101
|
Harrison TC, Murphy TH. Motor maps and the cortical control of movement. Curr Opin Neurobiol 2013; 24:88-94. [PMID: 24492084 DOI: 10.1016/j.conb.2013.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 12/14/2022]
Abstract
The brain's cortical maps serve as a macroscopic framework upon which additional levels of detail can be overlaid. Unlike sensory maps generated by measuring the brain's responses to incoming stimuli, motor maps are made by directly stimulating the brain itself. To understand the significance of motor maps and the functions they represent, it is necessary to consider the relationship between the natural operation of the motor system and the pattern of activity evoked in it by artificial stimulation. We review recent findings from the study of the cortical motor system and new insights into the control of movement based on its mapping within cortical space.
Collapse
Affiliation(s)
- Thomas C Harrison
- Department of Psychiatry and Brain Research Centre, University of British Columbia, 2255 Wesbrook Mall, Vancouver BC Canada V6T1Z3
| | - Timothy H Murphy
- Department of Psychiatry and Brain Research Centre, University of British Columbia, 2255 Wesbrook Mall, Vancouver BC Canada V6T1Z3.
| |
Collapse
|
102
|
Khodaparast N, Hays SA, Sloan AM, Hulsey DR, Ruiz A, Pantoja M, Rennaker RL, Kilgard MP. Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke. Neurobiol Dis 2013; 60:80-8. [PMID: 23954448 DOI: 10.1016/j.nbd.2013.08.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/31/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022] Open
Abstract
Upper limb impairment is a common debilitating consequence of ischemic stroke. Physical rehabilitation after stroke enhances neuroplasticity and improves limb function, but does not typically restore normal movement. We have recently developed a novel method that uses vagus nerve stimulation (VNS) paired with forelimb movements to drive specific, long-lasting map plasticity in rat primary motor cortex. Here we report that VNS paired with rehabilitative training can enhance recovery of forelimb force generation following infarction of primary motor cortex in rats. Quantitative measures of forelimb function returned to pre-lesion levels when VNS was delivered during rehab training. Intensive rehab training without VNS failed to restore function back to pre-lesion levels. Animals that received VNS during rehab improved twice as much as rats that received the same rehabilitation without VNS. VNS delivered during physical rehabilitation represents a novel method that may provide long-lasting benefits towards stroke recovery.
Collapse
Affiliation(s)
- N Khodaparast
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080-3021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Liang H, Yin Y, Lin T, Guan D, Ma B, Li C, Wang Y, Zhang X. Transplantation of bone marrow stromal cells enhances nerve regeneration of the corticospinal tract and improves recovery of neurological functions in a collagenase-induced rat model of intracerebral hemorrhage. Mol Cells 2013; 36:17-24. [PMID: 23807046 PMCID: PMC3887925 DOI: 10.1007/s10059-013-2306-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 04/08/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022] Open
Abstract
The reorganization of brain structures after intracerebral hemorrhage (ICH) insult is crucial to functional outcome. Although the pattern of neuronal rewiring is well-documented after ischemic stroke, the study of brain plasticity after ICH has been focusing on the enhancement of dendritic complexity. Here we hypothesized that functional restoration after ICH involves brain reorganization which may be favorably modulated by stem cell transplantation. In this study, bone marrow stromal cells (BMSCs) were transplanted into the perilesional sites of collagenase-induced ICH in adult rats one day after ICH injury. Forelimb functional recovery was monitored with modified limb placing and vibrissae-elicited forelimb placement tests. Anterograde and retrograde tracing were used to assess the reorganization of bilateral forelimb areas of the sensorimotor cortex. We found that in rats transplanted with BMSCs after ICH injury, axonal sprouting occurred in the contralateral caudal forelimb area of the cortex, and was significantly higher than in ICH rat models that received only the vehicle (P < 0.01). The number of positive neurons in the ipsilateral rostral forelimb area of the cortex of the BMSC group was 1.5-to 4.5-fold greater than in the vehicle group (P < 0.05). No difference was found between the BMSC and vehicle groups in hemispheric atrophy or labeled neurons in the ipsilateral caudal forelimb area (P = 0.193). Scores for improved functional behavior in the BMSC group were in accord with the results from histology. Neuronal plasticity of the denervated corticospinal tract at bilateral forelimb areas of the cortex in the collagenase-induced ICH rat models was significantly enhanced by BMSC transplantation. BMSC transplantation may facilitate functional recovery after ICH injury.
Collapse
Affiliation(s)
- Hongsheng Liang
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin,
People’s Republic of China
| | - Yibo Yin
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin,
People’s Republic of China
| | - Tie Lin
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin,
People’s Republic of China
| | - Dong Guan
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin,
People’s Republic of China
| | - Bowen Ma
- The second department of neurosurgery, Heilongjiang Provincial hospital, Harbin,
People’s Republic of China
| | - Changyu Li
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin,
People’s Republic of China
| | - Yuehua Wang
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin,
People’s Republic of China
| | - Xiangtong Zhang
- Key Laboratory of Neurosurgery, College of Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin,
People’s Republic of China
| |
Collapse
|
104
|
Kerr AL, Wolke ML, Bell JA, Jones TA. Post-stroke protection from maladaptive effects of learning with the non-paretic forelimb by bimanual home cage experience in C57BL/6 mice. Behav Brain Res 2013; 252:180-7. [PMID: 23756140 DOI: 10.1016/j.bbr.2013.05.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 01/24/2023]
Abstract
Behavioral experience, in the form of skilled limb use, has been found to impact the structure and function of the central nervous system, affecting post-stroke behavioral outcome in both adaptive and maladaptive ways. Learning to rely on the less-affected, or non-paretic, body side is common following stroke in both humans and rodent models. In rats, it has been observed that skilled learning with the non-paretic forelimb following ischemic insult leads to impaired or delayed functional recovery of the paretic limb. Here we used a mouse model of focal motor cortical ischemic injury to examine the effects of non-paretic limb training following unilateral stroke. In addition, we exposed some mice to increased bimanual experience in the home cage following stroke to investigate the impact of coordinated dexterous limb use on the non-paretic limb training effect. Our results confirmed that skilled learning with the non-paretic limb impaired functional recovery following stroke in C56BL/6 mice, as it does in rats. Further, this effect was avoided when the skill learning of the non-paretic limb was coupled with increased dexterous use of both forelimbs in the home cage. These findings further establish the mouse as an appropriate model in which to study the neural mechanisms of recovery following stroke and extend previous findings to suggest that the dexterous coordinated use of the paretic and non-paretic limb can promote functional outcome following injury.
Collapse
Affiliation(s)
- Abigail L Kerr
- University of Texas at Austin, Psychology Department, 1 University Station, A8000, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
105
|
Cheung VCK, DeBoer C, Hanson E, Tunesi M, D'Onofrio M, Arisi I, Brandi R, Cattaneo A, Goosens KA. Gene expression changes in the motor cortex mediating motor skill learning. PLoS One 2013; 8:e61496. [PMID: 23637843 PMCID: PMC3634858 DOI: 10.1371/journal.pone.0061496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/08/2013] [Indexed: 12/11/2022] Open
Abstract
The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation.
Collapse
Affiliation(s)
- Vincent C. K. Cheung
- McGovern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (VCKC); (KAG)
| | - Caroline DeBoer
- McGovern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Elizabeth Hanson
- McGovern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - Mara D'Onofrio
- European Brain Research Institute ‘Rita Levi-Montalcini’, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute ‘Rita Levi-Montalcini’, Rome, Italy
| | - Rossella Brandi
- European Brain Research Institute ‘Rita Levi-Montalcini’, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute ‘Rita Levi-Montalcini’, Rome, Italy
| | - Ki A. Goosens
- McGovern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (VCKC); (KAG)
| |
Collapse
|
106
|
Complex movement topography and extrinsic space representation in the rat forelimb motor cortex as defined by long-duration intracortical microstimulation. J Neurosci 2013; 33:2097-107. [PMID: 23365246 DOI: 10.1523/jneurosci.3454-12.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Electrical stimulation of the motor cortex in the rat can evoke complex forelimb multi-joint movements, including movement of limb and paw. In this study, these movements have been quantified in terms of 3D displacement and kinematic variables of two markers positioned on the wrist and middle digits (limb and paw movement, respectively). Electrical microstimulation was applied to the motor cortex using a pulse train of 500 ms duration. Movements were measured using a high-resolution 3D optical system. Five classes of limb movements (abduction, adduction, extension, retraction, elevation) and four classes of paw movements (opening, closure, opening/closure sequence, supination) were described according to their kinematics. A consistent topography of these classes of movements was presented across the motor cortex together with a topography of spatial locations to which the paw was directed. In about one-half of cortical sites, a specific pattern of limb-paw movement combination did exist. Four categories of limb-paw movements resembling behavioral repertoire were identified: reach-shaping, reach-grasp sequence, bring-to-body, and hold-like movement. Overall, the forelimb motor region included: (1) a large caudal forelimb area dominated by reach-shaping movement representation; (2) a small rostral area containing reach-grasp sequence and bring-to-body movement representation; and (3) a more lateral portion where hold-like movement was represented. These results support the view that, in rats, the motor cortex controls forelimb movements at a relatively complex level and suggest that the orderly representation of complex movements and their dynamics/kinematics emerge from the principles of forelimb motor cortex organization.
Collapse
|
107
|
Bilateral movement training promotes axonal remodeling of the corticospinal tract and recovery of motor function following traumatic brain injury in mice. Cell Death Dis 2013; 4:e534. [PMID: 23470541 PMCID: PMC3613840 DOI: 10.1038/cddis.2013.62] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury (TBI) results in severe motor function impairment, and subsequent recovery is often incomplete. Rehabilitative training is considered to promote restoration of the injured neural network, thus facilitating functional recovery. However, no studies have assessed the effect of such trainings in the context of neural rewiring. Here, we investigated the effects of two types of rehabilitative training on corticospinal tract (CST) plasticity and motor recovery in mice. We injured the unilateral motor cortex with contusion, which induced hemiparesis on the contralesional side. After the injury, mice performed either a single pellet-reaching task (simple repetitive training) or a rotarod task (bilateral movement training). Multiple behavioral tests were then used to assess forelimb motor function recovery: staircase, ladder walk, capellini handling, single pellet, and rotarod tests. The TBI+rotarod group performed most forelimb motor tasks (staircase, ladder walk, and capellini handling tests) better than the TBI-only group did. In contrast, the TBI+reaching group did not perform better except in the single pellet test. After the injury, the contralateral CST, labeled by biotinylated dextran amine, formed sprouting fibers into the denervated side of the cervical spinal cord. The number of these fibers was significantly higher in the TBI+rotarod group, whereas it did not increase in the TBI+reaching group. These results indicate that bilateral movement training effectively promotes axonal rewiring and motor function recovery, whereas the effect of simple repetitive training is limited.
Collapse
|
108
|
Overduin SA, d'Avella A, Carmena JM, Bizzi E. Microstimulation activates a handful of muscle synergies. Neuron 2013; 76:1071-7. [PMID: 23259944 DOI: 10.1016/j.neuron.2012.10.018] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2012] [Indexed: 01/20/2023]
Abstract
Muscle synergies have been proposed as a mechanism to simplify movement control. Whether these coactivation patterns have any physiological reality within the nervous system remains unknown. Here we applied electrical microstimulation to motor cortical areas of rhesus macaques to evoke hand movements. Movements tended to converge toward particular postures, driven by synchronous bursts of muscle activity. Across stimulation sites, the muscle activations were reducible to linear sums of a few basic patterns-each corresponding to a muscle synergy evident in voluntary reach, grasp, and transport movements made by the animal. These synergies were represented nonuniformly over the cortical surface. We argue that the brain exploits these properties of synergies-postural equivalence, low dimensionality, and topographical representation-to simplify motor planning, even for complex hand movements.
Collapse
Affiliation(s)
- Simon A Overduin
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
109
|
Pilot fMRI investigation of representational plasticity associated with motor skill learning and its functional consequences. Brain Imaging Behav 2013; 6:437-53. [PMID: 22454141 DOI: 10.1007/s11682-012-9158-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Complex skill learning at a joint initiates competition between its representation in the primary motor cortex (M1) and that of the neighboring untrained joint. This process of representational plasticity has been mapped by cortically-evoking simple movements. We investigated, following skill learning at a joint, 1) whether comparable processes of representational plasticity are observed when mapping is based on volitionally produced complex movements and 2) the consequence on the skill of the adjacent untrained joint. Twenty-four healthy subjects were assigned to either finger- or elbow-skill training or no-training control group. At pretest and posttest, subjects performed complex skill movements at finger, elbow and ankle concurrent with functional magnetic resonance imaging (fMRI) to define learning and allow mapping of corresponding activation-based representations in M1. Skill following both finger- and elbow- training transferred to the ankle (remote joint) (p = 0.05 and 0.05); however, finger training did not transfer to the elbow and elbow training did not transfer to the finger. Following finger training, location of the trained finger representation showed a trend (p = 0.08) for medial shift towards the representation of adjacent untrained elbow joint; the change in intensity of the latter representation was associated with elbow skill (Spearman's ρ = -0.71, p = 0.07). Following elbow training, the trained elbow representation and the adjacent untrained finger representation increased their overlap (p = 0.02), which was associated with finger skill (Spearman's ρ = -0.83, p = 0.04). Thus, our pilot study reveals comparable processes of representational plasticity with fMRI mapping of complex skill movements as have been demonstrated with cortically-evoked methods. Importantly, these processes may limit the degree of transfer of skill between trained and adjacent untrained joints. These pilot findings that await confirmation in large-scale studies have significant implications for neuro-rehabilitation. For instance, techniques, such as motor cortical stimulation, that can potentially modulate processes of representational plasticity between trained and adjacent untrained representations, may optimize transfer of skill.
Collapse
|
110
|
Harrison TC, Murphy TH. Towards a circuit mechanism for movement tuning in motor cortex. Front Neural Circuits 2013; 6:127. [PMID: 23346050 PMCID: PMC3548231 DOI: 10.3389/fncir.2012.00127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/31/2012] [Indexed: 02/01/2023] Open
Abstract
The firing rates of neurons in primate motor cortex have been related to multiple parameters of voluntary movement. This finding has been corroborated by stimulation-based studies that have mapped complex movements in rodent and primate motor cortex. However, it has been difficult to link the movement tuning of a neuron with its role within the cortical microcircuit. In sensory cortex, neuronal tuning is largely established by afferents delivering information from tuned receptors in the periphery. Motor cortex, which lacks the granular input layer, may be better understood by analyzing its efferent projections. As a primary source of cortical output, layer 5 neurons represent an ideal starting point for this line of experimentation. It is in these deep output layers that movements can most effectively be evoked by intracortical microstimulation and recordings can obtain the most useful signals for the control of motor prostheses. Studies focused on layer 5 output neurons have revealed that projection identity is a fundamental property related to the laminar position, receptive field and ion channel complement of these cells. Given the variety of brain areas targeted by layer 5 output neurons, knowledge of a neuron's downstream connectivity may provide insight into its movement tuning. Future experiments that relate motor behavior to the activity of neurons with a known projection identity will yield a more detailed understanding of the function of cortical microcircuits.
Collapse
Affiliation(s)
- Thomas C Harrison
- Department of Psychiatry, University of British Columbia Vancouver, BC, Canada
| | | |
Collapse
|
111
|
Zeiler SR, Gibson EM, Hoesch RE, Li MY, Worley PF, O'Brien RJ, Krakauer JW. Medial premotor cortex shows a reduction in inhibitory markers and mediates recovery in a mouse model of focal stroke. Stroke 2013; 44:483-9. [PMID: 23321442 DOI: 10.1161/strokeaha.112.676940] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Motor recovery after ischemic stroke in primary motor cortex is thought to occur in part through training-enhanced reorganization in undamaged premotor areas, enabled by reductions in cortical inhibition. Here we used a mouse model of focal cortical stroke and a double-lesion approach to test the idea that a medial premotor area (medial agranular cortex [AGm]) reorganizes to mediate recovery of prehension, and that this reorganization is associated with a reduction in inhibitory interneuron markers. METHODS C57Bl/6 mice were trained to perform a skilled prehension task to an asymptotic level of performance after which they underwent photocoagulation-induced stroke in the caudal forelimb area. The mice were then retrained and inhibitory interneuron immunofluorescence was assessed in prechosen, anatomically defined neocortical areas. Mice then underwent a second photocoagulation-induced stroke in AGm. RESULTS Focal caudal forelimb area stroke led to a decrement in skilled prehension. Training-associated recovery of prehension was associated with a reduction in parvalbumin, calretinin, and calbindin expression in AGm. Subsequent infarction of AGm led to reinstatement of the original deficit. CONCLUSIONS We conclude that with training, AGm can reorganize after a focal motor stroke and serve as a new control area for prehension. Reduced inhibition may represent a marker for reorganization or it is necessary for reorganization to occur. Our mouse model, with all of the attendant genetic benefits, may allow us to determine at the cellular and molecular levels how behavioral training and endogenous plasticity interact to mediate recovery.
Collapse
Affiliation(s)
- Steven R Zeiler
- Department of Neurology, the Johns Hopkins Hospital, Meyer 6-113, 600 N Wolfe St, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | |
Collapse
|
112
|
Ganzer PD, Moxon KA, Knudsen EB, Shumsky JS. Serotonergic pharmacotherapy promotes cortical reorganization after spinal cord injury. Exp Neurol 2012; 241:84-94. [PMID: 23262119 DOI: 10.1016/j.expneurol.2012.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 01/17/2023]
Abstract
Cortical reorganization plays a significant role in recovery of function after injury of the central nervous system. The neural mechanisms that underlie this reorganization may be the same as those normally responsible for skilled behaviors that accompany extended sensory experience and, if better understood, could provide a basis for further promoting recovery of function after injury. The work presented here extends studies of spontaneous cortical reorganization after spinal cord injury to the role of rehabilitative strategies on cortical reorganization. We use a complete spinal transection model to focus on cortical reorganization in response to serotonergic (5-HT) pharmacotherapy without any confounding effects from spared fibers left after partial lesions. 5-HT pharmacotherapy has previously been shown to improve behavioral outcome after SCI but the effect on cortical organization is unknown. After a complete spinal transection in the adult rat, 5-HT pharmacotherapy produced more reorganization in the sensorimotor cortex than would be expected by transection alone. This reorganization was dose dependent, extended into intact (forelimb) motor cortex, and, at least in the hindlimb sensorimotor cortex, followed a somatotopic arrangement. Animals with the greatest behavioral outcome showed the greatest extent of cortical reorganization suggesting that the reorganization is likely to be in response to both direct effects of 5-HT on cortical circuits and indirect effects in response to the behavioral improvement below the level of the lesion.
Collapse
Affiliation(s)
- Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
113
|
Klein A, Lane EL, Dunnett SB. Brain repair in a unilateral rat model of Huntington's disease: new insights into impairment and restoration of forelimb movement patterns. Cell Transplant 2012; 22:1735-51. [PMID: 23067670 DOI: 10.3727/096368912x657918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) produces severe neurodegeneration in the striatum leading to disabling motor impairments, including the loss of control of skilled reaching movements. Fetal GABAergic transplants can physically replace the lost striatal cells but with only partial success in functional recovery. Here, we aimed to determine the extent and quality of the repair produced by fetal cell transplantation through an in-depth analysis of reaching behavior in the quinolinic acid-lesioned rat model of HD. Control, quinolinic acid-lesioned plus sham graft, and quinolinic acid-lesioned plus graft groups of rats were assessed in skilled reaching performance prior to and following lesion surgery and 3 months following injection of 400,000 fetal whole ganglionic eminence-derived cells into the striatum. This was compared to their performance in two more rudimentary tests of motor function (the adjusting step and vibrissae-evoked hand-placing tests). Grafted rats demonstrated a significant improvement in reaching success rate (graft +59%, shamTX +3%). Importantly, the quality of reaching behavior, including all components of the movement, was fully restored with no identifiable differences in the normal behavior shown by control rats. Postmortem immunohistochemical examination verified the survival of large intrastriatal grafts, and Fluoro-Gold tracing indicated appropriate outgrowth to the globus pallidus. Our study illustrates for the first time the detailed analysis of qualitative improvement of motor function following brain repair in a rat model of HD. The results demonstrate significant improvements not only in gross movements but also in the skilled motor patterns lost during HD. Fetal GABAergic cell transplantation showed a demonstrable ability to restore motor function to near normal levels, such that there were few differences from intact control animals, an effect not observed in standard tests of motor function.
Collapse
Affiliation(s)
- Alexander Klein
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | | |
Collapse
|
114
|
Tennant KA, Adkins DL, Scalco MD, Donlan NA, Asay AL, Thomas N, Kleim JA, Jones TA. Skill learning induced plasticity of motor cortical representations is time and age-dependent. Neurobiol Learn Mem 2012; 98:291-302. [PMID: 23010138 DOI: 10.1016/j.nlm.2012.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 11/19/2022]
Abstract
Movement representations in the motor cortex can reorganize to support motor skill learning during young adulthood. However, little is known about how motor representations change during aging or whether their change is influenced by continued practice of a skill after it is learned. We used intracortical microstimulation to characterize the organization of the forelimb motor cortex in young and aged C57/BL6 mice after short (2-4 weeks) or long (8 weeks) durations of training on a skilled reaching task or control procedures. In young mice, a short duration of reach training increased the area of proximal forelimb movement representations at the expense of distal representations. Following a longer training duration, ratios of proximal to distal movements returned to baseline, even with ongoing practice and skill maintenance. However, lingering changes were evident in thresholds for eliciting distal forelimb movements, which declined over the longer training period. In aged mice, movement representations and movement thresholds failed to change after either duration of training. Furthermore, there was an age-related loss of digit representations and performance decrements on other sensorimotor tests. Nevertheless, in quantitative measures of reaching success, aged mice learned and performed the skilled reaching task at least as well as younger mice. These results indicate that experience-driven topographical reorganization of motor cortex varies with age, as well as time, and is partially dissociable from behavioral performance. They also support an enduring capacity to learn new manual skills during aging, even as more youthful forms of cortical plasticity and sensorimotor function are lost.
Collapse
Affiliation(s)
- Kelly A Tennant
- Institute for Neuroscience, University of Texas at Austin, 78712, USA.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Spatial organization of cortical and spinal neurons controlling motor behavior. Curr Opin Neurobiol 2012; 22:812-21. [PMID: 22841417 DOI: 10.1016/j.conb.2012.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 11/21/2022]
Abstract
A major task of the central nervous system (CNS) is to control behavioral actions, which necessitates a precise regulation of muscle activity. The final components of the circuitry controlling muscles are the motorneurons, which settle into pools in the ventral horn of the spinal cord in positions that mirror the musculature organization within the body. This 'musculotopic' motor-map then becomes the internal CNS reference for the neuronal circuits that control motor commands. This review describes recent progress in defining the neuroanatomical organization of the higher-order motor circuits in the cortex and spinal cord, and our current understanding of the integrative features that contribute to complex motor behaviors. We highlight emerging evidence that cortical and spinal motor command centers are loosely organized with respect to the musculotopic spatial-map, but these centers also incorporate organizational features that associate with the function of different muscle groups during commonly enacted behaviors.
Collapse
|
116
|
Harrison TC, Ayling OGS, Murphy TH. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography. Neuron 2012; 74:397-409. [PMID: 22542191 DOI: 10.1016/j.neuron.2012.02.028] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2012] [Indexed: 11/27/2022]
Abstract
Cortical motor maps are the basis of voluntary movement, but they have proven difficult to understand in the context of their underlying neuronal circuits. We applied light-based motor mapping of Channelrhodopsin-2 mice to reveal a functional subdivision of the forelimb motor cortex based on the direction of movement evoked by brief (10 ms) pulses. Prolonged trains of electrical or optogenetic stimulation (100-500 ms) targeted to anterior or posterior subregions of motor cortex evoked reproducible complex movements of the forelimb to distinct positions in space. Blocking excitatory cortical synaptic transmission did not abolish basic motor map topography, but the site-specific expression of complex movements was lost. Our data suggest that the topography of movement maps arises from their segregated output projections, whereas complex movements evoked by prolonged stimulation require intracortical synaptic transmission.
Collapse
Affiliation(s)
- Thomas C Harrison
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | |
Collapse
|
117
|
Porter BA, Khodaparast N, Fayyaz T, Cheung RJ, Ahmed SS, Vrana WA, Rennaker RL, Kilgard MP. Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex. Cereb Cortex 2011; 22:2365-74. [PMID: 22079923 DOI: 10.1093/cercor/bhr316] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although sensory and motor systems support different functions, both systems exhibit experience-dependent cortical plasticity under similar conditions. If mechanisms regulating cortical plasticity are common to sensory and motor cortices, then methods generating plasticity in sensory cortex should be effective in motor cortex. Repeatedly pairing a tone with a brief period of vagus nerve stimulation (VNS) increases the proportion of primary auditory cortex responding to the paired tone (Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake J, Sudanagunta SP, Borland MS, Kilgard MP. 2011. Reversing pathological neural activity using targeted plasticity. Nature. 470:101-104). In this study, we predicted that repeatedly pairing VNS with a specific movement would result in an increased representation of that movement in primary motor cortex. To test this hypothesis, we paired VNS with movements of the distal or proximal forelimb in 2 groups of rats. After 5 days of VNS movement pairing, intracranial microstimulation was used to quantify the organization of primary motor cortex. Larger cortical areas were associated with movements paired with VNS. Rats receiving identical motor training without VNS pairing did not exhibit motor cortex map plasticity. These results suggest that pairing VNS with specific events may act as a general method for increasing cortical representations of those events. VNS movement pairing could provide a new approach for treating disorders associated with abnormal movement representations.
Collapse
Affiliation(s)
- Benjamin A Porter
- School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080-3021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Cooke DF, Padberg J, Zahner T, Krubitzer L. The functional organization and cortical connections of motor cortex in squirrels. Cereb Cortex 2011; 22:1959-78. [PMID: 22021916 DOI: 10.1093/cercor/bhr228] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed "F," possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages.
Collapse
Affiliation(s)
- Dylan F Cooke
- Center for Neuroscience, University of California, Davis, 95618, USA
| | | | | | | |
Collapse
|
119
|
García-Alías G, Fawcett JW. Training and anti-CSPG combination therapy for spinal cord injury. Exp Neurol 2011; 235:26-32. [PMID: 21946272 DOI: 10.1016/j.expneurol.2011.09.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 08/23/2011] [Accepted: 09/09/2011] [Indexed: 12/18/2022]
Abstract
Combining different therapies is a promising strategy to promote spinal cord repair, by targeting axon plasticity and functional circuit reconnectivity. In particular, digestion of chondroitin sulphate proteoglycans at the site of the injury by the activity of the bacterial enzyme chondrotinase ABC, together with the development of intensive task specific motor rehabilitation has shown synergistic effects to promote behavioural recovery. This review describes the mechanisms by which chondroitinase ABC and motor rehabilitation promote neural plasticity and we discuss their additive and independent effects on promoting behavioural recovery.
Collapse
|
120
|
Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci 2011; 31:9332-44. [PMID: 21697383 DOI: 10.1523/jneurosci.0983-11.2011] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chondroitinase ABC (ChABC) in combination with rehabilitation has been shown to promote functional recovery in acute spinal cord injury. For clinical use, the optimal treatment window is concurrent with the beginning of rehabilitation, usually 2-4 weeks after injury. We show that ChABC is effective when given 4 weeks after injury combined with rehabilitation. After C4 dorsal spinal cord injury, rats received no treatment for 4 weeks. They then received either ChABC or penicillinase control treatment followed by hour-long daily rehabilitation specific for skilled paw reaching. Animals that received both ChABC and task-specific rehabilitation showed the greatest recovery in skilled paw reaching, approaching similar levels to animals that were treated at the time of injury. There was also a modest increase in skilled paw reaching ability in animals receiving task-specific rehabilitation alone. Animals treated with ChABC and task-specific rehabilitation also showed improvement in ladder and beam walking. ChABC increased sprouting of the corticospinal tract, and these sprouts had more vGlut1(+ve) presynaptic boutons than controls. Animals that received rehabilitation showed an increase in perineuronal net number and staining intensity. Our results indicate that ChABC treatment opens a window of opportunity in chronic spinal cord lesions, allowing rehabilitation to improve functional recovery.
Collapse
|
121
|
Kerr AL, Cheng SY, Jones TA. Experience-dependent neural plasticity in the adult damaged brain. JOURNAL OF COMMUNICATION DISORDERS 2011; 44:538-48. [PMID: 21620413 PMCID: PMC3162127 DOI: 10.1016/j.jcomdis.2011.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
UNLABELLED Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper extremity (hand and arm) impairments. A prolonged and widespread process of repair and reorganization of surviving neural circuits is instigated by injury to the adult brain. When experience impacts these same neural circuits, it interacts with degenerative and regenerative cascades to shape neural reorganization and functional outcome. This is evident in the cortical plasticity resulting from compensatory reliance on the "good" forelimb in rats with unilateral sensorimotor cortical infarcts. Behavioral interventions (e.g., rehabilitative training) can drive functionally beneficial neural reorganization in the injured hemisphere. However, experience can have both behaviorally beneficial and detrimental effects. The interactions between experience-dependent and injury-induced neural plasticity are complex, time-dependent, and varied with age and other factors. A better understanding of these interactions is needed to understand how to optimize brain remodeling and functional outcome. LEARNING OUTCOMES Readers will be able to describe (a) experience effects that are maladaptive for behavioral outcome after brain damage, (b) manipulations of experience that drive functionally beneficial neural plasticity, and (c) reasons why rehabilitative training effects can be expected to vary with age, training duration and timing.
Collapse
Affiliation(s)
- Abigail L. Kerr
- Psychology Department and Neuroscience Institute, The University of Texas at Austin, Austin, TX, USA
| | - Shao-Ying Cheng
- Psychology Department and Neuroscience Institute, The University of Texas at Austin, Austin, TX, USA
| | - Theresa A. Jones
- Psychology Department and Neuroscience Institute, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
122
|
Karl JM, Whishaw IQ. Rodent Skilled Reaching for Modeling Pathological Conditions of the Human Motor System. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-1-61779-298-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
123
|
Jones TA, Jefferson SC. Reflections of experience-expectant development in repair of the adult damaged brain. Dev Psychobiol 2011; 53:466-75. [PMID: 21678394 PMCID: PMC6645382 DOI: 10.1002/dev.20557] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Behavioral experience has long been known to influence functional outcome after brain injury, but only recently has its pervasive role in the reorganization of the adult brain after damage become appreciated. We briefly review findings from animal models on the role of experience in shaping neuronal events after stroke-like injury. Experience-dependent neural plasticity can be enhanced or impaired by brain damage, depending upon injury parameters and timing. The neuronal growth response to some experiences is heightened due to interactions with denervation-induced plasticity. This includes compensatory behavioral strategies developed in response to functional impairments. Early behavioral experiences can constrain later experience-dependent plasticity, leading to suboptimal functional outcome. Time dependencies and facets of neural growth patterns are reminiscent of experience-expectant processes that shape brain development. As with sensitive periods in brain development, this process may establish behavioral patterns early after brain injury which are relatively resistant to later change.
Collapse
Affiliation(s)
- Theresa A Jones
- Psychology Department and Neuroscience Institute, University of Texas at Austin, USA.
| | | |
Collapse
|
124
|
Krubitzer L, Campi KL, Cooke DF. All rodents are not the same: a modern synthesis of cortical organization. BRAIN, BEHAVIOR AND EVOLUTION 2011; 78:51-93. [PMID: 21701141 PMCID: PMC3182045 DOI: 10.1159/000327320] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rodents are a major order of mammals that is highly diverse in distribution and lifestyle. Five suborders, 34 families, and 2,277 species within this order occupy a number of different niches and vary along several lifestyle dimensions such as diel pattern (diurnal vs. nocturnal), terrain niche, and diet. For example, the terrain niche of rodents includes arboreal, aerial, terrestrial, semi-aquatic, burrowing, and rock dwelling. Not surprisingly, the behaviors associated with particular lifestyles are also highly variable and thus the neocortex, which generates these behaviors, has undergone corresponding alterations across species. Studies of cortical organization in species that vary along several dimensions such as terrain niche, diel pattern, and rearing conditions demonstrate that the size and number of cortical fields can be highly variable within this order. The internal organization of a cortical field also reflects lifestyle differences between species and exaggerates behaviorally relevant effectors such as vibrissae, teeth, or lips. Finally, at a cellular level, neuronal number and density varies for the same cortical field in different species and is even different for the same species reared in different conditions (laboratory vs. wild-caught). These very large differences across and within rodent species indicate that there is no generic rodent model. Rather, there are rodent models suited for specific questions regarding the development, function, and evolution of the neocortex.
Collapse
Affiliation(s)
- Leah Krubitzer
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA.
| | | | | |
Collapse
|
125
|
Abstract
Sensory and motor representations embedded in topographic cortical maps are use-dependent, dynamically maintained, and self-organizing functional mosaics that constitute idiosyncratic entities involved in perceptual and motor learning abilities. Studies of cortical map plasticity have substantiated the view that local reorganization of sensory and motor areas has great significance in recovery of function following brain damage or spinal cord injury. In addition, the transfer of function to distributed cortical areas and subcortical structures represents an adaptive strategy for functional compensation. There is a growing consensus that subject-environment interactions, by continuously refining the canvas of synaptic connectivity and reshaping the anatomical and functional architecture of neural circuits, promote adaptive behavior throughout life. Taking advantage of use-dependent neural plasticity, early initiated rehabilitative procedures improve the potential for recovery.
Collapse
Affiliation(s)
- Christian Xerri
- Integrative and Adaptive Neurosciences, University of Provence/CNRS, Marseille, France
| |
Collapse
|
126
|
Motoring ahead with rodents. Curr Opin Neurobiol 2011; 21:571-8. [PMID: 21628098 DOI: 10.1016/j.conb.2011.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/13/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022]
Abstract
How neural circuits underlie the acquisition and control of learned motor behaviors has traditionally been explored in monkeys and, more recently, songbirds. The development of genetic tools for functional circuit analysis in rodents, the availability of transgenic animals with well characterized phenotypes, and the relative ease with which rats and mice can be trained to perform various motor tasks, make rodents attractive models for exploring the neural circuit mechanisms underlying the acquisition and production of learned motor skills. Here we discuss the advantages and drawbacks of this approach, review recent trends and results, and outline possible strategies for wider adoption of rodents as a model system for complex motor learning.
Collapse
|
127
|
Viaro R, Morari M, Franchi G. Progressive motor cortex functional reorganization following 6-hydroxydopamine lesioning in rats. J Neurosci 2011; 31:4544-54. [PMID: 21430155 PMCID: PMC6622898 DOI: 10.1523/jneurosci.5394-10.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 11/21/2022] Open
Abstract
Many studies have attempted to correlate changes of motor cortex activity with progression of Parkinson's disease, although results have been controversial. In the present study we used intracortical microstimulation (ICMS) combined with behavioral testing in 6-hydroxydopamine hemilesioned rats to evaluate the impact of dopamine depletion on movement representations in primary motor cortex (M1) and motor behavior. ICMS allows for motor-effective stimulation of corticofugal neurons in motor areas so as to obtain topographic movements representations based on movement type, area size, and threshold currents. Rats received unilateral 6-hydroxydopamine in the nigrostriatal bundle, causing motor impairment. Changes in M1 were time dependent and bilateral, although stronger in the lesioned than the intact hemisphere. Representation size and threshold current were maximally impaired at 15 d, although inhibition was still detectable at 60-120 d after lesion. Proximal forelimb movements emerged at the expense of the distal ones. Movement lateralization was lost mainly at 30 d after lesion. Systemic L-3,4-dihydroxyphenylalanine partially attenuated motor impairment and cortical changes, particularly in the caudal forelimb area, and completely rescued distal forelimb movements. Local application of the GABA(A) antagonist bicuculline partially restored cortical changes, particularly in the rostral forelimb area. The local anesthetic lidocaine injected into the M1 of the intact hemisphere restored movement lateralization in the lesioned hemisphere. This study provides evidence for motor cortex remodeling after unilateral dopamine denervation, suggesting that cortical changes were associated with dopamine denervation, pathogenic intracortical GABA inhibition, and altered interhemispheric activity.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, 44100 Ferrara, Italy.
| | | | | |
Collapse
|
128
|
Nishibe M, Barbay S, Guggenmos D, Nudo RJ. Reorganization of motor cortex after controlled cortical impact in rats and implications for functional recovery. J Neurotrauma 2010; 27:2221-32. [PMID: 20873958 DOI: 10.1089/neu.2010.1456] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report the results of controlled cortical impact (CCI) centered on the caudal forelimb area (CFA) of rat motor cortex to determine the feasibility of examining cortical plasticity in a spared cortical motor area (rostral forelimb area, RFA). We compared the effects of three CCI parameter sets (groups CCI-1, CCI-2, and CCI-3) that differed in impactor surface shape, size, and location, on behavioral recovery and RFA structural and functional integrity. Forelimb deficits in the limb contralateral to the injury were evident in all three CCI groups assessed by skilled reach and footfault tasks that persisted throughout the 35-day post-CCI assessment period. Nissl-stained coronal sections revealed that the RFA was structurally intact. Intracortical microstimulation experiments conducted at 7 weeks post-CCI demonstrated that RFA was functionally viable. However, the size of the forelimb representation decreased significantly in CCI-1 compared to the control group. Subdivided into component movement categories, there was a significant group effect for proximal forelimb movements. The RFA area reduction and reorganization are discussed in relation to possible diaschisis, and to compensatory functional behavior, respectively. Also, an inverse correlation between the anterior extent of the lesion and the size of the RFA was identified and is discussed in relation to corticocortical connectivity. The results suggest that CCI can be applied to rat CFA while sparing RFA. This CCI model can contribute to our understanding of neural plasticity in premotor cortex as a substrate for functional motor recovery.
Collapse
Affiliation(s)
- Mariko Nishibe
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | |
Collapse
|
129
|
Boudreau SA, Farina D, Falla D. The role of motor learning and neuroplasticity in designing rehabilitation approaches for musculoskeletal pain disorders. ACTA ACUST UNITED AC 2010; 15:410-4. [DOI: 10.1016/j.math.2010.05.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/16/2010] [Indexed: 01/26/2023]
|
130
|
Tennant KA, Adkins DL, Donlan NA, Asay AL, Thomas N, Kleim JA, Jones TA. The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. ACTA ACUST UNITED AC 2010; 21:865-76. [PMID: 20739477 DOI: 10.1093/cercor/bhq159] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The organization of forelimb representation areas of the monkey, cat, and rat motor cortices has been studied in depth, but its characterization in the mouse lags far behind. We used intracortical microstimulation (ICMS) and cytoarchitectonics to characterize the general organization of the C57BL/6 mouse motor cortex, and the forelimb representation in more detail. We found that the forelimb region spans a large area of frontal cortex, bordered primarily by vibrissa, neck, shoulder, and hindlimb representations. It included a large caudal forelimb area, dominated by digit representation, and a small rostral forelimb area, containing elbow and wrist representations. When the entire motor cortex was mapped, the forelimb was found to be the largest movement representation, followed by head and hindlimb representations. The ICMS-defined motor cortex spanned cytoarchitecturally identified lateral agranular cortex (AGl) and also extended into medial agranular cortex. Forelimb and hindlimb representations extended into granular cortex in a region that also had cytoarchitectural characteristics of AGl, consistent with the primary motor-somatosensory overlap zone (OL) characterized in rats. Thus, the mouse motor cortex has homologies with the rat in having 2 forelimb representations and an OL but is distinct in the predominance of digit representations.
Collapse
Affiliation(s)
- Kelly A Tennant
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
Cerebral injury, such as stroke, cause functional deficits; however some functions can recover with postlesion rehabilitative training. Several recent studies using rodents and monkeys have reported the effects of postlesion training on functional recovery after brain injury. We present herein an overview of recent animal experimental studies on the effects of postlesion motor training on brain plasticity and motor recovery. Our study in the macaque monkey reported the effects of hand motor training on motor recovery after lesioning of the primary motor cortex (M1). In monkeys that had undergone intensive daily training after the lesion, manual dexterity recovered to previous levels. Relatively independent digit movements, including those of precision grip, were restored in the trained monkeys. While hand movements recovered to some extent in the monkeys without postlesion training, these monkeys frequently used alternative grips to grasp a small object instead o f the precision grip. These findings suggest that recovery after M1 lesions includes both training-dependent and training-independent processes, and that recovery of precision grip requires intensive postlesion training. Recent results of both brain imaging and gene expression analyses suggest that functional and structural changes may occur in uninjured motor areas during recovery of hand function after M1 lesions. In particular, our preliminary results suggest that structural changes in ventral premotor cortex neurons may participate in functional compensation of precision grip.
Collapse
|
132
|
Bone marrow stromal cells enhance inter- and intracortical axonal connections after ischemic stroke in adult rats. J Cereb Blood Flow Metab 2010; 30:1288-95. [PMID: 20125183 PMCID: PMC2896436 DOI: 10.1038/jcbfm.2010.8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated axonal plasticity in the bilateral motor cortices in rats after unilateral stroke and bone marrow stromal cell (BMSC) treatment. Rats were subjected to permanent right middle cerebral artery occlusion followed by intravenous administration of phosphate-buffered saline or BMSCs 1 day later. Adhesive-removal test and modified neurologic severity score were performed weekly to monitor limb functional deficit and recovery. Anterograde tracing with biotinylated dextran amine injected into the right motor cortex was used to assess axonal sprouting in the contralateral motor cortex and ipsilateral rostral forelimb area. Animals were killed 28 days after stroke. Progressive functional recovery was significantly enhanced by BMSCs. Compared with normal animals, axonal density in both contralateral motor cortex and ipsilateral rostral forelimb area significantly increased after stroke. Bone marrow stromal cells markedly enhanced such interhemispheric and intracortical connections. However, labeled transcallosal axons in the corpus callosum were not altered with either stroke or treatment. Both interhemispheric and intracortical axonal sprouting were significantly and highly correlated with behavioral outcome after stroke. This study suggests that, after stroke, cortical neurons surviving in the peri-infarct motor cortex undergo axonal sprouting to restore connections between different cerebral areas. Bone marrow stromal cells enhance axonal plasticity, which may underlie neurologic functional improvement.
Collapse
|
133
|
Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice. J Neurosci 2009; 29:13751-60. [PMID: 19889987 DOI: 10.1523/jneurosci.2985-09.2009] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macroscopic (millimeter scale) functional clustering is a hallmark characteristic of motor cortex spatial organization in awake behaving mammals; however, almost no information is known about the functional micro-organization (approximately 100 microm scale). Here, we optically recorded intracellular calcium transients of layer 2/3 neurons with cellular resolution over approximately 200-microm-diameter fields in the forelimb motor cortex of mobile, head-restrained mice during two distinct movements (running and grooming). We showed that the temporal correlation between neurons was statistically larger the closer the neurons were to each other. We further explored this correlation by using two separate methods to spatially segment the neurons within each imaging field: K-means clustering and correlations between single neuron activity and mouse movements. The two methods segmented the neurons similarly and led to the conclusion that the origin of the inverse relationship between correlation and distance seen statistically was twofold: clusters of highly temporally correlated neurons were often spatially distinct from one another, and (even when the clusters were spatially intermingled) within the clusters, the more correlated the neurons were to each other, the shorter the distance between them. Our results represent a direct observation of functional clustering within the microcircuitry of the awake mouse motor cortex.
Collapse
|
134
|
García-Alías G, Barkhuysen S, Buckle M, Fawcett JW. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci 2009; 12:1145-51. [PMID: 19668200 DOI: 10.1038/nn.2377] [Citation(s) in RCA: 363] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 06/26/2009] [Indexed: 12/15/2022]
Abstract
Chondroitinase ABC treatment promotes spinal cord plasticity. We investigated whether chondroitinase-induced plasticity combined with physical rehabilitation promotes recovery of manual dexterity in rats with cervical spinal cord injuries. Rats received a C4 dorsal funiculus cut followed by chondroitinase ABC or penicillinase as a control. They were assigned to two alternative rehabilitation procedures, the first reinforcing skilled reaching and the second reinforcing general locomotion. Chondroitinase treatment enhanced sprouting of corticospinal axons independently of the rehabilitation regime. Only the rats receiving the combination of chondroitinase and specific rehabilitation showed improved manual dexterity. Rats that received general locomotor rehabilitation were better at ladder walking, but had worse skilled-reaching abilities than rats that received no treatment. Our results indicate that chondroitinase treatment opens a window during which rehabilitation can promote recovery. However, only the trained skills are improved and other functions may be negatively affected.
Collapse
Affiliation(s)
- Guillermo García-Alías
- Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
135
|
Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice. Proc Natl Acad Sci U S A 2009; 106:11759-64. [PMID: 19571005 DOI: 10.1073/pnas.0812695106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evidence suggests that recovery from stroke damage results from the production of new synaptic pathways within surviving brain regions over weeks. To address whether brain function might redistribute more rapidly through preexisting pathways, we examined patterns of sensory-evoked depolarization in mouse somatosensory cortex within hours after targeted stroke to a subset of the forelimb sensory map. Brain activity was mapped with voltage-sensitive dye imaging allowing millisecond time resolution over 9 mm(2) of brain. Before targeted stroke, we report rapid activation of the forelimb area within 10 ms of contralateral forelimb stimulation and more delayed activation of related areas of cortex such as the hindlimb sensory and motor cortices. After stroke to a subset of the forelimb somatosensory cortex map, function was lost in ischemic areas within the forelimb map center, but maintained in regions 200-500 microm blood flow deficits indicating the size of a perfused, but nonfunctional, penumbra. In many cases, stroke led to only partial loss of the forelimb map, indicating that a subset of a somatosensory domain can function on its own. Within the forelimb map spared by stroke, forelimb-stimulated responses became delayed in kinetics, and their center of activity shifted into adjacent hindlimb and posterior-lateral sensory areas. We conclude that the focus of forelimb-specific somatosensory cortex activity can be rapidly redistributed after ischemic damage. Given that redistribution occurs within an hour, the effect is likely to involve surviving accessory pathways and could potentially contribute to rapid behavioral compensation or direct future circuit rewiring.
Collapse
|
136
|
Abstract
Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/d, 5 d/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping, and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single-neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation, but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI.
Collapse
|
137
|
The basal forebrain cholinergic system is required specifically for behaviorally mediated cortical map plasticity. J Neurosci 2009; 29:5992-6000. [PMID: 19420265 DOI: 10.1523/jneurosci.0230-09.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The basal forebrain cholinergic system has been implicated in the reorganization of adult cortical sensory and motor representations under many, but not all, experimental conditions. It is still not fully understood which types of plasticity require the cholinergic system and which do not. In this study, we examine the hypothesis that the basal forebrain cholinergic system is required for eliciting plasticity associated with complex cognitive processing (e.g., behavioral experiences that drive cortical reorganization) but is not required for plasticity mediated under behaviorally independent conditions. We used established experimental manipulations to elicit two distinct forms of plasticity within the motor cortex: facial nerve transections evoke reorganization of cortical motor representations independent of behavioral experience, and skilled forelimb training induces behaviorally dependent expansion of forelimb motor representations. In animals that underwent skilled forelimb training in conjunction with a facial nerve lesion, cholinergic mechanisms were required for mediating the behaviorally dependent plasticity associated with the skilled motor training but were not necessary for mediating plasticity associated with the facial nerve transection. These results dissociate the contribution of cholinergic mechanisms to distinct forms of cortical plasticity and support the hypothesis that the forebrain cholinergic system is selectively required for modulating complex forms of cortical plasticity driven by behavioral experience.
Collapse
|
138
|
Hicks AU, Lappalainen RS, Narkilahti S, Suuronen R, Corbett D, Sivenius J, Hovatta O, Jolkkonen J. Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. Eur J Neurosci 2009; 29:562-74. [PMID: 19175403 DOI: 10.1111/j.1460-9568.2008.06599.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cortical stem cell transplantation may help replace lost brain cells after stroke and improve the functional outcome. In this study, we transplanted human embryonic stem cell (hESC)-derived neural precursor cells (hNPCs) or vehicle into the cortex of rats after permanent distal middle cerebral artery occlusion (dMCAO) or sham-operation, and followed functional recovery in the cylinder and staircase tests. The hNPCs were examined prior to transplantation, and they expressed neuroectodermal markers but not markers for undifferentiated hESCs or non-neural cells. The rats were housed in either enriched environment or standard cages to examine the effects of additive rehabilitative therapy. In the behavioral tests dMCAO groups showed significant impairments compared with sham group before transplantation. Vehicle groups remained significantly impaired in the cylinder test 1 and 2 months after vehicle injection, whereas hNPC transplanted groups did not differ from the sham group. Rehabilitation or hNPC transplantation had no effect on reaching ability measured in the staircase test, and no differences were found in the cortical infarct volumes. After 2 months we measured cell survival and differentiation in vivo using stereology and confocal microscopy. Housing had no effect on cell survival or differentiation. The majority of the transplanted hNPCs were positive for the neural precursor marker nestin. A portion of transplanted cells expressed neuronal markers 2 months after transplantation, whereas only a few cells co-localized with astroglial or oligodendrocyte markers. In conclusion, hESC-derived neural precursor transplants provided some improvement in sensorimotor function after dMCAO, but did not restore more complicated sensorimotor functions.
Collapse
Affiliation(s)
- Anna U Hicks
- Department of Neurology, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
Recovery of function after damage to the CNS is limited due to the absence of axon regeneration and relatively low levels of plasticity. Plasticity in the CNS can be reactivated in the adult CNS by treatment with chondroitinase ABC, which removes glycosaminoglycan (GAG) chains from chondroitin sulfate proteoglycans (CSPGs). Plasticity in the adult CNS is restricted by perineuronal nets (PNNs) around many neuronal cell bodies and dendrites, which appear at the closure of critical periods and contain several inhibitory CSPGs. Formation of these structures and the turning off of plasticity is triggered by impulse activity in neurons. Expression of a link protein by neurons is the event that triggers the formation of PNNs. Treatment with chondroitinase removes PNNs and other inhibitory influences in the damaged spinal cord and promotes sprouting of new connections. However, promoting plasticity by itself does not necessarily bring back useful behavior; this only happens when useful connections are stabilized and inappropriate connections removed, driven by behavior. Thus after rodent spinal cord injury, combining a daily rehabilitation treatment for skilled paw function with chondroitinase produces much greater recovery than either treatment alone. The rehabilitation must be specific for the behavior that is to be enhanced because non-specific rehabilitation improves locomotor behavior but not skilled paw function. Plasticity-enhancing treatments may therefore open up a window of opportunity for successful rehabilitation.
Collapse
Affiliation(s)
- James Fawcett
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge, UK.
| |
Collapse
|
140
|
Karl JM, Sacrey LAR, McDonald RJ, Whishaw IQ. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease. Brain Res Bull 2008; 77:42-8. [DOI: 10.1016/j.brainresbull.2008.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/17/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
|
141
|
Maggiolini E, Viaro R, Franchi G. Suppression of activity in the forelimb motor cortex temporarily enlarges forelimb representation in the homotopic cortex in adult rats. Eur J Neurosci 2008; 27:2733-46. [PMID: 18547253 DOI: 10.1111/j.1460-9568.2008.06248.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After forelimb motor cortex (FMC) damage, the unaffected homotopic motor cortex showed plastic changes. The present experiments were designed to clarify the electrophysiological nature of these interhemispheric effects. To this end, the output reorganization of the FMC was investigated after homotopic area activity was suppressed in adult rats. FMC output was compared after lidocaine-induced inactivation (L-group) or quinolinic acid-induced lesion (Q-group) of the contralateral homotopic cortex. In the Q-group of animals, FMC mapping was performed, respectively, 3 days (Q3D group) and 2 weeks (Q2W group) after cortical lesion. In each animal, FMC output was assessed by mapping movements induced by intracortical microstimulation (ICMS) in both hemispheres (hemisphere ipsilateral and contralateral to injections). The findings demonstrated that in the L-group, the size of forelimb representation was 42.2% higher than in the control group (P < 0.0001). The percentage of dual forelimb-vibrissa movement sites significantly increased over the controls (P < 0.0005). The dual-movement sites occupied a strip of the map along the rostrocaudal border between the forelimb and vibrissa representations. This form of interhemispheric diaschisis had completely reversed, with the recovery of the baseline map, 3 days after the lesion in the contralateral FMC. This restored forelimb map showed no ICMS-induced changes 2 weeks after the lesion in the contralateral FMC. The present results suggest that the FMCs in the two hemispheres interact continuously through predominantly inhibitory influences that preserve the forelimb representation and the border vs. vibrissa representation.
Collapse
Affiliation(s)
- Emma Maggiolini
- Dipartimento di Scienze Biomediche e Terapie Avanzate, Sezione di Fisiologia umana e Istituto Nazionale di Neuroscienze, Università di Ferrara, 44100 Ferrara, Italy
| | | | | |
Collapse
|
142
|
Adkins DL, Hsu JE, Jones TA. Motor cortical stimulation promotes synaptic plasticity and behavioral improvements following sensorimotor cortex lesions. Exp Neurol 2008; 212:14-28. [PMID: 18448100 PMCID: PMC3018150 DOI: 10.1016/j.expneurol.2008.01.031] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 01/16/2008] [Accepted: 01/29/2008] [Indexed: 11/21/2022]
Abstract
Cortical stimulation (CS) as a means to modulate regional activity and excitability in cortex is emerging as a promising approach for facilitating rehabilitative interventions after brain damage, including stroke. In this study, we investigated whether CS-induced functional improvements are linked with synaptic plasticity in peri-infarct cortex and vary with the severity of impairments. Adult rats that were proficient in skilled reaching received subtotal unilateral ischemic sensorimotor cortex (SMC) lesions and implantation of chronic epidural electrodes over remaining motor cortex. Based on the initial magnitude of reaching deficits, rats were divided into severely and moderately impaired subgroups. Beginning two weeks post-surgery, rats received 100 Hz cathodal CS at 50% of movement thresholds or no-stimulation control procedures (NoCS) during 18 days of rehabilitative training on a reaching task. Stereological electron microscopy methods were used to quantify axodendritic synapse subtypes in motor cortical layer V underlying the electrode. In moderately, but not severely impaired rats, CS significantly enhanced recovery of reaching success. Sensitive movement analyses revealed that CS partially normalized reaching movements in both impairment subgroups compared to NoCS. Additionally, both CS subgroups had significantly greater density of axodendritic synapses and moderately impaired CS rats had increases in presumed efficacious synapse subtypes (perforated and multiple synapses) in stimulated cortex compared to NoCS. Synaptic density was positively correlated with post-rehabilitation reaching success. In addition to providing further support that CS can promote functional recovery, these findings suggest that CS-induced functional improvements may be mediated by synaptic structural plasticity in stimulated cortex.
Collapse
Affiliation(s)
- DeAnna L Adkins
- Institute for Neuroscience, University of Texas at Austin, TX 78712, USA.
| | | | | |
Collapse
|
143
|
Cramer SC. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol 2008; 63:272-87. [PMID: 18383072 DOI: 10.1002/ana.21393] [Citation(s) in RCA: 541] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stroke remains a leading cause of adult disability. Some degree of spontaneous behavioral recovery is usually seen in the weeks after stroke onset. Variability in recovery is substantial across human patients. Some principles have emerged; for example, recovery occurs slowest in those destined to have less successful outcomes. Animal studies have extended these observations, providing insight into a broad range of underlying molecular and physiological events. Brain mapping studies in human patients have provided observations at the systems level that often parallel findings in animals. In general, the best outcomes are associated with the greatest return toward the normal state of brain functional organization. Reorganization of surviving central nervous system elements supports behavioral recovery, for example, through changes in interhemispheric lateralization, activity of association cortices linked to injured zones, and organization of cortical representational maps. A number of factors influence events supporting stroke recovery, such as demographics, behavioral experience, and perhaps genetics. Such measures gain importance when viewed as covariates in therapeutic trials of restorative agents that target stroke recovery.
Collapse
Affiliation(s)
- Steven C Cramer
- Departments of Neurology and Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92868-4280, USA.
| |
Collapse
|
144
|
Allred RP, Jones TA. Experience--a double edged sword for restorative neural plasticity after brain damage. FUTURE NEUROLOGY 2008; 3:189-198. [PMID: 19718283 DOI: 10.2217/14796708.3.2.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During the time period following damage, the brain undergoes widespread reorganizational processes. Manipulations of behavioral experience can be potent therapeutic interventions for shaping this reorganization and enhancing long-term functional outcome. Recovery of function is a major concern for survivors of central nervous system damage and management of post-injury rehabilitation is increasingly becoming a topic of chief importance. Animal research, the focus of this review, suggests that, in the absence of behavioral manipulations, the brain is unlikely to realize its full potential for supporting function. However, experiences also have the capacity to be maladaptive for brain and behavioral function. From a treatment perspective, it may be unwise to adopt the canon of "first, do no harm" because maladaptive experiences include behaviors that individuals learn to do on their own. A better understanding of how behavioral experience interacts with brain reorganization could result in rehabilitative therapies, individually tailored and optimized for functional outcome.
Collapse
Affiliation(s)
- Rachel P Allred
- Psychology Department, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
145
|
|
146
|
Murata Y, Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M, Yamane S. Effects of motor training on the recovery of manual dexterity after primary motor cortex lesion in macaque monkeys. J Neurophysiol 2007; 99:773-86. [PMID: 18094104 DOI: 10.1152/jn.01001.2007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the effects of postlesion training on motor recovery, we compared the motor recovery of macaque monkeys that had received intensive motor training with those that received no training after a lesion of the primary motor cortex (M1). An ibotenic acid lesion in the M1 digit area resulted in impairment of hand function, with complete loss of digit movement. In the monkeys that had undergone intensive daily training (1 h/day, 5 days/wk) after the lesion, behavioral indexes used to evaluate manual dexterity recovered to the same level as in the prelesion period after 1 or 2 mo of postlesion training period. Relatively independent digit movements, including precision grip (prehension of a small object with finger-to-thumb opposition), were restored in the trained monkeys. Although the behavioral indexes of manual dexterity recovered to some extent in the monkeys without the postlesion training, they remained lower than those in the prelesion period until several months after M1 lesion. The untrained monkeys frequently used alternate grip strategies to grasp a small object with the affected hand, holding food pellets between the tip of the index finger and the dorsum of the thumb. These results suggest that the recovery after M1 lesion includes both use-dependent and use-independent processes and that the recovery of precision grip can be promoted by intensive use of the affected hand in postlesion training.
Collapse
Affiliation(s)
- Yumi Murata
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | | | | | |
Collapse
|
147
|
Tandon S, Kambi N, Jain N. Overlapping representations of the neck and whiskers in the rat motor cortex revealed by mapping at different anaesthetic depths. Eur J Neurosci 2007; 27:228-37. [PMID: 18093166 PMCID: PMC2228390 DOI: 10.1111/j.1460-9568.2007.05997.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The primary motor cortex of mammals has an orderly representation of different body parts. Within the representation of each body part the organization is more complex, with groups of neurons representing movements of a muscle or a group of muscles. In rats, uncertainties continue to exist regarding organization of the primary motor cortex in the whisker and the neck region. Using intracortical microstimulation (ICMS) we show that movements evoked in the whisker and the neck region of the rat motor cortex are highly sensitive to the depth of anaesthesia. At light anaesthetic depth, whisker movements are readily evoked from a large medial region of the motor cortex. Lateral to this is a small region where movements of the neck are evoked. However, in animals under deep anaesthesia whisker movements cannot be evoked. Instead, neck movements are evoked from this region. The neck movement region thus becomes greatly expanded. An analysis of the threshold currents required to evoke movements at different anaesthetic depths reveals that the caudal portion of the whisker region has dual representation, of both the whisker and the neck movements. The results also underline the importance of carefully controlling the depth of anaesthesia during ICMS experiments.
Collapse
Affiliation(s)
- Shashank Tandon
- National Brain Research Centre, N.H. 8, Manesar, Haryana 122050, India
| | | | | |
Collapse
|
148
|
Maldonado MA, Allred RP, Felthauser EL, Jones TA. Motor skill training, but not voluntary exercise, improves skilled reaching after unilateral ischemic lesions of the sensorimotor cortex in rats. Neurorehabil Neural Repair 2007; 22:250-61. [PMID: 18073324 DOI: 10.1177/1545968307308551] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE Exercise and rehabilitative training each have been implicated in the promotion of restorative neural plasticity after cerebral injury. Because motor skill training induces synaptic plasticity and exercise increases plasticity-related proteins, we asked if exercise could improve the efficacy of training on a skilled motor task after focal cortical lesions. METHODS Female young and middle-aged rats were trained on the single-pellet retrieval task and received unilateral ischemic sensorimotor cortex lesions contralateral to the trained limb. Rats then received both, either, or neither voluntary running and/or rehabilitative training for 5 weeks beginning 5 days postlesion. Motor skill training consisted of daily practice of the impaired forelimb in a tray-reaching task. Exercised rats had free access to running wheels for 6 h/day. Reaching function was periodically probed using the single-pellet retrieval task. RESULTS In young adults, motor skill training significantly enhanced skilled reaching recovery compared to controls. However, exercise did not significantly enhance performance when administered alone or in combination with skill training. There was also no major benefit of exercise in older rats. Additionally, there were no effects of exercise in a measure of coordinated forelimb placement (the foot-fault test) or in immunocytochemical measures of several plasticity-related proteins in the motor cortex. CONCLUSIONS In young and middle-aged animals, exercise did not improve motor skill training efficacy following ischemic lesions. Practicing motor skills more effectively improved recovery of these skills than did exercise. It remains possible that an alternative manner of administering exercise would be more effective.
Collapse
Affiliation(s)
- Monica A Maldonado
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | | | | | | |
Collapse
|
149
|
Nishimura Y, Onoe H, Morichika Y, Perfiliev S, Tsukada H, Isa T. Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury. Science 2007; 318:1150-5. [PMID: 18006750 DOI: 10.1126/science.1147243] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transection of the direct cortico-motoneuronal pathway at the mid-cervical segment of the spinal cord in the macaque monkey results in a transient impairment of finger movements. Finger dexterity recovers within a few months. Combined brain imaging and reversible pharmacological inactivation of motor cortical regions suggest that the recovery involves the bilateral primary motor cortex during the early recovery stage and more extensive regions of the contralesional primary motor cortex and bilateral premotor cortex during the late recovery stage. These changes in the activation pattern of frontal motor-related areas represent an adaptive strategy for functional compensation after spinal cord injury.
Collapse
Affiliation(s)
- Yukio Nishimura
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
150
|
Azizi SA, Vendrame M. Exercise: a workout for neuroregeneration. Neurosci Lett 2007; 418:211-2. [PMID: 17466455 DOI: 10.1016/j.neulet.2007.03.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 03/28/2007] [Accepted: 03/28/2007] [Indexed: 11/30/2022]
Affiliation(s)
- S Ausim Azizi
- Department of Neurology, Temple University School of Medicine, 3401 N. Broad Street, Philadelphia, PA 19140, United States.
| | | |
Collapse
|