101
|
Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene 2014; 33:4568-78. [PMID: 24662831 PMCID: PMC4162460 DOI: 10.1038/onc.2014.32] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022]
Abstract
Our goal in this work was to illustrate the Epstein-Barr virus (EBV)-modulated global biochemical profile and provide a novel metabolism-related target to improve the therapeutic regimen of nasopharyngeal carcinoma (NPC). We used a metabolomics approach to investigate EBV-modulated metabolic changes, and found that the exogenous overexpression of the EBV-encoded latent membrane protein 1 (LMP1) significantly increased glycolysis. The deregulation of several glycolytic genes, including hexokinase 2 (HK2), was determined to be responsible for the reprogramming of LMP1-mediated glucose metabolism in NPC cells. The upregulation of HK2 elevated aerobic glycolysis and facilitated proliferation by blocking apoptosis. More importantly, HK2 was positively correlated with LMP1 in NPC biopsies, and high HK2 levels were significantly associated with poor overall survival of NPC patients following radiation therapy. Knockdown of HK2 effectively enhanced the sensitivity of LMP1-overexpressing NPC cells to irradiation. Finally, c-Myc was demonstrated to be required for LMP1-induced upregulation of HK2. The LMP1-mediated attenuation of the PI3-K/Akt-GSK3beta-FBW7 signaling axis resulted in the stabilization of c-Myc. These findings indicate a close relationship between EBV and glycolysis in NPC. Notably, LMP1 is the key regulator of the reprogramming of EBV-mediated glycolysis in NPC cells. Given the importance of EBV-mediated deregulation of glycolysis, anti-glycolytic therapy might represent a worthwhile avenue of exploration in the treatment of EBV-related cancers.
Collapse
|
102
|
Barlow CA, Lievense L, Gross S, Ronk CJ, Paustenbach DJ. The role of genotoxicity in asbestos-induced mesothelioma: an explanation for the differences in carcinogenic potential among fiber types. Inhal Toxicol 2014; 25:553-67. [PMID: 23905972 DOI: 10.3109/08958378.2013.807321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanism(s) underlying asbestos toxicity associated with the pathogenesis of mesothelioma has been a challenge to unravel for more than 60 years. A significant amount of research has focused on the characteristics of different fiber types and their potential to induce mesothelioma. These mechanistic studies of fiber toxicity have proceeded along two lines: those demonstrating biochemical mechanisms by which fibers induce disease and those investigating human susceptibility. Most recent studies focused on in vitro genotoxic effects induced by asbestos as the mechanism responsible for asbestos-induced disease. Although asbestos exerts a genotoxic effect at certain concentrations in vitro, a positive response in these tests does not indicate that the chemical is likely to produce an increased risk of carcinogenesis in exposed human populations. Thus far, findings from studies on the effects of fiber type in mesothelial cells are seriously flawed by a lack of a dose response relationship. The common limitation of these in vitro experiments is the lack of attention paid to the complexities of the human anatomy, biochemistry and physiology, which make the observed effects in these experimental systems difficult to extrapolate to persons in the workplace. Mechanistic differences between carcinogenic and genotoxic processes indicate why tests for genotoxicity do not provide much insight regarding the ability to predict carcinogenic potential in workers exposed to asbestos doses in the post-Occupational Safety and Health Administration era. This review discusses the existing literature on asbestos-induced genotoxicity and explains why these studies may or may not likely help characterize the dose-response curve at low dose.
Collapse
|
103
|
Nishikawa S, Tanaka A, Matsuda A, Oida K, Jang H, Jung K, Amagai Y, Ahn G, Okamoto N, Ishizaka S, Matsuda H. A molecular targeting against nuclear factor-κB, as a chemotherapeutic approach for human malignant mesothelioma. Cancer Med 2014; 3:416-25. [PMID: 24510578 PMCID: PMC3987091 DOI: 10.1002/cam4.202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation due to the absorption of asbestos is an important cause of mesothelioma. Although the increased prevalence of mesothelioma is a serious problem, the development of effective chemotherapeutic agents remains incomplete. As the nuclear factor-κB (NF-κB) pathway contributes to malignant transformation of various types of cells, we explored NF-κB activity in three different pathological types of malignant mesothelioma cells, and evaluated the therapeutic potential of a recently reported NF-κB inhibitor, IMD-0354. NF-κB was constantly activated in MSTO-211H, NCI-H28, and NCI-H2052 cells, and the proliferation of these cell lines was inhibited by IMD-0354. D-type cyclins were effectively suppressed in mixed tissue type MSTO-211H, leading to cell cycle arrest at sub G1/G1 phase. IMD-0354 reduced cyclin D3 in both epithelial tissue type NCI-H28 and sarcomatoid tissue type NCI-H2052. In a sphere formation assay, IMD-0354 effectively decreased the number and diameter of MSTO-211H spheres. Preincubation of MSTO-211H cells with IMD-0354 delayed tumor formation in transplanted immunodeficient mice. Furthermore, administration of IMD-0354 markedly rescued the survival rate of mice that received intrathoracic injections of MSTO-211H cells. These results indicate that a targeted drug against NF-κB might have therapeutic efficacy in the treatment of human malignant mesothelioma.
Collapse
Affiliation(s)
- Sho Nishikawa
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Nikzamir A, Palangi A, Kheirollaha A, Tabar H, Malakaskar A, Shahbazian H, Fathi M. Expression of Glucose Transporter 4 (GLUT4) is Increased by Cinnamaldehyde in C2C12 Mouse Muscle Cells. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e13426. [PMID: 24719730 PMCID: PMC3965863 DOI: 10.5812/ircmj.13426] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/12/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Abstract
Background: In diabetes mellitus because of the absence or insufficient sensitivity to insulin, glucose transporter protein in cell membrane, glucose transporter 4, is decreased. GLUT4 is the major glucose transporter in skeletal muscle and adipose tissue, which is under control of insulin. It remains, however, unclear whether cinnamaldehyde plays a regulatory role(s) or not. Objectives: The objective of this study was to investigate the effects of cinnamaldehyde on GLUT4 gene expression. Materials and Methods: This study was an experimental trial. Tests were performed in triplicates. This study examined effects of cinnamaldehyde on Glut4 gene expression in C2C12 skeletal muscle cells by using Real Time PCR. C2C12 myoblasts were cultured in DMEM + 10 % FBS. After differentiation of myoblasts to myotubes, the cells were serum deprived for 5 hours and then treated with 10, 20, or 50 µM of cinnamaldehyde for 1 hour. Results: Our data revealed a significant increase in the expression of Glut4 in cinnamaldehyde treated cells. In addition, GLUT4 mRNA level was increased in a dose dependent manner. Analyses were performed using the SPSS 16 for Windows software. Differences between the groups were determined by one-way ANOVA. Conclusions: These results demonstrate that cinnamaldehyde up regulates the expression of mouse skeletal muscle GLUT4 gene expression.
Collapse
Affiliation(s)
- Abdolrahim Nikzamir
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
- Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences, Tehran, IR Iran
| | - Alireza Palangi
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Alireza Kheirollaha
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Hashemi Tabar
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Alimohamad Malakaskar
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Hajieh Shahbazian
- Diabetes Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Mohammad Fathi
- Department of Anesthesiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Mohammad Fathi, Department of Anesthesiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel: +98-2181453074, Fax: +98-2181453074, E-mail:
| |
Collapse
|
105
|
Kaufman AJ, Pass HI. Current concepts in malignant pleural mesothelioma. Expert Rev Anticancer Ther 2014; 8:293-303. [DOI: 10.1586/14737140.8.2.293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
106
|
The Role of Inflammation in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:1-23. [DOI: 10.1007/978-3-0348-0837-8_1] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
107
|
Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A. Pulmonary toxicity of carbon nanotubes and asbestos - similarities and differences. Adv Drug Deliv Rev 2013; 65:2078-86. [PMID: 23899865 DOI: 10.1016/j.addr.2013.07.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Carbon nanotubes are a valuable industrial product but there is potential for human pulmonary exposure during production and their fibrous shape raises the possibility that they may have effects like asbestos, which caused a worldwide pandemic of disease in the20th century that continues into present. CNT may exist as fibres or as more compact particles and the asbestos-type hazard only pertains to the fibrous forms of CNT. Exposure to asbestos causes asbestosis, bronchogenic carcinoma, mesothelioma, pleural fibrosis and pleural plaques indicating that both the lungs and the pleura are targets. The fibre pathogenicity paradigm was developed in the 1970s-80s and has a robust structure/toxicity relationship that enables the prediction of the pathogenicity of fibres depending on their length, thickness and biopersistence. Fibres that are sufficiently long and biopersistent and that deposit in the lungs can cause oxidative stress and inflammation. They may also translocate to the pleura where they can be retained depending on their length, and where they cause inflammation and oxidative stress in the pleural tissues. These pathobiological processes culminate in pathologic change - fibroplasia and neoplasia in the lungs and the pleura. There may also be direct genotoxic effects of fibres on epithelial cells and mesothelium, contributing to neoplasia. CNT show some of the properties of asbestos and other types of fibre in producing these types of effects and more research is needed. In terms of the molecular pathways involved in the interaction of long biopersistent fibres with target tissue the events leading to mesothelioma have been a particular area of interest. A variety of kinase pathways important in proliferation are activated by asbestos leading to pre-malignant states and investigations are under way to determine whether fibrous CNT also affects these molecular pathways. Current research suggests that fibrous CNT can elicit effects similar to asbestos but more research is needed to determine whether they, or other nanofibres, can cause fibrosis and cancer in the long term.
Collapse
|
108
|
Kagan E. Asbestos-Induced Mesothelioma. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1378-1381. [DOI: 10.1016/j.ajpath.2013.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
|
109
|
ZIC1 Is Silenced and Has Tumor Suppressor Function in Malignant Pleural Mesothelioma. J Thorac Oncol 2013; 8:1317-28. [DOI: 10.1097/jto.0b013e3182a0840a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
110
|
de Assis LVM, Isoldi MC. The function, mechanisms, and role of the genes PTEN and TP53 and the effects of asbestos in the development of malignant mesothelioma: a review focused on the genes' molecular mechanisms. Tumour Biol 2013; 35:889-901. [PMID: 24081673 DOI: 10.1007/s13277-013-1210-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/16/2013] [Indexed: 12/22/2022] Open
Abstract
The malignant mesothelioma is an aggressive form of cancer with a mean survival rate of less than a year. Moreover, environmental exposure to minerals is an important factor in the development of malignant mesothelioma (MM), especially the mineral asbestos, which has a well-documented role in MM, and more recently, the mineral erionite has been proven to be a strong carcinogenic inducer of MM. In addition, the virus simian virus 40 has been implicated as a co-carcinogenic player in MM. However, the molecular mechanisms involved in the pathogenesis of this cancer are still not fully understood. Indeed, it is known that several genes are altered or mutated in MM, among those are p16(INK4A), p14(ARF), and neurofibromatosis type II. Furthermore, TP53 has been reported to be mutated in the majority of the cancers; however, in MM, it is very uncommon mutations in this gene. Also, the PTEN gene has been shown to play an important role in endometrial cancer and glioblastoma, although the role of PTEN in MM has yet to be established. Taken altogether, this review focuses on the historical aspects, molecular mechanisms, interaction with other genes and proteins, and the role of these genes in MM. Lastly, this review questions the cancer theory of the two hits because the functions of both PTEN and TP53 are not fully explained by this theory.
Collapse
|
111
|
Abstract
BACKGROUND Diffuse malignant peritoneal mesothelioma (DMPM) is an aggressive malignant tumor of mesothelial origin that shows a limited response to cytoreductive surgery along with intraperitoneal chemotherapy. Therefore, early diagnosis of DMPM is very important. Some researchers have previously reported that high-mobility group box 1 (HMGB1) was correlated with pulmonary fibrosis. DMPM involves the malignant transformation of mesothelial cells, which originate from mesenchymal cells, similar to lung fibroblasts. Here, we investigated serum levels of HMGB1 in patients with MPM and compared them with those of a population that had been exposed to asbestos without developing MPM. STUDY The serum concentrations of HMGB1 were measured in 13 DMPM patients and 45 individuals with benign asbestos-related diseases. RESULT We demonstrated that the patients with DMPM had significantly higher serum levels of HMGB1 compared with the population who had been exposed to asbestos but did not develop DMPM. CONCLUSION Our data suggest that serum HMGB1 concentration is a useful serum marker for DMPM.
Collapse
|
112
|
Chew SH, Okazaki Y, Nagai H, Misawa N, Akatsuka S, Yamashita K, Jiang L, Yamashita Y, Noguchi M, Hosoda K, Sekido Y, Takahashi T, Toyokuni S. Cancer-promoting role of adipocytes in asbestos-induced mesothelial carcinogenesis through dysregulated adipocytokine production. Carcinogenesis 2013; 35:164-72. [DOI: 10.1093/carcin/bgt267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
113
|
Woo SM, Choi YK, Cho SG, Park S, Ko SG. A New Herbal Formula, KSG-002, Suppresses Breast Cancer Growth and Metastasis by Targeting NF- κ B-Dependent TNF α Production in Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:728258. [PMID: 23818931 PMCID: PMC3683439 DOI: 10.1155/2013/728258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/08/2013] [Accepted: 05/09/2013] [Indexed: 12/21/2022]
Abstract
Tumor-associated macrophages (TAMs) in tumor microenvironment regulate cancer progression and metastases. In breast cancer, macrophage infiltration is correlated with a poor prognosis. While metastatic breast cancer is poor prognostic with a severe mortality, therapeutic options are still limited. In this study, we demonstrate that KSG-002, a new herbal composition of radices Astragalus membranaceus and Angelica gigas, suppresses breast cancer via inhibiting TAM recruitment. KSG-002, an extract of radices Astragalus membranaceus and Angelica gigas at 3 : 1 ratio, respectively, inhibited MDA-MB-231 xenograft tumor growth and pulmonary metastasis in nude mice, while KSG-001, another composition (1 : 1 ratio, w/w), enhanced tumor growth, angiogenesis, and pulmonary metastasis, in vivo. KSG-002 further decreased the infiltrated macrophage numbers in xenograft tumor cohorts. In Raw264.7 cells, KSG-002 but not KSG-001 inhibited cell proliferation and migration and reduced TNF-alpha (TNF α ) production by inhibiting NF- κ B pathway. Furthermore, a combinatorial treatment of KSG-002 with TNF α inhibited a proliferation and migration of both MDA-MB-231 and Raw264.7 cells. Taken together, we conclude that KSG-002 suppresses breast cancer growth and metastasis through targeting NF- κ B-mediated TNF α production in macrophages.
Collapse
Affiliation(s)
- Sang-Mi Woo
- Laboratory of Clinical Biology and Pharmacogenomics, Department of Preventive Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Republic of Korea
| | - Youn Kyung Choi
- Laboratory of Clinical Biology and Pharmacogenomics, Department of Preventive Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Republic of Korea
| | - Sung-Gook Cho
- Laboratory of Clinical Biology and Pharmacogenomics, Department of Preventive Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Republic of Korea
| | - Sunju Park
- Center for Clinical Research and Genomics, Department of Preventive Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Seong-Gyu Ko
- Laboratory of Clinical Biology and Pharmacogenomics, Department of Preventive Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Republic of Korea
- Center for Clinical Research and Genomics, Department of Preventive Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|
114
|
|
115
|
Tabata C, Shibata E, Tabata R, Kanemura S, Mikami K, Nogi Y, Masachika E, Nishizaki T, Nakano T. Serum HMGB1 as a prognostic marker for malignant pleural mesothelioma. BMC Cancer 2013; 13:205. [PMID: 23617783 PMCID: PMC3644247 DOI: 10.1186/1471-2407-13-205] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 04/18/2013] [Indexed: 12/29/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is an aggressive malignant tumor of mesothelial origin that shows a limited response to conventional chemotherapy and radiotherapy. Therefore, diagnosing MPM early is very important. Some researchers have previously reported that high-mobility group box 1 (HMGB1) was correlated with pulmonary fibrosis. MPM involves the malignant transformation of mesothelial cells, which originate from mesenchymal cells similar to lung fibroblasts. Here, we investigated serum levels of HMGB1 in patients with MPM and compared them with those of a population that had been exposed to asbestos without developing MPM. Methods HMGB1 production from MPM cell lines was measured using ELISA. Serum HMGB1 levels were also examined in 61 MPM patients and 45 individuals with benign asbestos-related diseases. Results HMGB1 concentrations of 2 out of 4 MPM cell lines were higher than that of normal mesothelial cell line, Met-5A. We demonstrated that patients with MPM had significantly higher serum levels of HMGB1 than the population who had been exposed to asbestos but had not developed MPM. The difference in overall survival between groups with serum HMGB1 levels that were lower and higher than assumed cut-off values was significant. Conclusions Our data suggest that serum HMGB1 concentration is a useful prognostic factor for MPM.
Collapse
Affiliation(s)
- Chiharu Tabata
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
San Martin JAB, de Jesus Andrade CGT, Mastroberti AA, de Araújo Mariath JE, Vanzela ALL. Asymmetric cytokinesis guide the development of pseudomonads in Rhynchospora pubera (Cyperaceae). Cell Biol Int 2013; 37:203-12. [PMID: 23348893 DOI: 10.1002/cbin.10028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/06/2012] [Indexed: 11/07/2022]
Abstract
The late stages of microsporogenesis in the family Cyperaceae are marked by the formation of an asymmetrical tetrad, degeneration of three of the four nuclei resulting from meiosis and the formation of pseudomonads. In order to understand the cytological changes involved in the development of pseudomonads, a combination of 11 different techniques (conventional staining, cytochemistry procedures, immunofluorescence, FISH and transmission electron microscopy: TEM) were used to study the later stages of microsporogenesis in Rhynchospora pubera. The results demonstrated the occurrence of two cytoplasmic domains in the pseudomonads, one functional and the other degenerative, which are physically and asymmetrically separated by cell plate with an endomembrane system rich in polysaccharides. Other changes associated with endomembrane behaviour were observed, such as a large number of lipid droplets, vacuoles containing electron-dense material and concentric layers of endoplasmic reticulum. Concomitant with the isolation of degenerative nuclei, the tapetal cells also showed evidence of degeneration, indicating that both tissues under programmed cell death (PCD), as indicated by immunofluorescence and TEM procedures. The results are significant because they associate cellular polarisation and asymmetry with different cytoplasmic domains, and hence open new possibilities for studying cellular compartmentalisation and PCD.
Collapse
|
117
|
Abstract
Solid tumors consist of neoplastic cells, non-malignant stromal cells, and migratory hematopoietic cells. Complex interactions between the cell types in this microenvironment regulate tumor growth, progression, metastasis, and angiogenesis. The cells and mediators of inflammation form a major part of the epithelial tumor microenvironment. In some cancers, inflammatory conditions precede development of malignancy; in others, oncogenic change drives a tumor-promoting inflammatory milieu. Whatever its origin, this "smoldering" inflammation aids proliferation and survival of malignant cells, stimulates angiogenesis and metastasis, subverts adaptive immunity, and alters response to hormones and chemotherapy. Cytokines are major mediators of communication between cells in the inflammatory tumor microenvironment. It is known that neoplastic cells often over-express proinflammatory mediators including proteases, eicosanoids, cytokines, and chemokines. Several cytokines such as macrophage migratory inhibitory factor (MIF), TNF-α, IL-6, IL-17, IL-12, IL-23, IL-10, and TGF-β have been linked with both experimental and human cancers and can either promote or inhibit tumor development. MIF is a major cytokine in many cancers and there is evidence that the cytokine is produced by both malignant cells and infiltrating leukocytes. In this article we will discuss the role of cancer-associated inflammation and the particular role of MIF in malignant disease.
Collapse
Affiliation(s)
- Juliana Candido
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | | |
Collapse
|
118
|
Abstract
Solid tumors consist of neoplastic cells, non-malignant stromal cells, and migratory hematopoietic cells. Complex interactions between the cell types in this microenvironment regulate tumor growth, progression, metastasis, and angiogenesis. The cells and mediators of inflammation form a major part of the epithelial tumor microenvironment. In some cancers, inflammatory conditions precede development of malignancy; in others, oncogenic change drives a tumor-promoting inflammatory milieu. Whatever its origin, this "smoldering" inflammation aids proliferation and survival of malignant cells, stimulates angiogenesis and metastasis, subverts adaptive immunity, and alters response to hormones and chemotherapy. Cytokines are major mediators of communication between cells in the inflammatory tumor microenvironment. It is known that neoplastic cells often over-express proinflammatory mediators including proteases, eicosanoids, cytokines, and chemokines. Several cytokines such as macrophage migratory inhibitory factor (MIF), TNF-α, IL-6, IL-17, IL-12, IL-23, IL-10, and TGF-β have been linked with both experimental and human cancers and can either promote or inhibit tumor development. MIF is a major cytokine in many cancers and there is evidence that the cytokine is produced by both malignant cells and infiltrating leukocytes. In this article we will discuss the role of cancer-associated inflammation and the particular role of MIF in malignant disease.
Collapse
|
119
|
Bogen KT. Efficient tumorigenesis by mutation-induced failure to terminate microRNA-mediated adaptive hyperplasia. Med Hypotheses 2012. [PMID: 23183421 DOI: 10.1016/j.mehy.2012.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Seven current contending cancer theories consider different sets of critical events as sufficient for tumorigenesis. These theories, most recently the microRNA dysregulation (MRD) theory, have overlapping attributes and extensive empirical support, but also some discrepancies, and some do not address both benign and malignant tumorigenesis. By definition, the most efficient tumorigenic pathways will dominate under conditions that selectively activate those pathways. The MRD theory provides a mechanistic basis to combine elements of the current theories into a new hypothesis that: (i) tumors arise most efficiently under stress that induces and sustains either protective or regenerative states of adaptive hyperplasia (AH) that normally are epigenetically maintained unless terminated; and (ii) if dysregulated by a somatic mutation that prevents normal termination, these two AH states can generate benign and malignant tumors, respectively. This hypothesis, but not multistage cancer theory, predicts that key participating AH-stem-cell populations expand markedly when triggered by stress, particularly chronic metabolic or oxidative stress, mechanical irritation, toxic exposure, wounding, inflammation, and/or infection. This hypothesis predicts that microRNA expression patterns in benign vs. malignant tumor tissue will correlate best with those governing protective vs. regenerative AH in that tissue, and that tumors arise most efficiently inmutagen-exposed stem cells that either happen to be in, or incidentally later become recruited into, an AH state.
Collapse
Affiliation(s)
- Kenneth T Bogen
- DrPH DABT, Exponent Inc., Health Sciences, 475, 14th Street, Ste 400, Oakland, CA 94612, USA.
| |
Collapse
|
120
|
Ambrogi V, Mineo TC. Clinical and biologic prognostic factors in malignant pleural mesothelioma. Thorac Cancer 2012; 3:289-302. [PMID: 28920270 DOI: 10.1111/j.1759-7714.2012.00127.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Malignant pleural mesothelioma is an extremely aggressive neoplasm of the pleura mainly attributable to asbestos exposure. Conventional medical, physical, and surgical treatments and their combinations are basically ineffective and just a few subjects experience some benefit. No definite guidelines can be provided in patient selection and therapeutic strategies. Currently, malignant pleural mesothelioma therapy is guided by clinical stage and patient characteristics, which are quite unreliable, rather than by the histological or molecular features of the tumor. In the present review the impact on prognosis of classic (i.e. etiology, age, gender, histology, staging), as well as relatively new clinical factors such as quality of life, positron emission tomography assessment, and occult residual disease, are firstly evaluated. In the second section of the review several biological variables and genetic markers, which have been recently recognized as the bases of the disease onset and development, are listed and discussed. There are serum and tissue markers. The latter are mainly related to cell cycle regulation, apoptosis, and growth factor pathways. These novel factors may play an important role in defining the prognosis of the disease and, subsequently, may have a place in addressing therapy.
Collapse
Affiliation(s)
- Vincenzo Ambrogi
- Department of Thoracic Surgery, Tor Vergata University, Rome, Italy
| | | | -
- Department of Thoracic Surgery, Tor Vergata University, Rome, Italy
| |
Collapse
|
121
|
Watzka SB, Posch F, Pass HI, Flores RM, Hannigan GE, Bernhard D, Weber M, Mueller MR. Serum concentration of integrin-linked kinase in malignant pleural mesothelioma and after asbestos exposure. Eur J Cardiothorac Surg 2012; 43:940-5. [PMID: 23045294 DOI: 10.1093/ejcts/ezs521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Integrin-linked kinase (ILK) is an intracellular protein implicated in chronic inflammation and neoplastic transformation. In a recently accomplished pilot study, we showed that ILK can be detected in the serum of patients with benign and malignant chest diseases, including malignant pleural mesothelioma (MPM). Interestingly, average serum ILK concentrations were 10 times higher in MPM patients when compared with the rest of the study population, and a diagnostic test solely based on serum ILK concentration could discriminate between MPM and non-MPM with considerable accuracy. This study aimed to investigate whether serum ILK concentration could also be used to discriminate between MPM and asbestos exposure only. METHODS Using a self-developed sandwich enzyme-linked immunosorbent assay, we measured serum ILK concentrations in 101 MPM patients, and 96 asbestos-exposed, but healthy insulation workers. Seventy-three MPM patients had an epitheloid subtype (72.3%), and 42 had a Stage I or II disease (41.6%). RESULTS When compared with asbestos-exposed individuals, MPM patients of all clinical stages had significantly higher (mean ± standard deviation, median) serum ILK concentrations (10.7 ± 13.6, median 7 ng/ml vs 3.1 ± 4.6, median 1.4 ng/ml; P < 0.001). Among MPM patients, the serum ILK concentration was significantly higher at advanced disease stages III + IV than at early stages I + II (13.7 ± 15.9, median 8.5 ng/ml vs 6.7 ± 7.8, median 3.5 ng/ml; P = 0.02). Using serum ILK to discriminate between MPM patients and asbestos-exposed individuals yielded an area under the curve of 0.69 (95% confidence interval 0.63-0.76). The corresponding sensitivity and specificity for a cut-off of 4.49 ng/ml ILK are 61.4 and 80.2%, respectively. CONCLUSIONS These data show significant differences between MPM patients and asbestos-exposed but healthy individuals concerning their serum ILK concentration. Furthermore, since ILK levels are increased in advanced MPM stages in comparison with early MPM stages, we suggest evaluating its potential use as a marker of disease progression in MPM.
Collapse
Affiliation(s)
- Stefan B Watzka
- Division of Thoracic Surgery, Otto Wagner Hospital, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Kubo Y, Takenaka H, Nagai H, Toyokuni S. Distinct affinity of nuclear proteins to the surface of chrysotile and crocidolite. J Clin Biochem Nutr 2012; 51:221-6. [PMID: 23170051 PMCID: PMC3491248 DOI: 10.3164/jcbn.12-39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 04/28/2012] [Indexed: 11/22/2022] Open
Abstract
The inhalation of asbestos is a risk factor for the development of malignant mesothelioma and lung cancer. Based on the broad surface area of asbestos fibers and their ability to enter the cytoplasm and nuclei of cells, it was hypothesized that proteins that adsorb onto the fiber surface play a role in the cytotoxicity and carcinogenesis of asbestos fibers. However, little is known about which proteins adsorb onto asbestos. Previously, we systematically identified asbestos-interacting proteins and classified them into eight sub-categories: chromatin/nucleotide/RNA-binding proteins, ribosomal proteins, cytoprotective proteins, cytoskeleton-associated proteins, histones and hemoglobin. Here, we report an adsorption profile of proteins for the three commercially used asbestos compounds: chrysotile, crocidolite and amosite. We quantified the amounts of adsorbed proteins by analyzing the silver-stained gels of sodium dodecyl sulfate-polyacrylamide gel electrophoresis with ImageJ software, using the bands for amosite as a standard. We found that histones were most adsorptive to crocidolite and that chromatin-binding proteins were most adsorptive to chrysotile. The results suggest that chrysotile and crocidolite directly interact with chromatin structure through different mechanisms. Furthermore, RNA-binding proteins preferably interacted with chrysotile, suggesting that chrysotile may interfere with transcription and translation. Our results provide novel evidence demonstrating that the specific molecular interactions leading to carcinogenesis are different between chrysotile and crocidolite.
Collapse
Affiliation(s)
- Yurika Kubo
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | |
Collapse
|
123
|
Rivera Z, Ferrone S, Wang X, Jube S, Yang H, Pass HI, Kanodia S, Gaudino G, Carbone M. CSPG4 as a target of antibody-based immunotherapy for malignant mesothelioma. Clin Cancer Res 2012; 18:5352-63. [PMID: 22893632 DOI: 10.1158/1078-0432.ccr-12-0628] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Malignant mesothelioma (MM) is an aggressive cancer, resistant to current therapies. Membrane chondroitin sulphate proteoglycan 4 (CSPG4), which has been successfully targeted in melanoma and breast cancer, was found highly expressed in MM, but not in normal mesothelium. Therefore, we explored CSPG4 as a suitable target for monoclonal antibody (mAb)-based immunotherapy for MM. EXPERIMENTAL DESIGN We assayed adhesion, motility, invasiveness, wound-healing, apoptosis, and anchorage-independent growth of MM cells on cell cultures. CSPG4 expression and signaling was studied by immunoblotting. The growth of MM severe combined immunodeficient (SCID) mice xenografts induced by PPM-Mill cells, engineered to express the luciferase reporter gene, was monitored by imaging, upon treatment with CSPG4 mAb TP41.2. Animal toxicity and survival were assayed in both tumor inhibition and therapeutic experiments. RESULTS CSPG4 was expressed on 6 out of 8 MM cell lines and in 25 out of 41 MM biopsies, with minimal expression in surrounding healthy cells. MM cell adhesion was mediated by CSPG4-dependent engagement of ECM. Cell adhesion was inhibited by mAb TP41.2 resulting in decreased phosphorylation of focal adhesion kinase (FAK) and AKT, reduced expression of cyclin D1 and apoptosis. Moreover, mAb TP41.2 significantly reduced MM cell motility, migration, and invasiveness, and inhibited MM growth in soft agar. In vivo, treatment with mAb TP41.2 prevented or inhibited the growth of MM xenografts in SCID mice, with a significant increase in animal survival. CONCLUSION These results establish the safety of CSPG4 mAb-based immunotherapy and suggest that CSPG4 mAb-based immunotherapy may represent a novel approach for the treatment of MM.
Collapse
|
124
|
Wei S, Wang LE, McHugh MK, Han Y, Xiong M, Amos CI, Spitz MR, Wei QW. Genome-wide gene-environment interaction analysis for asbestos exposure in lung cancer susceptibility. Carcinogenesis 2012; 33:1531-7. [PMID: 22637743 PMCID: PMC3499061 DOI: 10.1093/carcin/bgs188] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 05/18/2012] [Accepted: 05/22/2012] [Indexed: 12/21/2022] Open
Abstract
Asbestos exposure is a known risk factor for lung cancer. Although recent genome-wide association studies (GWASs) have identified some novel loci for lung cancer risk, few addressed genome-wide gene-environment interactions. To determine gene-asbestos interactions in lung cancer risk, we conducted genome-wide gene-environment interaction analyses at levels of single nucleotide polymorphisms (SNPs), genes and pathways, using our published Texas lung cancer GWAS dataset. This dataset included 317 498 SNPs from 1154 lung cancer cases and 1137 cancer-free controls. The initial SNP-level P-values for interactions between genetic variants and self-reported asbestos exposure were estimated by unconditional logistic regression models with adjustment for age, sex, smoking status and pack-years. The P-value for the most significant SNP rs13383928 was 2.17×10(-6), which did not reach the genome-wide statistical significance. Using a versatile gene-based test approach, we found that the top significant gene was C7orf54, located on 7q32.1 (P = 8.90×10(-5)). Interestingly, most of the other significant genes were located on 11q13. When we used an improved gene-set-enrichment analysis approach, we found that the Fas signaling pathway and the antigen processing and presentation pathway were most significant (nominal P < 0.001; false discovery rate < 0.05) among 250 pathways containing 17 572 genes. We believe that our analysis is a pilot study that first describes the gene-asbestos interaction in lung cancer risk at levels of SNPs, genes and pathways. Our findings suggest that immune function regulation-related pathways may be mechanistically involved in asbestos-associated lung cancer risk.
Collapse
Affiliation(s)
- Sheng Wei
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center,Houston, TX, 77030USA
- Department of Epidemiology and Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology13 Hangkong Road, Wuhan, 430030, China
| | - Li-E Wang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center,Houston, TX, 77030USA
| | - Michelle K. McHugh
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center,Houston, TX, 77030USA
| | - Younghun Han
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center,Houston, TX, 77030USA
| | - Momiao Xiong
- Human Genetics Center, School of Public Health, The University of TexasHouston, TX, 77030
- Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical SciencesHouston, TX, 77030, USA
and
| | - Christopher I. Amos
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center,Houston, TX, 77030USA
- Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical SciencesHouston, TX, 77030, USA
and
| | - Margaret R. Spitz
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center,Houston, TX, 77030USA
| | - Qingyi Wei Wei
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center,Houston, TX, 77030USA
- Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical SciencesHouston, TX, 77030, USA
and
| |
Collapse
|
125
|
Lee KA, Chae JI, Shim JH. Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma. J Biomed Sci 2012; 19:60. [PMID: 22734486 PMCID: PMC3431247 DOI: 10.1186/1423-0127-19-60] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/21/2012] [Indexed: 11/17/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a very poor prognosis. Several clinical studies such as immunotherapy, gene therapy and molecular targeting agents have been tried for treatment of malignant mesothelioma, however, there is no application for effective clinical treatment. Coffee has various biological functions such as anti-oxidant, anti-inflammatory, anti-mutagenic and anti-carcinogenic activities. The therapeutic activities of the bioactive compounds in coffee was sugested to influence intracellular signaling of MPM. Regarding to the cancer-related functions, In this study, suppression of Sp1 protein level followed by induction of MSTO-211H cell apoptosis by cafestol and kahweol were investigated in oreder to determine Sp1's potential as a significant target for human MPM therapy as well. Methods Cells were treated separately with final concentration of cafestol and kahweol and the results were analyzed by MTS assay, DAPI staining, PI staining, luciferase assay, RT-PCR, and immunoblotting. Results Viability of MSTO-211H and H28 cells were decreased, and apoptotic cell death was increased in MSTO-211H as a result of cafestol and kahweol treatment. Cafestol and kahweol increased Sub-G1 population and nuclear condensation in MSTO-211H cells. Roles of Sp1 in cell proliferation and apoptosis of the MSTO-211H cells by the Sp1 inhibitor of Mithramycin A were previously confirmed. Cafestol and kahweol significantly suppressed Sp1 protein levels. Kahweol slightly attenuated Sp1 mRNA, while Cafestol did not affect in MSTO-211H cells. Cafestol and kahweol modulated the promoter activity and protein expression level of the Sp1 regulatory genes including Cyclin D1, Mcl-1, and Survivin in mesothelioma cells. Apoptosis signaling cascade was activated by cleavages of Bid, Caspase-3, and PARP with cafestol and by upregulation of Bax, and downregulation of Bcl-xl by kahweol. Conclusions Sp1 can be a novel molecular target of cafestol and kahweol in human MPM.
Collapse
Affiliation(s)
- Kyung-Ae Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Ssangyong-dong, Seobuk-gu, Cheonan, Choongnam 331-090, Republic of Korea
| | | | | |
Collapse
|
126
|
How do cytokines trigger genomic instability? J Biomed Biotechnol 2012; 2012:536761. [PMID: 22754280 PMCID: PMC3382994 DOI: 10.1155/2012/536761] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/08/2012] [Indexed: 01/05/2023] Open
Abstract
Inflammation is a double-edged sword presenting a dual effect on cancer development, from one hand promoting tumor initiation and progression and from the other hand protecting against cancer through immunosurveillance mechanisms. Cytokines are crucial components of inflammation, participating in the interaction between the cells of tumor microenvironment. A comprehensive study of the role of cytokines in the context of the inflammation-tumorigenesis interplay helps us to shed light in the pathogenesis of cancer. In this paper we focus on the role of cytokines in the development of genomic instability, an evolving hallmark of cancer.
Collapse
|
127
|
Astoul P, Roca E, Galateau-Salle F, Scherpereel A. Malignant Pleural Mesothelioma: From the Bench to the Bedside. Respiration 2012; 83:481-93. [DOI: 10.1159/000339259] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
128
|
Jube S, Rivera ZS, Bianchi ME, Powers A, Wang E, Pagano I, Pass HI, Gaudino G, Carbone M, Yang H. Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res 2012; 72:3290-301. [PMID: 22552293 DOI: 10.1158/0008-5472.can-11-3481] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human malignant mesothelioma is an aggressive and highly lethal cancer that is believed to be caused by chronic exposure to asbestos and erionite. Prognosis for this cancer is generally poor because of late-stage diagnosis and resistance to current conventional therapies. The damage-associated molecular pattern protein HMGB1 has been implicated previously in transformation of mesothelial cells. Here we show that HMGB1 establishes an autocrine circuit in malignant mesothelioma cells that influences their proliferation and survival. Malignant mesothelioma cells strongly expressed HMGB1 and secreted it at high levels in vitro. Accordingly, HMGB1 levels in malignant mesothelioma patient sera were higher than that found in healthy individuals. The motility, survival, and anchorage-independent growth of HMGB1-secreting malignant mesothelioma cells was inhibited in vitro by treatment with monoclonal antibodies directed against HMGB1 or against the receptor for advanced glycation end products, a putative HMGB1 receptor. HMGB1 inhibition in vivo reduced the growth of malignant mesothelioma xenografts in severe-combined immunodeficient mice and extended host survival. Taken together, our findings indicate that malignant mesothelioma cells rely on HMGB1, and they offer a preclinical proof-of-principle that antibody-mediated ablation of HMBG1 is sufficient to elicit therapeutic activity, suggesting a novel therapeutic approach for malignant mesothelioma treatment.
Collapse
Affiliation(s)
- Sandro Jube
- University of Hawai'i Cancer Center, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii 96813, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Favoni RE, Daga A, Malatesta P, Florio T. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma. Br J Pharmacol 2012; 166:532-53. [PMID: 22289125 PMCID: PMC3417486 DOI: 10.1111/j.1476-5381.2012.01873.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/01/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022] Open
Abstract
The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth.
Collapse
Affiliation(s)
- Roberto E Favoni
- IRCCS A.O.U. San Martino-IST, Laboratory of Gene Transfer, Genoa, Italy.
| | | | | | | |
Collapse
|
130
|
Murphy FA, Schinwald A, Poland CA, Donaldson K. The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part Fibre Toxicol 2012; 9:8. [PMID: 22472194 PMCID: PMC3352110 DOI: 10.1186/1743-8977-9-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/03/2012] [Indexed: 11/10/2022] Open
Abstract
Carbon nanotubes (CNT) are high aspect ratio nanoparticles with diameters in the nanometre range but lengths extending up to hundreds of microns. The structural similarities between CNT and asbestos have raised concern that they may pose a similar inhalation hazard. Recently CNT have been shown to elicit a length-dependent, asbestos-like inflammatory response in the pleural cavity of mice, where long fibres caused inflammation but short fibres did not. However the cellular mechanisms governing this response have yet to be elucidated. This study examined the in vitro effects of a range of CNT for their ability to stimulate the release of the acute phase cytokines; IL-1β, TNFα, IL-6 and the chemokine, IL-8 from both Met5a mesothelial cells and THP-1 macrophages. Results showed that direct exposure to CNT resulted in significant cytokine release from the macrophages but not mesothelial cells. This pro-inflammatory response was length dependent but modest and was shown to be a result of frustrated phagocytosis. Furthermore the indirect actions of the CNT were examined by treating the mesothelial cells with conditioned media from CNT-treated macrophages. This resulted in a dramatic amplification of the cytokine release from the mesothelial cells, a response which could be attenuated by inhibition of phagocytosis during the initial macrophage CNT treatments. We therefore hypothesise that long fibres elicit an inflammatory response in the pleural cavity via frustrated phagocytosis in pleural macrophages. The activated macrophages then stimulate an amplified pro-inflammatory cytokine response from the adjacent pleural mesothelial cells. This mechanism for producing a pro-inflammatory environment in the pleural space exposed to long CNT has implications for the general understanding of fibre-related pleural disease and design of safe nanofibres.
Collapse
Affiliation(s)
- Fiona A Murphy
- MRC/University of Edinburgh Centre for Inflammation Research, ELEGI Colt Laboratory, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Anja Schinwald
- MRC/University of Edinburgh Centre for Inflammation Research, ELEGI Colt Laboratory, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Craig A Poland
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| | - Ken Donaldson
- MRC/University of Edinburgh Centre for Inflammation Research, ELEGI Colt Laboratory, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
131
|
Qi F, Carbone M, Yang H, Gaudino G. Simian virus 40 transformation, malignant mesothelioma and brain tumors. Expert Rev Respir Med 2012; 5:683-97. [PMID: 21955238 DOI: 10.1586/ers.11.51] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Simian virus 40 (SV40) is a DNA virus isolated in 1960 from contaminated polio vaccines, that induces mesotheliomas, lymphomas, brain and bone tumors, and sarcomas, including osteosarcomas, in hamsters. These same tumor types have been found to contain SV40 DNA and proteins in humans. Mesotheliomas and brain tumors are the two tumor types that have been most consistently associated with SV40, and the range of positivity has varied about from 6 to 60%, although a few reported 100% of positivity and a few reported 0%. It appears unlikely that SV40 infection alone is sufficient to cause human malignancy, as we did not observe an epidemic of cancers following the administration of SV40-contaminated vaccines. However, it seems possible that SV40 may act as a cofactor in the pathogenesis of some tumors. In vitro and animal experiments showing cocarcinogenicity between SV40 and asbestos support this hypothesis.
Collapse
Affiliation(s)
- Fang Qi
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | | | |
Collapse
|
132
|
Yazdani S, Karimfar MH, Imani Fooladi AA, Mirbagheri L, Ebrahimi M, Ghanei M, Nourani MR. Nuclear factor κB1/RelA mediates the inflammation and/or survival of human airway exposed to sulfur mustard. J Recept Signal Transduct Res 2012; 31:367-73. [PMID: 21929290 DOI: 10.3109/10799893.2011.602415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Sulfur mustard (SM) is known as an effective chemical agent and was used in the 1980s during the Iran-Iraq war against Iranians. At the present time, there are more than 40,000 people suffering from pulmonary lesions due to mustard gas in Iran. Though much is known about the gross pathology of SM damage, the molecular and cellular basis for this pathology is not well understood. OBJECTIVE One of the most important protein groups involved in inflammatory responses is nuclear factor κB protein (NF-κB1) family. They belong to the category of DNA-binding protein factors necessary for transcription of many proinflammatory molecules. In our research, we examined the role of NF-κB1/RelA in the pathophysiology of the lung. MATERIALS AND METHODS We investigated 10 normal individuals and 20 SM induced patients. Expression of NF-κB1/RelA in controls and the SM exposed samples was measured by real-time polymerase chain reaction and localization of NF-κB1 protein was detected by immunohistochemistry staining. RESULTS Our results revealed that expression levels of NF-κB1 and RelA were upregulated 0.64-6.50 fold and 0.83-8.34 fold, respectively, in the SM exposed patients in comparison with control samples. DISCUSSION AND CONCLUSION As far as we know, this is the first finding of induction of NF-κB in patients exposed to SM. NF-κB1/RelA may play a major role in inflammation induced by mustard gas or even in cell survival in the bronchial wall of affected patients.
Collapse
Affiliation(s)
- Samaneh Yazdani
- Chemical Injury Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
133
|
Burt BM, Bader A, Winter D, Rodig SJ, Bueno R, Sugarbaker DJ. Expression of interleukin-4 receptor alpha in human pleural mesothelioma is associated with poor survival and promotion of tumor inflammation. Clin Cancer Res 2012; 18:1568-77. [PMID: 22261806 DOI: 10.1158/1078-0432.ccr-11-1808] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The origin and pathogenesis of malignant pleural mesothelioma (MPM) are closely aligned with inflammation. MPM tumors express interleukin-4 receptor α (IL-4Rα), the principal subunit of the IL-4 receptor. We set out to determine the biologic function and clinical relevance of IL-4Rα in human MPM. EXPERIMENTAL DESIGN Expression of IL-4Rα by human MPM tumors was determined by quantitative real-time PCR (n = 37) and immunohistochemistry (n = 52). Intracellular cytokine analysis of T-cell-derived IL-4 was carried out on matched tumor and blood samples from eight patients with MPM. Four human MPM cell lines were used to determine the direct effects of IL-4 on MPM tumor cells. RESULTS High tumor mRNA expression of IL-4Rα was an independent predictor of poor survival in patients with epithelial MPM [HR, 3.13, 95% confidence interval (CI), 1.68-7.15; P = <0.0001]. Ninety-seven percent of epithelial MPM tumors and 95% of nonepithelial MPM tumors expressed IL-4Rα protein by immunohistochemistry, and strong IL-4Rα staining correlated with worse survival in patients with epithelial histology (P = 0.04). A greater percentage of tumor-infiltrating T cells produced IL-4 compared with matched blood T cells (21% ± 7% vs. 4% ± 2%, P = 0.0002). In response to IL-4, human MPM cells showed increased STAT-6 phosphorylation and increased production of IL-6, IL-8, and VEGF, without effect on proliferation or apoptosis. CONCLUSIONS Tumor expression of IL-4Rα is inversely correlated with survival in patients undergoing surgical resection for epithelial MPM. Tumor-infiltrating T cells in MPMs are polarized to produce IL-4 and may provide endogenous activation signals to MPM tumor cells in situ. The IL-4/IL-4 receptor axis is a potential therapeutic target in human MPM.
Collapse
Affiliation(s)
- Bryan M Burt
- Department of Pathology, The Brigham & Women's Hospital, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
134
|
Carbone M, Ly BH, Dodson RF, Pagano I, Morris PT, Dogan UA, Gazdar AF, Pass HI, Yang H. Malignant mesothelioma: facts, myths, and hypotheses. J Cell Physiol 2012; 227:44-58. [PMID: 21412769 PMCID: PMC3143206 DOI: 10.1002/jcp.22724] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malignant mesothelioma (MM) is a neoplasm arising from mesothelial cells lining the pleural, peritoneal, and pericardial cavities. Over 20 million people in the US are at risk of developing MM due to asbestos exposure. MM mortality rates are estimated to increase by 5-10% per year in most industrialized countries until about 2020. The incidence of MM in men has continued to rise during the past 50 years, while the incidence in women appears largely unchanged. It is estimated that about 50-80% of pleural MM in men and 20-30% in women developed in individuals whose history indicates asbestos exposure(s) above that expected from most background settings. While rare for women, about 30% of peritoneal mesothelioma in men has been associated with exposure to asbestos. Erionite is a potent carcinogenic mineral fiber capable of causing both pleural and peritoneal MM. Since erionite is considerably less widespread than asbestos, the number of MM cases associated with erionite exposure is smaller. Asbestos induces DNA alterations mostly by inducing mesothelial cells and reactive macrophages to secrete mutagenic oxygen and nitrogen species. In addition, asbestos carcinogenesis is linked to the chronic inflammatory process caused by the deposition of a sufficient number of asbestos fibers and the consequent release of pro-inflammatory molecules, especially HMGB-1, the master switch that starts the inflammatory process, and TNF-alpha by macrophages and mesothelial cells. Genetic predisposition, radiation exposure and viral infection are co-factors that can alone or together with asbestos and erionite cause MM. J. Cell. Physiol. 227: 44-58, 2012. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michele Carbone
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii 96813, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Nagai H, Ishihara T, Lee WH, Ohara H, Okazaki Y, Okawa K, Toyokuni S. Asbestos surface provides a niche for oxidative modification. Cancer Sci 2011; 102:2118-25. [PMID: 21895868 PMCID: PMC11158102 DOI: 10.1111/j.1349-7006.2011.02087.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/22/2011] [Accepted: 08/27/2011] [Indexed: 11/28/2022] Open
Abstract
Asbestos is a potent carcinogen associated with increased risks of malignant mesothelioma and lung cancer in humans. Although the mechanism of carcinogenesis remains elusive, the physicochemical characteristics of asbestos play a role in the progression of asbestos-induced diseases. Among these characteristics, a high capacity to adsorb and accommodate biomolecules on its abundant surface area has been linked to cellular and genetic toxicity. Several previous studies identified asbestos-interacting proteins. Here, with the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry, we systematically identified proteins from various lysates that adsorbed to the surface of commercially used asbestos and classified them into the following groups: chromatin/nucleotide/RNA-binding proteins, ribosomal proteins, cytoprotective proteins, cytoskeleton-associated proteins, histones and hemoglobin. The surfaces of crocidolite and amosite, two iron-rich types of asbestos, caused more protein scissions and oxidative modifications than that of chrysotile by in situ-generated 4-hydroxy-2-nonenal. In contrast, we confirmed the intense hemolytic activity of chrysotile and found that hemoglobin attached to chrysotile, but not silica, can work as a catalyst to induce oxidative DNA damage. This process generates 8-hydroxy-2'-deoxyguanosine and thus corroborates the involvement of iron in the carcinogenicity of chrysotile. This evidence demonstrates that all three types of asbestos adsorb DNA and specific proteins, providing a niche for oxidative modification via catalytic iron. Therefore, considering the affinity of asbestos for histones/DNA and the internalization of asbestos into mesothelial cells, our results suggest a novel hypothetical mechanism causing genetic alterations during asbestos-induced carcinogenesis.
Collapse
Affiliation(s)
- Hirotaka Nagai
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
136
|
Sinon SH, Rich AM, Hussaini HM, Yoon HS, Firth NA, Seymour GJ. Metastases to the oral region from pleural mesothelioma: Clinicopathologic review. Head Neck 2011; 35:599-604. [DOI: 10.1002/hed.21942] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/02/2011] [Accepted: 08/03/2011] [Indexed: 01/15/2023] Open
|
137
|
Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci U S A 2011; 108:E1330-8. [PMID: 22084097 DOI: 10.1073/pnas.1110013108] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Multiwalled carbon nanotubes (MWCNTs) have the potential for widespread applications in engineering and materials science. However, because of their needle-like shape and high durability, concerns have been raised that MWCNTs may induce asbestos-like pathogenicity. Although recent studies have demonstrated that MWCNTs induce various types of reactivities, the physicochemical features of MWCNTs that determine their cytotoxicity and carcinogenicity in mesothelial cells remain unclear. Here, we showed that the deleterious effects of nonfunctionalized MWCNTs on human mesothelial cells were associated with their diameter-dependent piercing of the cell membrane. Thin MWCNTs (diameter ∼ 50 nm) with high crystallinity showed mesothelial cell membrane piercing and cytotoxicity in vitro and subsequent inflammogenicity and mesotheliomagenicity in vivo. In contrast, thick (diameter ∼ 150 nm) or tangled (diameter ∼ 2-20 nm) MWCNTs were less toxic, inflammogenic, and carcinogenic. Thin and thick MWCNTs similarly affected macrophages. Mesotheliomas induced by MWCNTs shared homozygous deletion of Cdkn2a/2b tumor suppressor genes, similar to mesotheliomas induced by asbestos. Thus, we propose that different degrees of direct mesothelial injury by thin and thick MWCNTs are responsible for the extent of inflammogenicity and carcinogenicity. This work suggests that control of the diameter of MWCNTs could reduce the potential hazard to human health.
Collapse
|
138
|
Nasu M, Carbone M, Gaudino G, Ly BH, Bertino P, Shimizu D, Morris P, Pass HI, Yang H. Ranpirnase Interferes with NF-κB Pathway and MMP9 Activity, Inhibiting Malignant Mesothelioma Cell Invasiveness and Xenograft Growth. Genes Cancer 2011; 2:576-84. [PMID: 21901170 DOI: 10.1177/1947601911412375] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/25/2011] [Accepted: 05/07/2011] [Indexed: 01/06/2023] Open
Abstract
The ribonuclease ranpirnase (Onconase) has been used empirically to treat malignant mesothelioma (MM) patients, and some of them had prolonged survivals. The aim of this study was to investigate the mechanisms of the therapeutic function of ranpirnase in MM cells. The effects of ranpirnase were studied in vivo and in vitro on 2 MM cell lines (epithelioid REN and sarcomatoid PPM-Mill). We found that ranpirnase was able to inhibit NF-κB nuclear translocation, evaluated by cell fractionation and immunoblotting as well as by immunofluorescence. Also, MMP9 secretion by MM cells was decreased by ranpirnase treatment, as assessed by the reduction of metalloproteinase activity, evaluated by zymography on culture-conditioned media. Ranpirnase induced apoptosis of MM cells in vitro and in vivo, causing a powerful inhibition of MM tumor growth in SCID xenografts, determined by In Vivo Imaging System (IVIS) of tumor cells engineered by lentiviral transduction of the luciferase gene. Finally, mice treated with ranpirnase showed a significantly prolonged survival. Our data provide a mechanistic rationale to explain the beneficial antitumor activity observed in some patients treated with ranpirnase and demonstrate that ranpirnase interferes with the NF-κB pathway, thus influencing MM tumor cell invasiveness and survival. It is hoped that this information will also facilitate the identification of those patients who are more likely to benefit from this drug and will also open a new frontier for the use of this drug in tumor types other than MM.
Collapse
Affiliation(s)
- Masaki Nasu
- University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Carbone M, Yang H. Molecular pathways: targeting mechanisms of asbestos and erionite carcinogenesis in mesothelioma. Clin Cancer Res 2011; 18:598-604. [PMID: 22065079 DOI: 10.1158/1078-0432.ccr-11-2259] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Malignant mesothelioma is an aggressive malignancy related to asbestos and erionite exposure. AP-1 transcriptional activity and the NF-κB signaling pathway have been linked to mesothelial cell transformation and tumor progression. HGF and c-Met are highly expressed in mesotheliomas. Phosphoinositide 3-kinase, AKT, and the downstream mTOR are involved in cell growth and survival, and they are often found to be activated in mesothelioma. p16(INK4a) and p14(ARF) are frequently inactivated in human mesothelioma, and ∼50% of mesotheliomas contain the NF2 mutation. Molecular therapies aimed at interfering with these pathways have not improved the dismal prognosis of mesothelioma, except possibly for a small subset of patients who benefit from certain therapies. Recent studies have shown the importance of asbestos-induced inflammation in the initiation and growth of mesothelioma, and HMGB1 and Nalp3 inflammasome have been identified as key initiators of this process. Asbestos induces cell necrosis, causing the release of HMGB1, which in turn may activate Nalp3 inflammasome, a process that is enhanced by asbestos-induced production of reactive oxygen species. HMGB1 and Nalp3 induce proinflammatory responses and lead to interleukin-1β and TNF-α secretion and NF-κB activity, thereby promoting cell survival and tumor growth. Novel strategies that interfere with asbestos- and erionite-mediated inflammation might prevent or delay the onset of mesothelioma in high-risk cohorts, including genetically predisposed individuals, and/or inhibit tumor growth. The very recent discovery that germline BAP1 mutations cause a new cancer syndrome characterized by mesothelioma, uveal melanoma, and melanocytic tumors provides researchers with a novel target for prevention and early detection.
Collapse
Affiliation(s)
- Michele Carbone
- University of Hawaii Cancer Center, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | | |
Collapse
|
140
|
Pham T, Bachelez H, Berthelot JM, Blacher J, Bouhnik Y, Claudepierre P, Constantin A, Fautrel B, Gaudin P, Goëb V, Gossec L, Goupille P, Guillaume-Czitrom S, Hachulla E, Huet I, Jullien D, Launay O, Lemann M, Maillefert JF, Marolleau JP, Martinez V, Masson C, Morel J, Mouthon L, Pol S, Puéchal X, Richette P, Saraux A, Schaeverbeke T, Soubrier M, Sudre A, Tran TA, Viguier M, Vittecoq O, Wendling D, Mariette X, Sibilia J. TNF alpha antagonist therapy and safety monitoring. Joint Bone Spine 2011; 78 Suppl 1:15-185. [PMID: 21703545 DOI: 10.1016/s1297-319x(11)70001-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To develop and/or update fact sheets about TNFα antagonists treatments, in order to assist physicians in the management of patients with inflammatory joint disease. METHODS 1. selection by a committee of rheumatology experts of the main topics of interest for which fact sheets were desirable; 2. identification and review of publications relevant to each topic; 3. development and/or update of fact sheets based on three levels of evidence: evidence-based medicine, official recommendations, and expert opinion. The experts were rheumatologists and invited specialists in other fields, and they had extensive experience with the management of chronic inflammatory diseases, such as rheumatoid. They were members of the CRI (Club Rhumatismes et Inflammation), a section of the Société Francaise de Rhumatologie. Each fact sheet was revised by several experts and the overall process was coordinated by three experts. RESULTS Several topics of major interest were selected: contraindications of TNFα antagonists treatments, the management of adverse effects and concomitant diseases that may develop during these therapies, and the management of everyday situations such as pregnancy, surgery, and immunizations. After a review of the literature and discussions among experts, a consensus was developed about the content of the fact sheets presented here. These fact sheets focus on several points: 1. in RA and SpA, initiation and monitoring of TNFα antagonists treatments, management of patients with specific past histories, and specific clinical situations such as pregnancy; 2. diseases other than RA, such as juvenile idiopathic arthritis; 3. models of letters for informing the rheumatologist and general practitioner; 4. and patient information. CONCLUSION These TNFα antagonists treatments fact sheets built on evidence-based medicine and expert opinion will serve as a practical tool for assisting physicians who manage patients on these therapies. They will be available continuously at www.cri-net.com and updated at appropriate intervals.
Collapse
Affiliation(s)
- Thao Pham
- Rheumatology Department, CHU Sainte-Marguerite, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
Malignant mesothelioma (MM) is an aggressive tumour that commonly affects the mesothelial surfaces of the pleural and peritoneal cavities, and occasionally, the tunica vaginalis and the pericardium. Formerly a rare tumour, MM is increasing in incidence in Australia due to the heavy nationwide use of asbestos from 1940 until the 1980s. The incidence is expected to peak in Australia in the next decade, mirroring the long latency period between asbestos exposure and development of MM. Diagnosis of MM can be difficult. Definitive pathological diagnosis is required and it often requires an experienced pathologist to differentiate MM from other benign or malignant processes. Treatment of MM requires a multidisciplinary approach, regardless of palliative or curative intent. Treatment options, such as surgery, chemotherapy, radiotherapy and active symptom control or a combination of these, may be used. Further research is needed to advance the therapeutic options for MM, and strategies to realize personalisation of therapy through discovery of predictive markers. In the Australian society where asbestos contamination of the built environment is very high, education and stringent public health measures are required to prevent a second wave of increased MM incidence.
Collapse
Affiliation(s)
- S C-H Kao
- Department of Medical Oncology, Sydney Cancer Centre, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
142
|
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a rare but aggressive asbestos-related cancer that develops by mesothelial cell transformation. At present, there are no effective therapies for MPM. Great efforts have been made in finding specific markers/mechanisms for MPM onset, including studies into microRNAs (miRNAs). Recent studies have shown the differential expression of mature miRNAs in several human cancers, suggesting their potential role as oncogenes or tumor suppressor genes. METHODS In this study, we investigated miRNAs profile in five human normal pleural mesothelial short-term cell cultures (HMCs) and five MPMs, with microarray approach. These results were confirmed by real-time quantitative reverse-transcriptase polymerase chain reaction and Western blotting. RESULTS A comparative analysis of miRNA expression in MPM and HMCs was carried out. Microarray profiling showed different miRNA expression between MPM and HMCs. Specifically, members of the oncomiRNA miR 17-92 cluster and its paralogs, namely miR 17-5p, 18a, 19b, 20a, 20b, 25, 92, 106a, 106b, were markedly upregulated. Besides, in our investigation, additional miRNAs, such as miR-7, miR-182, miR-214, and miR-497 were found to be dysregulated in MPM. CONCLUSIONS These data are in agreement with results that have previously been reported on dysregulated miRNAs for other solid human tumors. Moreover, in our investigation, additional miRNAs were found to be dysregulated in MPM. Interestingly, gene products that regulate the cell cycle are targets and predicted targets for these miRNAs. Our data suggest that specific miRNAs could be key players in MPM development/progression. In addition, some of these miRNAs may represent MPM markers and potential targets for new therapeutic approaches.
Collapse
|
143
|
Bharadwaj U, Marin-Muller C, Li M, Chen C, Yao Q. Mesothelin confers pancreatic cancer cell resistance to TNF-α-induced apoptosis through Akt/PI3K/NF-κB activation and IL-6/Mcl-1 overexpression. Mol Cancer 2011; 10:106. [PMID: 21880146 PMCID: PMC3175472 DOI: 10.1186/1476-4598-10-106] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 08/31/2011] [Indexed: 12/28/2022] Open
Abstract
Background Previous studies showed that mesothelin (MSLN) plays important roles in survival of pancreatic cancer (PC) cells under anchorage dependent/independent conditions as well as resistance to chemotherapy. The recent success of intratumorally-injected adeno-encoded, chemo/radiation-inducible-promoter driven hTNF-α, (TNFerade) + gemcitabine in pre-clinical models of PC have renewed interest in use of TNF-α as a therapeutic component. To help find additional factors which might affect the therapy, we examined the resistance of MSLN-overexpressing pancreatic cancer cell lines to TNF-α-induced growth inhibition/apoptosis. Methods Stable MSLN overexpressing MIA PaCa-2 cells (MIA-MSLN), stable MSLN-silenced AsPC-1 cells (AsPC-shMSLN) and other pancreatic cells (MIA-PaCa2, Panc 28, Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48) were used. NF-κB activation was examined by western blots and luciferase reporter assay. TNF-α induced growth inhibition/apoptosis was measured by MTT, TUNEL assay and caspase activation. IL-6 was measured using luminex based assay. Results Compared to low endogenous MSLN-expressing MIA PaCa-2 and Panc 28 cells, high endogenous MSLN-expressing Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48 cells were resistant to TNF-α induced growth inhibition. Stable MSLN overexpressing MIA-PaCa2 cells (MIA-MSLN) were resistant to TNF-α-induced apoptosis while stable MSLN-silenced AsPC1 cells (AsPC-shMSLN) were sensitive. Interestingly, TNF-α-treated MIA-MSLN cells showed increased cell cycle progression and cyclin A induction, both of which were reversed by caspase inhibition. We further found that MIA-MSLN cells showed increased expression of anti-apoptotic Bcl-XL and Mcl-1; deactivated (p-Ser75) BAD, and activated (p-Ser70) Bcl-2. Constitutively activated NF-κB and Akt were evident in MIA-MSLN cells that could be suppressed by MSLN siRNA with a resultant increase in sensitivity of TNF-α induced apoptosis. Blocking NF-κB using IKK inhibitor wedelolactone also increased sensitivity to TNF-α-mediated cytotoxicity with concomitant decrease in Mcl-1. Blocking Akt using PI3K inhibitor also had a likewise effect presumably affecting cell cycle. MIA-MSLN cells produced increased IL-6 and were increased furthermore by TNF-α treatment. SiRNA-silencing of IL-6 increased TNF-α sensitivity of MIA-MSLN cells. Conclusions Our study delineates a MSLN-Akt-NF-κB-IL-6-Mcl-1 survival axis that may be operative in PC cells, and might help cancer cells' survival in the highly inflammatory milieu evident in PC. Further, for the success of TNFerade + gemcitabine to be successful, we feel the simultaneous inhibition of components of this axis is also essential.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Michael E, DeBakey Department of Surgery, Molecular Surgeon Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
144
|
NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 2011; 13:1272-9. [PMID: 21968997 DOI: 10.1038/ncb2324] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 07/22/2011] [Indexed: 12/26/2022]
Abstract
Cell proliferation is a metabolically demanding process. It requires active reprogramming of cellular bioenergetic pathways towards glucose metabolism to support anabolic growth. NF-κB/Rel transcription factors coordinate many of the signals that drive proliferation during immunity, inflammation and oncogenesis, but whether NF-κB regulates the metabolic reprogramming required for cell division during these processes is unknown. Here, we report that NF-κB organizes energy metabolism networks by controlling the balance between the utilization of glycolysis and mitochondrial respiration. NF-κB inhibition causes cellular reprogramming to aerobic glycolysis under basal conditions and induces necrosis on glucose starvation. The metabolic reorganization that results from NF-κB inhibition overcomes the requirement for tumour suppressor mutation in oncogenic transformation and impairs metabolic adaptation in cancer in vivo. This NF-κB-dependent metabolic pathway involves stimulation of oxidative phosphorylation through upregulation of mitochondrial synthesis of cytochrome c oxidase 2 (SCO2; ref. ). Our findings identify NF-κB as a physiological regulator of mitochondrial respiration and establish a role for NF-κB in metabolic adaptation in normal cells and cancer.
Collapse
|
145
|
Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proc Natl Acad Sci U S A 2011; 108:13618-23. [PMID: 21788493 DOI: 10.1073/pnas.1105887108] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exposure to erionite, an asbestos-like mineral, causes unprecedented rates of malignant mesothelioma (MM) mortality in some Turkish villages. Erionite deposits are present in at least 12 US states. We investigated whether increased urban development has led to erionite exposure in the United States and after preliminary exploration, focused our studies on Dunn County, North Dakota (ND). In Dunn County, ND, we discovered that over the past three decades, more than 300 miles of roads were surfaced with erionite-containing gravel. To determine potential health implications, we compared erionite from the Turkish villages to that from ND. Our study evaluated airborne point exposure concentrations, examined the physical and chemical properties of erionite, and examined the hallmarks of mesothelial cell transformation in vitro and in vivo. Airborne erionite concentrations measured in ND along roadsides, indoors, and inside vehicles, including school buses, equaled or exceeded concentrations in Boyali, where 6.25% of all deaths are caused by MM. With the exception of outdoor samples along roadsides, ND concentrations were lower than those measured in Turkish villages with MM mortality ranging from 20 to 50%. The physical and chemical properties of erionite from Turkey and ND are very similar and they showed identical biological activities. Considering the known 30- to 60-y latency for MM development, there is reason for concern for increased risk in ND in the future. Our findings indicate that implementation of novel preventive and early detection programs in ND and other erionite-rich areas of the United States, similar to efforts currently being undertaken in Turkey, is warranted.
Collapse
|
146
|
Favoni RE, Florio T. Combined chemotherapy with cytotoxic and targeted compounds for the management of human malignant pleural mesothelioma. Trends Pharmacol Sci 2011; 32:463-79. [PMID: 21620489 DOI: 10.1016/j.tips.2011.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/01/2011] [Accepted: 03/31/2011] [Indexed: 01/23/2023]
Abstract
Human malignant pleural mesothelioma (hMPM) is an aggressive asbestos-associated cancer, the incidence of which is increasing and which, despite progress in diagnosis and therapy, continues to have a poor prognosis. Asbestos fibers induce aberrant cell signaling, leading to proto-oncogene activation and chemoresistance. In this review, we discuss the evolution of pharmacological management of hMPM up to the most recent advances. Monotherapy with single cytotoxic drugs achieves modest objective response rates, seldom reaching 30%. However, combination regimens using novel drugs and standard molecules are showing gradually improving responses and clinical benefits. Phase II/III studies have identified pemetrexed, a multitarget folate pathway inhibitor in combination with platinum derivatives, and the cisplatin/gemcitabine association as front-line chemotherapy for hMPM. Detailed knowledge of molecular mechanisms of signal transduction and neoangiogenesis in hMPM should aid in the design and screening of other promising compounds such as more efficacious receptor tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Roberto E Favoni
- Department of Translational Oncology Research, Gene Transfer Laboratory, National Cancer Institute, Largo Rosanna Benzi, 10 16132 Genoa, Italy.
| | | |
Collapse
|
147
|
Wang H, Gillis A, Zhao C, Lee E, Wu J, Zhang F, Ye F, Zhang DY. Crocidolite asbestos-induced signal pathway dysregulation in mesothelial cells. Mutat Res 2011; 723:171-6. [PMID: 21570478 DOI: 10.1016/j.mrgentox.2011.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Malignant mesothelioma is a rare cancer caused by exposure to asbestos. Current therapies have limited efficacy and the prognosis is dismal. A better understanding of the underlying mechanism of asbestos-induced malignant transformation will help to identify molecular markers that can be used for diagnosis, prognosis or therapeutic targets. OBJECTIVES The objectives of this study are (1) to identify altered levels of proteins and phosphoproteins and (2) to establish the interactive network among those proteins in crocidolite-treated benign mesothelial cells and in malignant mesothelial cells. METHODS Total cellular proteins were extracted from benign mesothelial cells, crocidolite-treated mesothelial cells and malignant mesothelial cells. The expression levels of 112 proteins and phosphoproteins were analyzed using a multiplex immunoblot-based assay followed by computational analysis (Protein Pathway Array). RESULTS A total of 16 proteins/phosphoproteins (7 down-regulated and 9 up-regulated) were altered after exposure of benign mesothelial cells to crocidolite asbestos and the majority of them are involved in DNA damage repair and cell cycle regulation. In malignant mesothelial cells, 21 proteins/phosphoproteins (5 down-regulated and 16 up-regulated) were dysregulated and majority of them are involved in EGFR/ERK and PI3K/Akt pathways. Within the regulatory network affected by crocidolite, p53 and NF-κB complex are the most important regulators. There was substantial overlap in the regulatory networks between the asbestos-treated cells and malignant mesothelial cells. CONCLUSIONS Asbestos exposure has extensive effects on regulatory pathways and networks. These altered proteins may be used in the future to identify those with a high risk for developing malignant mesothelioma and as targets for preventing this deadly malignancy.
Collapse
Affiliation(s)
- Hongxia Wang
- Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Burt BM, Rodig SJ, Tilleman TR, Elbardissi AW, Bueno R, Sugarbaker DJ. Circulating and tumor-infiltrating myeloid cells predict survival in human pleural mesothelioma. Cancer 2011; 117:5234-44. [PMID: 21523763 DOI: 10.1002/cncr.26143] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 01/09/2011] [Accepted: 03/02/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) tumor cells produce copious amounts of myeloid cell-stimulating factors. The current study examined the prognostic significance of circulating monocytes and tumor-infiltrating macrophages on overall survival in patients with MPM. METHODS The authors retrospectively reviewed 667 patients with MPM who underwent cytoreductive surgery at the Brigham and Women's Hospital in Boston, Massachusetts between 1989 and 2009. Kaplan-Meier and Cox proportional hazards models were used to determine the impact of preoperative circulating monocytes on overall survival. Immunohistochemical staining for CD68 was performed on a tissue microarray of MPM tumors from 52 patients undergoing cytoreductive surgery. The phenotype of circulating monocytes and tumor-infiltrating macrophages in 7 additional patients was determined by flow cytometry. RESULTS The median survival for all patients was 13.4 months, and 35% of patients had tumors of nonepithelial histology. For patients with nonepithelial compared with epithelial tumors, survival was significantly worse (9.3 months vs 16.6 months; P < .0001), the number of monocytes was significantly higher (580 ± 20 cells/μL vs 520 ± 10 cells/μL; P = .002), and higher monocyte counts were associated with higher tumor stage. Increasing monocyte counts were correlated with poor survival for all patients with MPM. Within MPM tumors, macrophages comprised 27% ± 9% of the tumor area and demonstrated an immunosuppressive phenotype with high expression of CD163, CD206, and interleukin-4 receptor α. The degree of macrophage infiltration was found to be negatively correlated with survival in patients with nonepithelial (P = .008) but not those with epithelial (P = .7) MPM, independent of disease stage. CONCLUSIONS Higher numbers of circulating monocytes are associated with poor survival in all patients with MPM and higher densities of tumor-infiltrating macrophages are associated with poor survival in patients with nonepithelial MPM. Both may enable a novel target for immunotherapy.
Collapse
Affiliation(s)
- Bryan M Burt
- Division of Thoracic Surgery, The Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
149
|
Betti M, Ferrante D, Padoan M, Guarrera S, Giordano M, Aspesi A, Mirabelli D, Casadio C, Ardissone F, Ruffini E, Betta PG, Libener R, Guaschino R, Matullo G, Piccolini E, Magnani C, Dianzani I. XRCC1 and ERCC1 variants modify malignant mesothelioma risk: a case-control study. Mutat Res 2011; 708:11-20. [PMID: 21277872 DOI: 10.1016/j.mrfmmm.2011.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/10/2010] [Accepted: 01/14/2011] [Indexed: 05/20/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a rare aggressive tumor associated with asbestos exposure. The possible role of genetic factors has also been suggested and MPM has been associated with single nucleotide polymorphisms (SNPs) of xenobiotic and oxidative metabolism enzymes. We have identified an association of the DNA repair gene XRCC1 with MPM in the population of Casale Monferrato, a town exposed to high asbestos pollution. To extend this observation we examined 35 SNPs in 15 genes that could be involved in MPM carcinogenicity in 220 MPM patients and 296 controls from two case-control studies conducted in Casale (151 patients, 252 controls) and Turin (69 patients, 44 controls), respectively. Unconditional multivariate logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). Two DNA repair genes were associated with MPM, i.e. XRCC1 and ERCC1. Considering asbestos-exposed only, the risk increased with the increasing number of XRCC1-399Q alleles (Casale: OR=1.44, 95%CI 1.02-2.03; Casale+Turin: OR=1.34, 95%CI 0.98-1.84) or XRCC1 -77T alleles (Casale+Turin: OR=1.33, 95%CI 0.97-1.81). The XRCC1-TGGGGGAACAGA haplotype was significantly associated with MPM (Casale: OR=1.76, 95%CI 1.04-2.96). Patients heterozygotes for ERCC1 N118N showed an increased OR in all subjects (OR=1.66, 95%CI 1.06-2.60) and in asbestos-exposed only (OR=1.59, 95%CI 1.01-2.50). When the dominant model was considered (i.e. ERCC1 heterozygotes CT plus homozygotes CC versus homozygotes TT) the risk was statistically significant both in all subjects (OR=1.61, 95%CI 1.06-2.47) and in asbestos-exposed only (OR=1.56, 95%CI 1.02-2.40). The combination of ERCC1 N118N and XRCC1 R399Q was statistically significant (Casale: OR=2.02, 95%CI 1.01-4.05; Casale+Turin: OR=2.39, 95%CI 1.29-4.43). The association of MPM with DNA repair genes support the hypothesis that an increased susceptibility to DNA damage may favour asbestos carcinogenicity.
Collapse
Affiliation(s)
- M Betti
- Laboratory of Genetic Pathology, Department of Medical Sciences, University of Piemonte Orientale, Novara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
Purpose Treatment of malignant pleural mesothelioma (MPM) with Ranpirnase (Onconase) results in disruption of protein translation and cell apoptosis. We hypothesize that Onconase acts via down regulation of nuclear factor kappa B (NFKβ) by specific microRNAs (miRNA) and that interference of this pathway could have implications for MPM resistance to chemotherapy. Experimental Design Three immortalized MPM cell lines (H2959, H2373, and H2591) were exposed to Onconase at 0–20 µg/mL. Cell counts were measured at 48 and 72 hours. Gene expression in miRNA-enriched RNA was validated by RT-PCR. The functional implications of miRNA expression were evaluated by transfecting miRNA mimics or inhibitors into MPM cell lines, and performing Matrigel™ invasion, cell proliferation, soft agar colony formation, and scratch closure assays. Effects on NFKβ expression and downstream targets including ABC transporters, BCL-xl, and IAP were assessed by RT-PCR and Western Blotting. Results Treatment with 20µg/mL of Onconase significantly decreased cell count and invasion. Hsa-miR-17* was significantly upregulated and hsa-miR-30c significantly down-regulated by Onconase treatment in all cell lines. Forced expression of hsa-miR-17* mimic and hsa-miR-30c inhibitor each significantly decreased functional activity of Onconase in all assays. NFKB1(p50) expression and downstream targets were also decreased with Onconase treatment as well as with forced expression miRNA mimic and inhibitors. Conclusions Onconase treatment caused a significant decrease in cell proliferation, invasion, and in expression of certain miRNAs. Recapitulation of the resultant miRNA expression pattern with hsa-miR-17* mimic and hsa-miR-30c inhibitor resulted in downregulation of NFKB1 and reduced malignant behavior in functional assays. Thus, Onconase likely exerts its anti-tumor effect through these miRNAs.
Collapse
|