101
|
Hao M, Zhang L, An G, Meng H, Han Y, Xie Z, Xu Y, Li C, Yu Z, Chang H, Qiu L. Bone marrow stromal cells protect myeloma cells from bortezomib induced apoptosis by suppressing microRNA-15a expression. Leuk Lymphoma 2011; 52:1787-94. [PMID: 21534877 DOI: 10.3109/10428194.2011.576791] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite unsurpassed anti-tumor activity of bortezomib for multiple myeloma (MM), drug resistance has emerged as a challenge, especially when MM cells adhere to the stroma. This study aimed to determine whether bone marrow stromal cells (BMSCs) have a role in the development of chemoresistance in MM. Our data demonstrate that the secretion of interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and cell-to-cell contact with microenvironment-derived stromal cells from patients with multiple myeloma (MM-BMSCs) significantly decreased the sensitivity of myeloma cells to bortezomib treatment. Mechanistically, we found that microRNA (miRNA)- 15a expression was up-regulated in U266 and NCI-H929 cells treated by bortezomib, which was inhibited by MM-BMSCs. miRNA-15a transfected myeloma cells were arrested in G1/S checkpoint and secreted less VEGF compared to control transfected cells, although no significant difference was found in VEGF mRNA levels. In conclusion, our data suggest that via suppressing miRNA-15a expression, BMSCs provide survival support and protect myeloma cells from bortezomib induced apoptosis.
Collapse
Affiliation(s)
- Mu Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Li Y, Yang X, Su LJ, Flaig TW. Pazopanib synergizes with docetaxel in the treatment of bladder cancer cells. Urology 2011; 78:233.e7-13. [PMID: 21529900 DOI: 10.1016/j.urology.2011.02.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 02/12/2011] [Accepted: 02/19/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To investigate the efficacy of pazopanib, both alone and in combination with docetaxel, in bladder cancer cells. Bladder cancer expresses many potential therapeutic targets of biological agents, including the vascular endothelial growth factor receptor (VEGFR). Pazopanib is a small molecule inhibitor of VEGFR-1, -2-3, platelet-derived growth factor receptor (PDGFR), and c-Kit. MATERIALS AND METHODS Using human bladder cancer cells HTB3, HT1376, J82, RT4, CRL1749, T24, Sup, and HTB9, the treatment effect of pazopanib and cytotoxic chemotherapy was assessed using a tetrazolium-based assay. The combinatorial effect of these agents on clonogenic growth was further examined. Western blotting was used to assess changes in relevant downstream targets, including phospho-AKT, phospho-FAK, total AKT, and total FAK. RESULTS Single-agent pazopanib had modest activity. However, synergy was seen with the combination of docetaxel and pazopanib in these multiple cells lines. J82 and T24 cells were selected for additional clonogenic testing because of their resistance to single-agent docetaxel chemotherapy. 1.25 nM of docetaxel had little effect on clonogenic formation; however, in combination with pazopanib, significant inhibition of colony formation was observed. This combination treatment additionally decreased phospho-AKT, an important mediator of cell survival in all cell lines, whereas phospho-FAK expression was variably affected. CONCLUSIONS The present study demonstrates synergistic efficacy of pazopanib with docetaxel in docetaxel-resistant bladder cancer cells. This work supports future evaluation of pazopanib with docetaxel for the treatment of bladder cancer with the potential of improved efficacy and toxicity.
Collapse
Affiliation(s)
- Yuan Li
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
103
|
Goldstein R, Pickering L, Larkin J. Does axitinib (AG-01376) have a future role in metastatic renal cell carcinoma and other malignancies? Expert Rev Anticancer Ther 2011; 10:1545-57. [PMID: 20942625 DOI: 10.1586/era.10.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Axitinib (Pfizer Inc., UK) is an oral small-molecule receptor tyrosine kinase inhibitor that targets angiogenesis. Axitinib has greater affinity and is a more selective inhibitor of VEGF receptor 1, -2 and -3, PDGFR and c-KIT than both sunitinib and sorafenib. It has encouraging efficacy and safety data in Phase II trials for metastatic renal cell carcinoma and advanced thyroid cancer patients. It is now being investigated in two Phase III trials in metastatic renal cell carcinoma and in Phase II trials in a range of tumor types. These trials will determine whether axitinib is an effective and safe antiangiogenic therapy.
Collapse
Affiliation(s)
- Robert Goldstein
- Department of Oncology, St George's Hospital, London, SW17 0QT, UK
| | | | | |
Collapse
|
104
|
Zhu XD, Zhang JB, Fan PL, Xiong YQ, Zhuang PY, Zhang W, Xu HX, Gao DM, Kong LQ, Wang L, Wu WZ, Tang ZY, Ding H, Sun HC. Antiangiogenic effects of pazopanib in xenograft hepatocellular carcinoma models: evaluation by quantitative contrast-enhanced ultrasonography. BMC Cancer 2011; 11:28. [PMID: 21251271 PMCID: PMC3033852 DOI: 10.1186/1471-2407-11-28] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 01/20/2011] [Indexed: 12/11/2022] Open
Abstract
Background Antiangiogenesis is a promising therapy for advanced hepatocellular carcinoma (HCC), but the effects are difficult to be evaluated. Pazopanib (GW786034B) is a pan-vascular endothelial growth factor receptor inhibitor, the antitumor effects or antiangiogenic effects haven't been investigated in HCC. Methods In vitro direct effects of pazopanib on human HCC cell lines and endothelial cells were evaluated. In vivo antitumor effects were evaluated in three xenograft nude mice models. In the subcutaneous HCCLM3 model, intratumoral blood perfusion was detected by contrast-enhanced ultrasonography (CEUS), and serial quantitative parameters were profiled from the time-intensity curves of ultrasonograms. Results In vitro proliferation of various HCC cell lines were not inhibited by pazopanib. Pazopanib inhibited migration and invasion and induced apoptosis significantly in two HCC cell lines, HCCLM3 and PLC/PRF/5. Proliferation, migration, and tubule formation of human umbilical vein endothelial cells were inhibited by pazopanib in a dose-dependent manner. In vivo tumor growth was significantly inhibited by pazopanib in HCCLM3, HepG2, and PLC/PRF/5 xenograft models. Various intratumoral perfusion parameters changed over time, and the signal intensity was significantly impaired in the treated tumors before the treatment efficacy on tumor size could be observed. Mean transit time of the contrast media in hotspot areas of the tumors was reversely correlated with intratumoral microvessel density. Conclusions Antitumor effects of pazopanib in HCC xenografts may owe to its antiangiogenic effects, and the in vivo antiangiogenic effects could be evaluated by quantitative CEUS.
Collapse
Affiliation(s)
- Xiao-Dong Zhu
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Zhu XD, Zhang JB, Fan PL, Xiong YQ, Zhuang PY, Zhang W, Xu HX, Gao DM, Kong LQ, Wang L, Wu WZ, Tang ZY, Ding H, Sun HC. Antiangiogenic effects of pazopanib in xenograft hepatocellular carcinoma models: evaluation by quantitative contrast-enhanced ultrasonography. BMC Cancer 2011. [PMID: 21251271 DOI: 10.1186/1471-2407-11-28.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antiangiogenesis is a promising therapy for advanced hepatocellular carcinoma (HCC), but the effects are difficult to be evaluated. Pazopanib (GW786034B) is a pan-vascular endothelial growth factor receptor inhibitor, the antitumor effects or antiangiogenic effects haven't been investigated in HCC. METHODS In vitro direct effects of pazopanib on human HCC cell lines and endothelial cells were evaluated. In vivo antitumor effects were evaluated in three xenograft nude mice models. In the subcutaneous HCCLM3 model, intratumoral blood perfusion was detected by contrast-enhanced ultrasonography (CEUS), and serial quantitative parameters were profiled from the time-intensity curves of ultrasonograms. RESULTS In vitro proliferation of various HCC cell lines were not inhibited by pazopanib. Pazopanib inhibited migration and invasion and induced apoptosis significantly in two HCC cell lines, HCCLM3 and PLC/PRF/5. Proliferation, migration, and tubule formation of human umbilical vein endothelial cells were inhibited by pazopanib in a dose-dependent manner. In vivo tumor growth was significantly inhibited by pazopanib in HCCLM3, HepG2, and PLC/PRF/5 xenograft models. Various intratumoral perfusion parameters changed over time, and the signal intensity was significantly impaired in the treated tumors before the treatment efficacy on tumor size could be observed. Mean transit time of the contrast media in hotspot areas of the tumors was reversely correlated with intratumoral microvessel density. CONCLUSIONS Antitumor effects of pazopanib in HCC xenografts may owe to its antiangiogenic effects, and the in vivo antiangiogenic effects could be evaluated by quantitative CEUS.
Collapse
Affiliation(s)
- Xiao-Dong Zhu
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
VEGFR2 and Src kinase inhibitors suppress Andes virus-induced endothelial cell permeability. J Virol 2010; 85:2296-303. [PMID: 21177802 DOI: 10.1128/jvi.02319-10] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hantaviruses predominantly infect human endothelial cells and, in the absence of cell lysis, cause two diseases resulting from increased vascular permeability. Andes virus (ANDV) causes a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). ANDV infection enhances the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF) by increasing signaling responses directed by the VEGFR2-Src-VE-cadherin pathway, which directs adherens junction (AJ) disassembly. Here we demonstrate that inhibiting pathway-specific VEGFR2 and Src family kinases (SFKs) blocks ANDV-induced endothelial cell permeability. Small interfering RNA (siRNA) knockdown of Src within ANDV-infected endothelial cells resulted in an ∼70% decrease in endothelial cell permeability compared to that for siRNA controls. This finding suggested that existing FDA-approved small-molecule kinase inhibitors might similarly block ANDV-induced permeability. The VEGFR2 kinase inhibitor pazopanib as well as SFK inhibitors dasatinib, PP1, bosutinib, and Src inhibitor 1 dramatically inhibited ANDV-induced endothelial cell permeability. Consistent with their kinase-inhibitory concentrations, dasatinib, PP1, and pazopanib inhibited ANDV-induced permeability at 1, 10, and 100 nanomolar 50% inhibitory concentrations (IC(50)s), respectively. We further demonstrated that dasatinib and pazopanib blocked VE-cadherin dissociation from the AJs of ANDV-infected endothelial cells by >90%. These findings indicate that VEGFR2 and Src kinases are potential targets for therapeutically reducing ANDV-induced endothelial cell permeability and, as a result, capillary permeability during HPS. Since the functions of VEGFR2 and SFK inhibitors are already well defined and FDA approved for clinical use, these findings rationalize their therapeutic evaluation for efficacy in reducing HPS disease. Endothelial cell barrier functions are disrupted by a number of viruses that cause hemorrhagic, edematous, or neurologic disease, and as a result, our findings suggest that VEGFR2 and SFK inhibitors should be considered for regulating endothelial cell barrier functions altered by additional viral pathogens.
Collapse
|
107
|
Disruption of Src function potentiates Chk1-inhibitor-induced apoptosis in human multiple myeloma cells in vitro and in vivo. Blood 2010; 117:1947-57. [PMID: 21148814 DOI: 10.1182/blood-2010-06-291146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ras/MEK/ERK pathway activation represents an important compensatory response of human multiple myeloma (MM) cells to checkpoint kinase 1 (Chk1) inhibitors. To investigate the functional roles of Src in this event and potential therapeutic significance, interactions between Src and Chk1 inhibitors (eg, UCN-01 or Chk1i) were examined in vitro and in vivo. The dual Src/Abl inhibitors BMS354825 and SKI-606 blocked Chk1-inhibitor-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, markedly increasing apoptosis in association with BimEL up-regulation, p34(cdc2) activation, and DNA damage in MM cell lines and primary CD138(+) MM samples. Loss-of-function Src mutants (K297R, K296R/Y528F) or shRNA knock-down of Src prevented the ERK1/2 activation induced by Chk1 inhibitors and increased apoptosis. Conversely, constitutively active Ras or mitogen-activated protein kinase/ERK kinase 1 (MEK1) significantly diminished the ability of Src inhibitors to potentiate Chk1-inhibitor lethality. Moreover, Src/Chk1-inhibitor cotreatment attenuated MM-cell production of vascular endothelial growth factor and other angiogenic factors (eg, ANG [angiogenin], TIMP1/2 [tissue inhibitor of metalloproteinases 1/2], and RANTES [regulated on activation normal T-cell expressed and secreted]), and inhibited in vitro angiogenesis. Finally, coadministration of BMS354825 and UCN-01 suppressed human MM tumor growth in a murine xenograft model, increased apoptosis, and diminished angiogenesis. These findings suggest that Src kinase is required for Chk1-inhibitor-mediated Ras → ERK1/2 signaling activation, and that disruption of this event sharply potentiates the anti-MM activity of Chk1 inhi-bitors in vitro and in vivo.
Collapse
|
108
|
Gril B, Palmieri D, Qian Y, Smart D, Ileva L, Liewehr DJ, Steinberg SM, Steeg PS. Pazopanib reveals a role for tumor cell B-Raf in the prevention of HER2+ breast cancer brain metastasis. Clin Cancer Res 2010; 17:142-53. [PMID: 21081656 DOI: 10.1158/1078-0432.ccr-10-1603] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE Brain metastases of breast cancer contribute significantly to patient morbidity and mortality. We have tested pazopanib, a recently approved antiangiogenic drug that targets VEGFR1, VEGFR2, VEGFR3, PDGFRβ, PDGFRα, and c-kit, for prevention of experimental brain metastases and mechanism of action. EXPERIMENTAL DESIGN In vitro assays included B-Raf enzymatic assays, Western blots, and angiogenesis assays. For in vivo assays, HER2 transfectants of the brain seeking sublines of MDA-MB-231 cells (231-BR-HER2) and MCF7 cells (MCF7-HER2-BR3, derived herein) were injected into the left cardiac ventricle of mice and treated with vehicle or pazopanib beginning on day 3 postinjection. Brain metastases were counted histologically, imaged, and immunostained. RESULTS Treatment with 100 mg/kg of pazopanib resulted in a 73% decline in large 231-BR-HER2 metastases (P < 0.0001) and a 39% decline in micrometastases (P = 0.004). In vitro, pazopanib was directly antiproliferative to 231-BR-HER2 breast cancer cells and inhibited MEK and ERK activation in vitro despite B-Raf and Ras mutations. Enzymatic assays demonstrated that pazopanib directly inhibited the wild type and exon 11 oncogenic mutant, but not the V600E mutant forms of B-Raf. Activation of the B-Raf targets pERK1/2 and pMEK1/2 was decreased in pazopanib-treated brain metastases whereas blood vessel density was unaltered. In the MCF7-HER2-BR3 experimental brain metastasis model, pazopanib reduced overall brain metastasis volume upon magnetic resonance imaging (MRI) by 55% (P = 0.067), without affecting brain metastasis vascular density. CONCLUSIONS The data identify a new activity for pazopanib directly on tumor cells as a pan-Raf inhibitor and suggest its potential for prevention of brain metastatic colonization of HER2(+) breast cancer.
Collapse
Affiliation(s)
- Brunilde Gril
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Hingorani P, Kolb EA. Past, present and future of therapies in pediatric sarcomas. Future Oncol 2010; 6:605-18. [PMID: 20373872 DOI: 10.2217/fon.10.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Limited progress has been made over the past 30 years in improving the outcome of patients with high-risk pediatric sarcomas. The 5-year overall survival rate remains at 20% or less with metastatic sarcomas. Therefore, current and future research is focused on the identification and development of molecular or biological agents targeting the pathogenic pathways in sarcomas, either alone or in combination with conventional chemotherapy. To this end, the most promising activity has been seen with IGF-1 receptor antibodies and mTOR inhibitors. Other agents of interest are oncolytic viruses, epigenetic modulators (e.g., histone deacetylase inhibitors), immune modulators (e.g., muramyl tripeptide phosphatidylethanolamine) and other biological agents (e.g., trabectedin). In addition to the development of novel drugs, the other major area of recent focus is developing immune therapies, such as dendritic cell vaccines and adoptive immunotherapy for treating pediatric sarcomas. This article discusses the successes, the failures and the future direction of these therapies.
Collapse
Affiliation(s)
- Pooja Hingorani
- Department of Pediatric Hematology Oncology, Phoenix Childrens Hospital, 1919 E Thomas Road, Phoenix, AZ 85003, USA.
| | | |
Collapse
|
110
|
Paesler J, Gehrke I, Gandhirajan RK, Filipovich A, Hertweck M, Erdfelder F, Uhrmacher S, Poll-Wolbeck SJ, Hallek M, Kreuzer KA. The Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors Vatalanib and Pazopanib Potently Induce Apoptosis in Chronic Lymphocytic Leukemia Cells In vitro and In vivo. Clin Cancer Res 2010; 16:3390-8. [DOI: 10.1158/1078-0432.ccr-10-0232] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
111
|
Tailor TD, Hanna G, Yarmolenko PS, Dreher MR, Betof AS, Nixon AB, Spasojevic I, Dewhirst MW. Effect of pazopanib on tumor microenvironment and liposome delivery. Mol Cancer Ther 2010; 9:1798-808. [PMID: 20515941 DOI: 10.1158/1535-7163.mct-09-0856] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathologic angiogenesis creates an abnormal microenvironment in solid tumors, characterized by elevated interstitial fluid pressure (IFP) and hypoxia. Emerging theories suggest that judicious downregulation of proangiogenic signaling pathways may transiently "normalize" the vascular bed, making it more suitable for drug delivery and radiotherapy. In this work, we investigate the role of pazopanib, a small-molecule inhibitor of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptors, on tumor IFP, angiogenesis, hypoxia, and liposomal drug delivery. Nude mice bearing A549 human non-small cell lung cancer xenografts were treated with 100 mg/kg pazopanib (n = 20) or vehicle (n = 20) through oral gavage for 8 days, followed by a one-time intravenous dose of 10 mg/kg Doxil (liposomal doxorubicin). Pazopanib treatment resulted in significant reduction of tumor IFP and decreased vessel density, assessed by CD31 staining. Despite these trends toward normalization, high-performance liquid chromatography revealed no differences in doxorubicin concentration between pazopanib-treated and control tumors, with Doxil penetration from microvessels being significantly reduced in the pazopanib group. Additionally, tumor hypoxia, evaluated by CA-IX immunostaining and confirmed in a second study by EF5 expression (n = 4, 100 mg/kg pazopanib; n = 4, vehicle), was increased in pazopanib-treated tumors. Our results suggest that the classic definition of tumor "normalization" may undermine the crucial role of vessel permeability and oncotic pressure gradients in liposomal drug delivery, and that functional measures of normalization, such as reduced IFP and hypoxia, may not occur in parallel temporal windows.
Collapse
Affiliation(s)
- Tina D Tailor
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Hamberg P, Verweij J, Sleijfer S. (Pre-)clinical pharmacology and activity of pazopanib, a novel multikinase angiogenesis inhibitor. Oncologist 2010; 15:539-47. [PMID: 20511320 PMCID: PMC3227994 DOI: 10.1634/theoncologist.2009-0274] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 04/14/2010] [Indexed: 02/06/2023] Open
Abstract
Pazopanib is a recently approved, novel tyrosine kinase inhibitor specifically designed to impair angiogenesis by abrogating vascular endothelial growth factor receptor 2 (VEGFR-2) to exert its function. Pazopanib inhibits VEGF-induced endothelial cell proliferation in vitro and angiogenesis in vivo and demonstrates antitumor activity in mouse models. Furthermore, the pazopanib concentration resulting in maximal inhibition of VEGFR-2 phosphorylation in vivo was in line with the steady-state concentration required to inhibit growth of tumor xenografts, suggesting that pazopanib's mechanism of action is indeed through VEGFR-2 inhibition. In a phase I trial, a generally well-tolerated dose was identified at which the majority of patients achieved pazopanib plasma concentrations above the concentration required for maximal in vivo inhibition of VEGFR-2 phosphorylation in preclinical models. Administered as monotherapy, evidence of antitumor activity was observed in phase II studies in several tumor types, including soft tissue sarcoma, renal cell cancer (RCC), ovarian cancer, and non-small cell lung cancer. Recently, the U.S. Food and Drug Administration granted approval for treatment with pazopanib in patients with RCC based on the longer progression-free survival time observed with this agent in a placebo-controlled, randomized trial. This review summarizes the preclinical and clinical pharmacokinetics and pharmacodynamics of pazopanib, as well as data on clinical activity, that ultimately resulted in its recent approval.
Collapse
Affiliation(s)
- Paul Hamberg
- Erasmus University Medical Center - Daniel den Hoed Cancer Center, Department of Medical Oncology, 3008 AE Rotterdam, The Netherlands.
| | | | | |
Collapse
|
113
|
Bevacizumab enhances chemosensitivity of hepatocellular carcinoma to adriamycin related to inhibition of survivin expression. J Cancer Res Clin Oncol 2010; 137:505-12. [PMID: 20490863 DOI: 10.1007/s00432-010-0914-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/06/2010] [Indexed: 12/13/2022]
Abstract
PURPOSE In recent years, anti-angiogenesis drugs have shown promising clinical effects against many tumors, particularly in combination with chemotherapy. Although the combination has become a standard of care for many tumors, the mechanisms of the chemosensitizing activity of anti-angiogenic drugs are not fully understood. Here, we sought to determine if anti-angiogenesis drug bevacizumab could enhance the chemosensitivity of HCC by inhibition of survivin. METHODS After treatment of human umbilical vein endothelial cells (HUVECs) and hepatocellular carcinoma (HCC) cell line PLC/PRF/5 (PLC) with bevacizumab or/and adriamycin, the direct effects were examined by survival assays, and the expression of Akt, Phospho-Akt and survivin were evaluated by western blot. Tumor growth was observed in a human HCC xenograft nude mouse model treated with different drugs, and the expression of PCNA, CD31 and survivin in tumor tissues were evaluated by means of immunohistochemistry. RESULTS Bevacizumab enhanced the chemosensitivity of HCC by inhibiting the VEGF-PI3 K/Akt-survivin signaling cascade in endothelial cells. The combination of bevacizumab with adriamycin therapy resulted in better outcomes compared with monotherapy in hepatocellular carcinoma xenografts; bevacizumab significantly inhibited tumor angiogenesis and growth. In addition, bevacizumab reduced survivin expression in tumor tissues, including tumor vascular endothelial cells in vivo, although it did not inhibit survivin expression in tumor cells in vitro. CONCLUSION These results implicate the bevacizumab-increased efficacy of adriamycin via an inhibition of survivin expression in malignant cells as well as tumor vasculature cells, which provides other insights into the mechanism of enhanced efficacy by combination of VEGF blocker and chemotherapeutic agents.
Collapse
|
114
|
Mahtouk K, Moreaux J, Hose D, Rème T, Meissner T, Jourdan M, Rossi JF, Pals ST, Goldschmidt H, Klein B. Growth factors in multiple myeloma: a comprehensive analysis of their expression in tumor cells and bone marrow environment using Affymetrix microarrays. BMC Cancer 2010; 10:198. [PMID: 20465808 PMCID: PMC2882921 DOI: 10.1186/1471-2407-10-198] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 05/13/2010] [Indexed: 12/19/2022] Open
Abstract
Background Multiple myeloma (MM) is characterized by a strong dependence of the tumor cells on their microenvironment, which produces growth factors supporting survival and proliferation of myeloma cells (MMC). In the past few years, many myeloma growth factors (MGF) have been described in the literature. However, their relative importance and the nature of the cells producing MGF remain unidentified for many of them. Methods We have analysed the expression of 51 MGF and 36 MGF receptors (MGFR) using Affymetrix microarrays throughout normal plasma cell differentiation, in MMC and in cells from the bone marrow (BM) microenvironment (CD14, CD3, polymorphonuclear neutrophils, stromal cells and osteoclasts). Results 4/51 MGF and 9/36 MGF-receptors genes were significantly overexpressed in plasmablasts (PPC) and BM plasma cell (BMPC) compared to B cells whereas 11 MGF and 11 MGFR genes were overexpressed in BMPC compared to PPC. 3 MGF genes (AREG, NRG3, Wnt5A) and none of the receptors were significantly overexpressed in MMC versus BMPC. Furthermore, 3/51 MGF genes were overexpressed in MMC compared to the the BM microenvironment whereas 22/51 MGF genes were overexpressed in one environment subpopulation compared to MMC. Conclusions Two major messages arise from this analysis 1) The majority of MGF genes is expressed by the bone marrow environment. 2) Several MGF and their receptors are overexpressed throughout normal plasma cell differentiation. This study provides an extensive and comparative analysis of MGF expression in plasma cell differentiation and in MM and gives new insights in the understanding of intercellular communication signals in MM.
Collapse
|
115
|
Ribatti D. Tyrosine Kinase Inhibitors as Antiangiogenic Drugs in Multiple Myeloma. Pharmaceuticals (Basel) 2010; 3. [PMID: 27713297 PMCID: PMC4034030 DOI: 10.3390/ph3041125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tyrosine kinase inhibitors are a new class of anticancer drugs, that are capable of directly interacting with the catalytic site of the target enzyme and thereby inhibiting catalysis. Therapeutically useful tyrosine kinase inhibitors are not specific for a single tyrosine kinase, but rather they are selective against a limited number of tyrosine kinases. The success of imatinib-mesylate (Gleevec®) for the treatment of patients with chronic myeloid leukemia has opened a intensive search for new small molecular compounds able to target other protein tyrosine kinases involved in the malignant transformation. This review article is focused on the use of tyrosine kinase inhibitors as antiangiogenic molecules in the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Piazza G. Cesare, 11, Policlinico 70124, Bari, Italy.
| |
Collapse
|
116
|
Tyrosine Kinase Inhibitors as Antiangiogenic Drugs in Multiple Myeloma. Pharmaceuticals (Basel) 2010; 3:1225-1231. [DOI: 10.3390/ph3041225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 12/18/2022] Open
|
117
|
Merritt WM, Nick AM, Carroll AR, Lu C, Matsuo K, Dumble M, Jennings N, Zhang S, Lin YG, Spannuth WA, Kamat AA, Stone RL, Shahzad MMK, Coleman RL, Kumar R, Sood AK. Bridging the gap between cytotoxic and biologic therapy with metronomic topotecan and pazopanib in ovarian cancer. Mol Cancer Ther 2010; 9:985-95. [PMID: 20371710 DOI: 10.1158/1535-7163.mct-09-0967] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study aimed to investigate the antitumor and antiangiogenic effects utilizing a novel therapy regimen of metronomic topotecan and pazopanib, a multireceptor tyrosine kinase inhibitor. In vitro (Western blot) and in vivo dose-finding experiments were done following pazopanib therapy in ovarian cancer models. Pazopanib and metronomic (daily) oral topotecan therapy was examined in an orthotopic model of ovarian cancer. Tumor weights, survival, and markers of the tumor microenvironment [angiogenesis (CD31 and pericyte coverage), proliferation (Ki-67), and apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling)] were analyzed by immunostaining following therapy. Pazopanib therapy reduced vascular endothelial growth factor receptor 2 (VEGFR-2) activity in vitro and vivo in a dose-dependent manner. Compared with control mice, pazopanib reduced tumor weight by 28% to 82% (P < 0.01 in the SKOV3ip1 model) and metronomic topotecan reduced tumor weight by 40% to 59% in the HeyA8 (P = 0.13) and SKOV3ip1 (P = 0.07) models. Combination therapy had the greatest effect with 79% to 84% reduction (P < 0.01 for both models). In the SKOV3ip1 and A2780 models, mouse survival was significantly longer (P < 0.001 versus controls) with pazopanib and metronomic topotecan therapy. Pazopanib therapy reduced murine endothelial cell migration in vitro in a dose-dependent manner following VEGF stimulation and decreased tumor microvessel density and pericyte coverage when given in combination with metronomic topotecan. Tumor cell proliferation decreased in all treatment arms compared with controls (P < 0.01 for combination groups) and increased tumor cell apoptosis by 4-fold with combination therapy. Pazopanib therapy in combination with metronomic topotecan therapy showed significant antitumor and antiangiogenic properties in preclinical ovarian cancer models and warrants further investigation as a novel therapeutic regimen in clinical trials. Mol Cancer Ther; 9(4); 985-95. (c)2010 AACR.
Collapse
Affiliation(s)
- William M Merritt
- Departments of Gynecologic Oncology and Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Unit 1362, PO Box 301439, Houston, TX 77230-1439, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
Pazopanib, a tyrosine kinase inhibitor targeted to angiogenesis, has been tested in preclinical and clinical trials and has shown promising activity against a variety of solid tumors, such as renal cancer, all of which are related to the angiogenic pathway. It has a safety profile related to this mechanism of action. Diarrhea, hypertension, hair depigmentation and nausea are the most common side effects. Pazopanib is currently under evaluation as monotherapy and in combination with some potentially synergistic agents of proven activity.
Collapse
|
119
|
Martin SK, Diamond P, Williams SA, To LB, Peet DJ, Fujii N, Gronthos S, Harris AL, Zannettino ACW. Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica 2009; 95:776-84. [PMID: 20015878 DOI: 10.3324/haematol.2009.015628] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Multiple myeloma is an incurable malignancy of bone marrow plasma cells. Progression of multiple myeloma is accompanied by an increase in bone marrow angiogenesis. Studies from our laboratory suggest a role for the CXCL12 chemokine in this process, with circulating levels of CXCL12 correlating with bone marrow angiogenesis in patients with multiple myeloma. While the mechanisms responsible for aberrant plasma cell expression of CXCL12 remain to be determined, studies in other systems suggest a role for hypoxia and hypoxia-inducible transcription factors. DESIGN AND METHODS The expression of hypoxia-inducible factor protein was examined in patients' bone marrow biopsy specimens using immunohistochemistry. The hypoxic regulation of CXCL12 was examined in multiple myeloma plasma cell lines using polymerase chain reaction and western blotting. The role of hypoxia-inducible factors-1 and -2 in the regulation of CXCL12 expression was examined using over-expression and short hairpin RNA knockdown constructs, electrophoretic mobility shift assays and chromatin immunoprecipitation. The contribution of CXCL12 to hypoxia-induced angiogenesis was examined in vivo using a subcutaneous murine model of neovascularization. RESULTS Strong hypoxia-inducible factor-2 protein expression was detected in CD138(+) multiple myeloma plasma cells in patients' biopsy specimens. Prolonged exposure to hypoxia strongly up-regulated CXCL12 expression in multiple myeloma plasma cells and hypoxia-inducible factor-2 was found to play a key role in this response. Promoter analyses revealed increased hypoxia-inducible factor-2 binding to the CXCL12 promoter under hypoxic conditions. Over-expression of hypoxia-inducible factor in multiple myeloma plasma cells strongly induced in vivo angiogenesis, and administration of a CXCL12 antagonist decreased hypoxia-inducible factor-induced angiogenesis. CONCLUSIONS Hypoxia-inducible factor-2 is a newly identified regulator of CXCL12 expression in multiple myeloma plasma cells and a major contributor to multiple myeloma plasma cell-induced angiogenesis. Targeting the hypoxic niche, and more specifically hypoxia-inducible factor-2, may represent a viable strategy to inhibit angiogenesis in multiple myeloma and progression of this disease.
Collapse
Affiliation(s)
- Sally K Martin
- Myeloma Research Program, Division of Haematology, Centre for Cancer Biology-SA Pathology and University of Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 2009; 13:1-14. [PMID: 20012482 PMCID: PMC2845892 DOI: 10.1007/s10456-009-9160-6] [Citation(s) in RCA: 335] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/23/2009] [Indexed: 12/19/2022]
Abstract
Tyrosine kinases are important cellular signaling proteins that have a variety of biological activities including cell proliferation and migration. Multiple kinases are involved in angiogenesis, including receptor tyrosine kinases such as the vascular endothelial growth factor receptor. Inhibition of angiogenic tyrosine kinases has been developed as a systemic treatment strategy for cancer. Three anti-angiogenic tyrosine kinase inhibitors (TKIs), sunitinib, sorafenib and pazopanib, with differential binding capacities to angiogenic kinases were recently approved for treatment of patients with advanced cancer (renal cell cancer, gastro-intestinal stromal tumors, and hepatocellular cancer). Many other anti-angiogenic TKIs are being studied in phase I-III clinical trials. In addition to their beneficial anti-tumor activity, clinical resistance and toxicities have also been observed with these agents. In this manuscript, we will give an overview of the design and development of anti-angiogenic TKIs. We describe their molecular structure and classification, their mechanism of action, and their inhibitory activity against specific kinase signaling pathways. In addition, we provide insight into what extent selective targeting of angiogenic kinases by TKIs may contribute to the clinically observed anti-tumor activity, resistance, and toxicity. We feel that it is of crucial importance to increase our understanding of the clinical mechanism of action of anti-angiogenic TKIs in order to further optimize their clinical efficacy.
Collapse
|
121
|
|
122
|
Affiliation(s)
- Mats Ljungman
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
123
|
Olaussen KA, Commo F, Tailler M, Lacroix L, Vitale I, Raza SQ, Richon C, Dessen P, Lazar V, Soria JC, Kroemer G. Synergistic proapoptotic effects of the two tyrosine kinase inhibitors pazopanib and lapatinib on multiple carcinoma cell lines. Oncogene 2009; 28:4249-60. [PMID: 19749798 DOI: 10.1038/onc.2009.277] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pazopanib and lapatinib are two tyrosine kinase inhibitors that have been designed to inhibit the VEGF tyrosine kinase receptors 1, 2 and 3 (pazopanib), and the HER1 and HER2 receptors in a dual manner (lapatinib). Pazopanib has also been reported to mediate inhibitory effect on a selected panel of additional tyrosine kinases such as PDGFR and c-kit. Here, we report that pazopanib and lapatinib act synergistically to induce apoptosis of A549 non-small-cell lung cancer cells. Systematic assessment of the kinome revealed that both pazopanib and lapatinib inhibited dozens of different tyrosine kinases and that their combination could suppress the activity of some tyrosine kinases (such as c-Met) that were not or only partially affected by either of the two agents alone. We also found that pazopanib and lapatinib induced selective changes in the transcriptome of A549 cells, some of which were specific for the combination of both agents. Analysis of a panel of unrelated human carcinoma cell lines revealed a signature of 52 genes whose up- or downregulation reflected the combined action of pazopanib and lapatinib. Indeed, pazopanib and lapatinib exerted synergistic cytotoxic effects on several distinct non-small-cell lung cancer cells as well as on unrelated carcinomas. Altogether, these results support the contention that combinations of tyrosine kinase inhibitors should be evaluated for synergistic antitumor effects. Such combinations may lead to a 'collapse' of pro-survival signal transduction pathways that leads to apoptotic cell death.
Collapse
|
124
|
Heidenreich R, Röcken M, Ghoreschi K. Angiogenesis drives psoriasis pathogenesis. Int J Exp Pathol 2009; 90:232-48. [PMID: 19563608 DOI: 10.1111/j.1365-2613.2009.00669.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Psoriasis pathogenesis is closely associated with disease-inducing Th1 and Th17 cells. Yet, several studies suggest that aberrant keratinocyte or endothelial cell signalling significantly contributes to disease manifestation. Histological hallmarks of psoriatic skin include the infiltration of multiple immune cells, keratinocyte proliferation and increased dermal vascularity. Formation of new blood vessels starts with early psoriatic changes and disappears with disease clearance. Several angiogenic mediators like vascular endothelial growth factor, hypoxia-inducible factors, angiopoietins and pro-angiogenic cytokines, such as tumour necrosis factor (TNF), interleukin (IL)-8 and IL-17, are up-regulated in psoriasis development. Contact- and mediator-dependent factors derived from keratinocytes, mast cells and immune cells may contribute to the strong blood vessel formation of psoriasis. New technologies and experimental models provide new insights into the role of angiogenesis in psoriasis pathogenesis. Interestingly, many therapies target not only immune cells, but also protein structures of endothelial cells. Here we summarize the role of pro-angiogenic factors in psoriasis development and discuss angiogenesis as a potential target of novel therapies.
Collapse
Affiliation(s)
- Regina Heidenreich
- Department of Dermatology, University Medical Center, University of Tübingen, Tübingen, Germany.
| | | | | |
Collapse
|
125
|
Huang TT, Sarkaria SM, Cloughesy TF, Mischel PS. Targeted therapy for malignant glioma patients: lessons learned and the road ahead. Neurotherapeutics 2009; 6:500-12. [PMID: 19560740 PMCID: PMC3600166 DOI: 10.1016/j.nurt.2009.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022] Open
Abstract
Molecularly targeted therapies are transforming the care of patients with malignant gliomas, including glioblastoma, the most common malignant primary brain tumor of adults. With an arsenal of small molecule inhibitors and antibodies that target key components of the signal transduction machinery that are commonly activated in gliomas, neuro-oncologists and neurosurgeons are poised to transform the care of these patients. Nonetheless, successful application of targeted therapies remains a challenge. Strategies are lacking for directing kinase inhibitor or other pathway-specific therapies to individual patients most likely to benefit. In addition, response to targeted agents is determined not only by the presence of the key mutant kinases, but also by other critical changes in the molecular circuitry of cancer cells, such as loss of key tumor suppressor proteins, the selection for kinase-resistant mutants, and the deregulation of feedback loops. Understanding these signaling networks, and studying them in patients, will be critical for developing rational combination therapies to suppress resistance for malignant glioma patients. Here we review the current status of molecular targeted therapies for malignant gliomas. We focus initially on identifying some of the insights gained to date from targeting the EGFR/PI3K/Akt/mTOR signaling pathway in patients and on how this has led toward a reconceptualization of some of the challenges and directions for targeted treatment. We describe how advances from the world of genomics have the potential to transform our approaches toward targeted therapy, and describe how a deeper understanding of the complex nature of cancer, and its adeptness at rewiring molecular circuitry to evade targeted agents, has raised new challenges and identified new leads.
Collapse
Affiliation(s)
- Tiffany T. Huang
- grid.19006.3e0000000096326718Department of Pathology and Laboratory Medicine and Molecular & Medical Pharmacology, University of California, Los Angeles, 90095 Los Angeles, California
| | - Shawn M. Sarkaria
- grid.19006.3e0000000096326718Department of Pathology and Laboratory Medicine and Molecular & Medical Pharmacology, University of California, Los Angeles, 90095 Los Angeles, California
| | - Timothy F. Cloughesy
- grid.19006.3e0000000096326718Department of Neurology, University of California, Los Angeles, 90095 Los Angeles, California
- grid.19006.3e0000000096326718Henry E. Singleton Brain Tumor Program, David Geffen School of Medicine, University of California, Los Angeles, 90095 Los Angeles, California
| | - Paul S. Mischel
- grid.19006.3e0000000096326718Department of Pathology and Laboratory Medicine and Molecular & Medical Pharmacology, University of California, Los Angeles, 90095 Los Angeles, California
- grid.19006.3e0000000096326718Henry E. Singleton Brain Tumor Program, David Geffen School of Medicine, University of California, Los Angeles, 90095 Los Angeles, California
| |
Collapse
|
126
|
Zhang J, Sattler M, Tonon G, Grabher C, Lababidi S, Zimmerhackl A, Raab MS, Vallet S, Zhou Y, Cartron MA, Hideshima T, Tai YT, Chauhan D, Anderson KC, Podar K. Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res 2009; 69:5082-90. [PMID: 19509231 DOI: 10.1158/0008-5472.can-08-4603] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone marrow angiogenesis is associated with multiple myeloma (MM) progression. Here, we report high constitutive hypoxia-inducible factor-1alpha (Hif-1alpha) expression in MM cells, which is associated with oncogenic c-Myc. A drug screen for anti-MM agents that decrease Hif-1alpha and c-Myc levels identified a variety of compounds, including bortezomib, lenalidomide, enzastaurin, and adaphostin. Functionally, based on transient knockdowns and overexpression, our data delineate a c-Myc/Hif-1alpha-dependent pathway mediating vascular endothelial growth factor production and secretion. The antiangiogenic activity of our tool compound, adaphostin, was subsequently shown in a zebrafish model and translated into a preclinical in vitro and in vivo model of MM in the bone marrow milieu. Our data, therefore, identify Hif-1alpha as a novel molecular target in MM and add another facet to anti-MM drug activity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Petrelli A, Valabrega G. Multitarget drugs: the present and the future of cancer therapy. Expert Opin Pharmacother 2009; 10:589-600. [PMID: 19284362 DOI: 10.1517/14656560902781907] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Target therapies for the treatment of human cancers have revolutionized the concept of oncological medicine. This type of therapeutic approach is directed to the inhibition of molecular targets that play a pivotal role in tumor progression -- such as tyrosine kinase receptors (TKIs) controlling cell proliferation and survival -- mainly by means of compounds able to block their activity. In the beginning, the aim of target therapies was specifically to hit a single molecule expressed in neoplastic cells. Now the prevailing idea is that inhibiting both cancer cells and cells of the stroma supporting the tumor would gain better results in fighting the disease. Therefore, the single-target therapy is fading in favor of a multitarget approach and the new generation of TKIs is selected on the basis of their ability simultaneously to target different molecules. This review summarizes the molecular basis of multitarget therapies and the most relevant results obtained in different cancer types.
Collapse
Affiliation(s)
- Annalisa Petrelli
- University of Turin Medical School, Institute for Cancer Research and Treatment (IRCC), Division of Molecular Oncology, Candiolo (Torino), Italy.
| | | |
Collapse
|
128
|
Abstract
The use of chemotherapy and endocrine therapy have led to objective tumour shrinkage and improved survival in women with metastatic breast cancer. Despite the availability of many chemotherapeutic drugs, these agents do not act specifically on the various growth signalling pathways that drive tumour growth and progression. This lack of specificity is likely to explain the inconsistent responses seen across the population of breast cancer patients and contributes to the undesirable adverse effects. The expanding knowledge of the important molecular pathways involved in tumourogenesis and tumour progression has led to the exciting development of several classes of targeted agents. The potential advantage of such treatment is to improve cancer cell kill with less damage to healthy tissues. Hormonal agents were the first to utilize the specific estrogen receptor-related growth pathways for therapeutic efficacy. Agents directed to the human epidermal growth factor receptor (HER)-2/neu growth signalling pathway exemplify the effectiveness of the new generation of targeted biological agents, but are limited to the 20-25% of breast cancers that overexpress the receptor. However, angiogenesis is a critical component of tumour development that is necessary for all tumour growth and is not limited to a subset of breast cancers. Therefore, agents that can diminish or prevent tumour angiogenesis are likely to have a far broader application and benefit to women with breast cancer. Several anti-angiogenic agents have been evaluated in phase I, II and III trials for patients with metastatic breast cancer. These trials have demonstrated efficacy of anti-angiogenic agents when used in combination with chemotherapy and the toxicity profile has been better defined. Issues regarding the mechanisms of resistance, identifying combination regimens that result in the greatest clinical benefits and minimizing the adverse effects are areas that require further research.
Collapse
Affiliation(s)
- Arlene Chan
- Mount Breast Group, Mount Hospital, Perth, Western Australia, Australia.
| |
Collapse
|
129
|
Abstract
Detailed genomic studies have shown that cytogenetic abnormalities contribute to multiple myeloma (MM) pathogenesis and disease progression. Nevertheless, little is known about the characteristics of MM at the epigenetic level and specifically how microRNAs regulate MM progression in the context of the bone marrow milieu. Therefore, we performed microRNA expression profiling of bone marrow derived CD138(+) MM cells versus their normal cellular counterparts and validated data by qRT-PCR. We identified a MM-specific microRNA signature characterized by down-expression of microRNA-15a/-16 and overexpression of microRNA-222/-221/-382/-181a/-181b (P < .01). We investigated the functional role of microRNA-15a and -16 and showed that they regulate proliferation and growth of MM cells in vitro and in vivo by inhibiting AKT serine/threonine-protein-kinase (AKT3), ribosomal-protein-S6, MAP-kinases, and NF-kappaB-activator MAP3KIP3. Moreover, miRNA-15a and -16 exerted their anti-MM activity even in the context of the bone marrow milieu in vitro and in vivo. These data indicate that microRNAs play a pivotal role in the biology of MM and represent important targets for novel therapies in MM.
Collapse
|
130
|
Mauriz JL, González-Gallego J. Antiangiogenic drugs: current knowledge and new approaches to cancer therapy. J Pharm Sci 2009; 97:4129-54. [PMID: 18200520 DOI: 10.1002/jps.21286] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Angiogenesis--process of new blood-vessel growth from existing vasculature--is an integral part of both normal developmental processes and numerous pathologies such as cancer, ischemic diseases and chronic inflammation. Angiogenesis plays a crucial role facilitating tumour growth and the metastatic process, and it is the result of a dynamic balance between proangiogenic and antiangiogenic factors. The potential to block tumour growth and metastases by angiogenesis inhibition represents an intriguing approach to the cancer treatment. Angiogenesis continues to be a topic of major scientific interest; and there are currently more antiangiogenic drugs in cancer clinical trials than those that fit into any other mechanistic category. Based on preclinical studies, researchers believe that targeting the blood vessels which support tumour growth could help treatment of a broad range of cancers. Angiogenic factors or their receptors, endothelial cell proliferation, matrix metalloproteinases or endothelial cell adhesion, are the main targets of an increasing number of clinical trials approved to test the tolerance and therapeutic efficacy of antiangiogenic agents. Unfortunately, contrary to initial expectations, it has been described that antiangiogenic treatment can cause different toxicities in cancer patients. The purpose of this article is to provide an overview of current attempts to inhibit tumour angiogenesis for cancer therapy.
Collapse
Affiliation(s)
- Jose L Mauriz
- Ciberehd and Institute of Biomedicine, University of León, Campus of Vegazana, s/n, 24071 León, Spain
| | | |
Collapse
|
131
|
Kastritis E, Charidimou A, Varkaris A, Dimopoulos MA. Targeted therapies in multiple myeloma. Target Oncol 2009; 4:23-36. [PMID: 19343299 DOI: 10.1007/s11523-008-0102-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/30/2008] [Indexed: 01/10/2023]
Abstract
Increasing knowledge of the biology of multiple myeloma led the way for the development of novel drugs that have changed the management of the disease. New treatments target not only to the malignant plasma cell but also target the interactions of myeloma cells with their microenvironment. Several preclinical studies have identified potential targets and drugs are developed that act on pathways crucial for myeloma cell survival, proliferation, migration and drug resistance. The identification of active agents in the laboratory is followed by rationally designed clinical studies that validate these drugs, either as single agents or in combinations with other active drugs. These novel agents may be either small molecules or monoclonal antibodies targeting receptors, kinase activity of receptors or key molecules within critical pathways, intracellular maintenance mechanisms and immune modulation.
Collapse
Affiliation(s)
- Efstathios Kastritis
- Department of Clinical Therapeutics, University of Athens School of Medicine, Alexandra Hospital, 80 Vas Sofias Ave, 115 28, Athens, Greece.
| | | | | | | |
Collapse
|
132
|
Kirn DH, Thorne SH. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 2009; 9:64-71. [PMID: 19104515 DOI: 10.1038/nrc2545] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses have been engineered for cancer therapy in a variety of ways. Approaches include non-replicating gene therapy vectors, cancer vaccines and oncolytic viruses, but the clinical efficacy of these approaches has been limited by multiple factors. However, a new therapeutic class of oncolytic poxviruses has recently been developed that combines targeted and armed approaches for treating cancer. Initial preclinical and clinical results show that products from this therapeutic class can systemically target cancers in a highly selective and potent fashion using a multi-pronged mechanism of action.
Collapse
Affiliation(s)
- David H Kirn
- Jennerex Biotherapeutics Inc., San Francisco, California 94105, USA .
| | | |
Collapse
|
133
|
Targeted delivery with peptidomimetic conjugated self-assembled nanoparticles. Pharm Res 2008; 26:612-30. [PMID: 19085091 DOI: 10.1007/s11095-008-9802-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/01/2008] [Indexed: 12/28/2022]
Abstract
Peptides produce specific nanostructures, making them useful for targeting in biological systems but they have low bioavailability, potential immunogenicity and poor metabolic stability. Peptidomimetic self-assembled NPs can possess biological recognition motifs as well as providing desired engineering properties. Inorganic NPs, coated with self-assembled macromers for stability and anti-fouling, and conjugated with target-specific ligands, are advancing imaging from the anatomy-based level to the molecular level. Ligand conjugated NPs are attractive for cell-selective tumor drug delivery, since this process has high transport capacity as well as ligand dependent cell specificity. Peptidomimetic NPs can provide stronger interaction with surface receptors on tumor cells, resulting in higher uptake and reduced drug resistance. Self-assembled NPs conjugated with peptidomimetic antigens are ideal for sustained presentation of vaccine antigens to dendritic cells and subsequent activation of T cell mediated adaptive immune response. Self-assembled NPs are a viable alternative to encapsulation for sustained delivery of proteins in tissue engineering. Cell penetrating peptides conjugated to NPs are used as intracellular delivery vectors for gene expression and as transfection agents for plasmid delivery. In this work, synthesis, characterization, properties, immunogenicity, and medical applications of peptidomimetic NPs in imaging, tumor delivery, vaccination, tissue engineering, and intracellular delivery are reviewed.
Collapse
|
134
|
Ocio EM, Mateos MV, Maiso P, Pandiella A, San-Miguel JF. New drugs in multiple myeloma: mechanisms of action and phase I/II clinical findings. Lancet Oncol 2008; 9:1157-65. [PMID: 19038762 DOI: 10.1016/s1470-2045(08)70304-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The outcome of multiple myeloma has substantially improved over the past decade, mainly due to recently approved drugs, such as thalidomide, lenalidomide, and bortezomib. Nevertheless, most patients still relapse and, therefore, drugs with new mechanisms of action are urgently needed to overcome this resistance. In this Review, we discuss some of the new targeted therapeutic strategies under assessment in preclinical and clinical studies in multiple myeloma. Unfortunately, the single-agent clinical activity of most of these new drugs has been limited; nevertheless, their effectiveness might be enhanced by their rational combination with each other or with conventional agents.
Collapse
Affiliation(s)
- Enrique M Ocio
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|
135
|
Vallet S, Palumbo A, Raje N, Boccadoro M, Anderson KC. Thalidomide and lenalidomide: Mechanism-based potential drug combinations. Leuk Lymphoma 2008; 49:1238-45. [PMID: 18452080 DOI: 10.1080/10428190802005191] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thalidomide and its analogue lenalidomide are potent anti-inflammatory, anti-angiogenic and immunomodulatory drugs, successfully used for the treatment of hematological cancers, in particular multiple myeloma (MM). Both drugs reveal a dual mechanism of action: they target tumour cells by direct cytotoxicity and, indirectly, by interfering with several components of the bone marrow microenvironment. Lenalidomide and thalidomide are versatile drugs with a broad range of activities that potentiate the anti-MM effects of conventional and novel agents. Here, we review the mechanism of action of these drugs, providing a rationale for combination studies in order to improve patient outcome and reduce side effects.
Collapse
Affiliation(s)
- Sonia Vallet
- Division of Hematology and Oncology, Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
136
|
Domhan S, Muschal S, Schwager C, Morath C, Wirkner U, Ansorge W, Maercker C, Zeier M, Huber PE, Abdollahi A. Molecular mechanisms of the antiangiogenic and antitumor effects of mycophenolic acid. Mol Cancer Ther 2008; 7:1656-68. [PMID: 18566237 DOI: 10.1158/1535-7163.mct-08-0193] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relative risk for the development of malignancies following solid organ transplantation seems to be decreased in patients treated with the immunosuppressive agent mycophenolic acid (MPA). However, the molecular mechanisms of the antineoplastic effects of MPA are not completely understood. Here, we report that human endothelial cells and fibroblasts are highly sensitive to MPA treatment. We found that U87 glioblastoma cells were resistant to MPA treatment in vitro. However, U87 tumor growth was markedly inhibited in vivo in BALB/c nude mice, suggesting that MPA exerted its antitumor effects via modulation of the tumor microenvironment. Accordingly, microvascular density and pericyte coverage were markedly reduced in MPA-treated tumors in vivo. Using functional in vitro assays, we showed that MPA potently inhibited endothelial cell and fibroblast proliferation, invasion/migration, and endothelial cell tube formation. To identify the genetic participants governing the antiangiogenic and antifibrotic effects of MPA, we performed genome-wide transcriptional analysis in U87, endothelial and fibroblast cells at 6 and 12 h after MPA treatment. Network analysis revealed a critical role for MYC signaling in endothelial cells treated with MPA. Moreover, we found that the antiangiogenic effects of MPA were organized by coordinated communications between MYC and NDRG1, YYI, HIF1A, HDAC2, CDC2, GSK3B, and PRKACB signaling. The regulation of these "hub nodes" was confirmed by real-time quantitative reverse transcription-PCR and protein analysis. The critical involvement of MYC in the antiangiogenic signaling of MPA was further shown by gene knockdown experiments. Together, these data provide a molecular basis for the antiangiogenic and antifibrotic effects of MPA, which warrants further clinical investigations.
Collapse
Affiliation(s)
- Sophie Domhan
- Department of Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Anargyrou K, Dimopoulos MA, Sezer O, Terpos E. Novel anti-myeloma agents and angiogenesis. Leuk Lymphoma 2008; 49:677-89. [PMID: 18398734 DOI: 10.1080/10428190701861686] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During the last decade several novel agents have been used in the management of patients with multiple myeloma. Immunomodulatory drugs and proteasome inhibitors exert their efficacy both directly by inducing apoptosis of myeloma cells and indirectly through the interruption of the interactions between myeloma and stromal cells in the bone marrow (BM) microenvironment. These interactions are crucial for myeloma cell growth and survival. The adherence of myeloma cells to BM stromal cells leads to the overproduction of several cytokines with angiogenic properties that enhance the survival and growth of myeloma cells through paracrine and autocrine loops. The correlation of these molecules with clinical features and survival of myeloma patients supports the importance of angiogenesis in the pathogenesis of the disease and reveals these cytokines as suitable targets for the development of novel anti-myeloma therapies. This review summarises all available preclinical and clinical data for the effect of novel agents that are used in myeloma therapy, such as thalidomide, lenalidomide, bortezomib and VEGF inhibitors, on angiogenesis, which is at least partially responsible for their remarkable anti-myeloma efficacy.
Collapse
Affiliation(s)
- Konstantinos Anargyrou
- Department of Haematology and Medical Research, 251 General Air Force Hospital, Athens, Greece
| | | | | | | |
Collapse
|
138
|
Validation of PDGFRbeta and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib. Blood 2008; 112:1346-56. [PMID: 18524994 DOI: 10.1182/blood-2007-10-116590] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Inhibition of multiple myeloma (MM) plasma cells in their permissive bone marrow microenvironment represents an attractive strategy for blocking the tumor/vessel growth associated with the disease progression. However, target specificity is an essential aim of this approach. Here, we identified platelet-derived growth factor (PDGF)-receptor beta (PDGFRbeta) and pp60c-Src as shared constitutively activated tyrosine-kinases (TKs) in plasma cells and endothelial cells (ECs) isolated from MM patients (MMECs). Our cellular and molecular dissection showed that the PDGF-BB/PDGFRbeta kinase axis promoted MM tumor growth and vessel sprouting by activating ERK1/2, AKT, and the transcription of MMEC-released proangiogenic factors, such as vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8). Interestingly, pp60c-Src TK-activity was selectively induced by VEGF in MM tumor and ECs, and the use of small-interfering (si)RNAs validated pp60c-Src as a key signaling effector of VEGF loop required for MMEC survival, migration, and angiogenesis. We also assessed the antitumor/vessel activity of dasatinib, a novel orally bioactive PDGFRbeta/Src TK-inhibitor that significantly delayed MM tumor growth and angiogenesis in vivo, showing a synergistic cytotoxicity with conventional and novel antimyeloma drugs (ie, melphalan, prednisone, bor-tezomib, and thalidomide). Overall data highlight the biologic and therapeutic relevance of the combined targeting of PDGFRbeta/c-Src TKs in MM, providing a framework for future clinical trials.
Collapse
|
139
|
Berdugo Polak M, Behar-Cohen F. Dégénérescence maculaire liée à l’âge exsudative : efficacité et limites des différents traitements. J Fr Ophtalmol 2008; 31:537-56. [DOI: 10.1016/s0181-5512(08)72475-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
140
|
Podar K, Richardson PG, Hideshima T, Chauhan D, Anderson KC. The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol 2008; 20:597-612. [PMID: 18070708 DOI: 10.1016/j.beha.2007.08.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of monoclonal immunoglobulin-secreting plasma cells within the bone marrow (BM). It has become clear that the intimate reciprocal relationship between the tumor cell clone and the niches of the BM microenvironment plays a pivotal pathophysiologic role in MM. We and others have identified several new molecular targets and derived novel therapies which induce cytotoxicity against MM cells in the BM milieu, including thalidomide, bortezomib, and lenalidomide. Importantly, these agents induce tumor-cell death, as well as inhibit MM-cell-BM-stromal-cell (BMSC) adhesion and related tumor-cell growth, survival, and migration. Moreover, they block both constitutive and MM-cell binding-induced growth factor and cytokine secretion in BMSCs. Further, they also block tumor angiogenesis and can augment anti-MM immunity. Although all three of these agents are now FDA-approved to treat MM, patients inevitably relapse, and further improvements remain urgently needed. Here we review our current knowledge of the MM cell clone, as well as the impact of the BM microenvironment on tumor-cell growth, survival, migration and drug resistance. Delineating the mechanisms and sequelae of the reciprocal relationship between the MM cell clone, distinct BM extracellular matrix proteins, and accessory cell compartments may provide the basis for new effective therapeutic strategies to re-establish BM homeostasis and thereby improve MM patient outcome.
Collapse
Affiliation(s)
- Klaus Podar
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
141
|
Yang EV, Donovan EL, Benson DM, Glaser R. VEGF is differentially regulated in multiple myeloma-derived cell lines by norepinephrine. Brain Behav Immun 2008; 22:318-23. [PMID: 17981009 PMCID: PMC2259392 DOI: 10.1016/j.bbi.2007.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/18/2007] [Accepted: 09/25/2007] [Indexed: 02/07/2023] Open
Abstract
Evidence from human and animal studies support the hypothesis that psychological stress can be a co-factor for the initiation and progression of cancer. Recent work from our laboratory and others have shown that the catecholamine hormone, norepinephrine (NE), may influence tumor progression of some solid epithelial tumors including nasopharyngeal carcinoma (NPC) and ovarian cancer by modulating the expression of proangiogenic and pro-metastatic factors, such as vascular endothelial growth factor (VEGF). In this study, we determined whether NE can likewise modulate the expression of VEGF in a lymphoid tumor, multiple myeloma (MM), a cancer of plasma cells. Three MM-derived cell lines, NCI-H929, MM-M1, and FLAM-76, were studied. The presence of beta1- and beta2-adrenergic receptors (ARs) was assessed using Western blotting. Cells were treated with 0, 1, and 10 microM NE for 1, 3, 6, and 24h and the levels of VEGF in culture supernatants were measured by ELISA. Immunoblots of cell lysates revealed the presence of beta1- and beta2-ARs in all three MM-derived cell lines. However, these MM-derived cell lines exhibited varying degrees of NE-dependent regulation of VEGF expression with FLAM-76 (the only IL-6-dependent cell line among the three) exhibiting the most significant stimulation, followed by MM-M1 cells and then NCI-H929. The data suggest that the ability of NE to regulate the expression of VEGF is not limited to solid epithelial tumors and suggests a possible regulatory role of catecholamine stress hormones in MM progression.
Collapse
Affiliation(s)
- Eric V. Yang
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210
- Institute for Behavioral Medicine Research, The Ohio State University Medical Center, Columbus, OH 43210
| | - Elise L. Donovan
- Institute for Behavioral Medicine Research, The Ohio State University Medical Center, Columbus, OH 43210
| | - Don M. Benson
- Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH 43210
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210
| | - Ronald Glaser
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210
- Institute for Behavioral Medicine Research, The Ohio State University Medical Center, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH 43210
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210
| |
Collapse
|
142
|
Abstract
The bone marrow (BM) milieu confers drug resistance in multiple myeloma (MM) cells to conventional therapies. Novel biologically based therapies are therefore needed. Preclinical studies have identified and validated molecular targeted therapeutics in MM. In particular, recognition of the biologic significance of the BM microenvironment in MM pathogenesis and as a potential target for novel therapeutics has already derived several promising approaches. Thalidomide, lenalidomide (Revlimid), and bortezomib (Velcade) are directed not only at MM cells but also at the BM milieu and have moved rapidly from the bench to the bedside and United States Food and Drug Administration approval to treat MM.
Collapse
|
143
|
Abstract
Multiple myeloma (MM) remains incurable despite high-dose chemotherapy with stem cell support. There is need, therefore, for continuous efforts directed toward the development of novel rational-based therapeutics for MM, which requires a detailed knowledge of the mutations driving this malignancy. In improving the success rate of effective drug development, it is equally imperative that biologic systems be developed to better validate these target genes. Here we review the recent developments in the generation of mouse models of MM and their impact as preclinical models for designing and assessing target-based therapeutic approaches.
Collapse
|
144
|
Chi A, Norden AD, Wen PY. Inhibition of angiogenesis and invasion in malignant gliomas. Expert Rev Anticancer Ther 2008; 7:1537-60. [PMID: 18020923 DOI: 10.1586/14737140.7.11.1537] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malignant gliomas confer a dismal prognosis. As the molecular events that underlie tumor angiogenesis are elucidated, angiogenesis inhibition is emerging as a promising therapy for recurrent and newly diagnosed tumors. Data from animal studies suggest that angiogenesis inhibition may promote an invasive phenotype in tumor cells. This may represent an important mechanism of resistance to antiangiogenic therapies. Recent studies have begun to clarify the mechanisms by which glioma cells detach from the tumor mass, remodel the extracellular matrix and infiltrate normal brain. An array of potential therapeutic targets exists. Combination therapy with antiangiogenic and novel anti-invasion agents is a promising approach that may produce a synergistic antitumor effect and a survival benefit for patients with these devastating tumors.
Collapse
Affiliation(s)
- Andrew Chi
- Center for Neuro-Oncology, Dana-Farber/Brigham & Women's Cancer Center, Division of Neuro-Oncology, Department of Neurology, Brigham & Women's Hospital, SW430D, 44 Binney Street, Boston, MA 02115, USA.
| | | | | |
Collapse
|
145
|
Hayden PJ, Mitsiades CS, Anderson KC, Richardson PG. From the bench to the bedside: emerging new treatments in multiple myeloma. Target Oncol 2007. [DOI: 10.1007/s11523-007-0072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
146
|
Mitsiades CS, Hayden PJ, Anderson KC, Richardson PG. From the bench to the bedside: emerging new treatments in multiple myeloma. Best Pract Res Clin Haematol 2007; 20:797-816. [PMID: 18070720 PMCID: PMC3445017 DOI: 10.1016/j.beha.2007.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Within the last decade, several novel classes of anti-myeloma therapeutics have become available. The clinical successes achieved by thalidomide, lenalidomide, and the proteasome inhibitor bortezomib, and in particular the ability of these agents to lead to major clinical responses in patients resistant to conventional or high-dose chemotherapy, have highlighted the importance of expanding further the spectrum of classes of agents utilized for the treatment of myeloma. Herein, we review the current status for the development of novel anti-myeloma agents, with emphasis on classes of therapeutics which have already translated into clinical trials or those in advanced stages of preclinical development. These include second-generation proteasome inhibitors (NPI-0052 and PR-171), heat shock protein 90 (hsp90) inhibitors, 2-methoxyestradiol, histone deacetylase (HDAC) inhibitors (e.g. SAHA and LBH589), fibroblast growth factor receptor 3 (FGF-R3) inhibitors, insulin-like growth factor 1 receptor (IGF-1R) inhibitors, mTOR inhibitors, monoclonal antibodies, and agents specifically targeting the tumor microenvironment, such as defibrotide.
Collapse
Affiliation(s)
| | - Patrick J. Hayden
- Dana Farber Cancer Institute, 44 Binney St, Dana 1B02, Boston, MA 02115, USA
| | - Kenneth C. Anderson
- Dana Farber Cancer Institute, 44 Binney St, Dana 1B02, Boston, MA 02115, USA
| | - Paul G. Richardson
- Dana Farber Cancer Institute, 44 Binney St, Dana 1B02, Boston, MA 02115, USA
| |
Collapse
|
147
|
Falco P, Bringhen S, Avonto I, Gay F, Morabito F, Boccadoro M, Palumbo A. Melphalan and its role in the management of patients with multiple myeloma. Expert Rev Anticancer Ther 2007; 7:945-57. [PMID: 17627453 DOI: 10.1586/14737140.7.7.945] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Melphalan is an alkylating agent approved for the treatment of multiple myeloma and ovarian cancer. The combination of oral melphalan and prednisone was first introduced in the 1960s and remains the standard therapy for elderly multiple myeloma patients. High-dose melphalan followed by autologous stem cell support became the standard treatment for younger patients since the 1990s. The occurrence of drug resistance is the major limiting factor for the long-term success of this therapy, and relapse always occurs. In recent years, advances in the understanding of the pathogenesis of myeloma and the mechanism of drug resistance have led to the development of novel targeted therapies that are able to overcome resistance and show additive or synergistic effects with melphalan. Thalidomide, its immunomodulatory derivative lenalidomide and the proteasome inhibitor bortezomib, in combination with oral melphalan in the elderly and with intravenous melphalan in younger patients, are changing the traditional treatment paradigm of multiple myeloma.
Collapse
Affiliation(s)
- Patrizia Falco
- Azienda Ospedaliera San Giovanni Battista, Divisione di Ematologia dell'Università di Torino, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
148
|
Liu J, Li J, Su C, Huang B, Luo S. Soluble Fms-like tyrosine kinase-1 expression inhibits the growth of multiple myeloma in nude mice. Acta Biochim Biophys Sin (Shanghai) 2007; 39:499-506. [PMID: 17622469 DOI: 10.1111/j.1745-7270.2007.00310.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis is an essential factor in the growth and progression of hematological malignancies including multiple myeloma (MM). Vascular endothelial growth factor and its receptors have been shown to be targets for treating tumors. This study explores the effect of adenovirus-mediated delivery of soluble vascular endothelial growth factor receptor Fms-like tyrosine kinase-1 (sFLT-1) on the growth of MM cell line KM3 in nude mice. sFLT-1 cDNA was amplified by reverse transcription-polymerase chain reaction from human umbilical vein endothelial cells and was used as a transgene to construct an adenoviral vector carrying sFLT-1 (ADV-sFLT). Cell proliferation and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assays were carried out to evaluate the effect of ADV-sFLT on human umbilical vein endothelial cells and KM3 cells in vitro. Eighteen female BALB/c nude mice were inoculated subcutaneously with KM3 cells, and they were randomly divided into three groups and injected intravenously with ADV-sFLT, ADV-LacZ, or phosphate-buffered saline (PBS). The volume of KM3 xenografts was measured twice a week. Three weeks after the initial treatment, the volume of MM xenografts in the mice treated with ADV-sFLT, ADV-LacZ, or PBS was 770.32+/-28.73 mm3, 1983.36+/-43.72 mm3, and 2042.05+/-82.31 mm3, respectively (P<0.01, ADV-sFLT versus ADV-LacZ or PBS). The value of microvessel density was 29.17+/-6.85, 79.17+/-7.35, and 78.83+/-8.54 in the tumors treated with ADV-sFLT, ADV-LacZ, and PBS, respectively (P<0.01, ADV-sFLT versus ADV-LacZ or PBS). This study suggested that the adenovirus-mediated sFLT-1 gene greatly inhibits MM-derived tumor growth and angiogenesis in mouse xenograft, and might serve as a new therapy for MM.
Collapse
Affiliation(s)
- Junru Liu
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | |
Collapse
|
149
|
Anagnostopoulos A, Eleftherakis-Papaiakovou V, Kastritis E, Tsionos K, Bamias A, Meletis J, Dimopoulos MA, Terpos E. Serum concentrations of angiogenic cytokines in Waldenstrom macroglobulinaemia: the ratio of angiopoietin-1 to angiopoietin-2 and angiogenin correlate with disease severity. Br J Haematol 2007; 137:560-8. [PMID: 17451406 DOI: 10.1111/j.1365-2141.2007.06609.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Angiogenesis represents an essential step of disease progression in several haematological malignancies. Microvessel density is increased in 30% of patients with Waldenstrom macroglobulinaemia (WM), but there is very limited information regarding the role of angiogenic cytokines in this disease. Serum levels of vascular endothelial growth factor (VEGF), VEGF-A, angiogenin, angiopoietin (Ang)-1 and -2, and basic fibroblast growth factor (bFGF) were evaluated in 56 WM patients at different disease phases (24 untreated, 20 relapsed/refractory and 12 patients at remission) and 11 patients with immunoglobulin M type monoclonal gammopathy of undetermined significance (IgM-MGUS). All patients had increased levels of angiogenin, VEGF, VEGF-A, and bFGF compared with controls. The Ang-1/Ang-2 ratio was reduced in WM but not in IgM-MGUS patients. Angiogenin levels correlated with disease status: when compared with healthy subjects, patients with IgM-MGUS and untreated WM patients had increased angiogenin serum levels, which were higher in untreated WM patients than in MGUS. WM patients at remission had lower angiogenin serum levels compared with untreated patients, but these levels were increased again in active disease post-therapy. Angiogenin also correlated with albumin levels, while VEGF-A correlated with beta(2)-microglobulin (beta2M). Ang-1/Ang-2 ratio showed a strong, negative correlation with beta2M, and positive correlation with albumin, haemoglobin and lymphadenopathy. Our results indicate a potential use of angiogenin levels for follow-up in WM and angiogenic molecules as targets for the development of novel anti-WM agents.
Collapse
Affiliation(s)
- Athanasios Anagnostopoulos
- Department of Clinical Therapeutics, University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Verheul HMW, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 2007; 7:475-85. [PMID: 17522716 DOI: 10.1038/nrc2152] [Citation(s) in RCA: 363] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Contrary to initial expectations, angiogenesis inhibitors can cause toxicities in patients with cancer. The toxicity profiles of these inhibitors reflect the disturbance of growth factor signalling pathways that are important for maintaining homeostasis. Experiences with angiogenesis inhibitors in clinical trials indicate that short-term toxicities are mostly manageable. However, these agents will also be given in prolonged treatment strategies, so we need to anticipate possible long-term toxicities. In addition, understanding the molecular mechanisms involved in the toxicity of angiogenesis inhibition should allow more specific and more potent inhibitors to be developed.
Collapse
Affiliation(s)
- Henk M W Verheul
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | |
Collapse
|