101
|
Li Q, Fujii W, Naito K, Yoshizaki G. Application of dead end-knockout zebrafish as recipients of germ cell transplantation. Mol Reprod Dev 2017; 84:1100-1111. [PMID: 28731265 DOI: 10.1002/mrd.22870] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/17/2017] [Indexed: 01/21/2023]
Abstract
Germ cell transplantation is a promising technology for the propagation of endangered or valuable fishes. In this technique, sterile male and female recipient fish are injected with donor germ cells so they can produce viable gametes derived from the donor cells. The dead end (dnd) gene is involved in the migration of primordial germ cells; therefore, dnd-knockout zebrafish are expected to be germ-cell-free, making them suitable recipients for germ cell transplantation. dnd mutants were produced by microinjecting 2 nl of 10 ng/μl cRNAs encoding zinc finger nucleases against dnd into the blastodisc of zebrafish embryos before the cell- cleavage stage. One of the resulting founder males was mated with a wild-type female, and produced heterozygous mutants in the F1 generation. Mating of these F1 mutants produced an F2 generation with approximately 25% of the clutch being homozygous mutant (dnd-knockout) male, and lacking germ cells (as confirmed by expression analyses of vasa). The resulting dnd-knockout zebrafish males were tested for suitability as germ cell transplantation recipients by intraperitoneal transplantation of testicular cells prepared from vasa-gfp zebrafish. GFP-positive germ cells incorporated into the germ-cell-free gonads of the dnd-knockout recipients matured into functional sperm. Progeny tests revealed that the sperm from these dnd-knockout recipients were derived entirely from donor cells. Thus, we demonstrated that homozygous dnd mutants became germ-cell-free males that are able to nurse donor-derived germ cells.
Collapse
Affiliation(s)
- Qian Li
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
102
|
Sun ZH, Zhou L, Li Z, Liu XC, Li SS, Wang Y, Gui JF. Sexual dimorphic expression of dnd in germ cells during sex reversal and its requirement for primordial germ cell survival in protogynous hermaphroditic grouper. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:47-57. [DOI: 10.1016/j.cbpb.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/25/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
|
103
|
Webster KA, Schach U, Ordaz A, Steinfeld JS, Draper BW, Siegfried KR. Dmrt1 is necessary for male sexual development in zebrafish. Dev Biol 2017; 422:33-46. [PMID: 27940159 PMCID: PMC5777149 DOI: 10.1016/j.ydbio.2016.12.008] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
The dmrt1 (doublesex and mab-3 related transcription factor 1) gene is a key regulator of sex determination and/or gonadal sex differentiation across metazoan animals. This is unusual given that sex determination genes are typically not well conserved. The mechanisms by which zebrafish sex is determined have remained elusive due to the lack of sex chromosomes and the complex polygenic nature of sex determination in domesticated strains. To investigate the role of dmrt1 in zebrafish sex determination and gonad development, we isolated mutations disrupting this gene. We found that the majority of dmrt1 mutant fish develop as fertile females suggesting a complete male-to-female sex reversal in mutant animals that would have otherwise developed as males. A small percentage of mutant animals became males, but were sterile and displayed testicular dysgenesis. Therefore zebrafish dmrt1 functions in male sex determination and testis development. Mutant males had aberrant gonadal development at the onset of gonadal sex-differentiation, displaying reduced oocyte apoptosis followed by development of intersex gonads and failed testis morphogenesis and spermatogenesis. By contrast, female ovaries developed normally. We found that Dmrt1 is necessary for normal transcriptional regulation of the amh (anti-Müllerian hormone) and foxl2 (forkhead box L2) genes, which are thought to be important for male or female sexual development respectively. Interestingly, we identified one dmrt1 mutant allele that co-operates with a linked segregation distorter locus to generate an apparent XY sex determination mechanism. We conclude that dmrt1 is dispensable for ovary development but necessary for testis development in zebrafish, and that dmrt1 promotes male development by transcriptionally regulating male and female genes as has been described in other animals. Furthermore, the strong sex-ratio bias caused by dmrt1 reduction-of-function points to potential mechanisms through which sex chromosomes may evolve.
Collapse
Affiliation(s)
- Kaitlyn A Webster
- University of Massachusetts Boston, Biology Department, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Ursula Schach
- Max Planck Institute for Developmental Biology, Department Genetics, Spemanstrasse 35, 72076 Tübingen, Germany
| | - Angel Ordaz
- University of California Davis, Department of Molecular and Cellular Biology, One Shields Ave., Davis, CA 95616, USA
| | - Jocelyn S Steinfeld
- University of Massachusetts Boston, Biology Department, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Bruce W Draper
- University of California Davis, Department of Molecular and Cellular Biology, One Shields Ave., Davis, CA 95616, USA
| | - Kellee R Siegfried
- University of Massachusetts Boston, Biology Department, 100 Morrissey Blvd., Boston, MA 02125, USA.
| |
Collapse
|
104
|
Abstract
How sex is determined has been one of the most intriguing puzzles in biology since antiquity. Although a fundamental process in most metazoans, there seems to be myriad of ways in which sex can be determined - from genetic to environmental sex determination. This variation is limited mainly to upstream triggers with the core of sex determination pathway being conserved. Zebrafish has gained prominence as a vertebrate model system to study development and disease. However, very little is known about its primary sex determination mechanism. Here we review our current understanding of the sex determination in zebrafish. Zebrafish lack identifiable heteromorphic sex chromosomes and sex is determined by multiple genes, with some influence from the environment. Recently, chromosome 4 has been identified as sex chromosome along with few sex-linked loci on chromosomes 5 and 16. The identities of candidate sex-linked genes, however, have remained elusive. Sex in zebrafish is also influenced by the number of meiotic oocytes in the juvenile ovary, which appear to instruct retention of the ovarian fate. The mechanism and identity of this instructive signal remain unknown. We hypothesize that sex in zebrafish is a culmination of combinatorial effects of the genome, germ cells and the environment with inputs from epigenetic factors translating the biological meaning of this interaction.
Collapse
Affiliation(s)
- A Nagabhushana
- Centre for Cellular and Molecular Biology, Council of Scientific and industrial Research, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
105
|
Baroiller JF, D'Cotta H. The Reversible Sex of Gonochoristic Fish: Insights and Consequences. Sex Dev 2016; 10:242-266. [PMID: 27907925 DOI: 10.1159/000452362] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 01/06/2023] Open
Abstract
Fish sex reversal is a means to understand sex determination and differentiation, but it is also used to control sex in aquaculture. This review discusses sex reversal in gonochoristic fish, with the coexistence of genetic and environmental influences. The different periods of fish sensitivity to sex reversal treatments are presented with the mechanisms implicated. The old players of sex differentiation are revisited with transcriptome data and loss of function studies following hormone- or temperature-induced sex reversal. We also discuss whether cortisol is the universal mediator of sex reversal in fish due to its implication in ovarian meiosis and 11KT increase. The large plasticity in fish for sex reversal is also evident in the brain, with a reversibility existing even in adulthood. Studies on epigenetics are presented, since it links the environment, gene expression, and sex reversal, notably the association of DNA methylation in sex reversal. Manipulations with exogenous factors reverse the primary sex in many fish species under controlled conditions, but several questions arise on whether this can occur under wild conditions and what is the ecological significance. Cases of sex reversal in wild fish populations are shown and their fitness and future perspectives are discussed.
Collapse
|
106
|
Inagaki T, Smith NL, Sherva KM, Ramakrishnan S. Cross-generational effects of parental low dose BPA exposure on the Gonadotropin-Releasing Hormone3 system and larval behavior in medaka (Oryzias latipes). Neurotoxicology 2016; 57:163-173. [PMID: 27713093 DOI: 10.1016/j.neuro.2016.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/02/2016] [Accepted: 09/29/2016] [Indexed: 11/18/2022]
Abstract
Growing evidence indicates that chronic exposure to Bisphenol A (BPA) may disrupt normal brain function and behavior mediated by gonadotropin-releasing hormone (GnRH) pathways. Previous studies have shown that low dose BPA (200ng/ml) exposure during embryogenesis altered development of extra-hypothalamic GnRH3 systems and non-reproductive locomotor behavior in medaka. Effects of parental low-dose BPA exposure on the development of GnRH3 systems and locomotor behavior of offspring are not well known. This study examines whether the neurophysiological and behavioral effects of BPA in parents (F0 generation) are carried over to their offspring (F1 generation) using stable transgenic medaka embryos/larvae with GnRH3 neurons tagged with green fluorescent protein (GFP). Parental fish were exposed to BPA (200ng/ml) for either life-long or different developmental time windows. Fertilized F1 eggs were collected and raised in egg/fish water with no environmental exposure to BPA. All experiments were performed on F1 embryos/larvae, which were grouped based on the following parental (F0) BPA exposure conditions - (i) Group 1 (G1): through life; (ii) G2: during embryogenesis and early larval development [1-14days post fertilization (dpf)]; (iii) G3: during neurogenesis (1-5dpf); and (iv) G4: during sex differentiation (5-14dpf). Embryos from unexposed vehicle treated parents served as controls (G0). G1 embryos showed significantly reduced survival rates and delayed hatching time compared to other groups, while G4 embryos hatched significantly earlier than all other groups. At 3 dpf, the GnRH3-GFP intensity was increased by 47% in G3 embryos and decreased in G4 embryos by 59% compared to controls. At 4dpf, G1 fish showed 42% increased intensity, while GFP intensity was reduced by 44% in G3 subjects. In addition, the mean brain size of G1, G3 and G4 embryos were smaller than that of control at 4dpf. At 20dpf, all larvae from BPA-treated parents showed significantly decreased total movement (distance covered) compared with controls, with G2 and G3 fish showing reduced velocity of movement. While at 20 dpf no group differences were seen in the soma diameter of GnRH3-GFP neurons, a 34% decrease in SV2 expression, a marker for synaptic transmission, in G1 larvae was observed. These data suggest that parental BPA exposure during critical windows of embryonic development or chronic treatment affects next-generation offspring both in embryonic and larval brain development as well as larval behavior.
Collapse
Affiliation(s)
- T Inagaki
- Department of Biology, University of Puget Sound, Tacoma, WA, USA; Neuroscience Program, University of Puget Sound, Tacoma, WA, USA
| | - N L Smith
- Department of Chemistry/Biochemistry, University of Puget Sound, Tacoma, WA 98416, USA
| | - K M Sherva
- Department of Chemistry/Biochemistry, University of Puget Sound, Tacoma, WA 98416, USA
| | - S Ramakrishnan
- Department of Biology, University of Puget Sound, Tacoma, WA, USA; Neuroscience Program, University of Puget Sound, Tacoma, WA, USA.
| |
Collapse
|
107
|
Dranow DB, Hu K, Bird AM, Lawry ST, Adams MT, Sanchez A, Amatruda JF, Draper BW. Bmp15 Is an Oocyte-Produced Signal Required for Maintenance of the Adult Female Sexual Phenotype in Zebrafish. PLoS Genet 2016; 12:e1006323. [PMID: 27642754 PMCID: PMC5028036 DOI: 10.1371/journal.pgen.1006323] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/25/2016] [Indexed: 11/30/2022] Open
Abstract
Although the zebrafish is a major model organism, how they determine sex is not well understood. In domesticated zebrafish, sex determination appears to be polygenic, being influenced by multiple genetic factors that may vary from strain to strain, and additionally can be influenced by environmental factors. However, the requirement of germ cells for female sex determination is well documented: animals that lack germ cells, or oocytes in particular, develop exclusively as males. Recently, it has been determined that oocytes are also required throughout the adult life of the animal to maintain the differentiated female state. How oocytes control sex differentiation and maintenance of the sexual phenotype is unknown. We therefore generated targeted mutations in genes for two oocyte produced signaling molecules, Bmp15 and Gdf9 and here report a novel role for Bmp15 in maintaining adult female sex differentiation in zebrafish. Females deficient in Bmp15 begin development normally but switch sex during the mid- to late- juvenile stage, and become fertile males. Additionally, by generating mutations in the aromatase cyp19a1a, we show that estrogen production is necessary for female development and that the function of Bmp15 in female sex maintenance is likely linked to the regulation of estrogen biosynthesis via promoting the development of estrogen-producing granulosa cells in the oocyte follicle.
Collapse
Affiliation(s)
- Daniel B. Dranow
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Kevin Hu
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - April M. Bird
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - S. Terese Lawry
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Melissa T. Adams
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Angelica Sanchez
- Departments of Pediatrics and Molecular Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - James F. Amatruda
- Departments of Pediatrics and Molecular Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
108
|
González-Doncel M, Carbonell G, García-Mauriño JE, Sastre S, Beltrán EM, Fernàndez Torija C. Effects of dietary 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47) exposure in growing medaka fish (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:141-152. [PMID: 27497303 DOI: 10.1016/j.aquatox.2016.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
In this research work, we addressed the effects of a diet fortified with BDE-47 (0, 10, 100, 1000ng/g) dosed to 4-7 day-old post-hatch medaka fish for 40 days, followed by an 80-day depuration period. BDE-47 accumulation and overall growth were evaluated throughout the dosing period, and its elimination was quantified over the following 60 days. The histological condition of the thyroid gland, liver and gonads from the 1000ng BDE-47-treated fish were assessed 5 and 70days after exposures finished. The phenotypic males to females ratio was also quantified 70days after treatments finished. Sixty days after the BDE-47 exposures, reproductive capacity (i.e. fecundity, fertility and hatchability) was evaluated in mating groups for a 20-day period. BDE-47 exposure via food from larval through juvenile life stages of medaka fish resulted in steady accumulation with time dose-dependently. This accumulation tendency rapidly decreased after dosing ended. The growth rates showed a significant increase only at the highest concentration 70days after exposures finished. The histological survey did not reveal BDE-47-related alterations in the condition of the potential target organs. However, a morphometrical approach suggested BDE-47-related differences in the thickness of the epithelium that lines thyroid follicles. The reproduction studies showed comparable values for the fecundity, fertility and hatching rates. Dietary BDE-47 dosed for 40days to growing medaka fish did not alter the phenotypic sex ratios at maturity. The dietary approach used herein could not provide conclusive evidence of effects on medaka development and thriving despite the fact that BDE-47 underwent rapid accumulation in whole fish during the 40-day treatment.
Collapse
Affiliation(s)
- Miguel González-Doncel
- Laboratory for Ecotoxicology, Department of the Environment, National Institute for Agricultural and Food Research and Technology, A-6, Km. 7.5, E-28040 Madrid, Spain.
| | - Gregoria Carbonell
- Laboratory for Ecotoxicology, Department of the Environment, National Institute for Agricultural and Food Research and Technology, A-6, Km. 7.5, E-28040 Madrid, Spain
| | - José Enrique García-Mauriño
- Department of Cell Biology, School of Medicine, Complutense University, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Salvador Sastre
- Laboratory of Forest Soils, Department of Forest Ecology, National Institute for Agricultural and Food Research and Technology, A-6, Km. 7.5, E-28040 Madrid, Spain
| | - Eulalia María Beltrán
- Laboratory for Ecotoxicology, Department of the Environment, National Institute for Agricultural and Food Research and Technology, A-6, Km. 7.5, E-28040 Madrid, Spain
| | - Carlos Fernàndez Torija
- Laboratory for Ecotoxicology, Department of the Environment, National Institute for Agricultural and Food Research and Technology, A-6, Km. 7.5, E-28040 Madrid, Spain
| |
Collapse
|
109
|
Nishimura T, Nakamura S, Tanaka M. A Structurally and Functionally Common Unit in Testes and Ovaries of Medaka (Oryzias latipes), a Teleost Fish. Sex Dev 2016; 10:159-65. [DOI: 10.1159/000447313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 11/19/2022] Open
|
110
|
Petersen AM, Earp NC, Redmond ME, Postlethwait JH, von Hippel FA, Buck CL, Cresko WA. Perchlorate Exposure Reduces Primordial Germ Cell Number in Female Threespine Stickleback. PLoS One 2016; 11:e0157792. [PMID: 27383240 PMCID: PMC4934864 DOI: 10.1371/journal.pone.0157792] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/03/2016] [Indexed: 11/18/2022] Open
Abstract
Perchlorate is a common aquatic contaminant that has long been known to affect thyroid function in vertebrates, including humans. More recently perchlorate has been shown to affect primordial sexual differentiation in the aquatic model fishes zebrafish and threespine stickleback, but the mechanism has been unclear. Stickleback exposed to perchlorate from fertilization have increased androgen levels in the embryo and disrupted reproductive morphologies as adults, suggesting that perchlorate could disrupt the earliest stages of primordial sexual differentiation when primordial germ cells (PGCs) begin to form the gonad. Female stickleback have three to four times the number of PGCs as males during the first weeks of development. We hypothesized that perchlorate exposure affects primordial sexual differentiation by reducing the number of germ cells in the gonad during an important window of stickleback sex determination at 14-18 days post fertilization (dpf). We tested this hypothesis by quantifying the number of PGCs at 16 dpf in control and 100 mg/L perchlorate-treated male and female stickleback. Perchlorate exposure from the time of fertilization resulted in significantly reduced PGC number only in genotypic females, suggesting that the masculinizing effects of perchlorate observed in adult stickleback may result from early changes to the number of PGCs at a time critical for sex determination. To our knowledge, this is the first evidence of a connection between an endocrine disruptor and reduction in PGC number prior to the first meiosis during sex determination. These findings suggest that a mode of action of perchlorate on adult reproductive phenotypes in vertebrates, including humans, such as altered fecundity and sex reversal or intersex gonads, may stem from early changes to germ cell development.
Collapse
Affiliation(s)
- Ann M. Petersen
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
- Department of Integrative Biology, Oregon State University Cascades, Bend, Oregon 97703, United States of America
| | - Nathanial C. Earp
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Mandy E. Redmond
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Frank A. von Hippel
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86001, United States of America
| | - C. Loren Buck
- Department of Biological Sciences & Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona, 86001, United States of America
| | - William A. Cresko
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| |
Collapse
|
111
|
Zeng Q, Liu S, Yao J, Zhang Y, Yuan Z, Jiang C, Chen A, Fu Q, Su B, Dunham R, Liu Z. Transcriptome Display During Testicular Differentiation of Channel Catfish (Ictalurus punctatus) as Revealed by RNA-Seq Analysis. Biol Reprod 2016; 95:19. [PMID: 27307075 DOI: 10.1095/biolreprod.116.138818] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Channel catfish (Ictalurus punctatus) has been recognized as a dominant freshwater aquaculture species in the United States. It is also a suitable model for studying the mechanisms of sex determination and differentiation because of its sexual plasticity and exhibition of both genetic and environmental sex determination. The testicular differentiation in male channel catfish normally starts between 90 and 102 days postfertilization (dpf), while the ovarian differentiation starts early from 19 dpf. As such, efforts to better understand the postponed testicular development at the molecular level are needed. Toward that end, we conducted transcriptomic comparison of gene expression of male and female gonads at 90, 100, and 110 dpf using high-throughput RNA-Seq. Transcriptomic profiles of male gonads on 90 and 100 dpf exhibited high similarities except for a small number of significantly up-regulated genes that were involved in development of germ cell-supporting somatic cells, while drastic changes were observed during 100-110 dpf, with a group of highly up-regulated genes that were involved in germ cells development, including nanog and pou5f1 Transcriptomic comparison between testes and ovaries identified male-preferential genes, such as gsdf, cxcl12, as well as other cytokines mediated the development of the gonad into a testis. Co-expression analysis revealed highly correlated genes and potential pathways underlying germ cell differentiation and spermatogonia stem cell development. The candidate genes and pathways identified in this study set the foundation for further studies on sex determination and differentiation in catfish as well as other teleosts.
Collapse
Affiliation(s)
- Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Ailu Chen
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Qiang Fu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Baofeng Su
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| |
Collapse
|
112
|
Bar I, Cummins S, Elizur A. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the Southern bluefin tuna (Thunnus maccoyii). BMC Genomics 2016; 17:217. [PMID: 26965070 PMCID: PMC4785667 DOI: 10.1186/s12864-016-2397-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Controlling and managing the breeding of bluefin tuna (Thunnus spp.) in captivity is an imperative step towards obtaining a sustainable supply of these fish in aquaculture production systems. Germ cell transplantation (GCT) is an innovative technology for the production of inter-species surrogates, by transplanting undifferentiated germ cells derived from a donor species into larvae of a host species. The transplanted surrogates will then grow and mature to produce donor-derived seed, thus providing a simpler alternative to maintaining large-bodied broodstock such as the bluefin tuna. Implementation of GCT for new species requires the development of molecular tools to follow the fate of the transplanted germ cells. These tools are based on key reproductive and germ cell-specific genes. RNA-Sequencing (RNA-Seq) provides a rapid, cost-effective method for high throughput gene identification in non-model species. This study utilized RNA-Seq to identify key genes expressed in the gonads of Southern bluefin tuna (Thunnus maccoyii, SBT) and their specific expression patterns in male and female gonad cells. RESULTS Key genes involved in the reproductive molecular pathway and specifically, germ cell development in gonads, were identified using analysis of RNA-Seq transcriptomes of male and female SBT gonad cells. Expression profiles of transcripts from ovary and testis cells were compared, as well as testis germ cell-enriched fraction prepared with Percoll gradient, as used in GCT studies. Ovary cells demonstrated over-expression of genes related to stem cell maintenance, while in testis cells, transcripts encoding for reproduction-associated receptors, sex steroids and hormone synthesis and signaling genes were over-expressed. Within the testis cells, the Percoll-enriched fraction showed over-expression of genes that are related to post-meiosis germ cell populations. CONCLUSIONS Gonad development and germ cell related genes were identified from SBT gonads and their expression patterns in ovary and testis cells were determined. These expression patterns correlate with the reproductive developmental stage of the sampled fish. The majority of the genes described in this study were sequenced for the first time in T. maccoyii. The wealth of SBT gonadal and germ cell-related gene sequences made publicly available by this study provides an extensive resource for further GCT and reproductive molecular biology studies of this commercially valuable fish.
Collapse
Affiliation(s)
- Ido Bar
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| | - Scott Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| |
Collapse
|
113
|
Yoshizaki G, Takashiba K, Shimamori S, Fujinuma K, Shikina S, Okutsu T, Kume S, Hayashi M. Production of germ cell-deficient salmonids by dead end gene knockdown, and their use as recipients for germ cell transplantation. Mol Reprod Dev 2016; 83:298-311. [PMID: 26860442 DOI: 10.1002/mrd.22625] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/24/2016] [Indexed: 12/15/2022]
Abstract
We previously established a spermatogonial transplantation model in fish using triploid recipients. Although triploid salmonids are sterile, they carry a limited number of immature triploid germ cells that potentially compete with the donor-derived germ cells for their niche. We therefore assessed the biological characteristics of germ cell-deficient gonads in rainbow trout for their suitability as recipients for germ cell transplantation in this study. Antisense morpholino oligonucleotides against the dead end gene were microinjected into the fertilized eggs of rainbow trout to eliminate endogenous germ cells, leaving only their supporting cells. Unlike similar approaches performed in zebrafish and medaka, these germ cell-deficient rainbow trout did not show a male-biased sex ratio. Approximately 30,000 spermatogonia were then transplanted into the body cavities of both germ cell-deficient and control recipients. The donor-derived germ cells showed significantly higher proliferation in the gonads of germ cell-deficient recipients than those in the gonads of the control recipients. Finally, the applicability of the germ cell-deficient recipients for xenogeneic transplantation was evaluated by transplanting rainbow trout spermatogonia into germ cell-deficient masu salmon recipients. The resulting recipient salmon matured normally and produced trout gametes, and early survival of the resulting trout offspring was as high as that of the control offspring. Thus, dead end-knockdown salmonids appear to be ideal recipients for the intraperitoneal transplantation of spermatogonia.
Collapse
Affiliation(s)
- Goro Yoshizaki
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | - Kiyoko Fujinuma
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Shinya Shikina
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Tomoyuki Okutsu
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Sachi Kume
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Makoto Hayashi
- Tokyo University of Marine Science and Technology, Tokyo, Japan.,Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
114
|
Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep 2016; 6:21284. [PMID: 26888627 PMCID: PMC4758030 DOI: 10.1038/srep21284] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/20/2016] [Indexed: 01/07/2023] Open
Abstract
Introgression of farmed salmon escapees into wild stocks is a major threat to the genetic integrity of wild populations. Using germ cell-free fish in aquaculture may mitigate this problem. Our study investigated whether it is possible to produce germ cell-free salmon in F0 by using CRISPR-Cas9 to knock out dnd, a factor required for germ cell survival in vertebrates. To avoid studying mosaic animals, sgRNA targeting alb was simultaneously used as a visual tracer since the phenotype of alb KO is complete loss of pigmentation. Induced mutations for the tracer (alb) and the target (dnd) genes were highly correlated and produced germ cell-less fish lacking pigmentation, underlining the suitability of alb KO to serve as tracer for targeted double allelic mutations in F0 animals in species with prohibitively long generation times. This is also the first report describing dnd knockout in any fish species. Analyzing gene expression and histology of dnd KO fish revealed that sex differentiation of the somatic compartment does not depend on the presence of germ cells. However, the organization of the ovarian somatic compartment seems compromised in mutant fish.
Collapse
|
115
|
Zhou L, Charkraborty T, Zhou Q, Mohapatra S, Nagahama Y, Zhang Y. Rspo1-activated signalling molecules are sufficient to induce ovarian differentiation in XY medaka (Oryzias latipes). Sci Rep 2016; 6:19543. [PMID: 26782368 PMCID: PMC4726049 DOI: 10.1038/srep19543] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/23/2015] [Indexed: 11/15/2022] Open
Abstract
In contrast to our understanding of testicular differentiation, ovarian differentiation is less well understood in vertebrates. In mammals, R-spondin1 (Rspo1), an activator of Wnt/β-catenin signaling pathway, is located upstream of the female sex determination pathway. However, the functions of Rspo1 in ovarian differentiation remain unclear in non-mammalian species. In order to elucidate the detailed functions of Rspo/Wnt signaling pathway in fish sex determination/differentiation, the ectopic expression of the Rspo1 gene was performed in XY medaka (Oryzias latipes). The results obtained demonstrated that the gain of Rspo1 function induced femininity in XY fish. The overexpression of Rspo1 enhanced Wnt4b and β-catenin transcription, and completely suppressed the expression of male-biased genes (Dmy, Gsdf, Sox9a2 and Dmrt1) as well as testicular differentiation. Gonadal reprograming of Rspo1-over-expressed-XY (Rspo1-OV-XY) fish, induced the production of female-biased genes (Cyp19a1a and Foxl2), estradiol-17β production and further female type secondary sexuality. Moreover, Rspo1-OV-XY females were fertile and produced successive generations. Promoter analyses showed that Rspo1 transcription was directly regulated by DM domain genes (Dmy, the sex-determining gene, and Dmrt1) and remained unresponsive to Foxl2. Taken together, our results strongly suggest that Rspo1 is sufficient to activate ovarian development and plays a decisive role in the ovarian differentiation in medaka.
Collapse
Affiliation(s)
- Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, P.R. China.,SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Tapas Charkraborty
- SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Ehime, 798-4206, Japan
| | - Qian Zhou
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 305-8577, Ibaraki, Japan
| | - Sipra Mohapatra
- South Ehime Fisheries Research Center, Ehime University, Ainan, Ehime, 798-4206, Japan
| | - Yoshitaka Nagahama
- SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Ehime, 798-4206, Japan.,Institution for Collaborative Relations, Ehime University, 790-8577, Matsuyama, Japan
| | - Yueguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
116
|
|
117
|
Wu GC, Tey WG, Li HW, Chang CF. Sexual Fate Reprogramming in the Steroid-Induced Bi-Directional Sex Change in the Protogynous Orange-Spotted Grouper, Epinephelus coioides. PLoS One 2015; 10:e0145438. [PMID: 26714271 PMCID: PMC4694621 DOI: 10.1371/journal.pone.0145438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/03/2015] [Indexed: 11/18/2022] Open
Abstract
Androgen administration has been widely used for masculinization in fish. The mechanism of the sex change in sexual fate regulation is not clear. Oral administration or pellet implantation was applied. We orally applied an aromatase inhibitor (AI, to decrease estrogen levels) and 17α-methyltestosterone (MT, to increase androgen levels) to induce masculinization to clarify the mechanism of the sex change in the protogynous orange-spotted grouper. After 3 mo of AI/MT administration, male characteristics were observed in the female-to-male sex change fish. These male characteristics included increased plasma 11-ketotestosterone (11-KT), decreased estradiol (E2) levels, increased male-related gene (dmrt1, sox9, and cyp11b2) expression, and decreased female-related gene (figla, foxl2, and cyp19a1a) expression. However, the reduced male characteristics and male-to-female sex change occurred after AI/MT-termination in the AI- and MT-induced maleness. Furthermore, the MT-induced oocyte-depleted follicle cells (from MT-implantation) had increased proliferating activity, and the sexual fate in a portion of female gonadal soma cells was altered to male function during the female-to-male sex change. In contrast, the gonadal soma cells were not proliferative during the early process of the male-to-female sex change. Additionally, the male gonadal soma cells did not alter to female function during the male-to-female sex change in the AI/MT-terminated fish. After MT termination in the male-to-female sex-changed fish, the differentiated male germ cells showed increased proliferating activities together with dormancy and did not show characteristics of both sexes in the early germ cells. In conclusion, these findings indicate for the first time in a single species that the mechanism involved in the replacement of soma cells is different between the female-to-male and male-to-female sex change processes in grouper. These results also demonstrate that sexual fate determination (secondary sex determination) is regulated by endogenous sex steroid levels.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- * E-mail: (G-CW); (C-FC)
| | - Wei-Guan Tey
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- * E-mail: (G-CW); (C-FC)
| |
Collapse
|
118
|
Liu W, Li SZ, Li Z, Wang Y, Li XY, Zhong JX, Zhang XJ, Zhang J, Zhou L, Gui JF. Complete depletion of primordial germ cells in an All-female fish leads to Sex-biased gene expression alteration and sterile All-male occurrence. BMC Genomics 2015; 16:971. [PMID: 26582363 PMCID: PMC4652418 DOI: 10.1186/s12864-015-2130-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/22/2015] [Indexed: 01/05/2023] Open
Abstract
Background Gynogenesis is one of unisexual reproduction modes in vertebrates, and produces all-female individuals with identical genetic background. In sexual reproduction vertebrates, the roles of primordial germ cells on sexual dimorphism and gonadal differentiation have been largely studied, and two distinct functional models have been proposed. However, the role of primordial germ cells remains unknown in unisexual animals, and it is also unclear whether the functional models in sexual reproduction animals are common in unisexual animals. Results To solve these puzzles, we attempt to utilize the gynogenetic superiority of polyploid Carassius gibelio to create a complete germ cell-depleted gonad model by a similar morpholino-mediated knockdown approach used in other examined sexual reproduction fishes. Through the germ cell-depleted gonad model, we have performed comprehensive and comparative transcriptome analysis, and revealed a complete alteration of sex-biased gene expression. Moreover, the expression alteration leads to up-regulation of testis-biased genes and down-regulation of ovary-biased genes, and results in the occurrence of sterile all-males with testis-like gonads and secondary sex characteristics in the germ cell-depleted gynogenetic Carassius gibelio. Conclusions Our current results have demonstrated that unisexual gynogenetic embryos remain keeping male sex determination information in the genome, and the complete depletion of primordial germ cells in the all-female fish leads to sex-biased gene expression alteration and sterile all-male occurrence. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2130-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shi-Zhu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Xiang Zhong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
119
|
Robledo D, Ribas L, Cal R, Sánchez L, Piferrer F, Martínez P, Viñas A. Gene expression analysis at the onset of sex differentiation in turbot (Scophthalmus maximus). BMC Genomics 2015; 16:973. [PMID: 26581195 PMCID: PMC4652359 DOI: 10.1186/s12864-015-2142-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/23/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Controlling sex ratios is essential for the aquaculture industry, especially in those species with sex dimorphism for relevant productive traits, hence the importance of knowing how the sexual phenotype is established in fish. Turbot, a very important fish for the aquaculture industry in Europe, shows one of the largest sexual growth dimorphisms amongst marine cultured species, being all-female stocks a desirable goal for the industry. Although important knowledge has been achieved on the genetic basis of sex determination (SD) in this species, the master SD gene remains unknown and precise information on gene expression at the critical stage of sex differentiation is lacking. In the present work, we examined the expression profiles of 29 relevant genes related to sex differentiation, from 60 up to 135 days post fertilization (dpf), when gonads are differentiating. We also considered the influence of three temperature regimes on sex differentiation. RESULTS The first sex-related differences in molecular markers could be observed at 90 days post fertilization (dpf) and so we have called that time the onset of sex differentiation. Three genes were the first to show differential expression between males and females and also allowed us to sex turbot accurately at the onset of sex differentiation (90 dpf): cyp19a1a, amh and vasa. The expression of genes related to primordial germ cells (vasa, gsdf, tdrd1) started to increase between 75-90 dpf and vasa and tdrd1 later presented higher expression in females (90-105 dpf). Two genes placed on the SD region of turbot (sox2, fxr1) did not show any expression pattern suggestive of a sex determining function. We also detected changes in the expression levels of several genes (ctnnb1, cyp11a, dmrt2 or sox6) depending on culture temperature. CONCLUSION Our results enabled us to identify the first sex-associated genetic cues (cyp19a1a, vasa and amh) at the initial stages of gonad development in turbot (90 dpf) and to accurately sex turbot at this age, establishing the correspondence between gene expression profiles and histological sex. Furthermore, we profiled several genes involved in sex differentiation and found specific temperature effects on their expression.
Collapse
Affiliation(s)
- Diego Robledo
- Departamento de Genética, Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003, Barcelona, Spain.
| | - Rosa Cal
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, 36390, Vigo, Spain.
| | - Laura Sánchez
- Departamento de Genética. Facultad de Veterinaria, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain.
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003, Barcelona, Spain.
| | - Paulino Martínez
- Departamento de Genética. Facultad de Veterinaria, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain.
| | - Ana Viñas
- Departamento de Genética, Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
120
|
Tokarz J, Möller G, Hrabě de Angelis M, Adamski J. Steroids in teleost fishes: A functional point of view. Steroids 2015; 103:123-44. [PMID: 26102270 DOI: 10.1016/j.steroids.2015.06.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 01/23/2023]
Abstract
Steroid hormones are involved in the regulation of a variety of processes like embryonic development, sex differentiation, metabolism, immune responses, circadian rhythms, stress response, and reproduction in vertebrates. Teleost fishes and humans show a remarkable conservation in many developmental and physiological aspects, including the endocrine system in general and the steroid hormone related processes in particular. This review provides an overview of the current knowledge about steroid hormone biosynthesis and the steroid hormone receptors in teleost fishes and compares the findings to the human system. The impact of the duplicated genome in teleost fishes on steroid hormone biosynthesis and perception is addressed. Additionally, important processes in fish physiology regulated by steroid hormones, which are most dissimilar to humans, are described. We also give a short overview on the influence of anthropogenic endocrine disrupting compounds on steroid hormone signaling and the resulting adverse physiological effects for teleost fishes. By this approach, we show that the steroidogenesis, hormone receptors, and function of the steroid hormones are reasonably well understood when summarizing the available data of all teleost species analyzed to date. However, on the level of a single species or a certain fish-specific aspect of physiology, further research is needed.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gabriele Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Member of German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Member of German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
121
|
Pfennig F, Standke A, Gutzeit HO. The role of Amh signaling in teleost fish--Multiple functions not restricted to the gonads. Gen Comp Endocrinol 2015; 223:87-107. [PMID: 26428616 DOI: 10.1016/j.ygcen.2015.09.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
This review summarizes the important role of Anti-Müllerian hormone (Amh) during gonad development in fishes. This Tgfβ-domain bearing hormone was named after one of its known functions, the induction of the regression of Müllerian ducts in male mammalian embryos. Later in development it is involved in male and female gonad differentiation and extragonadal expression has been reported in mammals as well. Teleosts lack Müllerian ducts, but they have amh orthologous genes. amh expression is reported from 21 fish species and possible regulatory interactions with further factors like sex steroids and gonadotropic hormones are discussed. The gonadotropin Fsh inhibits amh expression in all fish species studied. Sex steroids show no consistent influence on amh expression. Amh is produced in male Sertoli cells and female granulosa cells and inhibits germ cell proliferation and differentiation as well as steroidogenesis in both sexes. Therefore, Amh might be a central player in gonad development and a target of gonadotropic Fsh. Furthermore, there is evidence that an Amh-type II receptor is involved in germ cell regulation. Amh and its corresponding type II receptor are also present in brain and pituitary, at least in some teleosts, indicating additional roles of Amh effects in the brain-pituitary-gonadal axis. Unraveling Amh signaling is important in stem cell research and for reproduction as well as for aquaculture and in environmental science.
Collapse
Affiliation(s)
- Frank Pfennig
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany.
| | - Andrea Standke
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany
| | | |
Collapse
|
122
|
Saito T, Psenicka M. Novel technique for visualizing primordial germ cells in sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso). Biol Reprod 2015; 93:96. [PMID: 26134864 DOI: 10.1095/biolreprod.115.128314] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/03/2015] [Indexed: 11/01/2022] Open
Abstract
Primordial germ cells (PGCs) are the origin of all germ cells in developing embryos. In the sturgeon embryo, PGCs develop from the vegetal hemisphere, which mainly acts as an extraembryonic source of nutrition. Current methods for studying sturgeon PGCs require either killing the fish or using costly and time-consuming histological procedures. Here, we demonstrate that visualization of sterlet (Acipenser ruthenus>) PGCs in vivo is feasible by simply labeling the vegetal hemisphere with fluorescein isothiocyanate (FITC)-dextran. We injected FITC-dextrans, with molecular weights varying between 10 000 and 2 000 000, into the vegetal pole of 1- to 4-cell stage embryos. At the neurula to tail-bud developmental stages, FITC-positive PGC-like cells appeared ventrally around the developing tail bud in the experimental group that received a high-molecular-weight FITC-dextran. The highest average number of FITC-positive PGC-like cells was observed in embryos injected with FITC-dextran having a molecular weight of 500 000 (FD-500). The pattern of migration of the labeled cells was identical to that of PGCs, clearly indicating that the FITC-positive PGC-like cells were PGCs. Labeled vegetal cells, except for the PGCs, were digested and excreted before the embryos starting feeding. FITC-labeled PGCs were observed in the developing gonads of fish for at least 3 mo after injection. We also found that FD-500 could be used to visualize PGCs in other sturgeon species. To the best of our knowledge, this report is the first to demonstrate in any animal species that PGCs can be visualized in vivo for a long period by the injection of a simple reagent.
Collapse
Affiliation(s)
- Taiju Saito
- Laboratory of Germ Cells, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Martin Psenicka
- Laboratory of Germ Cells, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| |
Collapse
|
123
|
Nishimura T, Sato T, Yamamoto Y, Watakabe I, Ohkawa Y, Suyama M, Kobayashi S, Tanaka M. foxl3 is a germ cell–intrinsic factor involved in sperm-egg fate decision in medaka. Science 2015; 349:328-31. [DOI: 10.1126/science.aaa2657] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/04/2015] [Indexed: 12/17/2022]
Abstract
Sex determination is an essential step in the commitment of a germ cell to a sperm or egg. However, the intrinsic factors that determine the sexual fate of vertebrate germ cells are unknown. Here, we show that foxl3, which is expressed in germ cells but not somatic cells in the gonad, is involved in sperm-egg fate decision in medaka fish. Adult XX medaka with disrupted foxl3 developed functional sperm in the expanded germinal epithelium of a histologically functional ovary. In chimeric medaka, mutant germ cells initiated spermatogenesis in female wild-type gonad. These results indicate that a germ cell–intrinsic cue for the sperm-egg fate decision is present in medaka and that spermatogenesis can proceed in a female gonadal environment.
Collapse
Affiliation(s)
- Toshiya Nishimura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
- Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Tetsuya Sato
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Fukuoka 812-8582, Japan
| | - Yasuhiro Yamamoto
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Ikuko Watakabe
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Fukuoka 812-8582, Japan
| | - Satoru Kobayashi
- Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Minoru Tanaka
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
- Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| |
Collapse
|
124
|
Böhne A, Sengstag T, Salzburger W. Comparative transcriptomics in East African cichlids reveals sex- and species-specific expression and new candidates for sex differentiation in fishes. Genome Biol Evol 2015; 6:2567-85. [PMID: 25364805 PMCID: PMC4202336 DOI: 10.1093/gbe/evu200] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Males and females of the same species differ largely in gene expression, which accounts for most of the morphological and physiological differences and sex-specific phenotypes. Here, we analyzed sex-specific gene expression in the brain and the gonads of cichlid fishes from Lake Tanganyika belonging to four different lineages, so-called tribes (Eretmodini, Ectodini, Haplochromini, and Lamprologini), using the outgroup Nile tilapia (Oreochromis niloticus) as reference. The comparison between male and female brains revealed few differences between the sexes, consistent in all investigated species. The gonads, on the other hand, showed a large fraction of differentially expressed transcripts with the majority of them showing the same direction of expression in all four species. All here-studied cichlids, especially the three investigated mouth-breeding species, showed a trend toward more male- than female biased transcripts. Transcripts, which were female-biased in expression in all four species, were overrepresented on linkage group (LG)1 in the reference genome and common male-biased transcripts showed accumulation on LG23, the presumable sex chromosomes of the Nile tilapia. Sex-specific transcripts contained candidate genes for sex determination and differentiation in fishes,especially members of the transforming growth factor-b-superfamily and the Wnt-pathway and also prominent members of the sox-, dm-domain-, and high mobility group-box families. We further confirmed our previous finding on species/lineage-specific gene expression shifts in the sex steroid pathway, including synthesizing enzymes as the aromatase cyp19a1 and estrogen and androgen receptors.
Collapse
Affiliation(s)
- Astrid Böhne
- Zoological Institute, University of Basel, Switzerland
- *Corresponding author: E-mail:
| | - Thierry Sengstag
- SIB Swiss Institute of Bioinformatics and sciCORE Computing Center, University of Basel, Switzerland
| | | |
Collapse
|
125
|
Wu GC, Li HW, Luo JW, Chen C, Chang CF. The Potential Role of Amh to Prevent Ectopic Female Development in Testicular Tissue of the Protandrous Black Porgy, Acanthopagrus schlegelii1. Biol Reprod 2015; 92:158. [DOI: 10.1095/biolreprod.114.126953] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/03/2015] [Indexed: 11/01/2022] Open
|
126
|
Thulasitha WS, Umasuthan N, Revathy KS, Whang I, Lee J. Molecular characterization, genomic structure and expressional profiles of a CXC chemokine receptor 4 (CXCR4) from rock bream Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2015; 44:471-477. [PMID: 25795219 DOI: 10.1016/j.fsi.2015.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
The CXC chemokine receptor 4 (CXCR4) is the cognate receptor of the CXC chemokine ligand 12 (CXCL12) and plays a pivotal role under immune-pathophysiological conditions. In the current study, the CXCR4 homolog of Oplegnathus fasciatus (OfCXCR4) was sequenced and the mRNA expression levels were characterized. The genomic structure of the cloned OfCXCR4 coding region (2094 bp) revealed a bi-exonic element, where the open reading frame (ORF) appears split by a single intron. Analysis of the ORF (1134 bp) of OfCXCR4 revealed a predicted protein of 42.1 kDa with typical seven transmembrane (TM) domain architecture and several conserved structural features, including two cysteine residues forming a predicted disulfide bond, a characteristic CXC motif (containing CYC) and a G-protein-coupled receptor (GPCR) family 1 signature. Furthermore, based on comparative analysis, the structure OfCXCR4 appears well conserved at both the genomic DNA and the amino acid levels. Phylogenic analysis of OfCXCR4 revealed that the greatest homology was with its teleostean relatives. Expression studies showed ubiquitous OfCXCR4 transcription, mainly in immune organs, with the highest levels in the head kidney. Examination of OfCXCR4 transcriptional regulation post injection to different stimuli or pathogens revealed a significant modulation of mRNA expression as detected by reverse transcription-quantitative real-time PCR. Evidence of various transcription factor binding sites present in the 5'-flanking region of OfCXCR4 coupled with its observed regulated mRNA expression suggest that it may have an important role in immune surveillance in rock bream.
Collapse
Affiliation(s)
- William Shanthakumar Thulasitha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Kasthuri Saranya Revathy
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
127
|
The dnd RNA Identifies Germ Cell Origin and Migration in Olive Flounder (Paralichthys olivaceus). BIOMED RESEARCH INTERNATIONAL 2015; 2015:428591. [PMID: 26180800 PMCID: PMC4477439 DOI: 10.1155/2015/428591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/03/2022]
Abstract
The present study obtained a germ cell-specific marker dead end (dnd) in olive flounder (Paralichthys olivaceus) named Podnd. The tissue-specific expressions of Podnd transcripts were present in testis and ovary but were not detectable in other somatic tissues detected. SISH showed that Podnd expressed only in germ cells at different developmental stages but not in surrounding somatic cells. The expression of Podnd during embryonic development at 16 different stages revealed that the relative expression of Podnd transcript fluctuated at a high level in the cleavage stages, gradually decreased through subsequent development, and reached the lowest at late gastrula stage till it was nearly undetectable. The Podnd transcripts localization and migration were similar to zebrafish. Further research on the specification migration mechanism of PGCs and the role of germ cell during gonadal development in olive flounder would improve our understanding of germline development.
Collapse
|
128
|
Qiu Y, Sun S, Charkraborty T, Wu L, Sun L, Wei J, Nagahama Y, Wang D, Zhou L. Figla Favors Ovarian Differentiation by Antagonizing Spermatogenesis in a Teleosts, Nile Tilapia (Oreochromis niloticus). PLoS One 2015; 10:e0123900. [PMID: 25894586 PMCID: PMC4404364 DOI: 10.1371/journal.pone.0123900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/23/2015] [Indexed: 01/23/2023] Open
Abstract
Figla (factor in the germ line, alpha), a female germ cell-specific transcription factor, had been shown to activate genetic hierarchies in oocytes. The ectopic expression of Figla was known to repress spermatogenesis-associated genes in male mice. However, the potential role of Figla in other vertebrates remains elusive. The present work was aimed to identify and characterize the functional relevance of Figla in the ovarian development of Nile tilapia (Oreochromis niloticus). Tissue distribution and ontogeny analysis revealed that tilapia Figla gene was dominantly expressed in the ovary from 30 days after hatching. Immunohistochemistry analysis also demonstrated that Figla was expressed in the cytoplasm of early primary oocytes. Intriguingly, over-expression of Figla in XY fish resulted in the disruption of spermatogenesis along with the depletion of meiotic spermatocytes and spermatids in testis. Dramatic decline of sycp3 (synaptonemal complex protein 3) and prm (protamine) expression indicates that meiotic spermatocytes and mature sperm production are impaired. Even though Sertoli cell (dmrt1) and Leydig cell (star and cyp17a1) marker genes remained unaffected, hsd3b1 expression and 11-KT production were enhanced in Figla-transgene testis. Taken together, our data suggest that fish Figla might play an essential role in the ovarian development by antagonizing spermatogenesis.
Collapse
Affiliation(s)
- Yongxiu Qiu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
| | - Shaohua Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
| | - Tapas Charkraborty
- South Ehime Fisheries Research Center, Ehime University, Funakoshi, Ainan, Ehime, Japan
| | - Limin Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
| | - Yoshitaka Nagahama
- South Ehime Fisheries Research Center, Ehime University, Funakoshi, Ainan, Ehime, Japan
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
- * E-mail: (DSW); (LYZ)
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
- * E-mail: (DSW); (LYZ)
| |
Collapse
|
129
|
Pandit NP, Bhandari RK, Kobayashi Y, Nakamura M. High temperature-induced sterility in the female Nile tilapia, Oreochromis niloticus. Gen Comp Endocrinol 2015; 213:110-7. [PMID: 25745814 DOI: 10.1016/j.ygcen.2015.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/08/2014] [Accepted: 01/24/2015] [Indexed: 10/23/2022]
Abstract
High temperature treatments induce germ cell loss in gonads of vertebrate animals, including fish. It could be a reliable source for induction of sterility if the treatments led to a permanent loss of germ cells. Here we report that heat treatment at 37 °C for 45-60 days caused a complete loss of germ cells in female Nile tilapia, Oreochromis niloticus, and that sterility was achieved in fish at all stages of their life cycle. Unlike previous observations, germ cells did not repopulate even after returning them to the water at control conditions suggesting permanent depletion of germ cells. Gonadal somatic cells immunopositive for 3β-hydroxysteroid dehydrogenase (3β-HSD) were clustered at one end of the germ cell depleted gonads close to the blood vessel. Serum level of testosterone, 11-ketotestosterone, and 17β-estradiol was significantly decreased in sterile fish compared to control. Body weight of sterile fish was higher than control fish at the end of experiment. Our observations of increased growth and permanent sterilization in the high temperature-treated fish suggest that this method could be an appropriate and eco-friendly tool for inducing sterility in fish with a higher thermal tolerance.
Collapse
Affiliation(s)
- Narayan Prasad Pandit
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko 3422, Motobu, Okinawa 905-0227, Japan; Tribhuvan University, Institute of Agriculture and Animal Science (IAAS), Paklihawa Campus, Rupendehi, Nepal
| | | | - Yasuhisa Kobayashi
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko 3422, Motobu, Okinawa 905-0227, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko 3422, Motobu, Okinawa 905-0227, Japan; Okinawa Churashima Foundation, 888 Ishikawa, Motobu-cho, Kunigami-gun, Okinawa 905-0206, Japan.
| |
Collapse
|
130
|
Dai X, Jin X, Chen X, He J, Yin Z. Sufficient numbers of early germ cells are essential for female sex development in zebrafish. PLoS One 2015; 10:e0117824. [PMID: 25679390 PMCID: PMC4332673 DOI: 10.1371/journal.pone.0117824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/02/2015] [Indexed: 11/30/2022] Open
Abstract
The sex determination for zebrafish is controlled by a combination of genetic and environmental factors. The determination of sex in zebrafish has been suggested to rely on a mechanism that is affected by germ cell-derived signals. To begin our current study, a simplified and efficient germ cell-specific promoter of the dead end (dnd) gene was identified. Utilizing the metrodinazole (MTZ)/ bacterial nitroreductase (NTR) system for inducible germ cell ablation, several stable Tg (dnd:NTR-EGFP-3'UTR) and Tg (dnd:NTR-EGFP+3'UTR) zebrafish lines were then generated with the identified promoter. A thorough comparison of the expression patterns and tissue distributions of endogenous dnd and ntr-egfp transcripts in vivo revealed that the identified 2032-bp zebrafish dnd promoter can recapitulate dnd expression faithfully in stable transgenic zebrafish. The correlation between the levels of the germ cell-derived signals and requirement for maintaining the female fate has been also explored with different durations of the MTZ treatments. Our results revealed the decreasing ratios of female presented in the treated transgenic group are fairly associated with the reducing levels of the early germ cell-derived signals. After the juvenile transgenic fish treated with 5 mM MTZ for 20 days, all MTZ-treated transgenic fish exclusively developed into males with subfertilities. Taken together, our results identified here a simplified and efficient dnd promoter, and provide clear evidence indicating that it was not the presence but the sufficiency of signals derived from germ cells that is essential for female sex development in zebrafish. Our model also provides a unique system for sex control in zebrafish studies.
Collapse
Affiliation(s)
- Xiangyan Dai
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Jin
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiaowen Chen
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiangyan He
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhan Yin
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
131
|
Rios-Rojas C, Bowles J, Koopman P. On the role of germ cells in mammalian gonad development: quiet passengers or back-seat drivers? Reproduction 2015; 149:R181-91. [PMID: 25628441 DOI: 10.1530/rep-14-0663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In addition to their role as endocrine organs, the gonads nurture and protect germ cells, and regulate the formation of gametes competent to convey the genome to the following generation. After sex determination, gonadal somatic cells use several known signalling pathways to direct germ cell development. However, the extent to which germ cells communicate back to the soma, the molecular signals they use to do so and the significance of any such signalling remain as open questions. Herein, we review findings arising from the study of gonadal development and function in the absence of germ cells in a range of organisms. Most published studies support the view that germ cells are unimportant for foetal gonadal development in mammals, but later become critical for stabilisation of gonadal function and somatic cell phenotype. However, the lack of consistency in the data, and clear differences between mammals and other vertebrates and invertebrates, suggests that the story may not be so simple and would benefit from more careful analysis using contemporary molecular, cell biology and imaging tools.
Collapse
Affiliation(s)
- Clarissa Rios-Rojas
- Institute for Molecular BioscienceThe University of Queensland, Brisbane, Queensland 4072, Australia
| | - Josephine Bowles
- Institute for Molecular BioscienceThe University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter Koopman
- Institute for Molecular BioscienceThe University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
132
|
Adolfi MC, Carreira ACO, Jesus LWO, Bogerd J, Funes RM, Schartl M, Sogayar MC, Borella MI. Molecular cloning and expression analysis of dmrt1 and sox9 during gonad development and male reproductive cycle in the lambari fish, Astyanax altiparanae. Reprod Biol Endocrinol 2015; 13:2. [PMID: 25577427 PMCID: PMC4298075 DOI: 10.1186/1477-7827-13-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/05/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The dmrt1 and sox9 genes have a well conserved function related to testis formation in vertebrates, and the group of fish presents a great diversity of species and reproductive mechanisms. The lambari fish (Astyanax altiparanae) is an important Neotropical species, where studies on molecular level of sex determination and gonad maturation are scarce. METHODS Here, we employed molecular cloning techniques to analyze the cDNA sequences of the dmrt1 and sox9 genes, and describe the expression pattern of those genes during development and the male reproductive cycle by qRT-PCR, and related to histology of the gonad. RESULTS Phylogenetic analyses of predicted amino acid sequences of dmrt1 and sox9 clustered A. altiparanae in the Ostariophysi group, which is consistent with the morphological phylogeny of this species. Studies of the gonad development revealed that ovary formation occurred at 58 days after hatching (dah), 2 weeks earlier than testis formation. Expression studies of sox9 and dmrt1 in different tissues of adult males and females and during development revealed specific expression in the testis, indicating that both genes also have a male-specific role in the adult. During the period of gonad sex differentiation, dmrt1 seems to have a more significant role than sox9. During the male reproductive cycle dmrt1 and sox9 are down-regulated after spermiation, indicating a role of these genes in spermatogenesis. CONCLUSIONS For the first time the dmrt1 and sox9 were cloned in a Characiformes species. We show that both genes have a conserved structure and expression, evidencing their role in sex determination, sex differentiation and the male reproductive cycle in A. altiparanae. These findings contribute to a better understanding of the molecular mechanisms of sex determination and differentiation in fish.
Collapse
Affiliation(s)
- Mateus C Adolfi
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University de São Paulo, São Paulo, SP Brazil
- Department of Physiological Chemistry I, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Ana CO Carreira
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, São Paulo, SP Brazil
| | - Lázaro WO Jesus
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University de São Paulo, São Paulo, SP Brazil
| | - Jan Bogerd
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rejane M Funes
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University de São Paulo, São Paulo, SP Brazil
| | - Manfred Schartl
- Department of Physiological Chemistry I, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Mari C Sogayar
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, São Paulo, SP Brazil
| | - Maria I Borella
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University de São Paulo, São Paulo, SP Brazil
| |
Collapse
|
133
|
Presslauer C, Nagasawa K, Dahle D, Babiak J, Fernandes JMO, Babiak I. Induced autoimmunity against gonadal proteins affects gonadal development in juvenile zebrafish. PLoS One 2014; 9:e114209. [PMID: 25436775 PMCID: PMC4250200 DOI: 10.1371/journal.pone.0114209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022] Open
Abstract
A method to mitigate or possibly eliminate reproduction in farmed fish is highly demanded. The existing approaches have certain applicative limitations. So far, no immunization strategies affecting gonadal development in juvenile animals have been developed. We hypothesized that autoimmune mechanisms, occurring spontaneously in a number of diseases, could be induced by targeted immunization. We have asked whether the immunization against specific targets in a juvenile zebrafish gonad will produce an autoimmune response, and, consequently, disturbance in gonadal development. Gonadal soma-derived factor (Gsdf), growth differentiation factor (Gdf9), and lymphocyte antigen 75 (Cd205/Ly75), all essential for early gonad development, were targeted with 5 immunization tests. Zebrafish (n = 329) were injected at 6 weeks post fertilization, a booster injection was applied 15 days later, and fish were sampled at 30 days. We localized transcripts encoding targeted proteins by in situ hybridization, quantified expression of immune-, apoptosis-, and gonad-related genes with quantitative real-time PCR, and performed gonadal histology and whole-mount immunohistochemistry for Bcl2-interacting-killer (Bik) pro-apoptotic protein. The treatments resulted in an autoimmune reaction, gonad developmental retardation, intensive apoptosis, cell atresia, and disturbed transcript production. Testes were remarkably underdeveloped after anti-Gsdf treatments. Anti-Gdf9 treatments promoted apoptosis in testes and abnormal development of ovaries. Anti-Cd205 treatment stimulated a strong immune response in both sexes, resulting in oocyte atresia and strong apoptosis in supporting somatic cells. The effect of immunization was FSH-independent. Furthermore, immunization against germ cell proteins disturbed somatic supporting cell development. This is the first report to demonstrate that targeted autoimmunity can disturb gonadal development in a juvenile fish. It shows a straightforward potential to develop auto-immunization-based technologies to mitigate fish reproduction before they reach maturation. However, the highly variable results between treatments and individuals suggest significant optimization should be performed to achieve the full potential of this technology.
Collapse
Affiliation(s)
| | - Kazue Nagasawa
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | - Joanna Babiak
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | | | - Igor Babiak
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
- * E-mail:
| |
Collapse
|
134
|
Tzung KW, Goto R, Saju JM, Sreenivasan R, Saito T, Arai K, Yamaha E, Hossain MS, Calvert MEK, Orbán L. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Reports 2014; 4:61-73. [PMID: 25434820 PMCID: PMC4297871 DOI: 10.1016/j.stemcr.2014.10.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
As complete absence of germ cells leads to sterile males in zebrafish, we explored the relationship between primordial germ cell (PGC) number and sexual development. Our results revealed dimorphic proliferation of PGCs in the early zebrafish larvae, marking the beginning of sexual differentiation. We applied morpholino-based gene knockdown and cell transplantation strategies to demonstrate that a threshold number of PGCs is required for the stability of ovarian fate. Using histology and transcriptomic analyses, we determined that zebrafish gonads are in a meiotic ovarian stage at 14 days postfertilization and identified signaling pathways supporting meiotic oocyte differentiation and eventual female fate. The development of PGC-depleted gonads appears to be restrained and delayed, suggesting that PGC number may directly regulate the variability and length of gonadal transformation and testicular differentiation in zebrafish. We propose that gonadal transformation may function as a developmental buffering mechanism to ensure the reproductive outcome.
Collapse
Affiliation(s)
- Keh-Weei Tzung
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, Singapore 117604, Singapore.
| | - Rie Goto
- Nanae Fresh Water Laboratory, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Kameda, Hokkaido 041-1105, Japan
| | - Jolly M Saju
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Rajini Sreenivasan
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Taiju Saito
- Nanae Fresh Water Laboratory, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Kameda, Hokkaido 041-1105, Japan
| | - Katsutoshi Arai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Etsuro Yamaha
- Nanae Fresh Water Laboratory, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Kameda, Hokkaido 041-1105, Japan
| | - Mohammad Sorowar Hossain
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Meredith E K Calvert
- Bioimaging and Biocomputing Facility, Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - László Orbán
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Animal Sciences and Animal Husbandry, Georgikon Faculty, University of Pannonia, 8360 Keszthely, Hungary; Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
135
|
Abstract
Teleost fishes are the most species-rich clade of vertebrates and feature an overwhelming diversity of sex-determining mechanisms, classically grouped into environmental and genetic systems. Here, we review the recent findings in the field of sex determination in fish. In the past few years, several new master regulators of sex determination and other factors involved in sexual development have been discovered in teleosts. These data point toward a greater genetic plasticity in generating the male and female sex than previously appreciated and implicate novel gene pathways in the initial regulation of the sexual fate. Overall, it seems that sex determination in fish does not resort to a single genetic cascade but is rather regulated along a continuum of environmental and heritable factors.
Collapse
|
136
|
Schiller V, Zhang X, Hecker M, Schäfers C, Fischer R, Fenske M. Species-specific considerations in using the fish embryo test as an alternative to identify endocrine disruption. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:62-72. [PMID: 24992288 DOI: 10.1016/j.aquatox.2014.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/03/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
A number of regulations have been implemented that aim to control the release of potentially adverse endocrine disrupters into the aquatic environment based on evidence from laboratory studies. Currently, such studies rely on testing approaches with adult fish because reliable alternatives have not been validated so far. Fish embryo tests have been proposed as such an alternative, and here we compared two species (medaka and zebrafish) to determine their suitability for the assessment of substances with estrogenic and anti-androgenic activity. Changes in gene expression (in here the phrase gene expression is used synonymously to gene transcription, although it is acknowledged that gene expression is additionally regulated, e.g., by translation and protein stability) patterns between the two species were compared in short term embryo exposure tests (medaka: 7-day post fertilization [dpf]; zebrafish: 48 and 96h post fertilization [hpf]) by using relative quantitative real-time RT-PCR. The tested genes were related to the hypothalamic-gonadal-axis and early steroidogenesis. Test chemicals included 17α-ethinylestradiol and flutamide as estrogenic and anti-androgenic reference compounds, respectively, as well as five additional substances with endocrine activities, namely bisphenol A, genistein, prochloraz, linuron and propanil. Estrogenic responses were comparable in 7-dpf medaka and 48/96-hpf zebrafish embryos and included transcriptional upregulation of aromatase b, vitellogenin 1 as well as steroidogenic genes, suggesting that both species reliably detected exposure to estrogenic compounds. However, anti-androgenic responses differed between the two species, with each species providing specific information concerning the mechanism of anti-androgenic disruption in fish embryos. Although small but significant changes in the expression of selected genes was observed in 48-hpf zebrafish embryos, exposure prolonged to 96hpf was necessary to obtain a response indicative of anti-androgenic activity. In contrast, for medaka clear anti-androgenic response, e.g. transcriptional downregulation of 11β-hydroxylase, 3β-hydroxysteroid-dehydrogenase, gonadotropin-releasing hormone receptor 2, was already observed at the pre-hatch stage. Together, this data suggests that medaka and zebrafish embryos would provide a beneficial alternative testing platform for endocrine disruption that involves additive information on interspecies and exposure time variability when using both species.
Collapse
Affiliation(s)
- Viktoria Schiller
- Fraunhofer Institute for Molecular Biology and Applied Ecology, 52074 Aachen, Germany.
| | - Xiaowei Zhang
- Toxicology Centre University of Saskatchewan, 44 Campus Drive Saskatoon, Saskatchewan, Canada
| | - Markus Hecker
- Toxicology Centre University of Saskatchewan, 44 Campus Drive Saskatoon, Saskatchewan, Canada
| | - Christoph Schäfers
- Fraunhofer Institute for Molecular Biology and Applied Ecology, 57392 Schmallenberg, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, 52074 Aachen, Germany
| | - Martina Fenske
- Fraunhofer Institute for Molecular Biology and Applied Ecology, 52074 Aachen, Germany
| |
Collapse
|
137
|
Nishimura T, Herpin A, Kimura T, Hara I, Kawasaki T, Nakamura S, Yamamoto Y, Saito TL, Yoshimura J, Morishita S, Tsukahara T, Kobayashi S, Naruse K, Shigenobu S, Sakai N, Schartl M, Tanaka M. Analysis of a novel gene, Sdgc, reveals sex chromosome-dependent differences of medaka germ cells prior to gonad formation. Development 2014; 141:3363-9. [DOI: 10.1242/dev.106864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In vertebrates that have been examined to date, the sexual identity of germ cells is determined by the sex of gonadal somatic cells. In the teleost fish medaka, a sex-determination gene on the Y chromosome, DMY/dmrt1bY, is expressed in gonadal somatic cells and regulates the sexual identity of germ cells. Here, we report a novel mechanism by which sex chromosomes cell-autonomously confer sexually different characters upon germ cells prior to gonad formation in a genetically sex-determined species. We have identified a novel gene, Sdgc (sex chromosome-dependent differential expression in germ cells), whose transcripts are highly enriched in early XY germ cells. Chimeric analysis revealed that sexually different expression of Sdgc is controlled in a germ cell-autonomous manner by the number of Y chromosomes. Unexpectedly, DMY/dmrt1bY was expressed in germ cells prior to gonad formation, but knockdown and overexpression of DMY/dmrt1bY did not affect Sdgc expression. We also found that XX and XY germ cells isolated before the onset of DMY/dmrt1bY expression in gonadal somatic cells behaved differently in vitro and were affected by Sdgc. Sdgc maps close to the sex-determination locus, and recombination around the two loci appears to be repressed. Our results provide important insights into the acquisition and plasticity of sexual differences at the cellular level even prior to the developmental stage of sex determination.
Collapse
Affiliation(s)
- Toshiya Nishimura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Amaury Herpin
- Department of Physiological Chemistry, University of Würzburg, D-97074 Würzburg, Germany
- INRA, UR1037 Fish Physiology and Genomics, Rennes F-35000, France
| | - Tetsuaki Kimura
- Interuniversity Bio-Backup Project Center, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Ikuyo Hara
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Toshihiro Kawasaki
- Genetic Strains Research Center, National institute of Genetics, Mishima 411-8540, Japan
| | - Shuhei Nakamura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Yasuhiro Yamamoto
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Taro L. Saito
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Jun Yoshimura
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Shinichi Morishita
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Tatsuya Tsukahara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Japan
| | - Satoru Kobayashi
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Kiyoshi Naruse
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Interuniversity Bio-Backup Project Center, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shuji Shigenobu
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Noriyoshi Sakai
- Genetic Strains Research Center, National institute of Genetics, Mishima 411-8540, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Manfred Schartl
- Department of Physiological Chemistry, University of Würzburg, D-97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
| | - Minoru Tanaka
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| |
Collapse
|
138
|
Abstract
Studies of gene function in non-model animals have been limited by the approaches available for eliminating gene function. The CRISPR/Cas9 ( C: lustered R: egularly I: nterspaced S: hort P: alindromic R: epeats/ C: RISPR AS: sociated) system has recently become a powerful tool for targeted genome editing. Here, we report the use of the CRISPR/Cas9 system to disrupt selected genes, including nanos2, nanos3, dmrt1, and foxl2, with efficiencies as high as 95%. In addition, mutations in dmrt1 and foxl2 induced by CRISPR/Cas9 were efficiently transmitted through the germline to F1. Obvious phenotypes were observed in the G0 generation after mutation of germ cell or somatic cell-specific genes. For example, loss of Nanos2 and Nanos3 in XY and XX fish resulted in germ cell-deficient gonads as demonstrated by GFP labeling and Vasa staining, respectively, while masculinization of somatic cells in both XY and XX gonads was demonstrated by Dmrt1 and Cyp11b2 immunohistochemistry and by up-regulation of serum androgen levels. Our data demonstrate that targeted, heritable gene editing can be achieved in tilapia, providing a convenient and effective approach for generating loss-of-function mutants. Furthermore, our study shows the utility of the CRISPR/Cas9 system for genetic engineering in non-model species like tilapia and potentially in many other teleost species.
Collapse
|
139
|
Abstract
Studies of gene function in non-model animals have been limited by the approaches available for eliminating gene function. The CRISPR/Cas9 ( C: lustered R: egularly I: nterspaced S: hort P: alindromic R: epeats/ C: RISPR AS: sociated) system has recently become a powerful tool for targeted genome editing. Here, we report the use of the CRISPR/Cas9 system to disrupt selected genes, including nanos2, nanos3, dmrt1, and foxl2, with efficiencies as high as 95%. In addition, mutations in dmrt1 and foxl2 induced by CRISPR/Cas9 were efficiently transmitted through the germline to F1. Obvious phenotypes were observed in the G0 generation after mutation of germ cell or somatic cell-specific genes. For example, loss of Nanos2 and Nanos3 in XY and XX fish resulted in germ cell-deficient gonads as demonstrated by GFP labeling and Vasa staining, respectively, while masculinization of somatic cells in both XY and XX gonads was demonstrated by Dmrt1 and Cyp11b2 immunohistochemistry and by up-regulation of serum androgen levels. Our data demonstrate that targeted, heritable gene editing can be achieved in tilapia, providing a convenient and effective approach for generating loss-of-function mutants. Furthermore, our study shows the utility of the CRISPR/Cas9 system for genetic engineering in non-model species like tilapia and potentially in many other teleost species.
Collapse
|
140
|
Molecular characterization, sexually dimorphic expression, and functional analysis of 3'-untranslated region of vasa gene in half-smooth tongue sole (Cynoglossus semilaevis). Theriogenology 2014; 82:213-24. [PMID: 24768058 DOI: 10.1016/j.theriogenology.2014.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 11/22/2022]
Abstract
Vasa is a highly conserved ATP-dependent RNA helicase expressed mainly in germ cells. The vasa gene plays a crucial role in the development of germ cell lineage and has become an excellent molecular marker in identifying germ cells in teleosts. However, little is known about the structure and function of the vasa gene in flatfish. In this study, the vasa gene (Csvasa) was isolated and characterized in half-smooth tongue sole (Cynoglossus semilaevis), an economically important flatfish in China. In the obtained 6425-bp genomic sequence, 23 exons and 22 introns were identified. The Csvasa gene encodes a 663-amino acid protein, including highly conserved domains of the DEAD-box protein family. The amino acid sequence also shared a high homology with other teleosts. Csvasa expression was mainly restricted to the gonads, with little or no expression in other tissues. Real-time quantitative polymerase chain reaction analysis revealed that Csvasa expression levels decreased during embryonic and early developmental stages and increased with the primordial germ cell proliferation. A typical sexually dimorphic expression pattern of Csvasa was observed during early development and sex differentiation, suggesting that the Csvasa gene might play a differential role in the proliferation and differentiation of male and female primordial germ cells (PGCs). Csvasa mRNA expression levels in neomales were significantly lower than those in normal males and females, indicating that the Csvasa gene might be implicated in germ cell development after sex reversal by temperature treatment. In addition, medaka (Oryzias latipes) PGCs could be transiently labeled by microinjection of synthesized mRNA containing the green fluorescence protein gene and 3'-untranslated region of Csvasa, which confirmed that the Csvasa gene has the potential to be used as a visual molecular marker of germ cells and laid a foundation for manipulation of PGCs in tongue sole reproduction.
Collapse
|
141
|
Xu H, Lim M, Dwarakanath M, Hong Y. Vasa identifies germ cells and critical stages of oogenesis in the Asian seabass. Int J Biol Sci 2014; 10:225-35. [PMID: 24550690 PMCID: PMC3927134 DOI: 10.7150/ijbs.6797] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/15/2013] [Indexed: 11/05/2022] Open
Abstract
Germ cells produce sperm and eggs for reproduction and fertility. The Asian seabass (Lates calcarifer), a protandrous marine fish, undergoes male-female sex reversal and thus offers an excellent model to study the role of germ cells in sex differentiation and sex reversal. Here we report the cloning and expression of vasa as a first germ cell marker in this organism. A 2241-bp cDNA was cloned by PCR using degenerate primers of conserved sequences and gene-specific primers. This cDNA contains a polyadenylation signal and a full open reading frame for 645 amino acid residues, which was designated as Lcvasa for the seabass vasa, as its predicted protein is homologous to Vasa proteins. The Lcvasa RNA is maternally supplied and specific to gonads in adulthood. By chromogenic and fluorescent in situ hybridization we revealed germ cell-specific Lcvasa expression in both the testis and ovary. Importantly, Lcvasa shows dynamic patterns of temporospatial expression and subcellular distribution during gametogenesis. At different stages of oogenesis, for example, Lcvasa undergoes nuclear-cytoplasmic redistribution and becomes concentrated preferentially in the Balbiani body of stage-II~III oocytes. Thus, the vasa RNA identifies both female and male germ cells in the Asian seabass, and its expression and distribution delineate critical stages of gametogenesis.
Collapse
Affiliation(s)
- Hongyan Xu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Menghuat Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Manali Dwarakanath
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
142
|
Okuyama T, Yokoi S, Abe H, Isoe Y, Suehiro Y, Imada H, Tanaka M, Kawasaki T, Yuba S, Taniguchi Y, Kamei Y, Okubo K, Shimada A, Naruse K, Takeda H, Oka Y, Kubo T, Takeuchi H. A Neural Mechanism Underlying Mating Preferences for Familiar Individuals in Medaka Fish. Science 2014; 343:91-4. [DOI: 10.1126/science.1244724] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Social familiarity affects mating preference among various vertebrates. Here, we show that visual contact of a potential mating partner before mating (visual familiarization) enhances female preference for the familiarized male, but not for an unfamiliarized male, in medaka fish. Terminal-nerve gonadotropin-releasing hormone 3 (TN-GnRH3) neurons, an extrahypothalamic neuromodulatory system, function as a gate for activating mating preferences based on familiarity. Basal levels of TN-GnRH3 neuronal activity suppress female receptivity for any male (default mode). Visual familiarization facilitates TN-GnRH3 neuron activity (preference mode), which correlates with female preference for the familiarized male. GnRH3 peptides, which are synthesized specifically in TN-GnRH3 neurons, are required for the mode-switching via self-facilitation. Our study demonstrates the central neural mechanisms underlying the regulation of medaka female mating preference based on visual social familiarity.
Collapse
|
143
|
|
144
|
González-Doncel M, García-Mauriño JE, San Segundo L, Beltrán EM, Sastre S, Fernández Torija C. Embryonic exposure of medaka (Oryzias latipes) to propylparaben: effects on early development and post-hatching growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:360-369. [PMID: 24095706 DOI: 10.1016/j.envpol.2013.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/10/2013] [Accepted: 09/14/2013] [Indexed: 06/02/2023]
Abstract
Here we proposed a battery of non-invasive biomarkers and a histological survey to examine physiological/anatomical features in embryos, eleutheroembryos (13 days post-fertilization, dpf), and larvae (28-42 dpf) of medaka to investigate the effects of embryonic exposure to propylparaben (PrP). Concentrations <1000 μg PrP/L didn't exert early or late toxic effects. However, survivorship was affected at 4000 μg/L in eleutheroembryos and at ≥1000 μg/L in larvae. Histological alterations were found in 37.5% of eleutheroembryos exposed to 4000 μg PrP/L. Morphometric analysis of the gallbladder revealed significant dilation at ≥400 μg/L throughout embryo development. Ethoxyresorufin-O-deethylase (EROD), as indicator of cytochrome P4501A activity, didn't reveal induction/inhibition although its combination with a P4501A agonist (i.e. β-naphthoflavone) resulted in a synergic EROD response. Results suggest a low toxicity of PrP for fish and support the use of fish embryos and eleutheroembryos as alternatives of in vivo biomarkers indicative of exposure/toxicity.
Collapse
Affiliation(s)
- Miguel González-Doncel
- Laboratory for Ecotoxicology, Department of the Environment, National Institute for Agricultural and Food Research and Technology, A-6, Km. 7.5, E-28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
145
|
Skugor A, Tveiten H, Krasnov A, Andersen O. Knockdown of the germ cell factor Dead end induces multiple transcriptional changes in Atlantic cod (Gadus morhua) hatchlings. Anim Reprod Sci 2013; 144:129-37. [PMID: 24439024 DOI: 10.1016/j.anireprosci.2013.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 11/05/2013] [Accepted: 12/18/2013] [Indexed: 11/30/2022]
Abstract
The RNA binding protein Dead end (DnD) is essential for maintaining viable germ cells in vertebrates and silencing of the gene has been demonstrated to cause sterility in several mammalian and fish species. Here we investigated transcriptome changes in hatched larvae of Atlantic cod induced by DnD knockdown using morpholino oligonucleotides (MO) injected in two-cell embryos. Whereas no fluorescently labeled germ cells were shown in embryos coinjected with dnd MO and nanos3 3'UTR coupled to green fluorescent protein, DnD knockdown had no visible effect on the number and location of Vasa protein positive cells in larvae. However, quantitative real-time RT-PCR (qPCR) revealed decreased vasa, nanos3 and tudor domain containing protein 7 mRNA expression and genome-wide oligonucleotide microarray analyses indicated profound suppression of genes involved in development and regulation of the reproductive system. DnD morphants showed lowered expression of genes encoding proteins involved in lipid, retinoid, cholesterol and steroid metabolism, including those with roles in sex hormone metabolism. Biotransformation of lipophilic compounds appeared suppressed too, as evidenced by down-regulation of several key genes from the phases 1 and 2 detoxification pathways. Effects of DnD silencing were highly pleiotropic and consisted of endocrine and metabolic changes, massive induction of histones and suppression of diverse developmental processes, including erythropoiesis and formation of extracellular matrix. While transient inhibition of dnd mRNA translation did not block development of primordial germ cells until hatch, results suggested that ablation of DnD might have major indirect consequences, including suppression of reproductive functions.
Collapse
Affiliation(s)
- Adrijana Skugor
- Nofima, Osloveien 1, N-1432 Ås, Norway; Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | | | | | - Oivind Andersen
- Nofima, Osloveien 1, N-1432 Ås, Norway; Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| |
Collapse
|
146
|
Tanaka M. Vertebrate female germline--the acquisition of femaleness. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:231-8. [PMID: 24896659 DOI: 10.1002/wdev.131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 08/29/2013] [Accepted: 10/09/2013] [Indexed: 01/16/2023]
Abstract
The cellular and molecular characteristics of female germ cells have primarily been studied in the mammalian ovary. In most female mammals, all primordial germ cells (PGCs) develop into oocytes early during ovary formation, and germline stem cells are few in number or absent in postnatal ovaries (Lei L, Spradling AC. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc Natl Acad Sci USA 2013, 110:8585-8590). Research efforts in the field have largely focused on meiosis and follicular development, but a fundamental question regarding establishment of femaleness, which is very important to understand the 'female' germline, has not been discussed sufficiently. Recent work has revealed the presence of germline stem cells in the vertebrate ovary, using the teleost fish, medaka (Oryzias latipes) (Nakamura S, Kobayashi K, Nishimura T, Higashijima S, Tanaka, M. Identification of germline stem cells in the ovary of teleost medaka. Science 2010, 328:1561-1563). This discovery allows direct comparison between female and male germline stem cells and raises an interesting and heretofore unaddressed issue regarding femaleness of germline stem cells. In this article, the germ cell behavior in the ovaries of different species is reviewed and compared, the molecular mechanisms underlying the generation of female germ cells are discussed, and the relationship between female germ cells and the surrounding somatic cells is examined.
Collapse
Affiliation(s)
- Minoru Tanaka
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
147
|
Hattori RS, Strüssmann CA, Fernandino JI, Somoza GM. Genotypic sex determination in teleosts: insights from the testis-determining amhy gene. Gen Comp Endocrinol 2013; 192:55-9. [PMID: 23602719 DOI: 10.1016/j.ygcen.2013.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/18/2013] [Accepted: 03/26/2013] [Indexed: 01/22/2023]
Abstract
The master sex-determining genes identified so far in fishes are clearly not conserved, as evidenced by several unrelated genes reported to play critical roles in sex determination. In this study, we reviewed the molecular process of sex determination in the Patagonian pejerrey Odontesthes hatcheri, an emerging model due to the recent discovery that a Y-chromosome linked, duplicated copy of the anti-Müllerian hormone gene, amhy plays a pivotal role in sex determination. A comparative analysis with other newly found sex-determining genes of teleost fish, DMY/dmrt1bY, sdY, amhr2, and gsdf(Y) is performed and alternative ideas are proposed to explain the mechanism involved in the rise of various types of non-homologous sex-determining genes.
Collapse
Affiliation(s)
- Ricardo Shohei Hattori
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7 Minato, Tokyo, Japan.
| | | | | | | |
Collapse
|
148
|
Lin F, Zhao CY, Xu SH, Ma DY, Xiao ZZ, Xiao YS, Xu CA, Liu QH, Li J. Germline-specific and sexually dimorphic expression of a dead end gene homologue in turbot (Scophthalmus maximus). Theriogenology 2013; 80:665-72. [PMID: 23906483 DOI: 10.1016/j.theriogenology.2013.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/10/2013] [Accepted: 06/21/2013] [Indexed: 11/24/2022]
Abstract
Germ cells are indispensable for gonadal development and fertility. However, the physiological mechanisms regulating germ cell development in marine fish are poorly understood due to a lack of germ cell markers. The dead end (dnd) gene is a vertebrate-specific component of germplasm crucial for primordial germ cells (PGCs) migration and development in teleosts. In this study, we identified a dnd homologue (Smdnd) in turbot (Scophthalmus maximus) and investigated its expression pattern during embryogenesis and gonadal development. The deduced amino acid sequence of Smdnd shared several conserved motifs of Dnd homologues as well as high identity to other Dnd proteins. Phylogenetic analysis revealed that the SmDnd was closely related to its teleost counterparts. Reverse transcription polymerase chain reaction (RT-PCR) and in situ hybridization revealed that Smdnd transcripts could be exclusively detected in germ cells, including presumptive PGC and adult male and female germ cells. In addition, an interesting sexually dimorphic expression of Smdnd during gonadal development was observed by real-time PCR. Female turbot showed greater (P < 0.05) Smdnd expression than male before sex maturation. This difference reduced gradually due to the upregulation of Smdnd in the male during the period corresponding to spermatogonia proliferation and meiosis. These results indicate that Smdnd can be used as a germ cell marker in turbot. In addition, the temporal and sex differences in Smdnd expression indicate that this gene may play different roles in gonadal development in both sexes.
Collapse
Affiliation(s)
- F Lin
- Center of Biotechnology R&D, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
von Schalburg KR, Gowen BE, Rondeau EB, Johnson NW, Minkley DR, Leong JS, Davidson WS, Koop BF. Sex-specific expression, synthesis and localization of aromatase regulators in one-year-old Atlantic salmon ovaries and testes. Comp Biochem Physiol B Biochem Mol Biol 2013; 164:236-46. [DOI: 10.1016/j.cbpb.2013.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
|
150
|
Valdivia K, Mourot B, Jouanno E, Volff JN, Galiana-Arnoux D, Guyomard R, Cauty C, Collin B, Rault P, Helary L, Fostier A, Quillet E, Guiguen Y. Sex differentiation in an all-female (XX) rainbow trout population with a genetically governed masculinization phenotype. Sex Dev 2013; 7:196-206. [PMID: 23485832 DOI: 10.1159/000348435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
Sex determination is known to be male heterogametic in the rainbow trout, Oncorhynchus mykiss; however, scattered observations that deviate from this rather strict genetic control have been reported. Here, we provide a detailed morphological and histological characterization of the gonadal differentiation and development (from 43 days postfertilization to 11 months of age) in an all-female (XX) population with a genetically governed masculinization phenotype. In comparison with control males and females, the gonadal differentiation in these animals was characterized by many perturbations, including significantly fewer germ cells. This decrease in germ cells was confirmed by the significantly decreased expression of 2 germ cell maker genes (vasa and sycp3) in the masculinized XX populations as compared with the control females and control males. Although only a proportion of the total adult population was partially or fully masculinized, this early differentiating phenotype affected nearly all the sampled animals. This suggests that the adult masculinization phenotype is the consequence of an early functional imbalance in ovarian differentiation in the entire population. We hypothesize that the lower number of germ cells that we observed in this population could be one cause of their masculinization.
Collapse
Affiliation(s)
- K Valdivia
- INRA, UR1037 LPGP Fish Physiology and Genomics, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|