment Systems with High Entrapment Yields for Biomacromolecules. Chem Biodivers 2012; 9:2453-72. [DOI: 10.1002/cbdv.201200274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Indexed: 11/09/2022]
|
143
|
Functional convergence of hopanoids and sterols in membrane ordering. Proc Natl Acad Sci U S A 2012; 109:14236-40. [PMID: 22893685 DOI: 10.1073/pnas.1212141109] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Liquid-ordered phases are one of two biochemically active membrane states, which until now were thought to be a unique consequence of the interactions between eukaryotic membrane lipids. The formation of a liquid-ordered phase depends crucially on the ordering properties of sterols. However, it is not known whether this capacity exists in organisms that lack sterols, such as bacteria. We show that diplopterol, the simplest bacterial hopanoid, has similar properties and that hopanoids are bacterial "sterol surrogates" with the ability to order saturated lipids and to form a liquid-ordered phase in model membranes. These observations suggest that the evolution of an ordered biochemically active liquid membrane could have evolved before the oxygenation of Earth's surface and the emergence of sterols.
Collapse
|
144
|
Demers MF, Sknepnek R, Olvera de la Cruz M. Curvature-driven effective attraction in multicomponent membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021504. [PMID: 23005766 DOI: 10.1103/physreve.86.021504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/19/2012] [Indexed: 06/01/2023]
Abstract
We study closed liquid membranes that segregate into three phases due to differences in the chemical and physical properties of its components. The shape and in-plane membrane arrangement of the phases are coupled through phase-specific bending energies and line tensions. We use simulated annealing Monte Carlo simulations to find low-energy structures, allowing both phase arrangement and membrane shape to relax. The three-phase system is the simplest one in which there are multiple interface pairs, allowing us to analyze interfacial preferences and pairwise distinct line tensions. We observe the system's preference for interface pairs that maximize differences in spontaneous curvature. From a pattern selection perspective, this acts as an effective attraction between phases of most disparate spontaneous curvature. We show that this effective attraction is robust enough to persist even when the interface between these phases is the most penalized by line tension. This effect is driven by geometry and not by any explicit component-component interaction.
Collapse
Affiliation(s)
- Matthew F Demers
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
145
|
Parisio G, Sperotto MM, Ferrarini A. Flip-Flop of Steroids in Phospholipid Bilayers: Effects of the Chemical Structure on Transbilayer Diffusion. J Am Chem Soc 2012; 134:12198-208. [DOI: 10.1021/ja304007t] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Giulia Parisio
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova,
Italy
| | - Maria Maddalena Sperotto
- Center for Biological
Sequence
Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kgs. Lyngby,
Denmark
| | - Alberta Ferrarini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova,
Italy
| |
Collapse
|
146
|
Derivery E, Helfer E, Henriot V, Gautreau A. Actin polymerization controls the organization of WASH domains at the surface of endosomes. PLoS One 2012; 7:e39774. [PMID: 22737254 PMCID: PMC3380866 DOI: 10.1371/journal.pone.0039774] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 05/30/2012] [Indexed: 12/24/2022] Open
Abstract
Sorting of cargoes in endosomes occurs through their selective enrichment into sorting platforms, where transport intermediates are generated. The WASH complex, which directly binds to lipids, activates the Arp2/3 complex and hence actin polymerization onto such sorting platforms. Here, we analyzed the role of actin polymerization in the physiology of endosomal domains containing WASH using quantitative image analysis. Actin depolymerization is known to enlarge endosomes. Using a novel colocalization method that is insensitive to the heterogeneity of size and shape of endosomes, we further show that preventing the generation of branched actin networks induces endosomal accumulation of the WASH complex. Moreover, we found that actin depolymerization induces a dramatic decrease in the recovery of endosomal WASH after photobleaching. This result suggests a built-in turnover, where the actin network, i.e. the product of the WASH complex, contributes to the dynamic exchange of the WASH complex by promoting its detachment from endosomes. Our experiments also provide evidence for a role of actin polymerization in the lateral compartmentalization of endosomes: several WASH domains exist at the surface of enlarged endosomes, however, the WASH domains coalesce upon actin depolymerization or Arp2/3 depletion. Branched actin networks are thus involved in the regulation of the size of WASH domains. The potential role of this regulation in membrane scission are discussed.
Collapse
Affiliation(s)
- Emmanuel Derivery
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette, France
| | - Emmanuèle Helfer
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette, France
| | - Véronique Henriot
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette, France
| | - Alexis Gautreau
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
147
|
Yang K, Yuan B, Ma YQ. Curvature Changes of Bilayer Membranes Studied by Computer Simulations. J Phys Chem B 2012; 116:7196-202. [DOI: 10.1021/jp302864v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kai Yang
- Center for Soft Condensed
Matter
Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China
| | - Bing Yuan
- Center for Soft Condensed
Matter
Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China
| | - Yu-Qiang Ma
- Center for Soft Condensed
Matter
Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China
- National Laboratory of Solid
State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
148
|
Ivankin A, Kuzmenko I, Gidalevitz D. Cholesterol mediates membrane curvature during fusion events. PHYSICAL REVIEW LETTERS 2012; 108:238103. [PMID: 23003994 PMCID: PMC8792958 DOI: 10.1103/physrevlett.108.238103] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 05/31/2023]
Abstract
Biomembranes undergo extensive shape changes as they perform vital cellular functions. The mechanisms by which lipids and proteins control membrane curvature remain unclear. We use x-ray reflectivity, grazing incidence x-ray diffraction, and epifluorescence microscopy to study binding of HIV-1 glycoprotein gp41's membrane-bending domain to DPPC/cholesterol monolayers of various compositions at the air-liquid interface. The results offer a new insight into how membrane curvature could be regulated by cholesterol during fusion of the viral lipid envelope and the host cell membranes.
Collapse
Affiliation(s)
- Andrey Ivankin
- Department of Physics and Center for Molecular Study of Condensed Soft Matter (μCoSM), Illinois Institute of Technology, Chicago, Illinois 60616
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratories, Argonne, Illinois 60439
| | - David Gidalevitz
- Department of Physics and Center for Molecular Study of Condensed Soft Matter (μCoSM), Illinois Institute of Technology, Chicago, Illinois 60616
| |
Collapse
|
149
|
Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L. ERGOSTEROL BIOSYNTHESIS: A FUNGAL PATHWAY FOR LIFE ON LAND? Evolution 2012; 66:2961-8. [DOI: 10.1111/j.1558-5646.2012.01667.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
150
|
Oglęcka K, Sanborn J, Parikh AN, Kraut RS. Osmotic gradients induce bio-reminiscent morphological transformations in giant unilamellar vesicles. Front Physiol 2012; 3:120. [PMID: 22586404 PMCID: PMC3343378 DOI: 10.3389/fphys.2012.00120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/11/2012] [Indexed: 12/03/2022] Open
Abstract
We report observations of large-scale, in-plane and out-of-plane membrane deformations in giant uni- and multilamellar vesicles composed of binary and ternary lipid mixtures in the presence of net transvesicular osmotic gradients. The lipid mixtures we examined consisted of binary mixtures of DOPC and DPPC lipids and ternary mixtures comprising POPC, sphingomyelin and cholesterol over a range of compositions – both of which produce co-existing phases for selected ranges of compositions at room temperature under thermodynamic equilibrium. In the presence of net osmotic gradients, we find that the in-plane phase separation potential of these mixtures is non-trivially altered and a variety of out-of-plane morphological remodeling events occur. The repertoire of membrane deformations we observe display striking resemblance to their biological counterparts in live cells encompassing vesiculation, membrane fission and fusion, tubulation and pearling, as well as expulsion of entrapped vesicles from multicompartmental giant unilamellar vesicles through large, self-healing transient pores. These observations suggest that the forces introduced by simple osmotic gradients across membrane boundaries could act as a trigger for shape-dependent membrane and vesicle trafficking activities. We speculate that such coupling of osmotic gradients with membrane properties might have provided lipid-mediated mechanisms to compensate for osmotic stress during the early evolution of membrane compartmentalization in the absence of osmoregulatory protein machinery.
Collapse
Affiliation(s)
- Kamila Oglęcka
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University Singapore
| | | | | | | |
Collapse
|